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Computation of Multilocus Prior
Probability of Autozygosity for Complex
Inbred Pedigrees

Sun-Wei Guo*

Department of Biostatistics, University of Michigan, Ann Arbor

Homozygosity mapping is a very powerful method for mapping rare recessive dis-
eases in humans. In many applications, it is often desirable to compute prior (or
unconditional) multilocus probability of autozygosity for inbred pedigrees. This
paper proposes a simple yet powerful method for computing the prior multilocus
autozygosity probability for complex inbred pedigrees. The method has an added
feature of providing explicit multilocus autozygosity probability in terms of re-
combination fractions, if desired. An example is presented to illustrate the method.
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INTRODUCTION

Homozygosity mapping is a very powerful method for mapping rare recessive
diseases in humans [Smith, 1953; Lander and Botstein, 1987]. Smith [1953] first
pointed out that individuals affected with rare recessive diseases provide information
for linkage analysis, even without any marker or phenotypic data on other relatives.
The scope of homozygosity mapping was further extended by Lander and Botstein
[1987]. For rare recessive diseases, many affected individuals receive two copies of
genes at the disease locus identical by descent, or homozygous by descent (HBD),
or autozygous, from a recent common ancestor through consanguineous marriages.

The crux of homozygosity mapping is the recognition of the fact that, for those
affected individuals receiving, as a result of consanguineous marriage, two copies
of mutant alleles HBD at the disease locus, the markers surrounding the disease lo-
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cus also tend to be inherited HBD. Thus, by detecting unusually elevated sharing
of marker alleles HBD in affected individuals who are offspring of consanguineous
marriages, it is feasible to detect the location of the disease gene. However, one
may not observe such elevated HBD sharing for markers that are more distant from
the disease locus. To ensure a successful mapping by homozygosity, therefore, it
is important to type markers at appropriate spacings, for a genetic map that is too
sparse will not guarantee successful homozygosity mapping and a map that is too
dense would be a waste of resources.

For a given inbred pedigree, if ID, I1, and I2 denote the events that the af-
fected individual is HBD at the disease locus, at the marker locus 1, and at the
marker locus 2, respectively, where loci 1 and 2 are two markers flanking the dis-
ease locus, then P(I1 < I2 | ID) is the conditional probability that the individual is
HBD at either marker 1 or 2 given he is HBD at the disease locus. If we make
a conservative assumption that the disease locus is in the middle of the interval
flanked by markers 1 and 2, then P(I1 < I2 | ID) measures the probability that one
will find HBD at either marker 1 or 2 as a function of the genetic distance, u,
between the two markers. Obviously, a genetic map that is too sparse corresponds
to large u, which in turn corresponds to a small value of P(I1 < I2 | ID). Since
P(I1 < I2 | ID) ~ P(I1ID) 1 P(IDI2) 2 P(I1IDI2), one way to determine the map den-
sity appropriate for homozygosity mapping is to evaluate the multilocus prior prob-
abilities of homozygosity for given u. If multiple markers are used in homozygosity
mapping, the right map density can also be determined by computing the multilocus
prior probabilities of autozygosity. Thus, there is a need for a method for computing
such probabilities.

Thompson [1994] proposed a Markov chain Monte Carlo method to estimate
numerically multilocus autozygosity probability. Kruglyak et al. [1995] recently pro-
posed an algorithm to compute numerically the exact autozygosity probability. Both
methods can be used to compute or estimate the multilocus autozygosity probability,
conditional or unconditional on observed marker information. However, the algorithm
of Kruglyak et al. [1995] is limited by the size of the pedigree of interest. More pre-
cisely, it is limited by the number of meiosis in the pedigree. Thompson’s [1994]
method, while versatile, can be quite computer-intensive. More recently, Guo [1996]
proposed a method for computing the exact prior autozygosity probability, but the
method is also limited to small pedigrees.

In this paper, based on the work of Guo [1995, 1996], a new, simple, yet pow-
erful method for computing the unconditional multilocus autozygosity probability is
proposed for complex inbred pedigrees of moderate size. The method has an added
feature of providing explicit multilocus autozygosity probability in terms of recombi-
nation fractions (not just numerical values), if desired. A numerical example is given
to illustrate the proposed method.

METHODS

Set-Up

To make the presentation self-contained, some definitions introduced in Guo
[1995] are reviewed. The following assumptions are made throughout the paper:
1) no mutation, translocation, conversion, deletion, or insertion; 2) the founders in
the pedigree are biologically unrelated; 3) no sex difference in map length; and 4) no
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interference. The assumption of no interference implies independent, exponentially
distributed intervals with mean 1 (Morgan) between crossovers, which was first noted
by Fisher [1949] and leads to Haldane’s map function [Haldane, 1919].

Following Guo [1995], we can, for a given pedigree, label the maternal and pa-
ternal chromosomes for each individual as 0 and 1, respectively. For founders whose
parents are not in the pedigree, the labeling is arbitrary. Define a stochastic process,
g(t), as the process taking value 0 or 1 at chromosome location t (0 # t # l), de-
pending on whether the maternal or paternal gene at t is transmitted, where l is the
length of the chromosome (in Morgans). This process, termed the gametogenesis pro-
cess [Guo, 1995], has been shown to be a time-continuous, two-state Markov chain
with the transition probability matrix:

P(t) 5 (pi j(t)) 5
1
2

(
1 1 e22t 1 2 e22t

1 2 e22t 1 1 e22t

)
5

(
1 2 u(t) u(t)

u(t) 1 2 u(t)

)
where u(t) is the recombination fraction for two loci at distance t Morgans apart, and
pi j(t) 5 P(g(t) 5 j | g(0) 5 i) for i, j 5 0, 1. See Guo [1995] for more details about
the process.

The gametogenesis process thus defined has the following properties. First, at
any point t (0 # t # l) along the chromosome, g(t) 5 C, where C is a random
variable taking values of 0 or 1 with equal probability. Second, all gametogenesis
processes for different individuals in a pedigree are stochastically identical and inde-
pendent. Third, for any two loci t Morgans apart,

P(g(t) 5 C | g(0) 5 C) 5 1 2 u(t)

where u(t) is the recombination fraction for two loci at distance t Morgans apart.
For convenience, some frequently used terms are defined below. They include

the gene-transmission pedigree, and the HBD event and the corresponding event set,
D. Only brief descriptions are given here; the reader is referred to Guo [1995] for
further details. A gene-transmission pedigree is a pedigree in which 1) for each indi-
vidual in the pedigree, two homologous (one maternal and one paternal) alleles are
displayed; and 2) for non-founders, the origins of their genes, or the transmission
paths, are marked. For simplicity, sometimes only one allele for some individuals
is displayed because of the impossibility of sharing genes HBD for the other allele.
For each individual, the maternal and paternal alleles are displayed as left and right,
respectively. By convention, an individual either has both parents present in the pedi-
gree or neither.

For a given pedigree and a specific gene HBD event of interest, one can depict
an appropriate gene-transmission pedigree. On this basis, n gametogenesis processes,
say, g1(t), . . . , gn(t), that are relevant to the event can be identified [Guo, 1995]. For
the inbred pedigree in Figure 1a, e.g., if we are interested in the event that individ-
ual M (the one at the bottom) is HBD, then there are 18 gametogenesis processes
that are relevant (Fig. 1b). The new process v(t) 5 (g1(t), g2(t), . . . , gn(t)), called the
joint gametogenesis process, constitutes a random walk on an n-dimensional hyper-
cube Zn 5 h(h1, h2, . . . , hn) : hi 5 0 or 1j [Donnelly, 1983; Guo, 1995]. The ran-
dom walk on Zn has been shown to be identical to a time-continuous, discrete-state,
stochastic process with 2n states. At any locus t along the genome, v(t) is in a state
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a b

Fig. 1. a: An example pedigree. b: The gene-transmission pedigree. The numbers are 18 gametogenesis
processes.

which corresponds to an element in Zn, which, in turn, corresponds to a vertex on
the cube. Thus, for any z [ Zn, where z 5 (z1, z2, . . . , zn), v(t) 5 z means gi(t) 5 zi

(i 5 1, . . . , n). Any particular z corresponds, for the individual of interest (e.g., M in
Fig. 1a), to the event that the individual’s genes that are either HBD or not. For the
pedigree shown in Figure 1b, e.g., v(t) 5 (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)
corresponds to the event that individual M receives two copies of genes HBD at lo-
cus t from individual A’s maternal chromosome. Hence, there are two HBD events:
genes HBD and genes not HBD. The collection of those elements in Zn that cor-
respond to the event that genes are HBD is called the HBD set, denoted D. The
process v(t) has an equilibrium distribution P(v(t) 5 z) 5 1

2n for any z [ Zn and for
any 0 # t # l.

Note that the coordinates of any element z in Zn are either 0 or 1. If we define an
addition operation ! for any two elements z1, z2 [ Zn, where zi 5 (zi1, zi2, . . . , zin),



Business Graphics 23 Jan 1997 11:54 a.m. Genetic Epidemiology gepi703 page 5

Computing Multilocus Autozygosity Probability 5

as

z1 ! z2 5 (z11 1 z21, . . . , z1n 1 z2n) (mod 2)

then z1 j 1 z2 j 5 0 (mod 2) if z1 j 5 z2 j, or 1 otherwise. Thus, z1 ! z2 is also an
element in Zn. It is easy to see that ;h [ Zn, h ! 0 5 h and h ! h 5 0, where
0 5 (0, 0, . . . , 0).

For convenience, we also can define the Hamming distance [Roman, 1992:
p 105] between any two elements j, h [ Zn as

H(j, h) 5
n∑

i51

|ji 2 hi|

which is the number of positions in which the two elements differ.
For two loci t Morgans apart, because of the independence among the n game-

togenesis processes,

P(v(0) 5 j, v(t) 5 h) 5 P(v(0) 5 j )P(v(t) 5 h | v(0) 5 j )

5
1
2n

[u(t)]H(j,h)[1 2 u(t)]n2H(j,h) (1)

The gene HBD event(s) determine the gene-transmission pedigree, which in turn
determines the joint gametogenesis process v(t) and the HBD set D.

Having defined all these terms, we can now proceed to deal with multilocus
HBD probability. Without loss of generality, suppose there are m 1 1 linked loci,
L1, L2, . . . , Lm11, located, in that order, at t 5 0, t 5 l1, . . . , t 5 lm, with 0 , l1 ,
? ? ? , lm. Denote the recombination fractions between loci Li and L j ( j . i) as ui j

(1 # i, j # m 1 1). Given the HBD set D, the multilocus probability

P(v(0) [ D, v(l1) [ D, . . . , v(lm) [ D)

5
∑

v1[D
? ? ?

∑
vm11[D

P(v(0) 5 v1, . . . , v(lm) 5 vm11)

5
1
2n

∑
v1[D

? ? ?
∑

vm11[D
P(v(l1) 5 v2 | v(0) 5 v1) ? ? ?

P(v(lm) 5 vm11 | v(0) 5 v1, . . . , v(lm21) 5 vm)

5
1
2n

∑
v1[D

? ? ?
∑

vm11[D
P(v(l1) 5 v2 | v(0) 5 v1) ? ? ?

P(v(lm) 5 vm11 | v(lm21) 5 vm)

5
1
2n

∑
v1[D

? ? ?
∑

vm11[D

m∏
i51

uH(vi,vi11)
i,i11 (1 2 ui,i11)n2H(vi,vi11) (2)
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where v(0), . . . , v(lm) are the states of the gametogenesis process v(t) at t 5 0, l1,
. . . , lm, and ui,i11 5 1

2 (1 2 e22(li2li21)) is the recombination fraction between loci Li

and Li11.
Let Ii (or Ni) be the event that the individual of interest is (or is not) HBD at

the ith locus, i 5 1, 2, . . . , m 1 1. Then, for any event E 5 X1 > X2 > ? ? ? > Xm11,
where Xi 5 Ii or Ni, P(E) can be expressed as a function of P(I j1 > I j2 > ? ? ? > I jk ),
where jl 5 1, . . . , m 1 1 and 1 # jk # m 1 1, using inclusion/exclusion arguments
[Guo, 1996]. That is, the probability that he is HBD at all jk loci. For example,

P(N1 > I2 > I3 > I4) 5 P(I2 > I3 > I4) 2 P(I1 > I2 > I3 > I4).

The above method works fairly well when the inbred pedigree is small and sim-
ple [Guo, 1996]. However, if the inbred pedigree contains many meiotic events of
interest, the set D will be large. In this case, the above method will break down,
even with the help of symbolic software such as MAPLE [Char et al., 1992].

It is often the case that the HBD set D can be decomposed into k (k $ 0) dis-
joint subsets D1, . . . , Dk , so that D 5 D1 < D2 < ? ? ? < Dk. For the inbred pedigree
in Figure 1, e.g., D consists of 16 subsets (see discussions in the numerical exam-
ple). Each subset Di (i 5 1, . . . , k) can be further decomposed into n 1-dimensional
subcomponents Di j, j 5 1, . . . , n, where Di j 5 h0j, or Di j 5 h1j, or Di j 5 h0, 1j,
so that

Di 5 Di1 3 ? ? ? 3 Din

where 3 means that Di can be decomposed into several disjoint and mutually
exclusive components of lower dimensions. For example, if a subset is D1 5
(1, p, p, 0, p, 1), say, where p means either 0 or 1, it can be further decomposed
into six 1-dimensional subcomponents, i.e., D1 5 h1j 3 hpj 3 hpj 3 h0j 3 hpj 3 h1j;
i.e., jointly and in that order, the six subcomponents h1j, hpj, hpj, h0j, hpj, and h1j
constitute D1.

The decomposition of the HBD set D provides an opportunity for a much sim-
pler method for computing the prior autozygosity probability. Before presenting the
method, we first present some properties of the Hamming distance measure.

Properties of the Hamming Distance Measure

There are several useful properties for the Hamming distance. They are so ob-
vious that they will be stated without proof.

Property 1: decomposability. For any two elements h, j [ Zn, h and j can
be decomposed into two lower-dimensional components, i.e., h 5 (h(1), h(2)) and
j 5 (j (1), j (2)), where h(1) and j (1) are elements in an m-dimensional hypercube
(0 # m # n), and h(2) and j (2) are elements in an (n 2 m)-dimensional hypercube.
The m-dimensional and (n 2 m)-dimensional hypercubes are disjoint, and, together,
constitute Zn. Then,

H(h, j ) 5 H(h(1), j (1)) 1 H(h(2), j (2)).
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This property can be easily extended to the case where j and h are decomposed
into k subcomponents (1 # k # n). In particular,

H(h, j ) 5
n∑

i51

H(hi, ji) 5
n∑

i51

|hi 2 ji|.

Property 2: permutation invariance. For any two elements j, h [ Zn, the Ham-
ming distance between j and h will remain the same if they are transformed under
the same permutation.

Property 3: transformation invariance. For any three elements h, j, z [ Zn,

H(h, j ) 5 H(h ! z, j ! z).

It is easy to see that there are 2n elements in Zn. We call each element a vertex.
For each vertex h, there are

(n
k

)
vertices that have a Hamming distance of k from h,

0 # k # n.

Simplifications

Suppose now that the HBD set D can be decomposed into k disjoint subsets
D1, . . . , Dk, so that D 5 D1 < D2 < ? ? ? < Dk . Suppose also that each subset Di

(i 5 1, . . . , k) is decomposed into n subcomponents Di j, j 5 1, . . . , n, where Di j 5
h0j, or Di j 5 h1j, or Di j 5 hpj, where p 5 0, 1, so that

Di 5 Di1 3 ? ? ? 3 Din

where Di1 3 ? ? ? 3 Din means that, jointly, Di1, . . . , Din constitute Di.
For two linked loci, Eq. (2) can be rewritten as

1
2n

∑
v1[D

∑
v2[D

uH(v1,v2)
12 (1 2 u12)n2H(v1,v2)

5
1
2n

∑
(v11,...,v1n)[D

∑
(v21,...,v2n)[D

u
∑n

i51 H(v1i,v2i)
12 (1 2 u12)

∑n
i51[12H(v1i,v2i)]

5
1
2n

k∑
a,b51

∑
(v11,...,v1n)[Da

∑
(v21,...,v2n)[Db

n∏
i51

uH(v1i,v2i)
12 (1 2 u12)12H(v1i,v2i) (3)

5
1
2n

k∑
a,b51

∑
v11[Da1

? ? ?
∑

v1n[Dan

∑
v21[Db1

? ? ?
∑

v2n[Dbn

n∏
i51

uv1i!v2i

12 (1 2 u12)12v1i!v2i . (4)

Two points can be made from the above formula. First, we can focus only on
subsets in D, instead of elements in D. This would substantially reduce the number
of cases to be considered. Second, we can now compute, for a given pair of subsets,
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the factor uh(1 2 u)g component by component, then take the product of them, and
then sum over all possible pairwise subsets. The computation can be further reduced
by symmetry arguments; e.g., the summation

∑k
a,b51

∑
v1[Da

∑
v2[Db

can be reduced
to computing k

∑
v1[D1

∑
v2[D1

and 2
∑

a,b

∑
v1[Da

∑
v2[Db

.
For the two-locus case, there are only four distinctive cases that need to be con-

sidered in computing the probability. These are: (p, p), (i0, p), (p, j0), and (i0, j0),
where i0 and j0 take either 0 or 1. For the (i0, j0) case, the factor is simply ui0! j0

12 (1 2

u12)12i0! j0 , where i ! j means i 1 j (mod 2). For the (p, j0) case, the factor is

u0! j0

12 (1 2 u12)0! j0 1 u1! j0

12 (1 2 u12)1! j0 5 1

as j0 is either 0 or 1.
By symmetry, the (i0, p) case also gives the value 1.
The (p, p) case is also simple. By enumerating all possible values, it has the

value 2.
The above formula can be easily extended to more than two loci. For three loci,

e.g., we have

P(v(0) [ D, v(l1) [ D, v(l2) [ D)

5
1
2n

∑
v1[D

∑
v2[D

∑
v3[D

∏
1#r,s#3

uH(vr ,vs)
rs (1 2 urs)

n2H(vr ,vs)

5
1
2n

∑
(v11,...,v1n)[D

∑
(v21,...,v2n)[D

∑
(v31,...,v3n)[D

∏
1#r,s#3

u
∑n

i51 H(vri,vsi)
rs (1 2 urs)

∑n
i51[12H(vri,vsi)]

5
1
2n

k∑
a,b,c51

∑
(v11,...,v1n)[Da

∑
(v21,...,v2n)[Db

∑
(v31,...,v3n)[Dc

n∏
i51

∏
1#r,s#3

uH(vri,vsi)
rs (1 2 urs)

12H(vri,vsi)

5
1
2n

k∑
a,b,c51

∑
v11[Da1

? ? ?
∑

v1n[Dan

∑
v21[Db1

? ? ?
∑

v2n[Dbn

∑
v31[Dc1

? ? ?
∑

v3n[Dcn

n∏
i51

∏
1#r,s#3

uvri!vsi
rs (1 2 urs)

12vri!vsi .

For each component, there are 8 distinct cases, as follows:

Cases
1 2 3 4 5 6 7 8

1 i0 i0 i0 p i0 p p p
Subsets 2 j0 j0 p j0 p j0 p p

3 k0 p k0 k0 p p k0 p.
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For case 1, it is easy to see that we have a factor of

ui0! j0

12 (1 2 u12)12i0! j0u j0!k0

23 (1 2 u23)12 j0!k0 .

For case 2, we have

ui0! j0

12 (1 2 u12)12i0! j0u j0!0
23 (1 2 u23)12 j0!0

1 ui0! j0

12 (1 2 u12)12i0! j0u j0!1
23 (1 2 u23)12 j0!1

5 ui0! j0

12 (1 2 u12)12i0! j0 .

For case 3, we have

ui0!0
12 (1 2 u12)12i0!0u0!k0

23 (1 2 u23)120!k0

1 ui0!1
12 (1 2 u12)12i0!1u1!k0

23 (1 2 u23)1!k0

5 ui0!k0

13 (1 2 u13)12i0!k0 .

That is, the contributing factor is completely determined by i0 ! k0 and the recom-
bination fraction between loci 1 and 3.

The corresponding factor for other cases can also be computed. The results are
listed in Table I.

For m 1 1 loci, depending on the number of p’s and their locations, there will be
2m11 distinct cases. For a given case, the contributing factor is determined solely by
positions of p’s, if any, and values of the gametogenesis processes at the different loci.
More specifically, if there are exactly m p’s, then the contributing factor is 1. This can
be easily seen by induction with respect to m. As a corollary, the contributing factor
is 2 if there are exactly m 1 1 p’s. If there are less than m p’s, the contributing factor
is determined by the status of the gametogenesis processes taking non-p-values. If
the status of the gametogenesis process at a particular locus Li, say, is fi ( fi Þ p),

TABLE I. Contributing Factors for the Three-Locus Case†

Locus

Cases 1 2 3 Contribution

1 i0 j0 k0 u i0! j0
12 (1 2 u12)12i0! j0 u j0!k0

23 (1 2 u23)12 j0!k0

2 i0 j0 p u i0! j0
12 (1 2 u12)12i0! j0

3 i0 p k0 u i0!k0
13 (1 2 u13)12i0!k0

4 p j0 k0 u i0! j0
12 (1 2 u12)12i0! j0

5 i0 p p 1

6 p j0 p 1

7 p p k0 1

8 p p p 2

†“p” denotes either 0 or 1.
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and if the next non-p-locus is L j (i , j), which takes value f j, then there is at least a

term u fi! f j

i j (1 2 ui j)12 fi! f j , regardless how many p’s between loci i and j. Thus, we
can ignore p’s between any two adjacent non-p-valued loci. This can be viewed as
if there were no information on recombination at those p-valued loci flanked by two
non-p-valued loci. For example, for a 10-locus component (p, 1, p, p, 0, p, 0, 1, p, 1),
the contributing term is u25(1 2 u57)u78(1 2 u8,10). Table II presents the results for
m 5 3.

Note that for any two loci Li and L j (i , j), the recombination fraction ui j can
be expressed in terms of pairwise recombination fractions by Trow’s formula

1 2 2ui j 5

j21∏
l5i

(1 2 2ul,l11)

where ul,l11 is the recombination fraction between the two adjacent loci l and l 1 1.

NUMERICAL EXAMPLE

We demonstrate the proposed method using a small yet fairly complex pedigree
(Fig. 1a) originally considered by Thompson [1994]. The pedigree was collected in
a project on mapping Werner’s syndrome [Nakura et al., 1994]. First ascertained as a
first cousin marriage, it was later discovered that each parent of the affected proband

TABLE II. Contributing Factors for the Four-Locus Case†

Locus

Cases 1 2 3 4 Contribution

1 i j k l u i! j
12 (1 2 u12)12i! ju j!k

23 (1 2 u23)12 j!kuk!l
34 (1 2 u34)12k!l

2 i j k p u i! j
12 (1 2 u12)12i! ju j!k

23 (1 2 u23)12 j!k

3 i j p k u i! j
12 (1 2 u12)12i! ju j!l

24 (1 2 u24)12 j!l

4 i p k l u i!k
13 (1 2 u13)12i!kuk!l

34 (1 2 u34)12k!l

5 p j k l u j!k
23 (1 2 u23)12 j!kuk!l

34 (1 2 u34)12k!l

6 i j p p u i! j
12 (1 2 u12)12i! j

7 i p k p u i!k
13 (1 2 u13)12i!k

8 i p p l u i!l
14 (1 2 u14)12i!l

9 p j k p u j!k
23 (1 2 u23)12 j!k

10 p j p l u j!l
24 (1 2 u24)12 j!l

11 p p k l uk!l
34 (1 2 u34)12k!l

12 i p p p 1

13 p j p p 1

14 p p k p 1

15 p p p l 1

16 p p p p 2

†“p” denotes either 0 or 1.
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(the individual in the bottom) in the pedigree was also the offspring of a first cousin
marriage.

Figure 1b is the corresponding gene-transmission pedigree, where the numbers
represent n 5 18 gametogenesis processes of interest. It is easy to see that individual
M can have two genes HBD through various paths. In one path a copy of individual
A’s gene (either maternal or paternal) is transmitted to C, then to G, then to K, and
to M; the same (maternal or paternal) gene is also transmitted to D, I, L, and finally,
M. We denote this path as ACGKM—ADILM. Thus, as long as g1(t) 5 g2(t) 5
g10(t) 5 g11(t) 5 g16(t) 5 g17(t) 5 g18(t) 5 0 and g13(t) 5 1, individual M will
have two copies of maternal genes from individual A. Other paths are ACGKM—
AFJLM, ADHKM—AFJLM, BCGKM—BDILM, BCGKM—BFJLM, BDHKM—
BFJLM, EHKM—EILM, and DHKM—DILM. These eight different paths can be
represented by 16 distinctive subsets in D, as listed in Table III. Note that each of the
16 subsets represents an HBD event with two copies of either the maternal or pater-
nal allele from individuals A, B, D, or E. Each subset contains 210 elements (subsets
1–12) or 212 elements (subsets 13–16). Thus, there are 12 ? 210 1 4 ? 212 5 28,672
elements in D. Obviously, using Eq. (2) to compute the multilocus probability of au-
tozygosity will involve a great deal of computations. Also note that at any locus, the
HBD probability is |D|

218 5 0.10935, where |D| 5 28,672, the cardinality of D.
We first demonstrate how to compute a two-locus HBD probability for this pedi-

gree. As shown in Table III, there are 16 subsets in D. By Eq. (3), if the gametoge-
nesis process is in states defined in subsets 1 and 2 at the first and second loci (i.e.,
a 5 1 and b 5 2), respectively, we have

locus 1: 0 0 p p p p p p p 0 0 p 1 p p 0 0 0
locus 2: 1 1 p p p p p p p 0 0 p 1 p p 0 0 0

TABLE III. Elements in D for a Complex Inbred Pedigree†

Values of 18 gametogenesis processes

Subset 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 0 p p p p p p p 0 0 p 1 p p 0 0 0
2 1 1 p p p p p p p 0 0 p 1 p p 0 0 0
3 0 p 0 p p p p p p p 0 0 1 0 p p 0 1
4 1 p 1 p p p p p p p 0 0 1 0 p p 0 1
5 p 0 0 p p p p p 0 p p 0 p 0 0 p 1 1
6 p 1 1 p p p p p 0 p p 0 p 0 0 p 1 1
7 p p p 0 0 p p p p 1 1 p 1 p p 0 0 0
8 p p p 1 1 p p p p 1 1 p 1 p p 0 0 0
9 p p p 0 p 0 p p p p 1 1 1 0 p p 0 1

10 p p p 1 p 1 p p p p 1 1 1 0 p p 0 1
11 p p p p 0 0 p p 1 p p 1 p 0 0 p 1 1
12 p p p p 1 1 p p 1 p p 1 p 0 0 p 1 1
13 p p p p p p 0 0 p p p p p p 1 1 1 0
14 p p p p p p 1 1 p p p p p p 1 1 1 0
15 p p p p p p p p 0 0 p p p p 0 0 1 0
16 p p p p p p p p 1 1 p p p p 0 0 1 0

†“p” denotes either 0 or 1.
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where each column represents values of the corresponding gametogenesis processes
at loci 1 and 2.

By Eq. (4), we can compute the contributing term for the combination (a 5 1
and b 5 2) by computing contributing factors column by column (i.e., component by
component) and take the product. By properties 2 and 3 of the Hamming distance
measure, however, we know that the above subset combination (a 5 1 and b 5 2) is
equivalent to

locus 1: 0 0 0 0 0 0 0 0 p p p p p p p p p p
locus 2: 0 0 0 0 0 0 0 0 p p p p p p p p p p.

That is, we have 8 (0, 0)’s, and 10 (p, p). This gives a term of 210(1 2 u12)8 in Eq.
(3).

For a 5 1 and b 5 16, say, we have

locus 1: 0 0 p p p p p p p 0 0 p 1 p p 0 0 0
locus 2: p p p p p p p p 1 1 p p p p 0 0 1 0.

This amounts to 2 (0, 0)’s, 2 (0, 1)’s, 2 (1, p)’s, 4 (0, p)’s, and 8 (p, p)’s, which
gives a term of 28u2

12(1 2 u12)2. Other combinations can be dealt with in a similar
fashion. If we sum over all pairwise combinations, we have

P(I1 > I2) 5
1
29

[
4u(1 2 u)2 1 5u2 1 12u2(1 2 u)4 1 8u(1 2 u) 1 16u2(1 2 u)2

1 24(1 2 u)8 1 32(1 2 u)6 1 24u2(1 2 u)6 1 32u6(1 2 u)4]
where I j (or Nj) denotes the event that individual M is (or not) HBD at locus j,
following Thompson’s [1994] notation.

The three-locus HBD probability can be computed in a similar fashion. For ex-
ample, if the gametogenesis process is in states defined by subsets 2, 4, and 9 at first,
second, and third loci, respectively, say, we have

locus 1: 1 1 p p p p p p p 0 0 p 1 p p 0 0 0
locus 2: 1 p 1 p p p p p p p 0 0 1 0 p p 0 1
locus 3: p p p 0 p 0 p p p p 1 1 1 0 p p 0 1

which gives five (p, p, p)’s, five (0, p, p)’s, two (0, 0, 0)’s, and one each of (p, 0, p),
(0, 0, p), (0, 1, 1), (0, 0, 1), (p, 0, 1), and (p, 0, 0). This yields a term of 25u12u2

23(1 2

u12)4(1 2 u23)4. Another way to compute this subset trio is to note that there are one
(0, 1) and four (0, 0)’s between loci 1 and 2, which gives u12(1 2 u12)4. In addition,
there are two (0, 1)’s and four (0, 0)’s between loci 2 and 3, which gives u23(1 2 u23)4.
Moreover, there are five (p, p, p)’s, which gives 25. Taken together, we have a term
of 25u12u2

23(1 2 u12)4(1 2 u23)4. Other combinations can be similarly calculated.
In general, any subset trio for the three-locus problem will yield 2a00

∏
1#i, j#3

uai j

i j (1 2 ui j)bi j , where 0 # a00, ai j # n, for 1 # i , j # 3. a00 is the total number
of (p, p, p)’s in the combination, a01 the number of components (columns) that have
different values at the first and second loci (such as (0, 1, p) and (1, 0, 1)), b01 the
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number of components that have the identical values at the first and second loci (such
as (0, 0, p) and (1, 1, 0)), a02 the number of (i, p, 1 2 i)’s, where i 5 0 or 1, and b02 the
number of (i, p, i)’s, and so on. This can be easily extended to (m 1 1)-locus problem,
in which case any (m 1 1) subsets would yield 2a00

∏
1#i, j#m11 uai j

i j (1 2 ui j)bi j , where
0 # a00 # 1, 0 # ai j # n, for 1 # i , j # m 1 1.

For u12 5 u23 5 0.1, we calculated the exact three-locus autozygosity probabil-
ity and compared it with the results obtained by Thompson [1994] using a Monte
Carlo method. The results are listed in Table IV. It can be seen from the table that
the Monte Carlo is in general fairly accurate, and has the feature of being as accurate
as one wishes at the cost of more computation. However, there are noticeable differ-
ences, especially for those HBD configurations that are less likely. In addition, the
Monte Carlo method, although versatile, usually takes much more time to run (about
8 hr on a DEC3100 workstation). Moreover, for a different set of parameters, one
has to run the Monte Carlo again.

For u12 5 u23 5 u34 5 0.1, we also calculated the exact four-locus autozygosity
probability. The results are listed in Table V.

DISCUSSION

This paper proposes a method for computing the multilocus prior probability
of autozygosity for complex inbred pedigrees. The crux of the method is to identify
loops in the inbred pedigrees, to decompose the HBD set into a small number of dis-
joint subsets, and then to compute the probability component by component. Because
of innumerable configurations in human pedigrees, it is difficult, if not impossible, to
devise a general algorithm to identify loops automatically for a complex inbred pedi-
gree. However, for most human pedigrees encountered in practice, the decomposition
can be accomplished easily once one understands the principle of the path-counting
method [Wright, 1923]. When identification of loops is difficult, as for an extraor-
dinarily complicated pedigree, this method may not work at all. However, it should
be pointed out that most human pedigrees encountered in practice are often moder-
ately complex. Thus, the identification of loops in the pedigree is no different from
the path-counting method for computing the inbreeding coefficient, i.e., to identify
common ancestors and paths (loops) that can lead to gene HBD. Once the loops can

TABLE IV. Three-Locus Prior Autozygosity Probabilities for a Complex Inbred Pedigree

Autozygosity status Exact Monte Carloa

N1 N2 N3 .78835130 .7901
N1 N2 I3 .04908464 .0478
N1 I2 N3 .02653601 .0257
N1 I2 I3 .02665301 .0271
I1 N2 N3 .04908464 .0478
I1 N2 I3 .00410438 .0050
I1 I2 N3 .02665302 .0271
I1 I2 I3 .02953297 .0295

aFrom Thompson [1994].
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TABLE V. Four-Locus Prior Autozygosity Probabilities for a
Complex Inbred Pedigree

Autozygosity status Probability

N1 N2 N3 N4 .74200570
N1 N2 N3 I4 .04634560
N1 N2 I3 N4 .02484550
N1 N2 I3 I4 .02423914
N1 I2 N3 N4 .02484550
N1 I2 N3 I4 .00169051
N1 I2 I3 N4 .01282093
N1 I2 I3 I4 .01383208
I1 N2 N3 N4 .04634560
I1 N2 N3 I4 .00273904
I1 N2 I3 N4 .00169051
I1 N2 I3 I4 .00241387
I1 I2 N3 N4 .02423914
I1 I2 N3 I4 .00241387
I1 I2 I3 N4 .01383208
I1 I2 I3 I4 .01570090

be identified, the prior multilocus HBD probability can be computed by the proposed
method.

The proposed method, coupled with existing computer power and symbolic soft-
ware such as MAPLE [Char et al., 1992], can provide explicit solutions to many mul-
tilocus gene HBD problems for complex inbred pedigrees. It should be noted that the
method can also be used to compute the multilocus prior probability of gene shared
identical by descent for a group of individuals in complex pedigrees [Guo, 1996].

Because it computes the probability component by component, the method auto-
matically collects various terms and expresses them in a succinct way, thus improving
the accuracy.

It should be emphasized that this paper only presents a method for computing
the prior or unconditional HBD probability, i.e., the HBD probability without marker
information. The computation of the posterior or conditional HBD probability given
observed marker information would require completely different methods. It should
be noted that, although marker data further limit the overall number of legal states,
they destroy the simple representation structure inherent in these states, forcing one
to consider these states individually. Thus, it may be difficult to apply the proposed
method to computing the posterior HBD probability.

Throughout this paper, no interference and no sex difference in map length have
been assumed. Neither assumption is of course correct for human genomes. However,
the assumption of no interference makes the computation of HBD probability much
easier. When there is a weak positive interference while no interference is assumed,
the calculated HBD probability will be a slight underestimate of the true one. This
is because double crossovers are less likely in actuality, making the sharing of genes
more likely. The assumption of no sex difference in map length also is critical for the
random walk theory to hold. It is extremely difficult to construct a model allowing for
the sex difference while still remaining tractable. Nonetheless, the method presented
in this paper is useful for a sex-averaged map.
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