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Statistical Mechanics of Protein Folding by Exhaustive
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ABSTRACT It is hard to construct theo-
ries for the folding of globular proteins be-
cause they are large and complicated mol-
ecules having enormous numbers of nonna-
tive conformations and having native states
that are complicated to describe. Statistical
mechanical theories of protein folding are
constructed around major simplifying assump-
tions about the energy as a function of con-
formation and/or simplifications of the repre-
sentation of the polypeptide chain, such as one
point per residue on a cubic lattice. It is not
clear how the results of these theories are
affected by their various simplifications. Here
we take a very different simplification ap-
proach where the chain is accurately repre-
sented and the energy of each conformation is
calculated by a not unreasonable empirical
function. However, the set of amino acid se-
quences and allowed conformations is so re-
stricted that it becomes computationally fea-
sible to examine them all. Hence we are able to
calculate melting curves for thermal denatur-
ation as well as the detailed kinetic pathway of
refolding. Such calculations are based on a
novel representation of the conformations as
points in an abstract 12-dimensional Euclid-
ean conformation space. Fast folding sequences
have relatively high melting temperatures,
native structures with relatively low energies,
small Kinetic barriers between local minima,
and relatively many conformations in
the global energy minimum’s watershed. In
contrast to other folding theories, these mod-
els show no necessary relationship between
fast folding and an overall funnel shape
to the energy surface, or a large energy gap
between the native and the lowest non-
native structure, or the depth of the native
energy minimum compared to the roughness
of the energy landscape. Proteins 32:425-437,
1998. ©1998 Wiley-Liss, Inc.
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INTRODUCTION

What are the main ideas we can glean from the
vast protein folding literature? For a recent review,
see Dill et al.! To succinctly summarize the experi-
mental situation, it is generally held that a small
fraction of all possible amino acid sequences having
sufficient chain length fold reversibly in dilute solu-
tion, without external guidance, to a fairly unique
native conformation, as long as the temperature and
solvent composition fall within certain ranges that
can vary considerably from one protein to another.
Folding occurs cooperatively over a narrow range of
conditions, although not as sharply as a first-order
phase transition in a macroscopic system. Intermedi-
ates in folding are hard to detect for many proteins.
Although the denatured state is highly disordered,
the folding process requires only an amount of time
that allows each molecule to sample some 10%°
conformations, far fewer than the total possible. In
fact, if each molecule of an entire mole of a 100-
residue protein sampled that many conformations,
this is still far fewer than a rough estimate of 319
total possible conformations.

The theoretical side of protein folding likewise has
an enormous literature stretching over many years.
The major problems addressed by statistical mechani-
cal theories of protein folding are the causes of
cooperativity, lack of folding intermediates, the high
rate of folding, the ability to converge on the native
from so many starting conformations in the unfolded
state, and the pervasiveness of secondary structure.
Much of the work is based on the statistical mechan-
ics of polymers, which was originally developed to
describe average properties of disordered systems,
and then this has been adapted to globular proteins,
where only very specific sequences fold to unique,
compact conformations that depend in some compli-
cated way on the sequence. As a sampling of some of
the major ideas that have come from analytical
statistical theories, Karplus & Weaver? showed how
their diffusion-collision model could account for the
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cooperativity of folding, and it fit with the appealing
idea that first secondary structure segments formed
at least approximately, and then subsequently these
packed together to form the native structure. On the
other hand, Ptitsyn® advocated the view that the
first step in folding was a collapse to a “molten
globule” state, followed by rearrangement of the
fairly compact chain and secondary structure forma-
tion. Bryngelson and Wolynes* suggested that for
any given folding sequence, the energy surface as a
function of conformation must be rugged to some
degree, and the important factor required for rapid
folding is that the general energy well around the
native (the “folding funnel”) must be deep compared
to the overall ruggedness. This was based on a
random energy model where the energy of each
conformation was taken to be a random value from a
distribution having a certain mean and standard
deviation.

While current statistical mechanical theories have
certainly captured some important features of the
physical chemistry of real proteins, such as cooperat-
ivity of folding and rapid folding from the random
coil state, their derivation requires making some
broad assumptions about the average behavior of
polypeptides. Clearly some simplifying assumptions
must be made because neither nature nor computer
has sufficient time to exhaustively explore all confor-
mations and all sequences for even small proteins.

The idea here is to simplify an otherwise realistic
representation of polypeptides by reducing chain
length, number of conformational states per residue,
and number of choices of amino acids until all
sequences and all conformations can be exhaustively
enumerated. By varying these parameters in the
computationally feasible range, general conclusions
can be detected and extrapolated to parameter val-
ues corresponding to real proteins. Questions to be
addressed include: is the energy landscape really a
funnel aimed at the native conformation? What
energetic features correspond to rapidly folding se-
quences, for example the energy difference between
the native and the mean nonnative conforma-
tions? Is there a general folding mechanism for all
folding sequences, or do some proceed by a
recognizable pathway while others have innumer-
able routes?

METHODS
Conformations

Each residue in the polypeptide chain is repre-
sented by the five nonhydrogen atoms of an alanyl
residue, so that the sidechain is indicated only by the
CP atom, regardless of the residue type. Peptide
bonds are taken to be planar and trans, and all bond
lengths and angles are fixed at standard values®
without any special treatment of glycine or proline.

Fig.1. Conformation BHBGBGA, the compact native conforma-
tion of sequence LKLPL SFPSA LFKIL NNALK LPLSF PSNPP
CEKIM, drawn as a schematic ribbon diagram (UCSF, MidasPlus).

The only remaining variables are the ¢ and s
dihedral angles for each residue, but if we were to
adopt a rotational isomeric model allowing only a
three-way choice of helix, extended, or coil conforma-
tional state for each residue, we would have too
many conformations for even a 30-residue chain.

In order to keep the total number of conformations
down to a manageable level while still allowing
protein-like folded states and a reasonable random
coil state, we take the &ys for whole contiguous
segments of chain to be those given in one of several
building blocks. One satisfactory set consists of ten
building blocks, namely a 20-residue segment of
perfect a-helix (b, = —57°, — 47°) denoted by A, an
8-residue segment of perfectly extended B-strand
(b, = —129°, 124°) denoted by B, and eight different
2-residue turn segments, C-J. The lengths of the «
and B blocks were chosen to give similar end-to-end
distances appropriate to small globular proteins.
Turn ¢ys were not taken from crystal structures, but
rather from a grid search for those values that gave
self-avoiding and sometimes compact conformers
ACA, ACB, and BCB. Each conformation consists of
alternating o/f and turn blocks until the desired
chain length has been reached, even though that
might come in the middle of a block. For 35 residues
there are 762 self-avoiding conformations, running
in alphabetical order: ACBCA, ACBCB, ACBDA, ...,
BJBJBIB, BJBJBJA, BJBJBJB. A compact one of
these, BHBGBGA, is shown schematically in Figure
1. Allowing successive turn blocks produces too
many conformations because they are so short. Allow-
ing successive AA or BB blocks biases the set of
conformations toward overly extended structures.
Otherwise, all combinations of blocks are generated,
and those with steric overlaps are discarded.

This way of generating a finite set of conforma-
tions meets several goals. The number of conformers
grows rapidly with chain length |, but is neither
ridiculously small nor infeasibly large in the size
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TABLE I. Sets of Conformations Generated by Ten

¢ Blocks

No. No. self-avoiding No. compact

residues | conformations conformations a2 (l)
15 13 1 3.3
20 69 0 3.7
25 104 1 35
30 488 0 4.6
35 762 3 4.1
40 3,358 11 4.6
45 5,430 30 4.4
50 22,544 169 5.1
55 38,359 186 4.8
60 151,109 621 5.3
70 1,009,345 1,789 5.6

range of very small proteins (see Table I). There is a
small but nonzero fraction of conformers that are as
compact as real native proteins. We take as a com-
pactness criterion that the radius of gyration is no
more than 30% greater than the minimal observed
value.®

r‘gyr,min(l) =—-1.26 + 2.79'1/3 (1)

These compact structures even resemble real folding
motifs, including helical bundles, B sandwiches, and
o/B. Finally, the full set of conformers, including
those with long-range steric overlaps, corresponds to
polyalanine under Flory ® conditions, and therefore
the characteristic ratio

_ 2

o2(l) = ((ry —m)?) %)
3.802(1 — 1)
for long chains (I = 40) should approach the experi-
mental value™® of 9 = 1. The numerator in the
definition of the characteristic ratio is simply the
mean square end-to-end distance (in A) for a chain of
I residues. Since Table I is the result of a coarse and
nonuniform sampling of all conformations, the char-
acteristic ratio is not a smooth function of I, but it
extrapolates to roughly 9 at somewhere beyond 130
residues.

Conformation Space

Itis all very well and good to draw vague diagrams
of energy as a function of some axis labelled “confor-
mation,” but here we need to construct a well-defined
conformation space so we can discuss the smooth-
ness of the energy surface and whether it really
funnels down to the native conformation. Of course,
what the energy surface looks like depends to some
degree on how conformations are parameterized.
Most work has concentrated on comparing pairs of
conformations (of the same chain length), such as the
ubiquitous RMSD, the root mean square distance

between corresponding C¢s after optimal rigid super-
position of the two structures. We have refined this
idea in our p measure of conformational similarity,
which is based on RMSD but compensates for its
misleading biases depending on the size of the
structures being compared.® Then p= 0 for identical
conformations, p< 0.5 for obvious visual similarity,
and p= 2 for maximally dissimilar conformations.
What is not widely appreciated is that any such
measure of similarity, based on optimal superposi-
tion, cannot be used to construct a Euclidean confor-
mation space. That is, there is no ordinary Cartesian
space IR" of any dimension n such that conforma-
tions are points and RMSD or p is the distance
between them. The underlying reason is that we can
optimally translate and rotate structure B onto
structure A, and C onto A, but that is not in general
the optimal superposition of B onto C. What is
needed instead is a way to uniformly position all
structures and then abstract the few most signifi-
cant parameters describing them so that n is kept
small.

Of course opinions vary as to what are the most
significant conformational features. Shakhnovich and
coworkers have emphasized the fraction of interresi-
due contacts in a nonnative conformation that are
also seen in the native, Q in their notation.1® This
assumes a particular choice of sequence and energy
function, as well as a global search for the native
conformation. Here we want to separate conforma-
tional and sequence considerations as much as pos-
sible, so we will focus on the overall chain fold as the
most important feature, employing the same meth-
ods we used in an earlier analysis of all possible
protein folds,' namely the discrete cosine transform
(DCT). Like the Fourier transform, the initial terms
of the DCT are large and correspond to the C* trace
at low resolution, while later terms tend to be small
in magnitude and correspond to finer details, such as
the winding of the chain in a helix. We convert
conformations into coordinates of points in a 12-
dimensional conformation space according to the
following procedure. Every conformation is trans-
lated so that the centroid of its C* atoms is at the
origin. Then let the first principal axis, u;, be the
normalized vector to the centroid of the first third of
the chain. The second principal axis, u,, is the
normalized component orthogonal to u; of the vector
to the centroid of the last third of the chain. Finally,
Uz = U; X Uy, asin Figure 2.

All 31 terms of the full DCT for each conformation
are calculated in its respective principal axis coordi-
nate system, and those 12 terms that have the
greatest range over all conformations are kept, in
order of their ranges. Generally, the first coordinate
of a conformation in this space is the DCT term for
the slowest variation down the chain of the position
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Fig. 2. Standard positioning of a protein conformation. Point 0
is the centroid of the whole chain, 1 is that of the first third, and 3 is
that of the last third. The standard reference frame consists of unit
vectors, uy, U, and uz, where uz, points into the plane of the paper
in this example and is not drawn.

40

Fig. 3. The correlation of overall conformational similarity (p)
for all pairs of the 762 structures of 35 residues vs. the distance (d)
in the abstract conformation space of DCT coefficients between
the corresponding pairs of points. (For clarity, only 1/20 of all dots
are drawn, but the overall scatter is still well represented.)

along the axis of greatest elongation. Keeping only
12 terms for 30—60 residues means the finer details
of residue-residue packing tend to be overlooked, but
if two conformations are close in this space, no great
rearrangement of the chain is required to convert
from one to the other. In fact, Figure 3 shows that
ordinary Euclidean distances in this space have a
90% correlation with p, since both measures empha-
size similarity in overall chain fold. (Incidentally,
rotating each conformation to its more customary
inertial principal axes gives rise to some pairs of
conformations that are close in p but distant in DCT
space because some of the axes of one conformation
are reversed compared to those of the other.) Further-
more, it can be shown that points near the origin
correspond to compact conformations, i.e. those with
small radius of gyration.!* Figure 3 also shows that
our conformational ensemble is a broad sampling, in
that there are some pairs of conformations that are
nearly maximally dissimilar (p= 2).

y
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Fig. 4. Determination of the neighbors of each point scattered
across the plane. Contracting boxes are indicated by dashed lines,
and the neighbors thus determined are joined by solid lines.
Above: construction of the immediate neighbors of the one point
drawn as a solid dot; below: the complete set of mutual neighbors
for all points.

Now our ensemble of conformations has been
reduced to a scattering of points in a 12- dimensional
space, and this scattering is in general not very
uniform. Later when we calculate the kinetics of
protein folding, we will assume that any one confor-
mation will convert at various rates to its nearest
neighboring conformations. The apparent kinetics
therefore depend on the working definition of neigh-
bors. At one extreme, if all conformations are neigh-
bors of all others, then most sequences will fold
rapidly because there are never Kinetic bottlenecks.
At the other extreme of very few neighbors, conforma-
tion space may break up into two mutually inacces-
sible parts because there are no kinetic pathways
between the two, or at least there will tend to be
many slow folding sequences because there are so
few pathways leading to the native. In lattice simula-
tions of protein folding, two conformations are taken
as neighbors if there is some local chain perturba-
tion, such as corner flips or crankshaft moves, that
transforms one into the other.’2 For collections of
points in space, there are a number of ways one can
define neighbors, and each definition has associated
an algorithm for determining the neighbors of all the
points.1® Because some appealing definitions are
computationally expensive for many points and high
dimensions, we have adopted the following expedi-
ent approach. It at least ensures that all pairs of
points are somehow connected together by a se-
quence of neighbor links, and if point A is a neighbor
of B, then B is a neighbor of A. These two conditions
assure Kinetic accessibility of all states and micro-
scopic reversibility. Figure 4 shows how the algo-
rithm works in two dimensions. First observe that
the coordinate axes were chosen such that the scat-
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ter along the first axis is greatest. This is the
horizontal axis in the figure. If the points are sorted
according to their first coordinate, neighboring points
tend to be nearby in the sorted list, which greatly
speeds the algorithm for many points. Next, there is
always a minimal box having sides parallel to the
axes that encloses all points. Consider the interior
point with all its neighbors drawn. If there is
another point within the current box to the right
(left, above, or below) the central point, contract the
corresponding side of the box to that interior
point. When the box cannot be further contracted,
the points on the faces of the box are the neighbors of
the central point. In n dimensions, there are at
most 2n neighbors of the central point at this stage
(fewer if the central point was on the perimeter
of the scatter). After this process has been applied
to all points, it is possible that A has B as a
neighbor, but not vice versa. In such cases, Ais added
to the list of neighbors of B, so that in the end, some
points may have more than 2n neighbors or as few as
one.

This algorithm gives satisfactory results, for ex-
ample on the 762 conformations of 35 residues. The
mean number of neighbors for a conformation is
9.95, implying that many structures are on the
perimeter of the cloud in 12-dimensional space so
that they have many fewer than the 24 neighbors
one would expect in the interior of the distribution.
The mean distance d in conformation space between
neighbors is 13.4, which according to Figure 3 trans-
lates to an average p of around 0.5, which in turn
means fairly apparent similarity by eye. However,
the maximal d between neighbors is 40.7, so that in
rare instances, very isolated conformers in this
uneven scattering are assigned an extremely dissimi-
lar neighbor. If our sampling of conformation space
was more dense, there would not be such distant
neighbors. Instead, they would interconvert via a
series of closer intermediates that our current sam-
pling lacks.

Sequences

We have experimented with both hydrophobic/
polar sequences of just two residue types and ran-
dom sequences having all 20 residue types repre-
sented in the observed frequencies of occurrence.l4
In any event, the sequence possibilities are exhaus-
tively generated by stringing together blocks of
residue types from a set of choices, just as conforma-
tions were generated. However, there is no necessary
connection between the lengths of the sequence and
structure blocks. Random sequences tend to favor
native conformations having rather low melting
temperatures (see the section on equilibrium thermo-
dynamic properties, below). Given a set of conforma-
tions, we have found better sequences by a rudimen-

tary genetic algorithm where the fitness function f to
be maximized is the calculated statistical weight of
the native structure R; at a moderately high tempera-
ture Ty = 50 for a sequence S;, without specifying in
advance which structure should be the native.

ER, S,
exp |- ———
max 0
ts)="R, ERLS ®
exp |— T—J)
0

Starting with a small initial population of random
sequences, random point mutations are tried, al-
ways keeping any improvement. The goal is not to
locate the very best sequence, but merely to have
some that are modestly stable thermally. This is also
not an attempt to design a sequence that folds to a
given target structure. For 35 residues, our mildly
“designed” sequence was LKLPLSFPS NPPCE-
KIMA ALFKILNNA CRVCPPAP, which we then
divided into four blocks of 9, 9, 9, and 8 residues. If
we denote the blocks by a-d, then aaaa has 36
residues, the first 35 of which constitute the first
sequence choice. However, dddd has only 32 resi-
dues, so we must add on one more block, say dddda,
to get a string that can be truncated to 35 residues.
In all, the combinations aaaa, aaab, ..., ddddc, ddddd,
make up a total of 457 rearrangements of four and
five blocks, resulting in our full set of 35 residue
sequences.

The factor linking sequence and conformation is
the energy function. Ideally, the “energy” function
would be an accurate estimation of the Gibbs’ free
energy of the solvated polypeptide in very dilute
solution, averaging over solvent and sidechain con-
figurations for the given backbone conformation.
This is still an unreliable and extremely lengthy
calculation, but on the other hand, a detailed molecu-
lar mechanics force field treatment for the polypep-
tide alone would also be a bad approximation to the
free energy. In the interests of speed and simplicity,
we instead take the view that the energy could be a
nearly arbitrary function of sequence and structure
that determines the effective temperature scale, the
effective ionic strength and pH, and decides which
sequences fold to which structures. Given that en-
ergy function, we want to learn the distinguishing
characteristics of proteins that fold rapidly to stable
native conformations. This is a less demanding
objective than requiring the energy function to favor
the crystal structures of naturally occurring se-
quences. As a not implausible choice—but certainly
not a close approximation to the true free en-
ergy—we have used our potential function®® that
does correctly distinguish between the native and
many nonnative conformations for many folding
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sequences. This function matches our choice for
representing the polypeptide chain because it de-
pends only on the positions of the backbone heavy
atoms and the CP, regardless of residue type. Be-
cause the energy function is taken to be independent
of temperature and solvent composition, only heat
denaturation can be simulated, not cold denatur-
ation or urea denaturation.

Equilibrium Thermodynamic Properties

At this point, we have a large number of self
avoiding conformations [R;(l)] for various chain
lengths | and similarly many sequences {Si(l)] for
those same chain lengths. Connecting these is our
arbitrarily chosen energy function E(R;(l), Sj(I)) that
we take as defining the unit of absolute temperature
T. This amounts to setting Boltzmann’s constant
ks = 1. Then the partition function for any sequence is

Z(S,1) = >, exp

T Q)

_ ERiD), Sj(l)))

and hence the statistical weight of any particular
conformation is

exp

~ ERiD, Sj(l)))
T

Z(Si(h)

PRi(), Si(1)) = ®)

From the partition function, we can calculate any
equilibrium thermodynamic functions we want. Sup-
pose for the moment that the set of conformations is
such a coarse sampling of all (smoothly variable)
conformations that each member of the set can be
viewed as “substantially different” from all the rest.
As T — 0, P — 1, for the conformation of globally
minimal energy for that sequence. We take the
melting temperature, T,,, to be the point where P =
0.5 for that conformation. Let AT be the width of the
melting transition, defined by the temperature inter-
val from P = 0.9 to 0.1 (see Figure 5). Since the
transition sigmoid is not necessarily symmetric, it is
possible to have AT > T,,. Each sequence may have
in general a different “native” conformation of glo-
bally minimal energy, and T, and AT may vary
greatly with sequence. Any sequence having ad-
equately high T,, and small AT will be referred to as
a “folding sequence” and its lowest energy structure
as its corresponding “native conformation.”

On the other hand, one might view the sampling of
continuous conformation space to be dense enough
that the immediate neighbors of the native conforma-
tion should be included as small fluctuations around
the global minimum. Then T, would be the tempera-
ture where the sum of statistical weights of the
native and its neighbors is 0.5.

1

AT ————
09

05

0.1

0 20 40 T, 60 80 100
T

Fig. 5. Typical melting curve (T = absolute temperature, P =
statistical weight of the native) for a 35-residue sequence having a
high melting temperature (T, = 47.1) and a relatively cooperative
denaturation (AT = 47.2).

Kinetics

Typically in cubic lattice studies, the rate of folding
is equated with the mean number of Metropolis
Monte Carlo iterations required to reach the native
from a random starting conformation.l’® Here we
instead set up the sparse set of linear differential
rate equations for the unimolecular reactions be-
tween each conformer and its neighbors, where the
rate constant for going from conformation R; to R; is
taken to be

CTexp (— (E(Ry)
kiy={ —ER)/(ksT) IfER)<ER) (6)
CT  otherwise

for some constant C, in accord with standard abso-
lute rate theory.1® This equation assumes that the
rate constant is independent of the distance between
the two conformations, and it assumes no activation
energy for moving from one conformation to one of its
neighbors, although in the broader landscape some
intermediate conformations represent the transition
states between different energy minima. Then the
kinetics of conformational change can be expressed
as a system of first order rate equations, where ¢; is
the time-dependent concentration of R;, and the
sums run over the neighbors R; of R;.

dc;
i —Jzkijci +§jj ki, (7)

Taking the initial populations of each conforma-
tional state to be equal, i.e. the high temperature
random coil state, we crudely integrate the rate
equations to get the populations of important states
as a function of time, where the time scale depends
on the arbitrary value of C. After a large number of
integration steps taken at the temperature corre-
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sponding to the native P = 0.9, indeed the relative
concentration of the native state is 0.9, independent
of time step size. As a general measure of the rate of
folding, we use the relative concentration, F, of the
native state after a fixed number of moderately small
time steps, say 100. Sequences folding to relatively
unstable native conformations do so slowly because
of the preexponential factor of T in the expression for
the individual rate constants. On the other hand, a
sequence having a high melting temperature may
still fold slowly due to being caught in kinetic traps.

Usually when people discuss kinetic mechanisms,
it is in terms of the predominant pathway from some
initial state to some final state. The pathway is often
characterized in terms of a sequence of intermediate
states. This is not really appropriate for protein
folding because the initial unfolded state is a very
disordered, more or less random coil, and there may
be many different pathways leading to the native
(and its immediate neighbors). Consider the abstract
graph in Figure 4, where the nodes are conforma-
tions corresponding to points positioned in our 12-
dimensional space, and the edges are bidirectional
kinetic pathways between neighbors. At every step
in the integration of the rate equations (equation 7),
protein concentration flows up and down the edges,
and we note the net summed flow along each edge
over the whole simulation. Two neighboring confor-
mations at equal energy would be in dynamic equilib-
rium but would have net zero flow between them.
Important folding mechanisms would correspond to
a sequence of edges having high flow running down
to the native state. An extremely diffuse folding
mechanism would correspond to small flows along
many edges leading to the native.

RESULTS
Thermodynamics

For 35-residue chains we find a wide range of T,
from nearly 0 to 53.1 (in absolute temperature, but
arbitrary degree size determined by the potential
function and not to be equated with degrees Kelvin),
depending on the sequence. It so happens the de-
signed sequence had T,, = 52.9, so rearrangement of
sequence blocks found a thermally more stable pro-
tein. In general AT is uncorrelated with T,,, except
that always AT > T,. Figure 5 shows a typical
denaturation curve for a sequence having a rela-
tively high T,, and low AT, where the sigmoid is
steeper below the melting temperature than above
it. This compares poorly to experimental thermal
denaturation of small, stable, globular proteins,’
where T, may be 300-350 K, and often AT is only 10
K. Taking AT/T,, as a measure of cooperativity of the
thermal denaturation transition, one can start with
equation 5 and show that the smallest ratio (most
cooperative) is obtained when all the n,,, nonnative
conformations have the same energy, E;, where E; —
Eo = go is the famous gap in the energy spectrum

180

160 M

60 80 100 120

Fig. 6. There is no correlation between the energy gap (go)
from the native to the best nonnative and the sharpness of the
melting transition (AT).

between the native conformation and the lowest
nonnative one. While T, increases with increasing
Jo, the ratio AT/T,, is independent of it in this
limiting case of just two energy levels. To put it
precisely,

o AT 2(In 9)(In n,,)
minimal — =
Tm (In nr*lon)2 - (In 9)2

8)

where the In 9 terms come from our definition of AT
running from the temperature having 90% native to
10% native. This derivation is confirmed by our
computational result that there is a clear positive
correlation between g, and T,, but no significant
correlation between g, and AT over a set of 457
sequences for 35-residue chains (Figure 6). This
contrasts with the conclusion of Sali et al. that “a
sparse [energy] spectrum with a large [go] leads to a
cooperative curve.”10 Instead, a sharper transition is
obtained when not only are all the nonnative confor-
mations at the first excited state, but the degeneracy
is high, i.e. the number of nonnative conformations,
Nnon, 1S large. Since according to equation 8 the
minimal ratio is roughly proportional to 1/log Nnen,
our restricted conformation space exhibits less coop-
erativity than real proteins have. For our set of 762
conformations of a 35-residue chain, the best pos-
sible ratio is 0.74, compared to the best observed
values of 1.09, so it is conceivable that some other
sequence would show better cooperativity. For ex-
ample, if go = 351.6, then T,, = 53, and the most
cooperativity would occur if all n,,,, = 761 nonnative
conformations had energies just 351.6 above the
native. Then the ensemble of conformations would
be 90% native at T = 40, 50% at 53, and 10% at 78.7,
so that the melting curve is clearly sigmoidal but
somewhat broader at the high temperature end, as
in Figure 5.

In contrast, the melting of a very cooperative,
two-state, single domain protein can be simulated by
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Fig. 7. Conformation/energy space for the fastest folding
sequence of 35 residues. The vertical axis represents conforma-
tional energy (E), and the approximately horizontal axes corre-
spond to the 12 dimensions of the conformational parameters, the
most important one being labelled C1. Then each conformation is
drawn as a starburst with rays extending a tenth of the way toward
its nearest neighbors. Conformations belonging to the watershed
of the global minimum are colored white, and the other 72 minima
are given a variety of different shades of gray.

exactly the same calculations starting with gq =
53995 and Ny, = 1087, Then there is 90% native at
T = 345.2, 50% at 350, and 10% at 354.8, so that AT
is less than 10 K and the sigmoid is very symmetric
about T,,. Clearly the width and asymmetry of the
thermal denaturation curves in our model arise
directly from the great restrictions placed on the
total number of conformations. Of course, all the
above discussion focuses on the chain entropy of
unfolding, and takes no account of entropic changes
of the solvent upon unfolding the polypeptide chain,
beyond what may be implicit in the potential func-
tion.

The picture is much the same when the native
state is considered to be the global minimum confor-
mation plus its immediate neighbors. Denoting the
melting temperature of this enlarged native state by
Tmnor We always find Ty, ppr > T, SOmetimes by as
much as 35 degrees. The largest observed T npr
was 75.

When conformations for a given sequence are
sorted by energy, much has been said of the size and
location of large energy gaps. Here we find that the
largest energy gap occurs either between the lowest
few conformations or very high on the scale, above
600th place out of 762 total conformations. Appar-
ently either some of the most energetically favorable
conformations can be changed only by a loss of many
favorable interactions, or an unfavorable conforma-
tion can be made worse only by adding many unfavor-
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Fig. 8. There is no correlation between the rate of folding (F)
and the energy gap (go) from the native to the best nonnative.

able interactions. Mediocre conformations tend to
have near neighbors on the energy scale. Having a
large initial energy gap is not a necessary condition
for thermal stability. It is possible, for example, to
have the largest energy gap of 139 energy units at
659th place, compared to the initial gap go = 117,
and still have T, = 53.

Kinetics

The fastest folding sequence having F = 0.609 was
once again not the designed sequence, but a rear-
rangement of it. Figure 7 shows a view of the
energies of all 762 conformations as a function of
their 12-dimensional coordinates. Although there
are a total of 73 different local minima, 74.7% of all
conformations lie in the watershed of the global
minimum, including many very high energy struc-
tures. Folding for these conformations is rapid be-
cause there is at least one monotonically descending
pathway across the energy surface for each of them
to reach the native state. Folding from other starting
conformations requires the crossing of kinetic barri-
ers, the mean barrier being a relatively low value of
16.1 for this sequence. Notice the native conforma-
tion is compact (near the energy axis) and rather
close to another low energy conformation. This causes
alow T, = 29, but a relatively high T, jor = 64.

There are many other sequences that fold much
slower, and it is instructive to focus on one of these
having F = 0.07. Strangely enough, it has fewer local
minima (55), an even greater fraction of all conforma-
tions in the native watershed (82%), and a lower
mean energy barrier for the rest, only 9.2 energy
units. The problem is that another local minimum
lies near in energy and conformation to the native,
giving rise to low thermal stability ( T,, = 15.5). The
refolding has to take place at a rather low tempera-
ture, and the near-native minimum competes with
the native for a long time.
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Fig. 9. There is no correlation between the rate of folding (F)
and the energy gap (go,) from the native to the lowest conforma-
tion that is not a neighbor of the native.

The energy gap is nearly irrelevant

Sali et al. have stated that “the necessary and
sufficient condition for a sequence to fold rapidly in
the present model is that the native state is a
pronounced energy minimum.”1° In that work, their
measure of a pronounced energy minimum was the
difference in energy between the global minimum
(the native conformation’s energy) and the energy of
the first excited state, that is, go in our notation.
Figure 8 shows no correlation between F and go. Of
course, their model for a protein was a self-avoiding
walk on a cubic lattice with isotropic contact vs. no
contact interactions between point residues when
exactly one lattice step apart. Their measure of
folding speed was the number of Monte Carlo steps
required on average to visit the native conformation.
It is not surprising that their results should differ
from ours, given the great differences in the simula-
tion of proteins. Shakhnovich has more recently
argued that the essential feature of fast-folding
sequences is that there be a large energy gap be-
tween the native state and the lowest structurally
distinct native state.’®!® The closest equivalent in
this work would be gon = Enon — Enat, Where E gy is
the energy of the lowest conformation that is neither
the native nor an immediate neighbor of the native.
Figure 9 shows that having a very small g, is
sufficient to cause slow folding, but beyond that
there is little correlation with F. Large g, iS associ-
ated with both fast and very slow folding sequences.

The folding funnel is irrelevant

Consider p(E, d?), the correlation coefficient be-
tween the energy of a conformation and the squared
distance in conformation space from it to the native.
(This is not to be confused with p, the measure of
conformational dissimilarity.) If the energy surface
has an overall funnel shape down to the native,2°
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Fig. 10. There is no correlation between the rate of folding (F)
and the foldability parameter (R) from spin-glass theory.

compared to a small scale roughness of the surface,
p(E, d?) would be large and positive, where of course
a correlation coefficient always lies in the range [-1,
1]. Over all 457 sequences, we find values from —-0.5
to +0.7, and there is no correlation between F and
p(E, d?). In particular, for the fastest folding se-
guence, p(E, d?) = 0.024 even though obviously the
native has the lowest energy in Figure 7. The reason
for the low correlation is also clear from the figure,
namely the balance of high and low energy conforma-
tions near the native as well as far away. The one
slow folding sequence has a fine folding funnel with
p(E, d?) = 0.623 (see Figure 13).

As in the previous section, we must ask whether
this result is indicative of an error in our model, or in
those very different models that require a folding
funnel, or whether all these simplified models of
protein folding are suspect. In building a protein
folding theory from spin-glass theory, it is important
to remember that there is simply a single parameter
that describes the roughness of the energy landscape
and hence the sorts of energy barriers that must be
surmounted as molecules seek the native state. If
these barriers are high compared to thermal energy
fluctuations, and if there is no pronounced slope of
the averaged energy surface down toward the native,
then folding will be slow. Roughness is equated with
kinetic barriers. In our model, this equivalence of
roughness to barrier is not built in, but rather some
sequences have energy surfaces with kinetic barriers
as a very indirect consequence of our energy function
and the positions of the different conformations in
our conformation space. Our model is unique in its
ability to ask whether roughness should be equated
with Kinetic barriers, and whether an overall funnel
shape of the energy surface is essential for folding.
Perhaps real proteins follow neither model, but at
least ours points out a possibility that has been
excluded a priori from other models.
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Fig. 11. Kinetic pathway of folding for the fast folding sequence in a view close to that of Figure 7. The locations of all conformations are
marked by short dashes. Neighbor edges are drawn if their net concentration flows are at least 10% of that of the edge having greatest flow.
Small flows are drawn faintly, large ones are drawn darker, and the flow direction along the edge goes from light gray to dark gray.

If conformation space is even so simple as the
continuous, two-dimensional Euclidean plane, many
different sorts of hindrances to folding can be envis-
aged, as recently illustrated by Chan and Dill.?t If
conformation space is a contiguous piece of IR", then
an energetic barrier between two contiguous parts of
that space (i.e., two ensembles of conformations
representing two macroscopic thermodynamic states)
must be an n - 1 dimensional “fence” of high energy
that cuts the conformation space into two pieces. If
conformation space is viewed as discrete, as in our
model where individual conformations are connected
if they are neighbors by our definition, then a barrier
must be a cut set in graph theory terms, namely a set
of high-energy conformations that break the confor-
mation space network into two pieces if they are
removed.

Simple reasoning by topographic analogy is very
helpful. Suppose the energy surface is the altitude of
a sparsely wooded park. The landscape is extremely
rough because there is a great height difference
between the tops of the trees and the lawn between
them. Nevertheless, they pose negligible obstacles to
a person strolling across the grass because he can
easily go around them. The trees represent 0-dimen-

sional bumps on a 2-dimensional surface, and we
have the analogous situation in Figure 7. In con-
trast, a vast plain may be on the whole quite smooth,
but a low fence restricts the wandering of all but the
most energetic sheep.

Likewise, it is easy to understand why our model
shows no folding funnel for fast folding sequences.
Imagine a mountainous region having one deep
lake fed by a complicated network of small streams
winding throughout the region. Since there is only
one lake, rainwater quickly flows off the sides of the
mountains, into the tributaries, and eventually down
into the lake. A hiker wandering up and down the
mountains, paying no attention to the rivers, would
not notice any general decrease in elevation that
would lead him toward the lake because little space
is taken up in river valleys, and mountains near
the lake may be as high as those far away. There
is a funnel in the sense that the bottoms of the
stream beds have a consistent slope along their
winding paths toward the lake, but these
downward gradients do not consistently point to-
ward the lake, and their elevation differences are
tiny compared to the heights of the immediately
adjacent mountains.
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“Foldability” is nearly irrelevant

The application of spin-glass theory to protein
folding concludes that fast, stable folding is associ-
ated with high values of a foldability parameter, R =
(E — Epnalog, which is just the separation between
the native energy and the mean energy over all
conformations divided by the standard deviation of
the energy distribution.?223 Qver all sequences it
ranges between about 1.0 and 6.2 and shows no
correlation with F (Fig. 10). The fastest folding
sequence has an intermediate value of 3.8. The slow
folding sequence is much better at 5.0. In terms of
our landscape analogy, it doesn’'t matter much how
rugged the mountains are or how high they are
above the lowest lake. Rainwater can still run off
quickly down to the lake by following streams wind-
ing around the feet of the mountains, as long as there
is at least a moderate elevation drop and there aren’t
dams in the way.

Low Kkinetic barriers and large native
watersheds are necessary but not sufficient

The fraction of conformations in the native water-
shed ranges between 5% and 85%, and certainly a
low value implies slow folding. However, high values
are associated with any folding rate, as seen for our
fastest and example slow folding sequences. Simi-
larly, high kinetic barriers imply slow folding, but
low barriers alone aren’'t enough to achieve fast
folding, for example the case of our slow folding
sequence. Simple thermal stability, such as high T,
or Tmnor is neither necessary nor sufficient, there
being no correlation with F. Over all our sequences,
the only way to avoid F < 0.2 was to demand T,, >
29, R > 3.0, more than 70% in the native watershed,
and kinetic barriers less than 17 units. While no
three of these four factors was sufficient to ensure at
least moderate folding rates, the combination of all
four was sufficient. To put it another way, none of the
single factors proposed by different authors is neces-
sary and sufficient for rapid folding to a stable native
state because there are at least four relatively inde-
pendent ways to prevent it. A successful sequence
must avoid all of these major mistakes simulta-
neously.

Folding mechanisms vary greatly

Figure 11 shows the concentration flows calcu-
lated for the refolding of the fast folding sequence
over the time required to achieve 80% native, at a
temperature that gives 90% native at equilibrium.
The high energy conformers (and some low in en-
ergy!) quickly convert to much lower energy states by
such a great variety of paths that no buildup of
intermediates is observed, and most edges have little
flow. Finally, near the native in conformation and
energy, the concentration is funneled into a few
states that interconvert by a few, high-flow paths.

g

Fig. 12. Aclose-up view around the native of Figure 11. Flows
are drawn with arrows, thicker ones denoting heavier flows.

With the exception of a cluster of conformations at
the lower right, this picture is consistent with an
almost unanimous rapid collapse to a few compact
conformations (those that lie near the energy axis),
followed by slightly slower rearrangements to achieve
the native. In the close-up view in Figure 12 near the
top, the four conformations connected by strong
flows might be considered significant intermediates
in the last stages of folding.

For comparison, Figure 13 shows the kinetics of
folding for our example slow folding sequence. Note
how one conformation at medium energy on the left
side of the illustration is fed by a variety of other
slightly higher states, and it in turn converts to a few
but rather different low energy states. Neither the
kinetic bottleneck nor the native conformations are
as compact as the native of the fast folding sequence.
Zooming in on the native in Figure 14, we see how
one nonnative conformation of extremely low energy
competes with the native, and interconversion be-
tween the two is through an intermediate much
higher in energy. This picture is consistent with an
examination of the concentrations of different confor-
mations as a function of time, where some intermedi-
ates build up concentration and hold it for a long
time.

In general, we have not yet made a broad survey
over all sequences in search of consistent folding
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Fig. 13. Kinetics for the slow folding sequence, drawn as in Figure 11. An example of a kinetic bottleneck.

mechanisms that correlate with fast folding. Of
course, it is possible but by no means certain that a
denser sampling of conformations might remove
some of the kinetic barriers. Given that all our
conformations consist of preformed secondary struc-
ture elements joined by turns, we are unable to
address the questions about whether secondary struc-
ture forms early or late in folding, or whether
long-range?® or short-range?* contacts are key fac-
tors in folding. Aside from these concerns, just
examining the folding of two sequences reveals great
variety. Certainly it is inadequate to think about the
folding of all proteins as a simple linear sequence of
events. Neither can we characterize the folding of all
our model proteins as a diffuse collapse without any
sort of observable intermediates.

CONCLUSIONS

Statistical mechanical theories and computational
studies of protein folding have employed several
different models, each one involving some drastic

simplifications. This work is no exception, but at
least its simplifications are different, and its results
are precise in that they do not suffer from flawed
statistics, biased or incomplete sampling, or fallible
searches for global optima. It has often been argued
that since a model gives rise to some features of real
protein folding, such as unique native conformations
and cooperative folding, conclusions from that model
can be immediately extended to real proteins. Our
model system also exhibits many of these protein-
like features, but our results disagree with most
other theoretical studies. One can always argue
about which model is better, but clearly it is neces-
sary to validate a model in more detail before coming
to sweeping conclusions about the principles of fold-
ing of real proteins.

There are many causes of slow folding, and no
single, simple statistic so far proposed seems to
capture the necessary and sufficient condition for
fast folding to a stable native state in this study.
When even such a simple model study as this can
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Fig. 14. A close-up view around the native of figure 13 drawn
as in Figure 12. The very low energy nonnative conformation
competes with the native.

produce such striking counterexamples to prevailing
theories, we must realize that our mental pictures of
the conformational energy surface and folding pro-
cess have been oversimplified.
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