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ABSTRACT Much of' longitudinal data analysis begins with dimensionality 
reduction, i.e., the replacement of the T observations xl, x2, . . . , xT on an individual 
taken at times t,, t,, . . . , t, (not necessarily equally spaced) by a smaller number, 
P, of parameters which are then used to describe and compare growth processes. 
We focus on the class of polynomial growth curve models for one-sample data 
matrices in which the P regression coefficients are estimated by an equation of the 
form i = (W'W) 'W'x and consider the choice of the design matrix W. The case in 
favor of using orthogonal polynomials to comprise the elements of W and provide a 
PC program, written in GAUSS, for obtaining them is presented. This program can 
be used instead of existing tables of orthogonal polynomials in the case of equally 
spaced time points, and to avoid laborious hand-computation to obtain them when 
the time points are not equally spaced. The program also computes the correspond- 
ing orthogonal polynomial regression coefficients & = (@'@-'@'x, where @ con- 
sists of orthogonal polynomials, which may then be input into other programs for 
subsequent analysis, e.g., to compare the growth profiles of several groups of 
individuals. Examples of the use of the program are given. Information on 
obtaining a copy of the program is provided in Appendix A. 
$: 1992 Wiley-Liss. Inc. 

Longitudinal data analysis is concerned 
with data sets of the form 

f XN 

where x , ~  is the value of the measurement 
made on individual i (i 1 ,2 ,  . . . , N) at time 
t (i = 1 , 2 , .  . . ,T)andx i s theT x lvectorof 
ohervations for the it' individual. Often a 
group structure is imposed on X, e.g., the N 
individuals may belong to G different 
groups, the g"" group comprising nR members 
with 2 nR = N, and the primary aim of the 
analysis is to test for differences between the 
growth patterns exhibited by these groups. 

A wide variety of approaches to the analy- 
sis of such data sets have been developed (see 

G 

g-1 

Goldstein, 1979; or reviews by Kowalski and 
Guire, 1974; Guire and Kowalski, 19791, 
many of which seek to reduce the dimension- 
ality of the problem by replacing the T obser- 
vations on each individual by a smaller 
number, P, of parameters which retain most 
of the information contained in the course of 
growth actually observed. Examples of this 
strategy include the use of principal compo- 
nents analysis (Rao, 1958; Church, 1966), 
tracking indices (McMahan, 1981), and the 
fitting of polynomials to the individual 
growth profiles as  originally proposed by 
Wishart (1938). For a good review, see Maru- 
bini and Milani (1986). 

It seems likely that the strategy of dimen- 
sionality reduction was motivated by compu- 
tational considerations andlor to "achieve 
parsimony," but this approach may also be 
defended on the grounds ofpower.  By fitting 
a model with fewer parameters than the 
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number of time points T and then perform- 
ing a multivariate analysis of variance 
(MANOVA) on estimates of these parame- 
ters, one can expect increased power over 
simply performing the MANOVA on the orig- 
inal T measurements (Das Gupta and Perl- 
man, 1974; Allen, 1983). Moreover, to the 
extent that these parameters are biologically 
meaningful, the interpretation of any differ- 
ences found may be facilitated (Kowalski, 
1972). 

Perhaps the most widely used technique 
for dimensionality reduction in the context of 
growth curve analysis involves replacing the 
observations x, by estimates of the regres- 
sion coefficients obtained by fitting a polyno- 
mial to these observations. Following the 
notation established in Schneiderman and 
Kowalski (1985, 1989; Schneiderman et al., 
1990), we denote the P x 1 vector of esti- 
mated regression coefficients for the ith indi- 
vidual, obtained by fitting a polynomial of 
degree D = P - 1 to xi, by Ti; and the N x P 
matrix containing the values of these coeffi- 
cients for each of the N individuals by .i. The 
dimension reduction strategy in this case? is 
then accomplished by replacing ZT by &. 
Instead of performing the LWMVOVA on the 
data points X, we do the MANOVA on the 
regression coefficients .i and can thereby 
expect more sensitive tests and more readily 
interpretable results. The question remains 
as to how to  estimate the T,. The process and 
the model underlying it are described below. 

If we assume that the x, have multivariate 
normal distributions with mean or expected 
values 

ESTIMATION OF 

E(xi) = W T ~  (2) 

and common covariance matrix C, then the 
best linear unbiased estimator (BLUE) of T~ 

is (Draper and Smith, 1966, p. 77) 

Ti = (w’~-lw)- lw’~-lXi .  (3) 

In the above, W is a T x P matrix of known 
constants, the so-called within-individual or 
time design matrix (Schneiderman and Ko- 
walski, 1985). 

Since C is in general unknown, the prob- 
lem of obtaining the BLUE of T~ involves the 
question of what constitutes a suitable “sub- 
stitute” for C. One of the more obvious 
choices is S, the sample covariance matrix. 

This was used by Rao (1959) and imple- 
mented in SAS (Schneiderman and Kowal- 
ski, 1985) and in GAUSS (Schneiderman and 
Kowalski, 1989). Potthoff and Roy (1964) 
recognized the arbitrary nature of this choice 
and developed the theory necessary to ac- 
commodate the situation in which Z is in- 
deed replaced by an  arbitrary (positive- 
definite and symmetric) T x T matrix A. 
They considered that the choices A = S and 
A = I, the identity matrix, had certain ad- 
vantages, but emphasized that their ap- 
proach remained valid for any (positive- 
definite and symmetric) matrix A. They gave 
an example using 

A = 1-p2 I p2 ... 

1:: f’j (4) 
T-1 T-2 P -  T 3 ... 

where they estimated p, the correlation be- 
tween successive observations, on the basis 
of an  independent experiment. An SAS pro- 
gram implementing their technique and al- 
lowing the use of S, I, or a user-defined A was 
developed by Ten Have et al. (1992). This 
program can also accommodate other special 
covariance structures, e.g., those considered 
by Morrison (19721, through an  appropriate 
choice of A. 

More recently, attention has focused on 
the employment of models assuming pat- 
terns for 2: for which (3) reduces to the simple 
iunweighted) form 

T = (w’w)-lW’x;. (5) 

This occurs in the Potthoff and Roy analy- 
sis when A = I and in the so-called random 
coefficients or two-stage polynomial growth 
curve model introduced by Rao (1965a) and 
subsequently developed and applied by 
Fearn (1975,1977), McMahan (19811, Ware 
and Wu (1981), and Ware (1983). A GAUSS 
program for analyzing longitudinal data sets 
conforming to the two-stage model is also 
available (Ten Have et al., 1991). This model 
assumes that 2 has the form 

c = w h W’ + 021 (6) 

and, when this assumption is tenable, Chin- 
chilli and Carter (1984) have documented 
that the unweighted estimator ( 5 )  has dis- 
tinct advantages. They also developed an  
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SAS program to perform a likelihood ratio 
test for the goodness-of-fit of (6). Other ex- 
amples of the use of the unweighted estima- 
tor ( 5 )  in longitudinal data analysis include 
Wishart (1938)’ Zerbe and Walker (1977), 
Zerbe (1979), and Allen (1983). 

It is of considerable interest, then, to con- 
sider the use of (5) in the study of growth and 
development and, in particular, the choice of 
W in the underlying model (2). While a num- 
ber ofinvestigators (e.g., Wishart, 1938; Rao, 
1959; Zerbe and Walker, 1977; Goldstein, 
1979; Zerbe, 1979; Allen, 1983) have used 

w =  1 . .  . t ... ::: ;j , (7) 
... 

Others (e.g., Rao, 1965a; Grizzle and Allen, 
1969; McMahan, 1981; Ware and Wu. 1981) 
have employed orthogonal polynomial re- 
gression coefficients (OPRC’a). The remain- 
der ofthis paper discusses the use of OPRC’s 
in longitudinal data analysis and provides a 
GAUSS program for generating them. We 
will document that OPRC’s have definite 
advantages, not only with respect to compu- 
tational speed and accuracy (which is rela- 
tively well-known), but also with regard to 
inference (which appears to be much less well 
known). We show that the optimality of 
OPRC’s in ordinary least squares regression 
in the sense established by Rao (1965b, p. 
194) extends to the two-stage model and, by 
means of an example, that more “sensible” 
conclusions concerning the growth curves in 
the groups under consideration may be 
drawn if OPRC’s are used in place of W as 
given in (7)  to estimate the regression coeffi- 
cients. We begin by indicating how the use of 
OPRC’s originated and then proceed to con- 
sider their advantages. In what follows, W 
will always refer t o  the matrix defined by (7). 
@ (defined below) will contain the values of 
the orthogonal polynomials used to obtain 
the OPRC’s. 

ORTHOGONAL POLYNOMIALS 
Notice that to compute (51, the P x P ma- 

trix W‘W must be inverted, which, if the 
degree of the polynomial being fit is moder- 
ate to  large, may involve considerable com- 
putational labor. Before the advent of 
modern computers it was obviously of inter- 

est t o  circumvent this problem and one of the 
most useful devices in this regard proved to 
be the use of orthogonal polynomials. The 
basic idea is t o  rewrite (2) in the form 

and & is a polynomial of degree d with the 
properties 

whenever d f k, i.e., b l ,  qb2, . . . , bU are 
orthogonal. The ai in (8 )  are the OPRC’s and 
they are estimated as in (51, viz., 

iUi = (w@)rwxi .  (12) 

However, (12) is much easier to work with 
than is ( 5 )  because W@ is a diagonal matrix 
(by the definition of matrix multiplication 
and condition (11)) and the inverse of a diag- 
onal matrix is obtained simply by taking the 
reciprocals of the diagonal elements of the 
matrix being inverted. One can even go a 
step further in this direction by using or- 
thonormal polynomials, i.e., polynomials 
satisfying (10) and (1 1) and 

5 4: (4) = 1 (13) 
j=1 

because then @’a = I and (12) reduces to 

tii = @’Xi .  (14) 

It should be noted that it is alwayspossible 
to rewrite E (xi) = W T ~  in the form @ai where 
@ contains the values of either orthogonal or 
orthonormal polynomials, and that from the 
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computational point of uiew there are obvi- 
ous advantages in replacing the T observa- 
tions xi on individual i by 12~ (as opposed to ii) 
computed by using either (12) or (14). The 
question remains, however, as to whether 
replacing W by is “necessary,” given that 
computers will be utilized to perform the 
computations. The case for an affirmative 
answer is summarized below. Here and in 
what follows no real distinction is made be- 
tween the &’s computed from (12) and those 
computed from (14). We refer to both as 
OPRC’s and the users of our program will 
have the option of obtaining either set of 
coefficients (normalized or not). 

I. If W’W is ill-condztioned (Bellman, 
1970; Stewart, 1985), the use of (5) may be 
inaccurate. Small changes in xi may produce 
large changes in ii. Equations (12) and/or 
(14) may have had their roots in computa- 
tional speed but there presently exist situa- 
tions in which accuracy is the more 
important consideration. Citing Bright and 
Dawkins (19651, Draper and Smith (1966, p. 
152) concluded that, “Although orthogonal 
polynomials are often recommended only 
when desk calculators are used . . . even 
when a computer is available, and especially 
when the polynomial is of high order, orthog- 
onal polynomials are worthwhile. Using 
them provides greater computing accuracy 
and reduced computing times.” The question 
of accuracy is of increasing importance the 
more the elements of W‘W differ in magni- 
tude (Neter et al., 19851, a condition that can 
occur for values of t,, t,, . . . , tT commonly 
encountered in practice. Bock (1979, p. 211) 
also discussed the problem of accuracy and 
showed how the use of OPRC‘s circumvents 
all difficulties, concluding that, “the problem 
of round-off error, which plagues least- 
squares fitting of higher-order polynomials 
is completely solved if the orthogonal polyno- 
mials are used.” 

11. When attempting to determine the low- 
est-degree polynomial adequate to fit the 
data, it is common practice to use step-up 
goodness-of-fit tests, i.e., to test D = 1, 
D = 2, etc., in turn until an acceptable fit is 
achieved. If (5) is used, the coefficients in T, 
will change at each step (and (W’W)-’ needs 
to be recomputed each time), but if (12) or 
(14) is used the previously computed ele- 
ments of ki are unaffected when D is in- 
creased (Draper and Smith, 1966). And this 
is more than just of computational signifi- 
cance. Two additional, more substantive ad- 

vantages will be mentioned. The first is 
somewhat theoretical in nature, the second 
addresses an important practical problem. 

The more theoretical aspect involves the 
facts that the estimated regression coeffi- 
cients will be unbiased, E (i) = T, only i f the 
postulated model is correct (in particular, the 
degree of the polynomial used); and the ex- 
tent of the bias encountered when an jnap- 
propriate model is used depends on the 
values of the elements of W (Draper and 
Smith, 1966). Suppose, e.g., that E(x) = WS 
is postulated but the true model is 
E(x) = WS + W%*. E(?) = T T AT* 
where A = (W’W) ‘W’W* is called the alias 
matrix. This can be substantial if W is used, 
but A = 0 when W = a. Draper and Smith 
(1966) give examples where a line (D = 1) is 
assumed, but the true model is (a) quadratic 
(D = 2) and (b) cubic (D = 3). In both cases 
theT = 7centeredtimepoints-3, -2, - l , O ,  
1 ,2 ,  3 were used in W. In (a), 

Then 

so i, is biased, f, unbiased. In  (b), 

E(i,) = r1 + 47, 
E(iJ = r2  + 77, 

so both estimates are biased. The extent of 
this bias will in general be even greater if t,, 
t,, . . . , tT are used in W without centering. 
What this means is that if too-low-a-degree 
polynomial is used in conjunction with W 
(whether the time points are centered or 
not), our estimate of i can be substantially 
biased. No bias occurs when Q, is used. While 
tests for the adequacy of a given degree 
polynomial exist (e.g., Schneiderman and 
Kowalski, 1985), such tests are, of course, 
fallible. 

The second point involves a more practical 
concern. Many, if not all, of the available 
methods for polynomial growth curve analy- 
sis require that polynomials of the same 
degree be fit to each individual in the sam- 
ple. When, as  is often the case, step-up good- 
ness-of-fit tests are used t o  fit the individual 
growth curves prior to the analysis, one finds 
D,,, and then either refits everyone to this 
degree (Dawson et al., 1980) or augments the 
vector of previously estimated regression co- 
efficients with o’s (Zerbe, 1979). Little is 
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known about which of these strategies is 
“best,” but it should be noted that the use of 
orthogonal polynomials will minimize the 
differences between them, differences which 
can impact on the results of the analysis, 
Suppose, for example, that a line suffices to 
fit the data for a given individual, but 
D,,, = 2. If W is used the choice is between 

where the *’s indicate the refitted values. 
These may differ appreciably from the esti- 
mates based on D = 1 (viz., TI and ‘iJ. For 
example, consider the last subject (who is in 
no way “special”) in the data set analyzed by 
Dawson et al. (1980). D,,, was found to 
equal 2 for this data set, but a line fit this 
individual’s growth profile adequately. For 
the line the estimated regression coefficients 
are 143.551, 0.7191‘. When this individual’s 
data are refit to D,, = 2, these coefficients 
are 136.566, 2.168, -0.0701’ and it is seen 
that the first two coefficients change dra- 
matically. The choice is between using 
[36.566, 2.168, -0.0701‘ and [43.551, 0.749, 
0.001’ as the basic datum for this individual; 
and for many purposes this choice will be 
important. 

is used, the choice 
is between 

On the other hand, if 

and, since will be small (and, as noted 
earlier, tiyo and til do not change), the choice is 
all but moot. Note that while the elements of 
i are subscripted 1,2,3,  . . . we have followed 
the standard practice of subscripting the 
OPRC’s by 0, 1, 2. . . . The relationship be- 
tween these two sets of coefficients is made 
clear in equations (16) and (17). 

111. The use of OPRC’s has a long history in 
longitudinal data analysis. Since formulae 
in many (current) publications are given in 
terms of OPRC’s, practical application of 
these methods is facilitated when the coeffi- 
cients are in fact employed by potential us- 
ers. To cite but two examples, both Ware and 

Wu (1981) and McMahan (1981) give their 
respective formulae for prediction intervals 
and tracking indices assuming W’W = I, i.e., 
they take W = @. 

IV. When testing hypotheses concerning 
growth curves in several distinct groups of 
individuals, multivariate tests (e.g., 
MANOVA) based on the Ti will produce the 
same results (P  values) as when the iri are 
used (i.e., the multivariate tests are invari- 
ant). However, univariate tests, which eval- 
uate the components of ti and iri individually 
(e.g., ANOVA) are not invariant. Since one 
will usually want to follow a significant 
MANOVA with a series of univariate tests to 
discover which of the individual coefficients 
are contributing to the overall difference, it 
is important to realize that the results of the 
univariate tests depend on whether W or @ 
was used. Moreover, the results can differ 
qualitatively as well as quantitat,ively: We 
have encountered a number of situations in 
which “more satisfactory” results were ob- 
tained when @ was used in place of W. It is 
difficult to address this phenomenon in gen- 
eral terms but, e.g., when we reanalyzed 
Allen’s (1983) data set the multivariate (us- 
ing all the ti’s or all the iri’s) tests for group 
differences were highly significant; yet none 
of the group comparisons based on the i,’s 
individually were even close to significant. 
The univariate tests based on the elements 
of the &,‘s were more in line with natural 
expectation. Similar results were subse- 
quently obtained by using a number of other 
data sets; the details for Allen’s (1983) data 
are provided later. 

We should also note here that, while it is 
not always possible to decide on which is 
“more satisfactory,” differing results can be 
expected in other longitudinal data analysis 
contexts as well. For example, the choice of 
which covariates should be used in Rao’s 
(1965a) procedure depends on the correla- 
tions between the regression coefficients ac- 
tually used to model the data and the higher- 
order coefficients whose inclusion was not 
required to achieve an acceptable fit. These 
correlations can differ markedly, and need 
not even have the same sign, as can be seen 
by comparing Goldstein (19791, who used W, 
with Rao (1965a) and/or Grizzle and Allen 
(19691, who used @ on the same data set. 
When W is used, the correlation between two 
regression coefficients depends on the de- 
gree of the polynomial fit to the data, e.g., the 
correlation between the coefficients o f t  and 
t5 are in general different for D = 2 and 
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D = 3. This somewhat counterintuitive situ- 
ation can be avoided by using CD instead of W. 

V. Rao (1965b) showed that the use o f @  
was optimal (in the sense of minimizing the 
variances of the estimators of the regression 
coefficients under mild restrictions on the 
choice of the design matrix) in ordinary least 
squares regression problems. That is, if 
E(x) = WT and V(x) = C = n21, then given W 
satisfying Wi’Wi = Ci2, where Wi is the if” 
column of W and Ci a constant, 
V(?) = (W’Wj-lCr2 is minimized when 
Wi‘WJ = 0, i.e., when the columns of W are 
orthogonal, viz., when @ is used. The condi- 
tion that Wi‘Wi = C: can be interpreted in 
the context of restricting the model 
E(x) = WT to a range of values o f t  for which 
the model is presumed valid (Rao, 196513). 

Since in the two-stage model 
V(i) = A + (W’W)-’02, Rao’s result applies 
and V(S) d V(i). Thus, in the two-stage 
model, one of the models for which ( 5 )  is used, 
more efficient estimators will result when iD 
is used in place of W. 

This result can also be phrased in terms of 
uariance inflation factors (e.g., Neter et al., 
1985). These factors measure how much the 
variances of the estimated regression coeffi- 
cients are inflated when nonzero correla- 
tions between the independent variables 
(columns of W) exist. The estimated regres- 
sion coefficients will tend to have relatively 
large sampling variability when the columns 
of W are highly correlated. For example, for 
the 10 x 4 matrix W of the form (7) with 
t = 1, 2 ,  . . . , 10 and D = 3,  rZ3 =: 0.975, 
rZ4 = 0.882, and rS4 = 0.961, where rij is the 
correlation between the it” and j”L columns of 
W. For the 5 x 3 W with t = 1 , 2 , 3 , 4 , 5  and 
D = 2, rZ3 = 0.981. These correlations are 
typical of those obtained in practical situa- 
tions when W is of the form (7). When is 
used, the correlations are, of course, zero. It 
would appear, then, that the sampling vari- 
abilities of the regression coefficients when 
W is used will be substantially higher than 
those obtained when @ is employed. 

VI. Nothing is lost by using OPRC’s. While 
we have some sympathy for Goldstein’s 
(1979, p. 93) remark that the Y s  have a “more 
convenient interpretation,” one can always 
recover the i ’ s  from the 2 s  via the equation 

ii = w- @ ki (15) 

where W- is a generalized inverse (Graybill, 
1969) of W. This yields a unique solution for 

i, provided only that rank (W) = P (Graybill, 
1969), one of the standard constraints on the 
time design matrix. (Note that, without this 
constraint, .i itself would not be uniquely 
determined.) But it should be also realized 
that the ?’s are not always easier to interpret. 
An example which will be familiar to many 
readers should suffice to illustrate this 
point. In the mandibular ramus height data 
set analyzed by, among others, Elston and 
Grizzle (19621, Grizzle and Allen (19691, Rao 
(1965a1, and Goldstein (1979), 20 boys were 
measured at 8, 8.5, 9, and 9.5 years of age. 
The mean values a t  these time points were 
48.66. 49.62, 50.57, and 51.45, respectively. 
Aline was found to fit the data adequately. If 

f-l 8 1  w=i: 1 9.5 

is used to produce x(t) = i, + i,t, then 
i, = 1.87 is the rate per half-year, but 
i, = 33.75 is the (estimated) mean value a t  
t = 0. This may be “easy to interpret,” but it 
is not even a proper object of inference given 
these data. There are no observations in the 
region around t = 0 and there is no guaran- 
tee that a line will even be appropriate there. 
I t  would be difficult to interpret any differ- 
ences which might be found between groups 
based on i,. If, on the other hand, one were to 
use 

x(t) would have the form x(t) = 
tt0 + kl&(t1 = c0 + &,(2t). In the example, 
Sl = 0.4655 is the rate per quarter-year and 
&yo = 50.075 is the (estimated) meanvalue at 
t = 8.75 years. 

It would appear, then, that many investi- 
gators will want to use OPItC’s in certain 
situations. Accordingly, a GAUSS program 
was written, which, given X and t,, t,, . . . , 
tT, computes C? and .i and (optionally) saves 
either or both of these matrices in an ASCII 
file so that they may be analyzed by using 
any of our (or others’) programs. The user 
can also print @ in either standardized 
(W@ = I) or unstandardized (@’a diagonal) 
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form. This can be done even when no X 
matrix is provided, i.e., one can obtain Q, 
from the program instead of consulting ta- 
bles (e.g., Pearson and Hartley, 1958; Fisher 
and Yates, 1964) when the t’s are equally 
spaced. The program can also be used for 
calculating (following, e.g., Wishart and 
Metakides, 1953; Robson, 1959) in the un- 
equally spaced case. These will prove useful 
not only in longitudinal data analytic con- 
texts, but in other situations as well, e.g., 
ordinary least squares regression and trend 
analysis (Winer, 1962). 

THE PROGRAM 
The GAUSS program, ORPOL, provides 

the within-individual (time) design matrix 
and, if a data matrix is input, the correspond- 
ing estimated regression coefficients. The 
program is invoked with the command 

GAUSSRUN ORPOL 

Subsequent screen output is also sent to  
the (automatically created) ASCII file 
0RPOL.OUT where it may be edited and 
printed. The program begins by asking 
whether the user has a data set containing 
the values of a response variable measured 
across time (i.e., a X matrix). This matrix, if 
it exists, can be either in an ASCII file or in 
GAUSS data set format, the values of the 
observations over time occupying succes- 
sively numbered variables (i.e., a block of 
columns) in the X matrix. If the data are in a 
GAUSS data set, there is no requirement 
that these variables begin with variable 
number 1 (e.g., a response measured at  four 
times could be stored in variables 3 through 
6 ) .  If in an ASCII file, it is assumed that this 
requirement is satisfied. 

If the response is no (i.e., one does not have 
a X matrix), the user is prompted for the 
number of time points and the degree of the 
polynomial and asked whether he/she 
wishes to enter the values of the time vari- 
able. If no, the program uses the integers 1, 
2,  . . . , T; if yes, the user is requested to enter 
the times of measurement, one value per 
line. Finally, the user selects the form of the 
W (or Q) matrix desired from among the 
possibilities: 

1. Noninteger orthogonal scores. 
2. Integer orthogonal scores (equally 

3. Orthonormal scores. 
4. Original time scores. 

spaced time points only). 

The program then prints the time design 
matrix and saves it in 0RPOL.OUT along 
with all the other output displayed on the 
screen. 

If the user indicates that a n  X matrix is 
available, the program first asks whether X 
is in an ASCII file or a GAUSS data set. If the 
response is ASCII (A). the user is asked for 
the name of the file (including any extension 
of the file name) and the values of N, T, and 
D. If the data are in a GAUSS (GI data set, 
the user is asked for the name of the data set 
(excluding any extension), the variable num- 
bers (columns) of the first and last response 
variables, and the degree of the model to 
be used. In either case, the user is then 
asked whether or not he/she wishes to save 
the estimated regression coefficients (in an  
automatically created ASCII file called 
0RPOL.ASC). I t  then prompts for the follow- 
ing additional information: 

1. Whether or not the user wants to supply 
the values of the time points. 

2. The numerical values of the time points 
(one per line) if the answer to item 1 is yes 
(otherwise the program uses 1 , 2 ,  . . . , TI. 

3. The form of the W matrix from the four 
choices listed previously. 

The program then prints the time design 
matrix W (in the program, W is used to 
denote both W and all the forms of the @ 
matrix) and the matrix Y of estimated poly- 
nomial regression coefficients for each indi- 
vidual in the sample. (Y will consist of either 
ordinary or orthogonal coefficients depend- 
ing on the choice of W.) Both W and Y are 
saved in 0RPOL.OUT and, if requested Y is 
also saved in the ASCII file 0RPOL.ASC. 

AN EXAMPLE 
Some of the output which can be obtained 

from the program and the sense in which Q, 
produces “more satisfactory” results than W 
using Allen’s (1983) data are illustrated. 
Allen studied four groups of calves (n = 8 per 
group) and analyzed average daily gains in 
weight (kg) for 7 consecutive 2-week periods. 
The time points 1, 3,  5, 7,  9, 11, 13 (the 
midpoints of the 2-week periods) were coded 
and a D = 6 degree polynomial was fitted to 
the data by using the W form of the time 
design matrix as in equation (7). MANOVA 
was used to test for parallelism (all coeffi- 
cients except the intercept equal in the four 
groups) and coincidence (all coefficients in- 
cluding the intercept equal), resulting in 
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P = 0.0085 and P = 0.0418, respectively, us- 
ing Wilks’ likelihood ratio criterion. Finally, 
the contrasts between groups 1 and 2 ,  groups 
3 and 4. and the combined groups 1 and 2 vs. 
3 and 4 were examined. All comparisons 
were done on  a multivariate basis; Allen did 
not compare any of the coefficients individu- 
ally. 

We compared the groups on a coefficient- 
by-coefficient basis using our program (Ten 
Have et al., 1992) for carrying out the Pott- 
hoff and Roy (1964) analysis with the arbi- 
trary matrix A set t o  A = I (this is equivalent 
to  the analysis used by Allen and is one of the 
situations in which the unweighted estima- 
tor of T is appropriate). None of the individ- 
ual coefficients differed significantly in the 
four groups. While the multivariate tests 
were highly significant, indicating that the 
growth curves were not all the same in the 
four groups, the univariate comparisons 
which we hoped would tell us “where the 
significance resided” failed to point to any 
differences whatsoever. Indeed, none of the 
P values for the tests of the intercept, linear 
coefficient, quadratic coefficient, etc., even 
approaches significance (Table 1). 

Allen’s data were then reanalyzed by us- 
ing OPRC’s. The multivariate comparisons, 
as  expected, agreed with Allen’s results, but 
when OPRC’s were compared individually, 
the P values shown in Table 2 were obtained. 
These results do include significant differ- 
ences for several of the individual OPRC’s. 
This then is the sense in which CP produces 

TABLE 1. {Jnivarzate tests for differences among 
tho four groups for each of  the coeffzczonts 

computed using W 

Coefficient P value 

7 ,  0.9109 
T2 

73 
TA 

0.8777 
0.8758 
0.9030 

75 0.9344 
76 0.9590 
77 0.9749 

P’ABLE 2. Uniuuriate tests for differences among 
the four groups for each of the coeffzcients 

computed using W 

Coefficient P value 

a0 0.08416 
a1 0.02948 
a2 0.02943 
a3 0.04852 
a4 0.3130 
016 0.2834 
a6 0.9749 

“more satisfactory” results than W. When an 
overall difference exists, it is natural to want 
to see which of the coefficients are contribut- 
ing to this difference. In this example, @ 
allows us to accomplish this whereas W pro- 
duces the paradoxical conclusion that the 
growth curves are different; yet none o f  the 
coefficients defining these curves are. This, 
it may be noted, is the reverse of the well- 
known paradox first pointed out by Rao (cf. 
Kowalski, 1972) in which univariate tests 
are significant, but the multivariate test is 
not. In any event, this example shows that, 
while the interpretation of the OPRC’s them- 
selves may be “less convenient” in some ways 
there are situations in which their use pro- 
duces results which are more interpretable. 
And, while we have not been able to provide a 
firm theoretical basis for the disparity in 
results observed above, it should be stressed 
that the above example is in no way unique. 
Similar patterns of results were obtained for 
a number of different data sets, for values of 
D less than T - 1, and for analysis strategies 
other than that due to Potthoff and Roy 
(19641, viz., the two-stage model. We used 
Allen’s data set because it is currently in the 
literature and we took D = T - 1, following 
Allen, so that the results o f  his analysis could 
be directly compared to our analysis based 
on OPRC’s. 

The common thread in the examples con- 
sidered has been that the variability in the 
?’s is rr~uch greater than that in the di’s. Rao’s 
(1965b3 result guarantees that V(&L) s V(?) 
in the two-stage model. Our experience 
strongly suggests that this holds in the Pott- 
hoff-Roy analysis when A =  I as  well, and 
that the variances of the 6’s are considerably 
smaller than V(.i). Some indication of this is 
provided in Table 3 where the values of the 
first two coefficients are shown for the first 

TAHZE 3. Values o f  the first two coefficients for 
individual subjects (the first eight) in Allen’s 

data set using and W 

1.739 ,3704 1.995 
2.793 .3307 -6.025 
3.001 .3666 -9.256 
2.770 ,4309 1.520 
2.604 ,6728 1.597 
2.880 .4120 2.217 
1.957 .6029 -0.230 
2.672 ,4082 0.24 

Variances 0.14 0.03 16.71 

The variances were computed using all 32 subjects 

-3.342 
11.33 
18.04 
-1.828 
-1.945 
-2.632 

0.956 
0.706 

49.69 
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group in Allen’s data set for W and @ with 
a’@ = I. The variances of these coefficients 
shown in the table are for all N = 32 cases; 
only the first eight values are shown to 
conserve space. 

The example detailed above was intended 
to  illustrate one of the major advantages of 
over W. Two example runs of the program 
itself are given in Appendices B and C. The 
first (Appendix B), without an X matrix, 
shows how to obtain the W form of the time 
design matrix for Allen’s data set when 
D = 6 for the T 7 equally spaced time 
points 1, 3, 5 ,  7, 9, 11, 13. To obtain the 
integer-valued orthogonal time scores for 
this situation, which have been tabulated for 
equally spaced time points, e.g., by Pearson 
and Hartley (1958), the user should choose 
not to enter the time points (i.e., choose the 
default t = 1, 2, 3,4 ,  5 ,  6, 7) and the second 
form of the time design matrix. The result is 
shown in Table 4. These are the values of the 
orthogonal polynomials (the coefficients are 
specific t o  T = 7) 

+&) = 1 
qqtl = t 

&(t) = t2 - 4 
&(t) = (t3 - 7tY6 

etc. 

a t  the T = 7 centered time points t = -3, 
- 2,  -1, 0, 1, 2, 3. Our program prints &&t), 
but this is not usually included in the pub- 
lished tables (e.g., Pearson and Hartley, 
1958) since, for every t, Oo(t\ = 1. A word of 
caution concerning notation: It is customary 
to denote the orthogonal polynomials by +u,  

. , . , I $ ~  with respective regression coeffi- 
cients q,, ul, . . ., N” and we have followed 
that convention here. While the 7’s are num- 
bered T ~ ,  72, . . . , T~ the OPRC’s are num- 
bered C Y ~ ,  C Y ~ ,  . . . , an. If, e.g., a quadratic 
equation is to  be fit to the data, the W form of 
the equation is 

X ( t )  71 + 7 2 t  + T,t2 (16) 

TABLE 4. Integer-ualued $ matrix for  T = 7 equally 
spaced time points 

40 ‘$1 ‘$2 b3 44 ‘$5 ‘$6 

1 -3 5 -1 3 -1 1 
1 -2 0 1 -7 4 -6 
1 -1 -3 1 1 -5 15 
1 0 -4 0 6 0 -20 
1 1 -3 -1 1 5 15 
1 2 0 -1 -7 -4 -6 
1 3 5 1 3 1 1 

while the @ form is 

We repeat that to obtain Table 4, the user 
should request that the program use the 
integers 1 , 2 , .  . . , T for the values ofthe time 
variable, i.e., to respond “no” when asked 
whether heishe wishes to enter these values. 
This “quirk” in the program is all but man- 
dated by the way in which the Pearson- 
Hartley tables are constructed. The full 
observational range is taken as t = 1,2, .  . . , 
T and the entries in the table represent the 
values of the orthogonal polynomials at the 
centered time points t-(T + 1)/2. While our 
program will “work” for any set of time points 
separated by one unit, the first T integers are 
the easiest to obtain and their use is recom- 
mended. If the user were to enter the time 
points 1, 3, 5, 7, 9, 11, 13 (the actual values 
used by Allen) the result would not be Table 
4, but rather Table 4 with the entries of the 
last six columns multiplied by two; e.g., the 
entries under would be -6, -4, -2, etc. 
This matrix is orthogonal, but the OPRC’s 
are not as  simple as those shown in Table 4. 
We therefore recommend that when the user 
wishes to obtain integer-valued orthogonal 
time scores, he/she employ the first T posi- 
tive integers as time points. 

The second example run of the program 
(Appendix C), with an X matrix, shows how 
to obtain the orthonormal form of the @ 
matrix and the corresponding OPRC’s for 
the data set considered by Schneiderman 
and Kowalski (1985, 1989) where a qua- 
dratic (D = 2) was fit to a measure of man- 
dibular ramus height for N = 12 young male 
rhesus monkeys who were measured at  
T = 5 equally spaced time points. These 
OPRC’s are saved in 0RPOL.ASC and thus 
may be analyzed further by importing them 
into other programs. This option is for the 
convenience of the user: The entire session is 
saved in ORPOL.OUT and the OPRC’s are 
there as well, but they are perhaps more 
readily usable in ORPOL.ASC. For those 
with the GAUSS program, Y (and W) is also 
available for immediate manipulation with 
GAUSS. 

It will be seen from Appendices B and C 
that the program is completely interactive. 
The user is prompted for all the information 
needed to produce the output described 
above. The entire run of the program is 
reproduced (from ORPOL.OUT); user re- 
sponses are enclosed in braces, viz., “{ }”. 



41 2 T.R. TEN HAVE ET AL 

DISCUSSION 
Human biologists are often faced with the 

challenge of analyzing longitudinal data 
sets. In those situations in which polynomial 
modelling of the growth process is deemed 
appropriate, and in which the unweighted 
form of the estimator of the polynomial re- 
gression coefficients may be used, the choice 
of a time design matrix must still be made, 
viz., shall W or 0 be used? Starting with the 
realization that, a t  least in certain circum- 
stances, the use of W produced paradoxical 
results, we focused on the alternative choice, 
a, and found it to have a number of distinct 
advantages. While some of these features 
may be relatively minor, others assume ap- 
parently important roles in producing con- 
sistent, “more satisfactory” results. 

The case in favor of @ was presented and 
provided a GAUSS program designed to fa- 
cilitate the use of OPRC’s in longitudinal 
data analysis and to allow direct conipari- 
sons between Wand @. While experience has 
suggested that @ produces “more satisfac- 
tory” results, it is important to put thi, 9 no- 
tion to further empirical testing and i t  is in 
this spirit that our program is offered. In any 
case, the program can be used to completely 
reproduce the published tables of orthogonal 
polynomials (which pertain only to  equally 
spaced time points) and to extend the avail- 
ability of these polynomials to the unequally 
spaced case. While this paper focused on 
longitudinal data analysis, orthogonal poly- 
nomials have a number of other uses (Draper 
and Smith, 1966) and the program can be 
used to facilitate such usage. 

Finally, the reader will have noted that 
helshe can choose between three forms of @ 
in the program, viz., 

1. Noninteger orthogonal scores. 
2. Integer orthogonal scores. 
3. Orthonormal scores. 

The first was included mainly for the sake of 
completeness. While 1 has no advantages 
over 3, some authors (e.g., Draper and 
Smith, 1966) present examples wherein a’@ 
is diagonal (not the identity). We allow this 
choice for the convenience of users wishing to 
work through such examples. We envision 
that option 2 will be invoked only in those 
situations where the user wishes t o  use the 
program instead of published tables. Re- 
member that this option is available only 
when the distance between each of the time 

points is unity (in which case we suggest 
, TI. For longitudinal data 

analysis, option 3 will usually be the best 
choice for @. This parametrization is preva- 
lent in the current literature and there are 
no restrictions on the time points. In short, 
the primary purpose of ORPOL is to produce 
@ as in 3 and the associated OPRC’s. One 
may also wish t o  obtain W (original time 
scores) for comparative purposes. 
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APPENDIX B: EXAMPLE RUN WITH N O  X MATRIX 
Estimation of orthogonal polynomial models (Orpol) 
by E.D. Schneiderman, C.J. Kowalski and T.R. Ten Have 

Date: 6/1/90 
Time: 9:19:27 
Output is going to 0RPOL.OUT 

Do you have a Gauss or ASCII dataset containing a response 
variable measured across time? (Enter ‘Y’ or ‘N’) 

(If no, the program will only generate the time design matrix) 
In I 

Enter number of time points: {7)  

Enter degree of model: {6] 

Do you want to enter the values of the time variable? (Enter ‘Y’ 
or ‘N’) 

{Yl 

(If no, the program will provide consecutive integers 
beginning with one for the time variable) 

Enter values of time variable (one value per line) 
1 

3 
5 
7 
9 
11 
13 

For the time design matrix (W), 
Enter: 1 if non-integer orthogonal scores 

2 if integer orthogonal scores for evenly spaced time points 
3 if orthonormal scores 
4 if original time scores 

14 1 
Time design matrix based on original time scores 
1 .0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 .oooo 
1 .oooo 3.0000 9.0000 27.000 81.000 243.00 729.00 
1 .oooo 5.0000 25.000 125.00 625.00 3125.0 15625. 
1 .oooo 7.0000 49.000 343.00 2401.0 16807. 117650. 
1 .oooo 9.0000 81.000 729.00 6561.0 59049. 531440. 
1 .oooo 11.000 121.00 1331.0 14641. 161050. 1.771 6Et-006 
1 .oooo 13.000 169.00 2197.0 2856 1. 371290. 4.8268Ei-006 

W is the 7 X 7 time design matrix 
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APPENDIX C: EXAMPLE RUN WITH AN X MATRIX 
Estimation of orthogonal polynomial models (Orpolj 
by E.D. Schneiderman, C.J. Kowalski and T.R. Ten Have 

Date: 6/1/90 
Time: 92519 
Output is going to 0RPOL.OUT 

Do you have a Gauss or ASCII dataset containing a response 
variable measured across time? (Enter ‘Y’ or ‘N’) 

(If no, the program will only generate the time design matrix) 

Do you want to use a GAUSS or ASCII da ta  set? Enter G or A: { g }  
* * *GAUSS DATA SET INPUT * * * 

{Yl  

I NOTE-DATA SET MUST BE A MATRIX WHERE EACH SUBJECT I IS A ROW AND EACH VARIABLE (COLUMN) IS A TIME-POINT 

THE VARIABLE NUMBERS OF THE RESPONSE VARIABLES MUST 
BE CONSECUTIVE (E.G. THE 1ST RESPONSE VARIABLE IS 
VARIABLE 3, THE 2ND RESPONSE IS VARIABLE 4, ETC.) 

~ ~ ~ ~~ ~ ~~ 

I YOU MUST KNOW THE VARIABLE (COLUMN) NUMBERS OF THE I FIRST AND LAST RESPONSE VARIABLES 

I DO NOT INCLUDE THE EXTENSION OF THE FILE NAME OF THE 
GAUSS DATASET. (E.G. ENTER: INDATA, NOT 1NDATA.DAT) 

Enter GAUSS data set containing the response variables (X): 

Enter column number for first response variable {l] 
Enter column number for last response variable (5) 
Number of time points = 5 
Enter degree of model: (2) 

FILE NAME = (ramus) 

Do you wish to save the polynomial regression 
coefficients in an ASCII file (Enter ‘Y’ or ‘N’) 

{Yl 
The polynomial regression coefficients 

will be saved in 0RPOL.ASC 
Do you want to enter the values of the time variable? (Enter ‘Y’ 
or ‘N’) 

(If no, the program will provide consecutive integers 
beginning with one for the time variable) 

in f 
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For the time design matrix (W), 
Enter: 1 if non-integer orthogonal scores 

2 if integer orthogonal scores for evenly spaced time points 
3 if orthonormal scores 
4 if original time scores 

(3 1 
orthonormal time scores 

0.45 -0.63 0.53 
0.45 -0.32 -0.27 
0.45 0.00 -0.53 
0.45 0.32 -0.27 
0.45 0.63 0.53 

W is the 5 X 3 time design matrix 
GROWTH CURVE COEFFICIENTS FOR INDIVIDUALS 
Press any key to continue 

71.02 8.665 -2.512 
81.26 13.31 -1.684 
76.03 10.28 -2.806 
83.27 14.10 -3.742 
74.06 10.63 -2.619 
81.88 12.97 -0.9087 
81.66 14.14 -4.036 
83.72 13.53 -2.886 
83.09 14.10 -3.849 
82.17 10.25 -2.138 
80.36 13.95 -0.8820 
82.96 14.26 -4.356 

Y is the 12 X 3 matrix that contains the 2th degree polynomial 
coefficients 

The polynomial regression coefficients 
have been saved in 0RPOL.ASC 




