The Leucine Binding Proteins of *Escherichia coli* as Models for Studying the Relationships Between Protein Structure and Function

Tammy K. Antonucci, Robert Landick, and Dale L. Oxender

Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109

The genes encoding the leucine binding proteins in *E. coli* have been cloned and their DNA sequences have been determined. One of the binding proteins (LIV-BP) binds leucine, isoleucine, valine, threonine, and alanine, whereas the other (LS-BP) binds only the D- and L-isomers of leucine. These proteins bind their solutes as they enter the periplasm, then interact with three membrane components, livH, livG, and livM, to achieve the translocation of the solute across the bacterial cell membrane. Another feature of the binding proteins is that they must be secreted into the periplasmic space where they carry out their function. The amino acid sequence of the two binding proteins is 80% homologous, indicating that they are the products of an ancestral gene duplication. Because of these characteristics of the leucine binding proteins, we are using them as models for studying the relationships between protein structure and function.

Key words: amino acid transport, binding proteins, secretion, gene duplication, oligonucleotide-directed mutagenesis

There are three major systems operating in *Escherichia coli* for the transport of the branched-chain amino acids. Two of these systems consist of a binding protein and three membrane components while the third system appears to involve only a single membrane component. In this discussion we will describe the biochemical and genetic properties of the two binding protein-dependent transport systems, emphasizing the multiple functions of the binding protein components of the transport systems and, as a consequence, the value of the binding proteins for understanding the relationship(s) between protein structure and function.

The LIV-I system transports L-leucine, L-isoleucine, and L-valine with K_d values of approximately 10^{-6} to $10^{-7} \mu M$ [1–4]. In addition, this system is responsible for the transport of threonine and alanine, but with somewhat lower affinities [2].

Robert Landick’s present address is the Department of Biological Sciences, Stanford University, Stanford, CA 94305.

Received June 6, 1985; revised and accepted August 6, 1985.
The other transport system to be considered is the leucine-specific transport system (LS). The LS system transports L-leucine with a K_d value of approximately 10^{-6} μM; D-leucine is also an acceptable substrate but with a lower affinity [1–4]. All structural genes for the LS and LIV-I transport systems are located at the minute 76 region on the E. coli chromosome [4].

The genes encoding the components of the branched-chain amino acid transport systems LIV-I and LS in E. coli have been cloned [5]. The gene organization is shown in Figure 1. There are three functional operons with their directions of transcription indicated by the arrows. The $livJ$ and $livK$ gene products are the periplasmic binding proteins, called LIV-BP and LS-BP, respectively. The LIV-BP binds isoleucine, leucine, and valine with high affinity and threonine and alanine with a somewhat lower affinity. The LS-BP binds only isomers of leucine. The $livH$, $livM$, and $livC$ genes encode proteins that have been localized to the inner membrane of the bacterial cell [6]. These proteins presumably interact with the BP-amino acid complex to effect the transport of the amino acid into the cytoplasm of the cell. Thus the LIV-I and LS transport systems consist of individual binding proteins that have different substrate specificities yet interact with the same membrane components during the transport process. The $livL$ operon produces a 17 kD protein but its role in transport, if any, has not been determined [7].

CHARACTERISTICS OF THE LIV-BP AND THE LS-BP

The DNA sequence of the $livJ$ and $livK$ genes encoding the two binding proteins has been determined [8] and is shown in Figure 2. A comparison of the coding regions of the two sequences shows that the two binding protein genes are 80% homologous, indicating that they are the products of an ancestral gene duplication [8–11]. While the sequences of the 5′ flanking regions and coding regions revealed no strong homology with the known ribosome-binding sites, the pattern of codon usage in both genes implies that they are translated with average efficiency.

The amino acid sequence of the LIV-BP has been previously reported [12] and is consistent with the DNA sequence except for two positions [8]. Moreover, the crystal structure of the mature LIV-BP was determined to a resolution of 2.0 A [13]. The crystal structure reveals that the LIV-BP has two domains that fold to form a cleft [13]. One domain of LIV-BP is composed of the N-terminal half of the protein, while the other domain is formed by most of the C terminal portion of the molecule. The secondary structure obtained from the crystallographic analysis shows that each domain is formed by an alternating series of alpha helices and beta sheets [8]. Figure 3 shows the predicted secondary structural features superimposed onto a drawing of the crystal structure. The filled-in dots represent differences in amino acid sequences between the two binding proteins. The two arrows in Figure 2 point out regions where amino acid insertions occur in the LS-BP. A disulfide bridge can be positioned between segments beta-2 and beta-3.

Substrate Binding

One of the major functions carried out by the BPs is binding of substrate. As mentioned above, the LIV-BP and the LS-BP have different substrate specificities. Saper and Quiocho [13] have observed that when L-leucine is diffused into crystals...
Fig. 1. Organization of the high affinity branched-chain amino acid transport genes in E. coli. Arrows represent the directions of transcription for the operons.
212:JCB
Antonucci, Landick, and Oxender

Fig. 2. Nucleotide sequences of the genes encoding LIV-BP and LS-BP. Positive numbering indicates the mature protein sequences, while negative numbering designates the signal sequences. Homologous amino acids are noted by asterisks.

42:PSFD
Fig. 3. Structure of the LIV-BP. Predicted secondary structures are superimposed on the three-dimensional structure reported by Saper and Quiocho [13]. Filled circles indicate the positions of amino acid differences between the LIV-BP and LS-BP sequences. The two dark arrows indicate the region where a two-amino acid insertion occurs in the LS-BP sequence. A disulfide bridge is indicated between segments beta-2 and beta-3.

The LIV-BP, it binds to the inside face of the N-terminal domain. It is reasonable to suggest [8] that amino acid differences between the two BP sequences within the cleft between the two domains are responsible for the different substrate specificities of the LIV-BP and LS-BP. Nonhomologous residues are present near the cleft in segments beta-1-alpha-1, beta-4-alpha-4, alpha-9, alpha-10, beta-9, and beta-10. Thus, these areas of the BPs may be involved either in forming the structure of the substrate binding site or in directly interacting with the substrate.

INTERACTION OF BPS WITH MEMBRANE COMPONENTS

Both the LIV-BP-substrate complex and the LS-BP-substrate complex must interact with the same three membrane components to effect the transport of the substrate. Therefore, it is interesting to note that some of the regions of high amino acid sequence conservation include the C terminus of beta-2, alpha-2, beta-3, alpha-3, the C terminus of beta-8, and alpha-8. Because of their sequence conservation and position on the BPs, these regions may function in interactions with the membrane components. It is tempting to speculate that this interaction may be the signal that initiates the membrane translocation process.

SECRETION OF THE BPS INTO THE PERIPLASM

Both the LIV-BP and LS-BP are synthesized as precursors with a 23-amino acid signal sequence that is processed in association with the BP secretion into the periplasm [7, 10, 14]. Using the rules of Chou and Fasman [15], the secondary structure of the N-terminal portion of the precursor would be predicted to form a helical hairpin structure. These two helices would form from the signal sequence and the mature N-terminal regions and would contain hydrophobic amino acids in the sections that might span the membrane. A model for the secretion of the BPs is shown in Figure...
Fig. 4. Model for the export of the periplasmic leucine-binding proteins. The amino acids are represented by single-letter codes in the circles. The small arrows indicate the directions (positive to negative) of helix dipoles. Step 1 represents the initial association of the BP with the inner membrane. Step 2 indicates the formation of a helical hairpin structure between the leader peptide and the N-terminal portion of the mature protein. This helical hairpin assumes a transmembrane orientation in the presence of a transmembrane potential. Step 3 indicates the cleavage of the leader sequence by the leader peptidase. Finally, steps 4 and 5 correspond to a refolding of the mature protein and its translocation into the periplasmic space.
4. In this model, a major role of the membrane potential is suggested for the proper membrane orientation of the proposed helix hairpin formed by the signal sequence and the first segment of the mature portion of the BP [16,17].

Recent work on the secretion of the BPs has been directed toward identifying the sequences required to achieve secretion. To this end, mutants of LS-BP carrying various deletions or sequence alterations have been constructed [17]. It was found that these altered binding proteins were processed and secreted normally. Moreover, hybrid molecules were constructed between the tryptophan synthetase alpha-subunit and various lengths of the N-terminal portion of the LS-BP [18]. The results showed that almost the entire C-terminal half of the LS-BP can be removed with no adverse effect on processing or secretion of the hybrid protein. Thus, the signal sequence together with a portion of the N-terminal portion of the LS-BP is sufficient to direct its export into the periplasmic space.

THE BPS AS MODELS IN STUDYING STRUCTURE-FUNCTION RELATIONSHIPS

Because the LIV-BP and LS-BP have three known functions in E.coli, they are proving useful in examining the relationships between protein structure and function. For example, using oligonucleotide-directed mutagenesis, the nonhomologous residues in the clefts of the BPs are being altered. If an alteration corresponds with a change in either substrate affinities or substrate specificities, then knowledge will be gained about the mechanism of substrate binding. Other changes are being directed toward the regions of high amino acid homology on the BPs that are potential regions for interacting with the membrane components. These altered BPs will be especially useful for study when the individual membrane proteins have been isolated. Finally, work in progress also involves analyzing additional LS-BP-trpA hybrid molecules containing larger C-terminal deletions to identify more precisely the N-terminal sequences required for export of the BPs into the periplasmic space. Since the LIV-BP and LS-BP are the products of gene duplication, a comparison of their structure-function relationships should help illuminate the potential constraints placed on their evolutionary divergence.

In conclusion, the leucine binding proteins of E.coli have been thoroughly studied by biochemical, genetic, and recombinant DNA approaches. As a consequence, much is already known about their molecular structure and their relationship to each other. Because these proteins must be secreted and interact with the same membrane components yet exhibit divergent substrate specificities, they provide a model system for studying the relationship of protein structure to protein function.

REFERENCES