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Distribution of the Admixture Test for the 
Detection of Linkage Under Heterogeneity 

Julian J. Faraway 

Department of Statistics, University of Michigan, Ann Arbor, Michigan 

The admixture test for the detection of linkage under heterogeneity is considered. 
We show that the null distribution of this test statistic has half its weight concen- 
trated on zero and the other half on a complicated distribution that can be approxi- 
mated by max ( X ,  , X 2 )  where XI and X 2  are independent x: variables. We also 
investigate the stability of the size of the test for small samples. The power of this 
test to detect linkage, when heterogeneity is present, can be substantially greater 
than the standard test that assumes homogeneity. Even when heterogeneity is not 
present, the test is only slightly less powerful than the homogeneous test. This 
would suggest the use of the admixture test in preference to the homogeneous test 
if the presence of heterogeneity is at all suspected. 0 1993 Wiley-Liss. Inc. 
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INTRODUCTION 

We consider the detection of linkage when linkage heterogeneity exists, that is 
when only a fraction of sibships may be linked to a given genetic marker. Smith [ 19631 
introduced the admixture model based on the recombination fraction and the propor- 
tion of linked families. Ott [1983, 19851 and Risch [1988] consider tests for heteroge- 
neity based on this model, whereas Hodge et al. [1983] and Risch [1989] consider 
tests for linkage based on this same model. The latter is discussed here. Martinez and 
Goldin [ 19891 discuss sample sizes needed for such tests. 

The test for linkage is one-sided since recombination fractions greater than one 
half make no biological sense and should its estimated value be greater than one half, 
one would not take this as evidence of linkage. Hence, the true null distribution of the 
admixture statistic has half its weight concentrated at zero and the other half on some 
other distribution which is the subject of our interest here. Because of the symmetry of 
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the problem, it's convenient and notationally simpler to just compute the null distribution 
for the two-sided test statistic to discover the aforementioned distribution. Bear in mind 
that although we shall be concerned with the two-sided test statistic in what follows, 
the true null distribution is as above. 

Hodge claimed that the asymptotic (as the number of sibships becomes large) 
null distribution of the (two-sided) admixture test statistic was x: but Risch conjectured 
it was x:. We claim here that neither is correct and that the true asymptotic distribution 
is quite complicated but can be adequately approximated by the max (XI ,X2)  where XI 
and X 2  are independent x: variables. This distribution lies somewhere between the two 
previous claims and thus this result is of more than just technical interest given the 
popularity of the test. Ghosh and Sen [ 19861 study the asymptotic distribution of the 
likelihood ratio test statistic for a mixture model that is similar to the one here and 
obtained a result similar in form to ours. 

DISTRIBUTION OF THE TEST STATISTIC 

Let the recombination fraction be 0 ,  the proportion of linked sibships be a and the 
sibship size be s. Let the number of sibships be n and let Xi be the number of recombi- 
nant gametes out of s for sibship i. For now, let the phase be known. 

Thus the likelihood for this set of sibships would be 

n 

i =  1 
L ( 0 , a )  = n [a0X1(1-0)"X~ + ( 1  -a)(1/2)7. 

Note that if we map Xi -+ s - X ,  (producing an outcome that has equal probability 
under the hypothesis of no linkage) and 0 + 1 - 0 then the likelihood stays the same. 
This symmetry allows us to consider the two-sided test statistic in our computation of 
the actual one-sided admixture test. If we wish to test for linkage, the natural null and 
alternative hypotheses are 

H o :  0 = 1/2 H A  : 0 < 1/2 

and the maximum likelihood-ratio test statistic is 

T = 2 log [L(6,&)/L(1/2,&)] 

where 6 and & are the maximum likelihood estimates (mle) under the alternative hypoth- 
esis and & is the mle under the null. Note that when 0 = 1/2, a is unidentifiable, i.e., 
any value of OL produces the same likelihood so the actual value of & is immaterial, 
although this unidentifiability is the source of the difficulty in determining the distri- 
bution of T .  We use natural logs here for statistical convenience; lod scores will be 
discussed later. So 

n 
C 10g{a[2s0xt(1 - T = 2maxT(a,0) = 2max 11 + 1) 

u.6 a,e i= 

w h e r e O S a S  1 , 0 S 0 S  1 
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Unfortunately, the asymptotic distribution under the null is not simply x: as it 
would be if the usual theory were applicable. This is because a regularity condition 
regarding the identifiability of the parameters is not satisfied; see Wald [1949]. This 
means the asymptotic distribution of T must be derived by other means. We give a 
heuristic justification of our result and verify it by simulation. 

Since a is unidentifiable at the null, the likelihood will be rather flat in the a 
direction and since the range of a is restricted, the value of a maximizing T(a,O) will 
tend to occur at the boundary of the range of a for large n. To see this, expand T(a,O) 
in 8 about 1/2, with a bounded away from 0, 

n n 

i =  1 i =  1 
T(a,O) = -801 2 (Xj-s/2)(0-%) + 4a[( l -a)  2 (2Xj-s)2-ns](O-’/2)2 

(where = means approximately). Maximizing over 8 gives 

4a[27= I(Xj - s/2)]2 
maxT(a,O) = 

0 ns - 4( 1 - a)27= I (Xi - ~ / 2 ) ~  

Let Z = 27=1 (Xi - s/2) and S2 = 27=,(Xj - ~ / 2 ) ~  and now differentiating with 
respect to a 

d 4 z 2 ( 4 s 2  - ns) 
-maxT( a, 0) = 
da 0 [ns-4S2(1 -a)I2 

which will be positive or negative depending on whether S2 is less or more than ns/4, 
independent of the value of a so for n sufficiently large maxe T(a,O) will be maxi- 
mized at a = 1 or for a small (T = 0 when a = 0). Since S2 + nsi4 as n + m, both cases 
will be roughly equally likely. So we consider the distribution of maxJ(a,O) for a = 1 
and for a small. 

When a = 1, maxeT( 1 ,O) = (4/ns)[27= I(Xj - s/2)I2 using Eq. (1). Since EXj  = 
s/2 and Var X i  = s/4, maxJ( 1 ,O) is asymptotically x:, just applying the central limit 
theorem. 

However, when a is small the distribution of T is not so clear. 
Write k, = {number of Xi = j }  forj  = 0, 1 ,. . .s then 

S 

T = 2max 2 kj  log {a[2”8‘(1- O)’-’- 13 + l}. 
a,@ j = o  

Now since a is small, we can expand log in terms of a [log( 1 +x)=x -x2/2]: 
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and maximizing this over a gives 

{~ . ;=~k~[2~e ' ( i -  q - j -  1]}* 

c:=okj[2sei(1 - ey-j- 1i2 
T = max 

Now under the null 8 = 1/2, and so Ek, = r ~ ( 3 2 - ~  so replacing k j  by its expec- 
tation and then by applying the binomial theorem, we see that the denominator is 
approximately 

Hence 

where 

[2W(1 - 8y-j- 11 
cj(e) = 

d/n{[e2 + (1 - 6)2]s2s - 1) 

The distribution of this cannot be explicitly stated for general s, but given that k j  
is asymptotically normal as n -+ m, cj,okjcj(B) is asymptotically a weighted sum of 
normals and is hence normal for given 8. This might suggest a x: as a possible approx- 
imation and simulation shows that this is indeed a good fit but it should be emphasized 
that this is not the exact distribution. 

Now when T is maximized for a small, T is a weighted sum of the k j  and when 
maximized for a = 1, T is a function of the sample mean, so the maximizing values at 
these two points will tend to be independent especially for large s. This suggests a 
distribution for T as the maximum of two independently distributed x: variables. Again, 
this is not an exact result but simulation indicates that it is a good approximation. The 
true asymptotic distribution a function of the maximum of a particular Gaussian pro- 
cess but since this cannot be explicitly calculated, the suggested approximation will be 
of more practical utility. 

To check the validity of this suggested approximating distribution, the exact dis- 
tribution has been calculated, by computing T for all possible data, for several values 
of s and n .  The likelihood was maximized by first transforming a and 8 to a logit scale 
{x -+ log[x/( 1 - x)]} so that the constraints on a and 8 can be removed and then using the 
Nelder-Mead simplex method described in Press et al. [ 19881 to find the maximum. 
The maximum at a = 1 and a small as indicated in the discussion above was also 
calculated. 
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Fig. 1. 
for family sizes s and number of families n. 

Quantile-quantile plots of the actual distribution of T against its supposed asymptotic distribution 

The quantiles of the suggested distribution of T may be simply calculated by not- 
ing that 

P(T < q)  = P(x:  < q y .  

In Figure 1, we show quantile-quantile plots of the actual test-statistic against its claimed 
distribution. 



80 Faraway 

The agreement between the simulated and theoretical distributions is good. Since 
for finite n, T is discrete, we cannot expect an exact match. As n increases, the fit will 
improve. 

CRITICAL VALUES AND SIZE 

Recall that if 6 2 0.5 we have no evidence for linkage, otherwise we can deter- 
mine the significance of the observed T by referring to the approximate null distribu- 
tion that we have calculated. If lod scores are preferred, one would use 

T’ = 210g(lO)T 

If the same level of test is desired as for a xf distributed statistic, lod scores of 2, 
3, and 5 correspond to scores for T’ of 2.28, 3.28, and 5.27, respectively. (Compare 
the values given by Risch [1989] of 2.62, 3.70, and 5.80, respectively.) 

This result is asymptotic in nature and may not necessarily be good for the small 
samples used in practice. It is computationally feasible to calculate the exact signifi- 
cance level for small samples and this is to be preferred. However, if the asymptotic 
critical values are to be used then the stability of the size of the test is important. In 
Figure 2, we show the size of the heterogeneous test and, by way of comparison, the 
size of the standard test where homogeneity is assumed. Critical values of 3.28 and 3 
were used, respectively, which both correspond to a nominal significance level of 
0.020166%. As can be seen, the true size of the test can vary somewhat although the 
variation is about the same for the heterogeneous test as the homogeneous test. 

POWER 

Risch [ 19891 compared the power of the heterogeneous test against the standard 
test where homogeneity is assumed (a = l), and concluded that the homogeneous test 
was more powerful in most circumstances. Contrary to this, we demonstrate here, by 
using the correct critical value and computing the power exactly, that the heteroge- 
neous test is generally preferable. 

Exact critical values for a significance level of 0.020166% (which corresponds to 
the asymptotic level of lod 3 for the homogeneous test) for both tests were computed 
and the exact power to detect linkage was calculated for a range of values of a from 0 
to 1 and of 8 from 0 to 1/2. Because T (and the homogeneous test statistic) are discrete 
for finite n, some adjustment is necessary to ensure that the level of significance is 
exactly obtained. It is possible to choose a T, and pa and define the test to reject the 
null (no linkage) when T > T, or reject with probability pa when T = T, and otherwise 
accept, so that the significance level is exactly 0.020166%. A similar adjustment is 
done for the homogeneous test. Of course, one would not do this in practice, but here 
it is desirable for the purpose of a fair comparison of the two tests. 

Figure 3 shows the power of the heterogeneous test minus that of the homoge- 
neous test. The lines show contours of equal difference in power (probability expressed 
as a percentage) and “ = ” denotes the region where there is a less than a 0.01 differ- 
ence in the power. In the case of sibship size 2 and 50 sibships, the homogeneous test 
exceeds the power of heterogeneous test by no more than 0.01 and can be 0.1 less 
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The true significance level of the heterogeneous test (solid) and the homogeneous test (dashed) Fig. 2. 
corresponding to critical values of 3.28 and 3, respectively. 

powerful when a = 0.4 and 8 = 0. When the sibship size is 5 and with 20 sibships, the 
heterogeneous test exceeds the power of the homogeneous test by 0.37 when a = 0.3 
and 8 = 0. The region where the homogeneous test is mildly preferable is confined to 
an area of low mixing and moderate linkage. Other comparisons show that the region 
where the heterogeneous test is clearly preferable expands with sibship size and num- 
ber of sibships. Even when there is no mixing the homogeneous test is only mildly 
more (0.05-0.1 at best) powerful than the heterogeneous test, but if there is some mix- 
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Fig. 3 .  
neous test. 

Contour plots showing the difference in power between the heterogeneous test and the hornoge- 

ing the heterogeneous test can be substantially more powerful. This leads one to rec- 
ommend the heterogeneous test in preference to the homogeneous test when heterogeneity 
is at all suspected. 

DISCUSSION 

We have approximated the null distribution of the admixture test for the detection 
of linkage and demonstrated that if the possibility of heterogeneity exists, this admix- 
ture test is generally more powerful than the usual test which takes no account of 
heterogeneity. 

We have considered constant sibship size here for simplicity of the exposition but 
this is not crucial and the same asymptotic result would follow even if the sibship size 
were allowed to vary. Furthermore, the same result holds even when the meioses are 
not completely informative. For the least informative, phase unknown, case, the test 
statistic is 

n 
T = max2 c log{cx[2”’[~( 1 - 0)’-’, + 1 - € J ) ~ ~ ]  - 11 + I}  

i =  1 

and a similar reasoning to the one above may be used to get the same result. 

ACKNOWLEDGMENTS 

Thanks to Michael Boehnke of the Department of Biostatistics, University of Mich- 
igan for bringing my attention to this problem and offering helpful comments and thanks 
also to two referees for improving the initial draft. 



Admixture Test 83 

REFERENCES 
Ghosh JK, Sen PK (1986): On the asymptotic performance of the log-likelihood ratio statistic for the mix- 

ture model and related results. “Proceedings of the Berkeley Conference in Honor of Jerzy Neyman 
and Jack Kiefer,” Volume 11. Wadsworth. 

Hodge SE, Anderson CE, Neiswanger K, Sparkes RS, Rimoin DL (1983): The search for heterogeneity in 
insulin-dependent diabetes mellitus (IDDM): Linkage studies, two-locus models, and genetic heter- 
ogeneity. Am JHumGenet35:1139-1155. 

Martinez M, Goldin L (1989): The detection of linkage and heterogeneity in nuclear families for complex 
disorders: One versus two marker loci. Am J Hum Genet 44:552-559. 

Ott J (1983): Linkage analysis and family classification under heterogeneity. Ann Hum Genet 47230-96. 
Ott J (1985): “Analysis of Human Genetic Linkage.” Baltimore: The Johns Hopkins University Press. 
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1988): “Numerical Recipes.” Cambridge: Cam- 

Risch N (1988): A new statistical test for linkage heterogeneity. Am J Hum Genet 42:353-364. 
Risch N ( 1989): Linkage detection tests under heterogeneity. Genet Epidemiol6:473-480. 
Smith CAB (1963): Testing for heterogeneity of recombination values in human genetics. Ann Hum Genet 

Wald A (1949): Note on the consistency of the maximum likelihood estimate. Ann Math Statist 20595-601. 

bridge University Press. 

27: 175-182. 


