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Statistically characterizing factors responsible for quantitative phenotype expres- 
sion (e.g., polygenes, major genes, shared household factors, etc.) through model 
selection strategies is a difficult task. A great deal of effort has been expended 
on refining mathematical and computational aspects of various segregation models 
used to characterize unique expressions of quantitative phenotypes in an effort to 
make these models easier to implement and evaluate for a given set of data. In this 
paper a slightly different angle is emphasized: namely, the explicit modeling of the 
potentially numerous heterogeneous genetic and environmental processes (i.e., seg- 
regation patterns, household aggregations, etiologic processes, etc .) that could con- 
tribute to the overall variation of a quantitative trait. As such, this paper describes 
tools for detecting quantitative trait heterogeneity that are meant to answer such 
questions as, “are there pedigress among a great many that show a pattern consis- 
tent with a possibly very specific single locus segregation pattern while the rest 
show compatibility with a polygenic or purely environmental pattern?’ ’ Methods 
for detenning the significance of such heterogeneity are also discussed, as are the 
results of numerous examples and simulation studies carried out in an effort to validate 
and further elaborate aspects of the proposed techniques. 0 1992 Wiley-Liss, Inc. 
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INTRODUCTION 

The problem of determining the genetic basis of human quantitative phenotype 
expression through statistical analysis has been a thorn in the side of statistical geneticists 
for some time. Karl Pearson [1893, 18951 first noted that the distributional forms a 
quantitative trait can exhibit in the populatlion at large are compatible with a number of 
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different and often hard to discern hypotheses one could put forth about the determi- 
nants of the trait (see Schork, et al. [1990b]). Many current distributional modeling 
strategies for quantitative phenotype analysis typically trade a comprehensiveness in 
scope (e.g., by allowing for such things as the simultaneous estimation of polygenic 
parameters and parameters associated with a single locus with large effects) for com- 
putational practicality, as is evidenced by the notoriously difficult ‘‘mixed model” for 
quantitative traits [Elston, 198 11. Although a great deal of sophistication-both ana- 
lytical [Ott, 1979; Hasstedt, 1982; Bonney, 1984; Schork, 1991al and computational 
[Demenais et al., 1990; Schork, 199lb,c]-has softened the intimidating demands of 
the mixed model, its primary assumption, that highly specific major locus, polygenic, 
and possibly shared environmental effects, are ubiquitous with respect to both normal 
and deleterious manifestations of a trait and are, in fact, recognizable and determin- 
able, in some sense, in everyone, can and should be called into question. 

In this paper an alternative to traditional mixed model-like strategies is offered 
which, although not particularly easy to implement on a computer, does afford a great 
deal of flexibility and may be more appropriate than the classical mixed model for a 
wide variety of traits. The proposed techniques, which can be collectively described 
as “admixed models” following Greenberg and Hodge [1985], and as opposed to the 
traditional “mixed models,” work by assuming that the trait in question is manifested 
in different forms in different groups of people for different reasons. A goal of the 
proposed methodology is thus to estimate not only parameters associated with particu- 
lar characterizations of the different etiologic processes contributing to the variation 
and expression of the phenotype, but also to estimate the very frequencies of these 
various processes as well. The proposed methods can be considered extensions of the 
models for linkage analyses involving qualitative traits put forth by Smith [ 19631, Ott 
[ 19771, Risch and Baron [ 19821, and Greenberg and Hodge [ 19851. 

Quantitative traits amenable to the methods proposed herein abound, although 
blood pressure can be seen as more or less paradigmatic of the type of trait which 
might benefit most from the proposed methodology: a veritable plethora of associa- 
tions, predictors, markers, secondary causes, etc. for blood pressure and its disease 
manifestations have been reported that simply defies the development of a single, com- 
prehensive framework from which the variation of blood pressure values can be viewed 
as a whole. As an alternative to the futile creation of a comprehensive framework, 
Schork et al. [ 1990al and Weder et al. [ 1989, 19911 advocate both the identification of 
pedigrees with similar etiologic patterns as well as the identification of the genetic and 
physiologic causes of the patterns themselves in an effort to foster further study of 
each individual etiologic or pathophysiologic mechanism. 

MATERIALS AND METHODS 
Admixed Models 

A description of the admixture model approach to characterizing heterogeneous 
quantitative phenotypes is straightforward once some notational details have been 
worked out. Let 6; denote the parameters associated with a particular genetic model i, 
with density function fi. Likelihoods, L(€llx>, given N pedigrees whose data can be 
collectively represented by X = {.xi, . . . ,xN},  can then be easily constructed; for 
example, one can write 
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N 

n fm(xibAj pAA> KAa, & z a , d )  
i =  1 

where (subscript) m denotes a 2-allele major locus model with allele frequency parame- 
ter pA, mean genotype effect parameters pM, pAa, p au, and variance term cr; [Elston 
et al., 1975; Elston, 19811; p denotes a polygenic model with mean p, dominance 
variance ui, additive variance ul, and environmental variance mz [Lange et al., 1974; 
Schork and Schork, 19911; h denotes a shared household model with shared household 
variance u:, additive genetic variance a;, and environmental variance u: [Moll et al., 
19841; and a is an age-mediated, shared household model with age associated regres- 
sion coefficient P, shared household variance u;, and environmental variance 02.  This 
last model would be compatible with hypotheses claiming that a certain trait evolves 
as a result of, say, prolonged dietary habits (possibly among family members) or through 
variations in environemntal exposures to certain toxic agents (e.g., cigarette use among 
family members). For present purposes we will forego detailed elaboration of the deri- 
vations and constructions of the models in (1) and instead invite the reader to peruse 
the relevant references. In addition, it should be emphasized that the models in (1) are 
far from exhaustive and have been chosen merely to characterize the wide variety of 
models one may use to represent different etiologic or developmental patterns for quan- 
titative traits. 

To model the etiologic and genetic heterogeneity of a trait, we consider estimating 
parameters consistent with different models simultaneously with parameters included to 
account for the frequencies with which the processes underlying the models occur. 
Thus, if it is assumed that a disease “level” or manifestation of a quantitative trait 
(e.g., as hypertension is to blood pressure) is affected by a single locus with large 
effects or by a complex of genetic loci (i.e., polygenes), one could write down a like- 
lihood function as 

where a is the frequency of the major locus determined manifestation of the trait. Thus, 
the likelihood equation for an admixed model is simply the weighted sum of the den- 
sity functions assumed in the models for each etiologic pattern. The weights are given 
by the frequencies with which each process occurs. By adding additional frequency 
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parameters, aj, where j runs over the processes being considered, one can construct 
more comprehensive, though most likely more difficult to implement, models of a par- 
ticular trait. 

Three aspects of the models just described should be emphasized at this point. 
First, it is our belief that including a great number of submodels (i.e., assuming a 
great many processes) in a large model of heterogeneity may not be necessary ifone is 
interested in particular major locus determinants of a trait. That is, we hypothesize 
that in certain situations it will suffice to posit a particular major locus model in com- 
bination with a single, more comprehensive (e.g., mixed or polygenic), model since 
we believe that those pedigrees not compatible with the particular major locus model 
(i.e., those following other major locus, polygenic, environmental, etc. patterns) may 
be subsumed under the alternative model. In addition, we also hypothesize that genes 
with large phenotypic effects may be characterized by pure, single locus submodels in 
heterogeneity model settings even in cases where background polygenes and complex 
environmental forces are operative. Obviously, the utility and validity of a such hypoth- 
eses will need to be explored in full. Second, the admixed models of the type given in 
Eq. (2) are not limited to segregation phenomena. Measured genotype [Boerwinkle et 
al., 19861 and linkage models [Smith, 19631 could be easily incorporated into the frame- 
work described above. Third, the current presentation of the admixed model assumes 
that the pedigrees under scrutiny are sampled randomly from the population at large, as 
would be the case in an epidemiological study of a trait with an unknown genetic basis. 
This is unlike the models and approach discussed in Greenberg and Hodge [1985], 
where it is explicitly assumed that ascertainment on the basis of a disease manifesta- 
tion of a qualitative trait is employed. It is possible to correct for ascertainment in the 
case of the admixed models presented here, although, as pointed out by Greenberg 
and Hodge [ 19851, such ascertainment may nonetheless yield some bias in the segre- 
gation parameter estimates. 

Testing for Heterogeneity 

The flexibility of the model type assumed in Eq. (2) does carry with it some poten- 
tial dangers. For instance, it may be the case that one finds only spurious evidence for 
a major locus determined manifestation of the trait in question. Such spuriousness could 
arise as a result of having some statistically spurious “outlier” pedigrees in the sam- 
ple, or result simply from chance. Thus, it is imperative that one test for, or examine 
the significance of, heterogeneity. The test procedure adopted here derives from the 
“parametric bootstrap” procedures discussed in Schork and Schork [ 19891 and Schork 
[ 1991dl for other genetic modeling contexts. Bootstrap tests have, in general, an intuitive 
appeal and many bootstrap tests have excellent asymptotic properties: see, for example, the 
papers by Beran [1988], Hall and Titterington [1989], Jockel [1986], and Hall and 
Wilson [1991]. The null hypothesis, H,, is taken to be homogeneity of the genetic 
determinants, and is assumed to be characterized by the unique component models 
which collectively model or characterize the alternative hypothesis, H I ,  of heterogene- 
ity. Thus, if, as in the case of the model assumed in Eq. (2), it is assumed that major 
locus and polygenic determined manifestations of a trait exist, then the null hypothe- 
ses are taken to be characterized by a major locus model in isolation and/or a polygene 
model in isolation. Test statistics, t ,  are constructed from log-likelihood ratios. For 
the example just outlined, these statistics would be 
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tH,:p = - 2 log {L,(e,lx>/L,,p(&,ern,e,lx)) 
(3) 

tH,:rn = -2  1% {L,(BL,Ix)IL,,p(&,6,,6p(x>} 

where 6 is an estimate of 8. 
As noted by many researchers, mixture models often violate the regularity condi- 

tions under which t may be assumed to be asymptotically distributed as x2 [Schork and 
Schork, 19891. We consider estimating the distribution o f t  and drawing critical values 
from this estimated distribution. First one computes tH,:p or t?,:, from the data and 
obtains parameter estimates 6pp,.p, (or 6,p+,J and (&,6rn,8p)Hl (i.e., parameter 
estimates under the null and alternative hypotheses). One then generates r data sets 
X :  where i = 1, . . . ,r from Ho using 6plH,:p or 6mlH,:rn as the generating param- 
eter values. For each X*i,$H,.j, j E (pm), is computed. A critical value for t taken 
from the “real” data, with an assumed type lerror level of a, is then given by the (1 - 
ol)rth order statistic of the $H, , i .  Note that since two tests would be performed in this 
example (i.e., one for Ho : p and one for Ho : m) one might want to correct the alpha 
error for the test construction appropriately (e.g., by Bonferroni’s method). Signifi- 
cant heterogeneity can be said to exist when all possible homogeneity models (i.e., 
those taken as components of the heterogeneity model) are rejected. Note that one 
could also investigate the “reciprocal” test with the associated null hypothesis of het- 
erogeneity, by generating data from (&,O,, and computing t* for each simulated 
data set [Schork and Schork, 19891. The result would give some indication of the plas- 
ticity, robustiness, and power of the model used to characterize the heterogeneity. Para- 
metric bootstrap tests of the variety just described work well, but can still be greatly 
improved upon through some analytic adjustments, as shown by Schork [ 1991el-see 
also Beran [ 19881 for a general discussion of improvements that can be made for some 
special nested hypothesis testing frameworks. One obvious drawback to the proposed 
test construction is its heavy simulation load, although this load can be greatly reduced 
through the use of a parallel computer [Schork, 1991e; Schork and Hardwick, 19921. 
The computation times associated with the use of a variety of computers in segrega- 
tion analysis settings discussed in Schork [ 1991a,b] can be used to gauge the computa- 
tional effort of the procedure. 
Classifying Pedigrees 

Once one has determined that significant heterogeneity exists for the trait under 
scrutiny, it is important to identify individuals or pedigrees compatible with the segre- 
gation or environmentally dictated patterns which collectively describe the heteroge- 
neity. The approach to classifying pedigrees advocated in this paper derives from 
traditional multivariate discrimination methods that minimize the expected cost of mis- 
classification (see, for instance, Johnson and Wichern [ 19821, pp. 494-497). Simula- 
tion methods are used to estimate quantities assumed in the procedure. 

Consider a heterogeneity model comprised of g submodels with associated den- 
sity functionsA (i = 1, . . . ,g) with parameters Oi and mixing weights ai. A pedigree 
with data vector x is assigned to a certain pattern, or is said to be compatible with a 
certain model, k ,  on the basis of that k which minimizes, 
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for the pedigree. The c(ilk) are the “misclassification costs” associated with the assign- 
ment of a pedigree compatible with pattern k to pattent i. dilH, are parameters associ- 
ated with submodel i estimated under the heterogeneity hypothesis; as such the 6 i l H ,  

are not parameter estimates for model i obtained in isolation of the other submodels’ 
parameters assumed in the heterogeneity model. 

The c(i(k) are generally unknown and most likely not reliable when assigned val- 
ues on the basis of some subjective assessment of pertinent misclassficiation costs. 
They should be interpretated as simple “weights” that aid in the proper assignment of 
pedigrees to patterns. We consider determining optimal c(i/k) through a simple simu- 
lation method. Given estimates bi of the ai and 6;iH, of the eilH, one generates data 
sets known to conform to H1 by using the bijH, and 6rl as generating values. 
That is, one generates &N pedigrees conforming to fl(xl l l H , ) ,  &2N conforming to 
f2(xl&p1), etc. One can then determine the ?(ilk) which minimize some overall mea- 
sure of misclassification (e.g., the sum of misclassifications) by comparing those clas- 
sifications made using Eq. (4) and the exact classficiations known from the simulated data. 
This procedure can be implemented most easily by simply investigating a grid of various 
?(ilk) values using some uniform increment. The resulting ?(ilk) which meet the overall 
misclassification criterion are then used with Eq. (4) to classify the “real” pedigree data. 

Three aspects of the proposed procedure should be emphasized. First, the proper 
estimation of the ?(ilk) is crucial. The submodels of a heterogeneity model will typi- 
cally be non-nested with respect to one another and hence be on radically different scales. 
Thus, one could not compare the nonweighted values of, say, J(xl6J andf,(xlGj) [or 
a^fi(x)&) and Gh(xldj) for that matter] to make assignments since4 may actually be 
much smaller thanfi for a particular pedigree but still actually be the appropriate model 
for the pedigree. This is unlike most traditional discrimination or classification set- 
tings where the models typically have the same distributional form (e.g., multivariate 
normal) but differ only with respect to their parameter values and are hence on a com- 
parable scale. However, in linkage and other settings, where one assumes that only a re- 
combination fraction or other single parameter varies among subgroups in the population at 
large, then nested-model based procedures such as X2-based likelihood ratios can be 
used, as described in Smith [ 19631. Second, one may want to “tune” the overall mea- 
sure of misclassification used in the simulation procedure to account for possible imbal- 
ances in misclassification rates. For instance, if minimization of the (simple) sum of 
misclassifications is used as the criterion for determining the t(i1k) then it may be that the 
resulting classification rule will have a greater tendency to misclassify pedigrees in a certain 
direction (e.g., it may assign pedigrees to a major locus pattern that truly follow a polygene 
pattern but not vice versa). As a result, one may want to add constraints on the misclassi- 
fication criterion, such as having the misclassifications equally distributed among the sub- 
model types, or by not allowing misassignments to a major locus pattern to occur. Third, 
since it is rare that one collects pedigrees with the same size and structure, the simulation 
procedure for determining the ?(ilk) should be repeated a few times with the pedigree sizes 
and structures generated under each submodel setting allowed to vary with the real pedi- 
gree sizes and structures. The average ?(ilk) can then be used for the real data. 

RESULTS 
In order to display and assess the reliability of the proposed methods, two simula- 

tion studies investigating the reliability of the parameter estimation process in segrega- 
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tion analysis settings, a simulation study investigating the classification procedure, 
and a simulation study describing a situation involving measured genotype informa- 
tion, were employed. In addition, the methodology as applied in linkage situations is 
showcased with some data relevant to hypertension research taken from the Tecumseh 
Community Health and Tecumseh Blood Pressure studies. 

Segregation Analysis 
To investigate the parameter estimation process we assumed a trait with 2- allele 

single locus and polygenic manifestations. It was further assumed that these manifes- 
tations were equally prevalent (i.e., a1 = a2 = %). For the major locus, an allele 
frequency, p A ,  of 0.316, mean genotype affects of pM = 12.0, pAa = 10.0, and 
pa, = 9, and variance of u& = 1.0 were assumed. Thus, the “high” genotype with 
large effects, AA, had a frequency of 0.1. The polygene manifestation was such that 
an overall mean of pp = 10.0, additive variance u: = 0.75, dominance variance ui 
= 0.25, and environmental variance u& = 1.0 were assumed. Though somewhat 
artificial,this heterogeneous setting is sufficiently challenging and realistic enough (e.g., 
because of the relatively low “high” genotype frequency, small major locus mean 
genotype effect separation, and low to moderate heritability, 0.375, for the polygenic 
manifestation of the trait) to be computationally difficult and capable of gauging the 
usefulness of the model parameter estimation procedure. Twenty-four pedigrees of the 
size and structure displayed in Figure 1 were generated (i.e., 12 pedigrees compatible 
with the major locus setting and 12 compatible with the polygenic setting). Estimates 
of the parameters were obtained by maximizing the appropriate likelihood equation as 
in Eq. (2) over the simulated data using the NPSOL package [Gill et al., 19841 and 
relevant subroutines written by the author (available upon request through Internet e- 
mail: Nicholas-Schork@um.cc.umich.edu). This simulationiestimation process was 
repeated 100 times, and was also performed with 36, 48, and 60 pedigrees. Mean 
parameter estimates and standard errors obtained over the 100 simulations for each 
sample size are displayed in Table I along with average mean squared errors calcu- 
lated by considering the sum of squared distance of the parameter estimates from the 

Fig. 1. 
gation analysis settings. 

Pedigree structure used in the simulation study investigating the use of admixed models in segre- 
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TABLE I. Average Parameter Estimates and Mean Squared Errors Obtained Over 100 Simulations 
Involving a Heterogeneity Model Assuming Major Locus and Polygenic Manifestations of a 
Quantitative Trait, for Different Numbers of 10 Member Pedigrees, With Generating Values, gv* 

Par gv 24 36 48 60 

a 0.500 0.516 0.026 0.555 0.026 0.499 0.029 0.530 0.026 
ML 

P(A) 0.316 0.356 0.019 0.364 0.014 0.353 0.013 0.365 0.013 
U f f W  12.00 11.88 0.084 12.01 0.081 12.13 0.089 11.98 0.067 
ufA4 10.00 9.93 0.061 9.95 0.047 10.00 0.056 9.94 0.045 
u f d  9.00 8.94 0.046 8.95 0.042 8.98 0.037 8.92 0.040 
vfe) 1.00 0.897 0.091 0.856 0.028 0.814 0.029 0.924 0.032 

U 10.00 10.00 0.043 9.98 0.048 10.01 0.041 9.94 0.038 
0.750 0.440 0.047 0.579 0.064 0.654 0.061 0.556 0.049 

v(d) 0.250 0.577 0.067 0.447 0.063 0.418 0.055 0.341 0.050 
v(e) 1.00 0.844 0.071 0.957 0.091 0.858 0.060 0.938 0.068 

MSE 0.312 0.022 0.312 0.026 0.267 0.022 0.213 0.018 
a MSE 0.065 0.006 0.071 0.007 0.080 0.007 0.068 0.007 
ML MSE 0.300 0.038 0.233 0.028 0.271 0.036 0.186 0.020 
Poly MSE 0.345 0.035 0.363 0.045 0.287 0.047 0.282 0.043 

“par, parameter; a, mixing proportion;p(A) = frequency of the major locusA allele; u(-), mean of genotype 
(-); v(-) variance associated with environment (e), additive genetic (a), and dominance genetic (d) effects; 
ML, major locus submodel; Poly, polygenic submodel; MSE, mean squared error; a, ML, Poly MSE, 
MSE associated with a, ML, and Poly parameters. Note: for parameters the first number is the average, 
the second the MSE, for the MSEs the first is the average, the second the standard error. 

Poly 

generating values for each simulation experiment. Table I suggests that parameter esti- 
mation is fairly reliable in this setting and generally improves, as expected, with increases 
in sample size. It is interesting to note from Table I that major locus parameters are 
estimated more reliably than the polygene parameters. This is encouraging since it is 
assumed that major locus settings are of primary interest because of their amenability 
to current laboratory marker-based linkage mapping strategies. 

A simulation study was also performed in order to investigate how well major 
locus submodel parameters can be estimated in the presence of polygenic effects act- 
ing in concert with the major locus effects. In this way a brief exploration of one of the 
hypotheses concerning the inclusion of “pure” single locus submodels in the hetero- 
geneity models put forth in the Methods section could be pursued. One hundred sets of 
36 pedigrees of the Figure 1 variety following the parameter configuration used in the 
first simulation study were generated, except that polygenic effects that would amount 
to residual heritabilities of 0.1, 0.25, and 0.5 were imposed on the major locus data. 
Table I1 shows mean parameter estimates, standard errors, and MSEs obtained over 
the 100 replicate runs at each setting (note: column 2 of Table I is included as a refer- 
ence). Table I1 suggests that the bias in the major locus parameter estimation is not 
excessive in the presence of polygenic background ‘‘noise,” though, as expected, there 
is greater variability in the estimates. 

Segregation Model Classification 
The heterogeneity patterns and models used in the construction of Table I with 36 

pedigrees of the Figure 1 variety were assumed, so that determination of the optimal 
weights used in Eq. (4) involved the comparison of the densities assumed in the mod- 



Quantitative Phenotype Heterogeneity 215 

TABLE 11. Average Parameter Estimates and Mean Squared Errors Ohained Over 100 Simulations 
Involving a Heterogeneity Model Assuming Major Locus and Polygenic Manifestations of a 
Quantitative Trait, for 36 10-Member Pedigrees, in Which Polygenic Effects Have Been Induced on 
the Major Locus Manifestation* 

P a  gv H = O  H = 0.1 H = 0.25 H = 0.5 

a 0.500 0.555 0.026 0.512 0.028 0.482 0.028 0.403 0.027 
ML 

PfA)  0.316 0.364 0.014 0.352 0.015 0.347 0.015 0.375 0.017 
U ( A - 4 )  12.00 12.01 0.081 12.12 0.089 12.24 0.096 12.08 0.128 
u ( A 4  10.00 9.95 0.047 10.04 0.054 10.07 0.057 10.09 0.067 
u ( a 4  9.00 8.95 0.042 8.81 0.041 8.81 0.050 8.67 0.070 
v(e) 1 .OO 0.858 0.028 0.829 0.037 0.855 0.041 0.881 0.045 

U 10.00 9.98 0.048 9.96 0.050 9.96 0.071 9.90 0.047 
v(a) 0.750 0.579 9.064 0.572 0.054 0.596 0.064 0.761 0.054 
vtd) 0.250 0.447 0.063 0.513 0.068 0.544 0.071 0.445 0.064 
v(e) 1 .OO 0.957 0.091 0.799 0.064 0.752 0.064 0.876 0.065 

MSE 0.312 0.026 0.302 0.020 0.340 0.026 0.432 0.034 
a MSE 0.071 0.007 0.074 0.007 0.079 0.067 0.078 0.006 
ML MSE 0.233 0.028 0.285 0.028 0.352 0.043 0.572 0.066 
Poly MSE 0.363 0.045 0.381 0.043 0.391 0.047 0.345 0.044 

Poly 

*See Table I; H ,  residual polygenic heritability added over the major locus manifestation of the trait. 

els for major locus and polygenic manifestations of the trait. Since only two submodels 
were involved, classification to the major locus pattern was based on whether or not 
the following inequality was obtained for a particular pedigree with data vector xi: 

If (5 )  did not hold then the pedigree was assumed to be consistent with a polygenic 
pattern. Twenty-five data sets were generated for which optimal c(i(k) were estimated. 
It was assumed that the misclassifications resulting in an erroneous assignment of a 
“polygenic pedigree” as being consistent with a major locus pedigree should be mini- 
mized along with the total number of misclassifications. Thus, the misclassification 
criterion for each of the 25 data sets involved minimization of the sum of polygene 
misassignments and the total number of misassignments (i.e., 2 times the number of 
polygene to major locus misassignments plus 1 times the number of major locus to poly- 
gene misassignments). Since comparison of only two submodels was required, only 
one weight [here taken to be c(mb)]  needed to be obtained as the other [here taken to 
be c(plrn)] could be set to 1 .  

Optimal c(rnb) were determined by reading off values associated with the mini- 
mum misclassification value over a grid of 1000 c(rnb) values uniformly dispersed 
over a range (0 to 5 )  of c(mb) values. Table 111 displays the results obtained for each 
of the 25 data sets. The average c(rnb) over the 25 runs was 0.40. Thus, if a real data 
set produced parameter estimates consistent with the generating values used in Table I 
over 36 pedigrees of the appropriate size, classification of the pedigrees would involve 
C(rn[p)  = 0.4 and t(rn[p) = 1.0 with Eq. (5 ) .  Note that although these weights may 
rarely assign a “polygene pedigree” a major locus pattern, they do so at a cost of 
misclassifying a large number of “major locus pedigrees”: from Table I11 it can be 
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Table 111. Number of Misclassifications and Weights Obtained From 25 Data Sets of 36 10-Member 
Pedigrees Each Known to Conform to the Admixed Model Setting Outlined in Table I, Based on 
Minimization of the Total Number of Misclassifications With the Constraint of Obtaining the Fewest 
Misassignments to a Major Locus Pattern; Each Cell of 4 Numbers Contains Results 
From One of the Simulations* 

8 1  6 1  11 2 12 1 7 3  
9 0.37 7 2.0 10 2.0 13 0.02 10 0.02 

16 0 18 0 13 0 18 0 15 0 
14 0.03 17 0.00 13 1.30 16 0.00 13 0.01 
15 0 15 0 4 4  18 0 7 9  

8 0.02 18 0.00 13 1.00 15 0.11 13 0.06 
7 5  18 0 15 0 11 1 11 2 

12 0.31 17 0.00 15 0.12 10 0.55 13 0.08 
18 0 15 1 18 0 11 1 18 0 
17 0.00 15 0.03 11 0.00 9 1.50 16 0.00 

*Upper right entry, number of major locus to polygene misclassifications; upper left, number of polygene 
to major locus misclassifications; lower right, total number of rnisclassifications if the criterion was simply 
the total number of misclassifications; lower left, optimal c(m(p) value. 

seen that whereas on average only 0.88 polygenic pedigrees were misclassified, some 
13.4 or 74% of the major locus pedigrees were, on average, misclassified. This low 
sensitivity may not be too serious a problem, however, if one wants to cull out the 
“unequivocal” major locus type pedigrees for, say, a linkage or in- depth physiologi- 
cal study. 

It is also somewhat disconcerting that the optimal c(rnb) varied widely through 
the 25 replicate runs. However, additional information gleaned from the simulations 
required for the classification method can provide further insight into choosing the 
optimal c(i1k). A significant relationship between how close the estimated parameters 
were to their generating values (measured by mean squared error, MSE) and the num- 
ber of misclassifications was found (p < .05 by rank correlation) in the simulation 
data. Thus, one could weight the c(ilk) by how reliably the parameters were estimated 
for each of the simulations to create the c(ilk) to be used with the real data. 

Measured Genotype Analysis 

To investigate the utility of admixed models in measured genotype settings of the 
type described in Boenvinkle et al. [1986] and George and Elston [ 19871, 100 nuclear 
families of size 5 (i.e., each with three offspring) were generated. It was assumed that 
Y2 of these families had a trait that was affected by a locus with 2 alleles, A and a,with 
frequencies pA = pa = 0.5, and mean genotype effects of F~ = 8, pAa = 10 and 
paa = 12. It was also assumed that operating in the background of this locus were 
polygenic effects that produced a residual heritability of 0.5 (where a: = u: = 0.5). 
Families whose traits were not affected by this locus were assumed to have pheno- 
types that could be characterized by a mean effect of 10, and additive and environ- 
mental variances of 1 .O. 

Parameter estimates were obtained from these data using the NPSOL package for 
the following models: a “pure” polygene model, a pure measured genotype model, 
and a heterogeneity model comprised of pure polygene and measured genotype mod- 
els. Results of the model fitting are displayed in the first 3 rows of Table IV. In order 
to investigate the significance of the heterogeneity, 99 data sets of 100 nuclear fami- 
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Fig. 2.  (a) Simulated null distribution of twice the log-likelihood ratio (LR) statistic implicating poly- 
gene and heterogeneity models. The LR statistic obtained from the “original” data was 186.5. (b) Simulated 
null distribution of twice the LR statistic implicating measured genotype and hereogeneity models. The 

LR statistic obtained from the original data was 67.6. 

lies of size 5 were generated using parameter estimates of both the pure polygene and 
measured genotype models obtained from the original data set (i.e., those parameter 
values listed in the first 2 rows of Table IV). Average parameter estimates and associ- 
ated standard errors obtained from each setting over the 2 X 99 data sets are given in the 
bottom 6 rows of Table IV. Likelihood ratios (LRs) from each replicate run were obtained 
to compare models. Figure 2a and b displays the distributions of the LRs comparing 
the heterogeneity and pure polygene and measured genotype models, respectively, using 
the 99 relevant data sets for each. It can be seen from Figure 2a and b that the LRs 
from the original data greatly exceed the LRs obtained from the 99 pure polygene and 
99 pure measured genotype data sets. Thus, the homogeneity hypothesis can be rejected 
for the original data. A great many of the pure polygene and pure measured genotype 
data sets produced estimates of 1 .O for the mixing weight for the admixed model, result- 
ing in the “automatic rejection” of the heterogeneity hypothesis and a log-LR value 
of 0.0, as is evidenced in Figure 2. 

Sib-Pair Linkage Analysis 
To demonstrate the application of admixed models in linkage analysis settings, 

some results obtained from a study of the relationship between systolic blood pressure 
(SBP) and the MN locus using data gathered in the Tecumseh Community Health and 
Tecumseh Blood Pressure studies are described. A manuscript describing the full details 
of the study is forthcoming (contact the author for further details). A total of 4,621 
sib-pairs derived from 1 1,563 participants in the Tecumseh studies were available for 
study. The average number of sib-pairs per family was 1.2. A bootstrap-based regres- 
sion procedure that made use of only independent (i.e., nongenetically related or from 
the same pedigree) participants at each iteration was used to derive a linear model that 
was used, in turn, to adjust SBP values for sex, age, weight, height, and possible 
interaction terms. The differences in adjusted SBP values for sibs were then investi- 
gated for possible heterogeneous linkage relationships between a postulated SBP locus 
and the MN locus using extensions of the two sib-pair linkage strategies outlined in 
Haseman and Elston [ 19721. 
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The first procedure involved the regression of squared sib-pair adjusted SBP dif- 
ferences on the number of alleles shared by the sibs that are identical by descent. This 
procedure is outlined in Sections I1 to IV of Haseman and Elston [ 19721, and posits 3 
parameters: an intercept term, a slope, and a residual variance term. A negative slope 
is indicative of linkage. A heterogeneity model assuming the basic regression model is 
formed by a mixture of such regressions, with each component in the mixture having its 
own associated intercept, slope, and variance terms. In order to compute likelihoods a 
parametric form for the error distributions of the regressions needed to be assumed. The 
distribution associated with the square of a normally distributed variable was used, al- 
though analyses involving other distributional forms yielded surprisingly similar results. 

The second procedure made use of the likelihood-based mixture distribution model 
outlined in Section V of Haseman and Elston [ 19721. This model is parameterized by 
a recombination fraction, an allele frequency associated with the hypothesized trait 
locus (marker allele frequencies are assumed known), an additive effect parameter, a 
dominance effect parameter, and a residual variance parameter. For further details one 
should consult Haseman and Elston [1972] and Blackwelder and Elston [1974] for 
some corrections and clarifications. A heterogeneity model assuming this basic model 
can be constructed from a simple mixture of such models. 

Although it can be shown that the use of nonindependent sib-pairs in sib-pair 
linkage analysis settings has a minimal effect on the interpretation of the results 
[Blackwelder and Elston, 1982; RC Elston, personal communication], it is not clear 
what effects the use of nonindependent sib-pairs would have on the mixing weight and 
other parameters in a linkage heterogeneity model setting. As such, the following ana- 
lytic strategy was adopted. One sib-pair from each pedigree was selected at random 
and used to estimated linkage parameters. This process was repeated 100 times. Mean 
parameter estimates and standard errors obtained over the 100 replicate runs were used 
to draw inferences about possible linkage relationships. Table V displays results. It 
can be seen from Table V that although a subgroup was found using the regression 
procedure that presents a negative slope, the value of the slope in this group was not 
significantly different from 0. However, the mixture distribution heterogeneity model 
presents a subgroup of a similar size to that obtained with the regression procedure 
with a recombination fraction that is significantly different from 0.5. In addition, it is 
fairly clear from Table V that two distinct subgroups exist in terms of adjusted blood 
pressure difference (that is, without reference to the MN locus)-a finding that is of 
considerable interest in its own right. Further analysis of these data have shown evi- 
dence of sex-specificity in the linkage relationship,which suggests a role for general 
heterogeneity modeling as a means of screening for sources of variation not ubiquitous 
in the population at large but still important etiologically. 

DISCUSSION 

The models and methods outlined in this paper have a great potential to supple- 
ment and/or complement traditional methods used to analyze human quantitative traits. 
Heterogeneity can easily obscure the detection of relevant genetic effects if not accounted 
for properly. In addition, heterogeneity is more than likely a common enough phe- 
nomenon to warrant attention and consideration for many quantitative traits with dis- 
ease manifestations, such as blood pressure and cholesterol. 
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The proposed models also have the potential to offer more than just a character- 
ization of the heterogeneity of a particular trait, since one could also use them to iden- 
tify pedigrees or individuals showing a pattern consistent with a particular etiologic or 
genetic pattern as a precursor to a more in-depth investigation of a particular pattern. 
This approach, of identifying pedigrees most compatible with a certain segregation 
pattern, is not entirely new. Beaty [ 19801, Williams and Lalouel [ 19821, Bums [ 19821, 
Lalouel et al. [1983], Boehnke and Lange [1984], Moll et al. [1984, 19891, Beaty and 
Boughman [1986], and Rebbeck et al. [1991] all consider the problem of isolating 
pedigrees most consistent with a particular genetic hypothesis by fitting two compet- 
ing models to an entire data set and then more or less examining the likelihood that 
each pedigree is compatible with one or the other hypothesis. This strategy is intuitive 
if the goal is to identify pedigrees showing the clearest compatibility with a particular 
segregation pattern-as would be beneficial as a precursor to a linkage study of the 
trait, as was explicitly assumed by Boehnke and Moll [1989] for the case of a rare 
dominant quantitative disorder. However, this strategy may be problematic if the goal 
is to investigate possible genetic heterogeneity or to identify families showing suppos- 
edly divergent etiologic patterns for a trait. This is so because with this (traditional) 
approach the parameters used to characterize each genetic or environmental model are 
estimated from the entire data set with no correction for the model misspecification 
that arises in the case of those families not consistent with the particular model whose 
parameters are being estimated at the time. In fairness to this approach, however, it 
should be emphasized that no investigation of the bias (in model selection or parame- 
ter estimation) has been undertaken in cases where it is known that some pedigrees do 
not conform to a certain model even though that model characterizes other pedigrees 
well. Presumably, however, the bias could be quite large. In this light, the methodol- 
ogy elaborated in this paper can be seen as offering a way to account for such mis- 
specification in a meaningful way. 

Despitk the intuitive appeal and utility of the proposed models, more work on 
them is desparately needed if they are to be used routinely. For instance, power stud- 
ies investigating how easy or difficult it is to detect certain segregation or linkage phe- 
nomena in the presence of others are in order. In addition, it is important to determine 
how many families of a specific type (e.g., those following a rare recessive gene pat- 
tern of inheritance) are needed to detect heterogeneity when the relevant model type is 
combined with more general models, such as the mixed model or a pure polygene 
model. Ultimately, however, this paper offers a step in a direction not yet taken in the 
analysis of many traits for which such a direction may be appropriate. 
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