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Abstract

We show that the empirical distribution associated with a discrete probability
distribution p, when constrained to lie within a convex information set A, will as
the number of trials increases become arbitrarily close with arbitrarily high
probability to the distribution that minimizes the relative entropy between p and
A.



A Weak Law of Large Numbers for Rare Events

Statistical inference is traditionally concerned with using data and
probability models to derive conclusions about a practical problem with inherent
variability. Classical statistical inference uses only the data and the sampling
function to derive conclusions about the sampled population. However, a large
class of problems involves inference with data in the form of deterministic
constraints on the underlying probability model. Typically the constraints do not
uniquely determine the unknown distribution.

A common approach to problems of this kind has been to use an information
theoretic procedure known as relative entropy minimization. A special case of the
relative entropy minimization procedure, known as entropy maximization, has been
used in a wide variety of applications; examples include reliability (Tribus
[1969]), urban modeling (Wilson [1970]), stock market pricing (Lozzolino and Zahner
(1973]), oil spill damage assessment (Thomas [1979]), and statistical mechanics
(Jaynes [1956]). Applications of the more general relative entropy minimization
approach can be foﬁnd in the areas of statistics (Kullback [1959]), statistical
mechanics (Hobson [1971]), legal inference (Sampson and Smith [1984]), and risk
assessment (Sampson and Smith [1982]). We provide in this paper a relative
frequency interpretation of the relative entropy minimization procedure that lends
empirical justification to the approach.

1. Relative Entropy Minimization as an Inference Procedure

The maximum entropy principle proposed by Jaynes [1956] was intended to be
employed as a user invariant method of assigning probabilities based on testable
information. Information in this context consisted of inequality constraints on
the unknown distribution.

Relative entropy minimization is a more general inference procedure which

admits an initial or prior distribution, in addition to the constraint information.



More formally, let p = (po, D1s oo pm) > 0 be the prior probability distribution

expressed as a probability mass function and let A, the information constraint, be

a closed convex subset of the simplex S of all non=degenerate m+1 dimensional
discrete distributions where S = {qligo g =1,q >0fori=0,1,2, ..., m.
Then the principle of minimum relative entropy prescribes choosing that g¥* which
minimizes the relative entropy subject to satisfying the constraint A, that is

q* = argmin I(q, p)
qel

1n (qi/pi). We are reduced to entropy maximization when

m
where I(q, p) = iEO qj

p; = a%? for all i is the uniform distribution. 1I(q, p) is also known as the
cross=entropy (Shore and Johnson [1980]) or the Kullback=Leibler information
discrimination (Kullback and Leibler [1951]).

Justifications for using relative entropy minimization in an inference
procedure have relied on axioms of information (Hobson [1969], Hobson and Cheung

[1973], and Johnson [1979]), or axioms of inference (Shore and Johnson [1980]).

2. A Correspondence Property for Relative Entropy Minimization

One of the principal justifications for the use of entropy maximization as an
inference procedure was provided by Jaynes [1968]. He demonstrated a corres=
pondence between the maximum entropy distribution and the most likely outcome
in repeated trials of a random experiment.

In particular, let ags 81y eeey Ap be the possible outcomes of an experiment
where each outcome is equally likely to occur. Suppose now we repeat the
experiment n times and observe the number of times Ni‘that outcome 1 occurred for
i=0,1, ..., m. Then Jaynes effectively showed that

m, M ny
In P(Ng = ng, Ny =nq, ooy Nopo=np) = Ky <i§O(‘gﬁ 1n *;‘) +Cp t En)
where Kn < 0 and Cm > 0 are constants depending only on n and m respectively and €n

>0 as n > » for fixed m.



From this result, Jaynes concluded the correspondence property that the

probability distribution which maximizes the entropy is identical to the frequency
distribution which can be realized in the greatest number of ways. We will extend
and strengthen this correspondence property to the general minimum relative entropy
procedure,

Suppose now that aps 81y «eey ap are the possible outcomes within an

m
experiment for which outcome i occurs with probability P for i =0, 1, «c., m.
Let V? = Ni/n be the relative frequency of occurrence of outcome i in n repeated

independent trials of the experiment. We refer to V! = (VB, V?, ceey Vg) as the

empirical distribution based on n trials.

The first lemma is due to Sanov [1961].

e‘n(I(v,p) + 0(1n n/n))

Lemma 1: For any v e S, POVR = y) = for all n with nv

integer where 0(ln n/n) depends only on m and is independent of v and p.
Proof: By Stirling's approximation (Knuth [1976], p. 111) n! = Y2mn (n/e)" [1 +

0(1/n)), so that In n! = n(lnn =1) + 0(ln n). Suppose that nv; is integer for all

nvy, n

i=0,1 ..., m. Then P(VP =) = (n!/(nvO! nv1!...nvm!)) Py 0 p191 cee pggn, and

m m
therefore In P(V® = v) = 1nn! = I 1n (nv;!) + I nv. Inp; =n(lnn =1) + 0(1n n)
1 1
i=0 1 i=0

m
)
1=

[ lye=]

nvy (1n nv; = 1) +

-
"o~
o

0(1n (nvi)) + nv; lnp; =

0 i=0 1

m
Y nv; 1In v, +
i=0 1 1 i

13

n~s
o

nv; 1n p; + 0(1n n) where 0(1ln n) depends

only on m since nv; < n for all i. Hence ln P(VY = v)

- u + 0
n iEO v; 1n v;/p; + 0(1n n).

m

We have then P(V1 = v) = ¢=n( £ viIn vi/p; + 0(ln n/n)), ]
i=0

Lemma 2: Let he =S¢ (v¥) M A be an e=neighborhood around v* = argm%n I(v, p)

Lemma < ' vV €

where p ¢ A and S_(v¥) = {v | lv; = v? | <efori=0,1,2, ..., m}. Then for

all ¢ > 0, lim P(V® ¢ A_|V? € A) = 1.
n>o



. n = - n N
Proof: Let A_ = A - A_. Then P(V" e A,)

= z P(Vn = \)) = T e—n(I(V1 p) + O(ln n/n)]
veh, vel,
with nv integer with nv integer

< N(KE) e"n(I(Ve’ p) + 0(1n n/n)) where

I(vg, p) = min I(v, p) and N(T) is the number of points v € T < S with nv
vel
€

integer. Now N(A) < N(S) < (™ * ™) = o(e™ Inn) £or fixed m where

[}
o

1, 2, «.., m}. Hence P(V?' ¢ 1) <

€

m s
S = {v[igo vi =1, v; >0 for i

e'n(I(Ve’ p) + 0(ln n/n)). On the other hand, by the continuity of I(v, p) in v
over S, we can choose € > €' > 0 small enough so that I(v, p) < I(ve, p) for all

v in the closure of Ae" Let vg be a point in the closure of Ae' such that

I(v¥, p) = max I(v, p) over all v in the closure of A_,. Clearly, for all n > N

for some Ne’ there is a v € AE, with nv integer. Let vg be any such point. Then

n

"n(l(“e' p) + 0(1n n/n)) > ‘H(I(vé, p) +

for all n> N, P(V? e n) > P(V" = V]) = e
0(1ln n/n)).

e
Hence for all n > NE, we have

POV e R_|V" e A) = P(V e R )/P(VY € A)

¢ o-n(I(v, p) = I(v¥, p) + 0(lnn/n)) , 4
as n » @ since I(v,, p) > I(v¥, p). |

From Lemma 2, we may easily infer the following theorem.

m
Theorem (Weak Law): Let A be a closed convex subset of S = {q]_zoqi =1,q >0
1=

for i =0, 1, 2, ...,m} and p ¢ A be a point in S. Let V? be the relative
frequency of occurrence of outcome i in n independent trials of an experiment that
results in outcome i with probability Py for i =0, 1, 2, «v., M.
Set v¥ = acggiﬂ I(v, p). Then for all € > 0,

*

Lim POIVE = Vi > e [V en) =

|
o

Proof: From Lemma 2, we have %EE P(VR ¢ A |V € A) = 0 and hence our result. W



Proof: Let XE = A-=A_. Then P(V? ¢ Ks)

€
- 3 PR =y) = 1 enlIv, p)+0(nn/n))
\)EAe VEAE
with nv integer with nv integer

< N(Ke) e‘n(I(ve’ p) + 0(ln n/n)) where

I(vg, p) = min I(v, p) and N(T) is the number of points v e TC S with nv
vel
5

integer. Now N(X_) < N(s) ¢ (" ; m) - o(e™ 1n ) for fixed m where

1 €/ <
e*n[l(ve, p) + 0(1n n/n))o

m —_
S = {vligo vi =1, v; >0 fori=0,1,2, ..., m}. Hence P(V} ¢ A.) ¢
On the other hand, by the continuity of I(v, p) in v
over S, we can choose € > €' > 0 small enough so that I(v, p) < I(ve, p) for all

v in the closure of A Let vg be a point in the closure of Ae' such that

e’

I(vg, p) = max I(v, p) over all v in the closure of A_,. Clearly, for all n > N_

for some N there is a v ¢ Ae' with nv integer. Let vg be any such point. Then

e!
n e

0(1n n/n)). Hence for all n » N_, we have
POVM e A V" e 1) = P(V™ € R )/P(VY € 1)
¢ e‘n(l(vs, p) = I(v¥, p) + 0(ln n/n)) >0
as n » = since I(v_, p) > I(v¥, p). |

From Lemma 2, we may easily infer the following theorem.

m
Theorem (Weak Law): Let A be a closed convex subset of S = {q[izoqi =1,q; >0
4 =

for i =0, 1, 2, ...,m} and p ¢ A be a point in S. Let V? be the relative
frequency of occurrence of outcome i in n independent trials of an experiment that
results in outcome i with probability P for i =0, 1, 2, ..., m.

Set v¥ = agggiﬂ I(v, p). Then for all € > 0,

lim P(|V] = vi| > e [10 e 1)

n->o

it
o

Proof: From Lemma 2, we have %ig p(vh ¢ A€ |v“ e A) 0 and hence our result.



The general correspondence property suggested by the Theorem above may be
summarized by the statement that the minimum relative entropy distribution is
identical to the empirical distribution that would be observed after a large number
of trials. In a related result, Van Campenhout and Cover [1981] demonstrated that
the conditional probability distribution of a single trial when given a fixed
sample mean converged to the minimum relative entropy distribution as the number of
trials grew large. We have shown that the relative frequency distribution over all

trials would also converge to this same minimum relative entropy distribution.
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