ANATOG COMPUTING TECHNIQUES APPLIED TO ATMOSPHERIC DIFFUSION:
CONTINUOUS LINE SOURCE

by

Fred V. Brock

/

Technical Report No. 2

ORA Project 03632
NATIONAL SCIENCE FOUNDATION GRANT G-11L4Ok

College of Engineering Institute of Science & Technology
Department of Engineering Mechanics Great Lakes Research Division
Meteorological Laboratories Special Report No. 11

THE UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN
June 1961






ACKNOWLEDGMENTS

The author wishes to acknowledge the many helpful suggestions and en-
couragement given by Professor E. Wendell Hewson. The wholehearted coopera-

tion and assistance of Mrs. Anne C. Rivette is also appreciated.

iii






TABLE OF CONTENTS

LIST OF FIGURES

ABSTRACT

1. INTRODUCTION

2, THE PARABOLIC DIFFUSION EQUATION

3. VARIOUS MATHEMATICAL-PHYSICAL MODELS

L, PREPARATION FOR ANALOG COMPUTATION

5. MINIMIZATION OF ERROR DUE TO FINITE DIFFERENCE APPROXIMATION
6. EQUATIONS FOR VARIOUS MATHEMATICAL-PHYSICAL MODELS
T. ANALOG MODEL

8. COMPARISON OF ANALOG AND ANALYTICAL SOLUTIONS

9. ADDITIONAL RESULTS OF COMPUTATION

10. SUMMARY AND CONCLUSIONS

REFERENCES

APPENDIX

Page
vii

ix

13
15
21
27
31
b5
X

49






Fig.

10

11

12

LIST OF FIGURES

Physical model of diffusion from an infinite line source
showing coordinate axes and cloud outlines.

Finite difference model showing the vertical coordinate axis
relations.

Typical station in the passive network analog showing the
analogy between circuit components and the physical properties
of the atmosphere pertinent to the diffusion problem.

Electronic analog, passive network analog, and physical,
finite difference model of the atmosphere. Note that each
group of components represents a layer of the atmosphere,

Typical station in the active or electronic analog circuit.
The concentration is represented as a voltage, and equation
coefficients as potentiometer settings.

Plot of the concentration as a function of height for various
values of the distance downstream for the case with constant
wind speed profile.

Histogram of concentration versus height. Constant wind
profile at X = 50, This figure indicates the real form of

the computer solutions,

Plot of concentration versus height. Constant wind profile
case with ground absorption.

Plot of concentration versus height, Constant wind profile
with gravitational settling.

Plot of concentration versus height. Constant wind profile
with gravitational settling and ground absorption.

Plot of concentration versus height. Seventh root power law
wind profile.

Plot of concentration versus height, Logarithmic wind profile.

vii

Page

10

22

23

25

32

33

3l

35

36

37
38



Fig.

13

1k

15

16

17

18

LIST OF FIGURES (Concluded)

Lines of constant concentration in the X,Z space for the
constant velocity profile case.

Lines of constant concentration in the X,Z space for the
constant velocity profile with ground absorption.

Lines of constant concentration in the X,Z space for the
constant velocity profile with gravitational settling.

Lines of constant concentration in the X,Z space for the
constant velocity profile with ground absorption and
gravitational settling.

Lines of constant concentration in the X,Z space for the
power law wind profile case.

Lines of constant concentration in the X,Z space for the
logarithmic law wind profile case.

viii

Page

29

o)

b1

42

43

Ly



ABSTRACT

The partial differential equation which describes steady-state diffusion
from an infinite line source has been replaced with a set of simultaneous ordi-
nary differential equations solved on an electronic analog computer. One space
dimension, distance downwind, was represented by computer time; the other,
height, was replaced with finite differences. Solutions were obtained for
constant, power law, and logarithmic wind profiles, and for diffusion of partic-
ulates which can settle out and deposit on the ground.

All solutions were obtained with one basic computing circuit. Each prob-
lem required only a particular setting of the coefficient potentiometers in the
circuit. Implementation of this circuit regquired only 9 integrating amplifiers
and 26 coefficient potentiometers, available in any medium sized computer.

The solution's accuracy was measured by comparing the computer plots with
the analytical solution for constant wind profile. This measured the total
error due to the finite difference approximation and to computer errors, The

solution's accuracy was found to be 5% or better over most of the field.
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1, INTRODUCTION

Diffusion due to atmospheric turbulence can be described by the parabolic
diffusion equation. This is the direct physical approach in contrast to that
which invokes statistical concepts. Through the use of such an equation and
its boundary conditions, diffusion problems are conveniently specified, but
analytical solutions are not so readily obtained. So great is the difficulty,
indeed, that it is unusual to find a solution that fits problems of interest.
With the aid of various computing devices, such solutions can be found. Given
such a device, in this case an electronic analog computer, it is of interest
to explore the form of the solutions as a function of the various equation
parameters,

The physical problem considered here is that of steady-state diffusion
from an infinite line source, oriented normal to the wind. The solution will
specify the concentration of the diffusing substance as a function of position
in the region after the source has been emitting at a steady rate for a long
time, It will be obtained as a plot of concentration as a function of dis-
tance downwind for discrete height intervals. As examples of this process,
consider diffusion of exhaust gases from automobiles on a busy road, or a uni-
form, slowly advancing grass fire. The physical model, that is, the idealized
case, is shown in Fig. 1 and consists of a line source of infinite extent along
the y axis. The x axis is oriented downwind which is normal to the source and
the z axis extends vertically. The wind vector is assumed to have no components
in the y or z directions. Since the source has no height or width, the concen-

tration at the source must be infinite.
1
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2. THE PARABOLIC DIFFUSION EQUATION

The general diffusion equation is

gl = —B—[KXQX] +-§-[K _B..X‘:I +.§_[KZ§L] (]_)
dt x ox dy LY dy oz oz
where
.d_l = §l+ﬁﬂ+§§l+§§&
at ot ox oy oz
and
x = concentration of the diffusing substance
t = time
K; = coefficient of eddy diffusivity in the i direction
U = mean wind speed in the x direction
v = mean wind speed in the y direction
W = mean wind speed in the z direction.

In accordance with the physical model, the derivatives with respect to y are
zero, and the wind components v and W are zero, The steady-state provision
eliminates the partial derivative with respect to time. If we also neglect

the diffusion term in x compared to the translation term, that is, if

= o %}

u >

dx dx K ox ’
then the diffusion equation becomes

a%=ih%], (2)



With the equation in this form, the solution will depend upon the form of u
and K, and upon the boundary conditions.

If u and K, are given by

i - w(Z) e - k(L)

and the boundary and continuity conditions are

Kzax/az+o as z+0, x>0
x > along x =2z =0

(o]

] ux(x,z) dz = Q for all x >0 (3)
o

where Q is the rate of emission of material per unit length of source, then the

solution given by Suttonl is

— — - +2
X,2) = = e - i
x(%,2) To(s) L(m - n + 2)%K;x P (m - n + 2)%Kx (4)
where
m+ 1
s = S — .
m-n+2

x(x,z) is the mean concentration of the diffusing substance. This is a very
useful solution since it can be used for any power law wind profile provided
that m - n + 2 > 0. For the very.important case where the wind profile is
given by u o log z, K, < z, no analytical solution has been found.

An approximate solution for the logarithmic wind profile, U e« log z,
K, «< z, was given by Karplus and Allder.2 They used the electric analog which

is similar in principle to the technique reported here. It consisted of building



a ladder network of reéistors and capacitors which satisfied a set of simul-
taneous differential equations which was an approximation to the partial dif-
ferential equation (2).

The electronic analog approach is different primarily in that a standard
electronic analog computer is utilized instead of building a special circuit
as was done by Karplus and Allder. This has the advantage of using standard,

general purpose equipment, and 1s much more flexible.






3. VARIQUS MATHEMATICAL-PHYSICAL MODELS

The basic mathematical model which expresses the physical system shown
in Fig. 1 is Eq. (2). The special cases to be considered here are
(a) Constant velocity profile with standard boundary conditions [those
specified in (3)]; u = const, K, = const.
(b) Constant velocity profile with standard boundary conditions and
gravitational settling; u = const, K, = const, w = fall speed.

(c) Constant velocity profile with ground absorption; u = const s

d

K; = const, -a-xf ;é 0.
21 2=0
(d) Constant velocity profile with gravitational settling and ground
ons 5 - 1
absorption; u = const, K, = const, w = fall speed, 3 ;4 0.
21 z=0

(e) Power law wind profile with standard boundary conditions;
1/7 6/7

- — zZ Z
= - K Z = K ——> o
) =m (7)o KD = (L
(f) Logarithmic wind profile with standard boundary conditions H

Uz) =0y log(-zz—l> , K,(2) = Kl(-zz—l),

The complete model is

il

N X 3 [y 2] 422
ax “ Kl az I:B(Z) az + w az (5)

where the functions A(z) and B(z) represent the wind speed and eddy duffusivity

terms, respectively. Thus

u(z) = Al(l;) , Kgp(z) = K.B(z)

Settling of particulate matter is represented as a component of the wind directed



earthward. The boundary conditions for (5) are

X > along x =2 =20
w—
[ uy(x,z)dz = @ for all x >0
o
K, %ﬁ + 0 as z >0, x>0
z

for cases a, b, e, and f.

K, %é £0 at z =0, x>0

for cases c and 4.
To facilitate handling Eq. (5) and to increase the utility of the solu-
tions, it will be expressed in nondimensional terms. Set S = X/Xo and Z = z/zO

where the reference parameters y, and z, will be defined later. Then Eg. (5)

may be written

B | wp 2lpg B Ly
= - A(7Z) aZ[13(z) az] +waZ (6)
where
- Ky
X = X
Zog'l_ll
Woo
Ky

and the symbol X is reserved for incorporation of some more constants which

will appear later.



Ly, PREPARATION FOR ANALOG COMPUTATION

Since this problem is being prepared for solution on an analog computer,
we must observe the restriction that the analog computer can integrate only
with respect to one independent variable, namely, computer time. As stated
[Eq. (6)], the model has two independent variables x and Z so that one of
them, in this case Z, must be eliminated. This is done by replacing deriva-

tives with respect to Z by finite differences as follows:

38 _ Sn+1 - Sn-1

oZ | , (AZ)Mn ! + (AZ) n-1
2 [gs_] 1 [snﬂ - 8y Sp - sn-l}
oZ | 0Z (42) (AZ)H% (Az)n_é

Implementation of finite differences requires a new model to clarify the meaning
of the position n and the increment AZ. Such a model is presented in Fig. 2
which shows the atmosphere divided into 10 layers in the vertical. The thick-
ness of the layers increases exponmentially with height so that the thickness of
the top layer is infinite, The reason for this exponential distribution is
discussed more fully later. Each layer has a thickness AZ, is infinite in the
y direction, and semi-infinite in the x direction. All properties of each
layer are lumped in the center of the layer so that the model may be thought

of as a stack of planes spaced exponentially. FEach plane incorporates the
properties of the layer of atmosphere which it replaces, For convenience, the

planes are labeled 1 through 10 and represent the computing stations. Thus the
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Fig. 2. Finite difference model showing the vertical coordinate
axis relations.

10



notation Sn(i) represents the concentration in the nth layer as a function
of the distance downwind.

The first partial derivative with respect to Z required for the settling
term must be centered at the station n and must span fromn - 1 ton + 1 so
that the increment of Z is Zp4y - Zp-i. If the layer spacing were uniform,

this would be just 2(AZ). The notation (AZ) indicates the span from Z, to

1
ny

Z and (AZ indicates 2 -7 .
n+1ls (4Z) ‘ n+§ n_é

Now the meaning of x, and z, can be defined in terms of the finite dif-

ference model. In (3), the continuity condition

(o]

Q = [ uy(x,z)dz (x > 0)
o

relates the source strength Q to the concentration and wind speed. In the

finite difference model, this expression holds at x 2 O, so at x = O,

a _
Q = [ uyadz
o)

= auy

since the concentration is taken to be constant throughout the lowest layer,
which extends to a height a = 0.1053z,, and is zero above this layer. Labeling

the concentration at x = O as x,, then

- —9
Yo T Olo53zn (m

If u is a function of height, the value used here is the average over the height

interval O s z £ O.lOSBzO.

In the model the source is a region of uniform emission through some height

11



increment and the spacing of the layers is set accordingly as a function of
this height increment.

Using finite difference expressions for the derivatives with respect to Z,
Eq. (6) will be replaced with a set of 10 simultaneous differential equations,

one for each layer. The form of these equations is

as An Sn+1 = Sp Sn = Sp-1 Sn+1 - Sp-a
- = —— B a7 -B 1 ———— | AW (8)
S TUM I TN BTN (42) g + (0

The new independent variable X incorporates any arbitrary constants needed.



5. MINIMIZATION OF ERROR DUE TO FINITE DIFFERENCE APPROXIMATION

Since Eq. (8) is only an approximation to Eq. (6), it is important to
analyze the inherent error and to find ways of minimizing it. Considering
the case where the layer spacing in the vertical is uniform, the finite dif-
ference approximation for the second derivative of S with respect to Z is
given by

s
dz2

AZ AZ

1 [Sn+1 -Sh Sp - Sn-l] _ Sn+y - 25p + Sp-a

"o - 2
n AZ, (AZ)

To evaluate the error involved, expand Sp4; and S,_; about the point n using

a Taylor expansion,5

2 2 3 .3
Sp+1 = Sp t Az 38 + (42) o8 + (42) o5 + oo (9)
11021, 2r ¥ |, 3 3|,
2 .2 3 .3
Z Z
Sp-1 = Sp - éL.éﬁ + (47) é_g - (42) é.% + (10)
11 0Z |, 28 327 |, 3! 327 |,
Add the expressions (9) and (10) and solve for dZS/dZ2,
§f§ _ Sn+1 - 25n + Sp-a .
oz (AZ) 2
n
where
2 \4
€ = - (4”98 | e (11)
12 3zt |,

The error that we are seeking is € and it is a function of the station spacing

and of the gradient at a given station., The error can be reduced by increasing



the number of stations which decreases the height increment. However, since
the amount of equipment involved is proportional to the number of stations,

we must keep the number to a minimum, Since the gradient is greatest near

the source and falls off with distance from the source, the contribution of
the gradient term to the error will decrease with height. Thus we space the
stations closer together near the ground with small height increments and let
the height increments increase exponentially with height. This reduces the
error for a given number of stations and provides more data in the lower layers

where the greatest changes occur.

14



6. EQUATIONS FOR VARIOUS MATHEMATICAL-PHYSICAL MODELS

Equation (8) with the appropriate boundary conditions for each of the
seven cases is given below.

(a) Constant velocity profile. The simultaneous differential equations are

ds _ 1 Sn+1 - Sn _ Sn - Sn-l] (12)
ax 100( AZ) (AZ) (AZ)
n n n+= n-=
2 2
where
X = 100 x
Sy = 1.00 at X =0
S¢ = 531 for all X
Sio = O for all X .

An arbitrary factor, in this case 100, is introduced in each case to facilitate
handling the equations on the computer. Also, since the independent variable X
. corresponds to computer time, the arbitrary factor controls the solution speed
which must be within the limits set by the frequency response of the two-coordinate
plotter, used to record the solution, on the one hand, and by the patience of
the operator on the other.

The boundary conditions must be restated in terms of the finite differences.
The source strength is no‘longer infinite at a line but finite at an area as
given by (7). Thus, the concentration ratio S; in the first layer is unity

at X = 0. The requirement that the flux across the boundary, represented by

15



N e

the ground at n = = , be zero is satisfied by setting the concentration at

o & virtual station below ground, equal to that at S; for all values of X.

The flux at n = é is given by

| - 58-S _
Z .
oz 1 A
2
The concentration in the tenth layer must be zero because that layer is in-
finite in extent. Since S;p = O for all values of X, there are only 9 active

cells and 9 simultaneous differential equations when (12) is expanded.

(b) Constant velocity profile with gravitational settling.

ds - 1 [?n+1 - Sn _ 5n - Sn-l] + 1 Sn+1 - Sn-1 (13)
ax 1 lOO(AZ)n (AZ)n*l (AZ)nmi 100 (Az)n+i + (AZ)n_&
2 2 2 2
X = 100 x
S; = 1.00 at X =0
So = 51 for all X
S10 = 0 for all X
W=1 for all X and Z.

This equation is different from the previous one only in that the settling term
has been added. Since the purpose here is only to show how to incorporate set-
tling and the nature of the effect on the solutions, the settling coefficient

was arbitrarily set at W = 1. If the eddy diffusivity K; were 10* cm® sec™t

and zy were 10° cm, the fall speed would be 10 cm sec” ! since W = WwZo/Kj .

(c) Constant velocity profile with ground absorption.

16



dS - 1 [Sn+l - Sn _ 5p - Sn-l] (1h)

ax | 100(/32)n (AZ)H% (AZ) 'ﬁ
where
X = 100 x
Sy = 1.00 at X =0
So = 751 for all X (y = 0.5)
S10 =20 for all X.

Equation (14) is just like (12) with the exception of one of the boundary condi-
tions. If we define an absorption coefficient y such that when y = O there is
complete absorption, the ground acts as a sink, When y = 1.00, there is complete
reflection at the ground. This model cannot distinguish between passage through
the boundary and deposition on it., For this case, y = 0.5, which means that

the concentration in the virtual layer n = O is just one-half the concentration
in the first layer for all X. In the case of deposition, enough material is
deposited on the boundary to provide the required concentration in the virtual
layer.

(d) Constant velocity profile with gravitational settling and ground

absorption.
ds - 1 [Sn+1 - Sn _ Sy - Sn-l] + 1 Sp+1 - Sp-1 (15)
ax |, lOO(AZ)n (AZ) ok (AZ) ool 100 (AZ) gt (AZ) ol
: 2 2 2 2
where
X = 100 X
S,y = 1.00 at X =0

17



So = 751 for all X (y = 0.5)

S10 = 0 for all X.
This case provides the logical combination of the two previous ones. The ma-
terial is assumed to have a ‘finite fall speed and is allowed to deposit on the
boundary surface.

(e) Power law wind profile.

o . 86156< [<AZ> (Snta = S0) - ( ) 'Sn’l)] (10

1
n+3
where
3
Zog 7T —
X = 86.36 — X
Zy
S, = 1.00 at X =0
So = 51 for all X
S10 = 0 for all X,

In comparing the distribution of concentration in various wind profile regimes,
differences occur due to a change in the average wind speed and to the wind
speed distribution. If we set Zg = Z; to eliminate the arbitrary constants
raised to the g power in X, comparison of this case to, say case (a) or (f),

at equal values of X will not show both effects but only that due to a dif-
ferent wind distribution. This is so because the number 86.56/100 compensates
for the different average values of K and u. Comparison at equal values of X
will show both effects.

(f) Logarithmic wind profile.

as| _ 1 [(lg2)™* Z
ax|_ — 63.72 [ (AZ) ] [(AZ) (Sp+y - Sn) - (AZ) 1 (n - Sn'l{‘

n 2
(17)

mta



where

X =63.72 x (2, = Zo)

S; = 1.00 at X =0
So = 531 for all X
S10=0 for all X
log Z = natural logarithm of Z.

As in the previous case, compensation has been introduced for the average

u and K.

19






7. ANALOG MODEL

The physical model now consists of a stack of planes spaced exponentially
in the z direction. It is supposed that each plane has a capacity for contain-
ing some of the diffusing substance just equal to that of the layer of atmosphere
that it replaces. At a given point in x, a traverse in the z direction shows
the properties of the atmosphere lumped at discrete intervals, This model
can be simulated with an electric analog, where each of the circuit components
is analogous to some property of the atmosphere., A segment of such a circuit
is shown in Fig. 3., The analogies shown were developed from the similarity

of the node differential equations for a simple case,

1
= = (Vp+y - 2V + Vp-a)

n

av

c
%4t

]

- d
(Az)n u Eﬁ (xn+1 - 2Xn + Xn-1) -

n (8z)y

To perform the simulation, set the resistor Ry proportional to Az/k, the capaci-
tor Cp proportional to Az u and voltage V proportional to concentration. The
problem time t will represent distance downstream. All these relations are
stated as proportionalities so that scale factors can be used to provide reason-
able values of resistance and capacitance. In general, one may relate electri-
cal resistance to atmospheric resistance to diffusion and electrical capacitance
to the capacity of a layer of the atmosphere to hold the diffusing substance.
The complete network analog is shown in Fig. L along with the electronic analog

and a representation of the physical model.
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of components represents a layer of the atmosphere.
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The passive circuit analog was not used in this study, but it is helpful
to construct it on paper because of the insight it provides. This is particu-
larly useful in determining the method of applying the boundary conditions,

To insure that S;(0) = 1.00, the S; capacitor is disconnected from the circuit
and charged to an arbitrary voltage which is taken to be unity, At the position

(computer time) X = O, the capacitor is switched into the circuit. The re-

i

quirement that Sy = S; for all X is simply provided by making the resistor
Ro which connects the virtual station S to S; infinite, Then the flux (cur-
rent) between them is zero as required. If we want Sg =0 (nonreflecting
boundary) , connect resistor R, to ground as shown in Fig. 4. However, the
requirement that Sy = 0.5 S; is difficult to implement in the passive analog.
Again, to insure that S;, = O, make the position 10 at ground potential.

The electronic analog circuit could be designed directly from the pas-
sive network or from the set of simultaneous differential equations. The lat-
ter method is much the easier course after Egs. (12)-(17) are reduced to the

form

ds
n

The principal element in the electronic analog is the integrating amplifier

which can be used to represent one station as shown in Fig., 5. In the passive
network analog, there was a direct correspondence between the circuit elements
and the physical problem, while in the electronic analog, there exists & one-
to-one correspondence between the circuit elements and the defining equation (18).

The coefficients a, b, and ¢ are set on the correspondingly designated coefficient

24



| pf

O.l or I M S
_ | YKy
EI[: M HIGH- GAI

AMPLIFIER

_O‘ — COEFFICIENT POTENTIOMETER

Fig. 5. Typical station in the active or electronic analog circuit.
The concentration is represented as a voltage, and equation coef-
ficients as potentiometer settings.

25



potentiometers. The integrating amplifier sums the three inputs, integrates
the sum, and inverts the sign. Ordinarily, the gain of the integrating ampli-
fier is unity, set by the 1 megohm input resistor and 1 microfarad feedback
capacitor. If one of the coefficients is greater than unity, the correspond-
ing input resistor used is 0.1 megohm which provides a gain of 10. This is
necessary because the maximum setting of the coefficient potentiometers is 1.
The electronic circuit is much more flexible than the passive network
permitting almost any conceivable form of boundary conditions to be set up

readily.

26



8. COMPARISON OF ANATLOG AND ANALYTICAL SOLUTIONS

The form of the solution is a voltage at the output of each amplifier which
is proportional to the concentration at the appropriate level in Z and which
is a continuous function of X, When recorded on a two-coordinate plotter, the
result is a family of curves representing the concentration at discrete levels
of Z.

The evaluation of errors in this type of computation is especially im-
portant since there are two very different possible sources. One is the approxi-
mation involved in using finite differences and the other is due to the com-
puter. Previously, we indicated how the error due to the use of finite differ-
ences could be minimized but said nothing about the magnitude of the errors.

The procedure here will be to compare the computer solution of case (a) con-
stant wind profile, with tﬁe analytical solution which may be obtained from
Eq. (4) by settingm =n = 0,

o+ =2 [B] e [22] -

uy T (%) LK, x hKix

o=

Equation (19) is the solution for diffusion from a line source of infinite
concentration while the computer solution is for a vertical area source of
limited height and of finite concentration. There seems to be some problem
in comparing these solutions. The actual source strengths can be related by
substituting Eq. (7) into Eq. (19) and, for convenience, setting

Kl=ﬁl=zo=l.

27



2
g - AL o 01053 . [_] (20)
Xo 21"(—%—)3{2 Lx

In terms of the nondimensional parameters X and Z, (20) is

1 2
S = 0.5941X Z exp [— 22? ] . (20a)

We can determine whether the finite difference solution is a good approxima-
tion to (20a) by comparing the form of the solutions with respect to X and Z
and by comparing values of S at selected points in the X,Z space. A simple

relation between S and X exists at Z = O such that

-1
_ 2
S 70 = 0.5941% . (21)

Then we can observe the relation of S to the exponential term by finding the

slope of logarithm of S with respect to 72,

log S, - log So - _25

75 - 75

Slope

Table I shows how well (21) and (22) are satisfied. The exponential term seems
to fit well out to X > 100 where the slope was very small., At X 2z 200, all
the concentrations are small, S £ .04 so that a constant error which is small
for S becomes a large percentage error when S is small. This is shown in

Table II where computer values of concentration are compared with analytical

values,
The most significant feature of Table II is that the magnitude of the

error is fairly constant. The percentage error increases as the concentration

28



TABLE I

DETERMINATION OF THE FIT OF THE FINITE DIFFERENCE SOLUTION
TO THE ANALYTICAL SOLUTION

X X%S' 7 =0 -X [slope]
1 0.549 24,8
5 0.586 26.3
10 0.573% 25.6
25 0.572 25.3
50 0.566 25.5
100 0.573 25.54
200 0.572 32.1
300 0.5%2 L3,2

Analytical
Values 0.5941 25.0
TABLE IT

COMPARISON..QF ANALYTICAL AND FINITE DIFFERENCE ‘SOLUTIONS
AT SELECTED POINTS

Concentration Magnitude Percentage
n X Analytical of Error Error
1 25 0.119 0.0050 4.2
2 0.116 0.0040 3.5
3 0.109 0.0040 3.7
L 0.0987 0.0045 L.6
5 0.0831 0.0038 4.6
6 0.0628 0. 0027 4.3
7 0.0394 0.0019 4.8
8 0.0174 0.0011 6.3
9 0.003%25 0.00025 T.7
1 100 0.0594 0.0021 3.5
2 0.0590 0.0020 3.k
3 0.0582 0.0021 3.6
L 0.0567 0.0020 3.5
5 0.0543 0.0020 3.7
6 0.0502 0.0015 3,0
T 0.0UkT 0.0013 2.9
8 0.0%68 0.0016 4.3
9 0.0242 0,0022 9.1
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decreases indicating that there is a 1limit to useful computation. When the
concentration ratio S falls to less than 0,001, computer error in the form
of noise becomes significant. Virtually all the error shown in Table II is
due to the limitations of the finite difference model. The error in this
computation is less than 5% provided that S > 0.001 and except in layer 9.
Greater errors should be expected in this layer since it is the largest
active one and is next to the infinite layer for which zero concentration is

assumed,
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9. ADDITIONAL RESULTS OF COMPUTATION

To present the information more compactly, the solutions have been re-
plotted on log-linear paper as shown in Fig. 6. This presents concentration
as a continuous function of height although what was actually obtained was a
histogram as shown in Fig. 7.

Teking Fig. 6 as a standard for comparison, it is seen from Fig. 8 that
the effect of ground ebsorption is to produce lower concentrations in the pro-
files. TFigure 8 also shows that the maximum concentration found in the profile
for X >0 occurs above the ground, thus indicating that the plume axis 1lifts
off the ground. Figure 9 shows that gravitational settling produces profiles
of somewhat lower concentrations than in Fig. 6 and with more slope. In this
case, of course, the plume does not rise, The combination of settling and
absorption or deposition is shown in Fig. 10.

Solutions due to power law wind profile and logarithmic profile are shown
in Figs. 11 and 12. The level of concentration in the profiles is very nearly
the same but the slopes are slightly different. 1In both cases, the profiles
for small values of X approximate to straight lines.

To give an intuitive appreciation for the nature of the solutions obtained,
they are presented in Figs. 13-18 as lines of constant concentration in the

X,Z space.
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10. SUMMARY AND CONCLUSIONS

Solutions to the diffusion equation for the case of the infinite line
source have been found for three types of wind speed profile and for the case
of diffusion of particulates with an appreciable fall speed. These are sample
problems that were chosen to demonstrate the method. In the problems selected,
the functions of wind speed and eddy diffusivity with height were specified
in analytical form and then translated to discrete steps in height. Since
they are used in this form, one could as easily start with functions expressed
graphically or in any arbitrary manner, Indeed, using the passive network
analogy as a guide, it is possible to design the computing circuit directly
from the physical problem. Even the layer spacing used need not follow some
mathematical rule; it could be chosen to fit the problem.

The wind speed and eddy diffusivity were assumed constant with distance
downwind. Changing them with respect to x would involve changing resistors
in time which is not difficult to implement with servo multipliers which are
usually found in analog computer installations. In the same way, the boundary
conditions could be made a function of x. Thus one could simulate diffusion
over undulating ground.

The accuracy obtained here was better than 5% over most of the field.
This could be improved to 1% by increasing the number of cells inasmuch as
analog computers are available with component quality of 0.01% of full scale.
Extension beyond 1% solution accuracy is not practical with this technique,

nor is there any theoretical or practical need for greater accuracy than this,
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The advantages of the analog technique in problems of this type are the
speed and convenience with which a solution may be obtained and the ease with
which atmospheric parameters may be varied. In addition to its value as a re-
search tool, the analog‘method should be a valuable teaching ald in the analysis
of gtmospheric diffusion. Teking advantage of the direct relation between
mathematical operations and computer components, an instructor could demonstrate
before a class the effects of changing parameters on the solution obtained.

This method may be extended to problems of finite line sources, area

sources both horizontal and vertical, and to elevated point sources.
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APPENDIX

The following tables list the equation coefficients in the form of Eq.

(18). These are the coefficients that were applied to the computer in the

form of coefficient potentiometer settings.

Equation (18) is repeated for

convenience:
-d—s- = a.nSn+l - bnSn + CnSn_ 1 ( 18)
dX n
TABLE A-T
CONSTANT WIND PROFILE
n a b c
1 0.8571 0.8571 0
2 0.6780 1. 44 0.7661
3 0.5226 1.089 0.5665
L 0.3%887 0.8422 0. L4545
5 0.2735 0.6011 0.3276
6 0.1782 0. 4015 0.2233
T 0.1034 0.2416 0.1382
8 0.04833 0.1218 0.07348
9 0 0.04131 0.02820
TABLE A-II

CONSTANT WIND PROFILE WITH GROUND ABSORPTION

Same as Table A-I except b; = 1.308 for y = 0.5

49



TABLE A-TII

CONSTANT WIND PROFILE WITH GRAVITATIONAL SETTLING

n a b c
1 0.9046 0.8571 0
2 0.7205 1, hhhL 0.7236
3 0.5595 1.089 0.5292
L 0.k4202 0.8422 0.k4220
5 0.3009 0.6011 0.3002
6 0.2006 0.4015 0.2007
7 0.1208 0.2416 0.1208
8 0.06068 0.1218 0.06113
9 0 0.04131 0.02099
TABLE A-IV

CONSTANT WIND PROFILE WITH GRAVITATIONAL SETTLING
AND GROUND ABSORPTION

Same as Table A-III except by = 1.308 for y = 0.5

TABLE A-V

POWER LAW WIND PROFILE

n a b c

1 0.1956 0.1956 0

2 0.2499 0.3982 0.1483

3 0.2663 0.4690 0.2027

L 0.2534 0.4721 0.2187

5 0.2213 0.4255 0.2042

6 0.1759 0.3L49lk 0.1735

7 0.1240 0.2551 0.1311

8 0.07137 0.15L49 0.08355
9 0 0.06504 0.03984
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TABLE A-VI

LOGARITHMIC WIND PROFILE

n a b c

1 0.1419 0.1k419 0

2 0.2220 0.3L03 0.1183
3 0.2550 0.4369 0.1819
L 0.2523 0.4589 0.2066
5 0.2246 0.423%0 0.1984
6 0.1795 0.3497 0.1702
7 0.126L 0.2548 0,128k
8 0.06782 0.1450 0.07719
9 0 0.06286 0.037Th
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