2900-251-T

Report of Project MICHIGAN

MECHANICS OF ROTATING
PLATES AND PRISMS

 W.L_BROWN
~ C.T.YANG

February 1961

INFRARED LABORATORY
Tnotitute of Seccence and 7z¢4mxlo¢q
THE UNIVERSITY OF MICHIGAN
Ann Arbor, Michigan



NOTICES

Sponsorship. The work reported herein was conducted by the Institute of
Science and Technology for the U. S. Army Signal Corps under Project MICH-
IGAN, Contract DA-36-039 SC-78801. Contracts and grants to The University
of Michigan for the support of sponsored research by the Institute of Science
and Technology are administered through the Office of the Vice-President for
Research.

Distribution. Initial distribution is indicated at the end of this document.
Distribution control of Project MICHIGAN documents has been delegated by
the U. S. Army Signal Corps to the office named below. Please address cor-
respondence concerning distribution of reports to:

U. S. Army Liaison Group
Project MICHIGAN

The University of Michigan
P. O. Box 618

Ann Arbor, Michigan

ASTIA Availability. Qualified requesters may obtain copies of this docu-
ment from:

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

Final Disposition. After this document has served its purpose, it may
be destroyed. Please do not return it to the Institute of Science and Tech-
nology.




Institute of Science and Technology The University of Michigan

PREFACE

Project MICHIGAN is a continuing research and development program for ad-
vancing the Army's long-range combat-surveillance and target-acquisition capabil-
ities. The program is carried out by a full-time Institute of Science and Technology
staff of specialists in the fields of physics, engineering, mathematics, and psychology,
by members of the teaching faculty, by graduate students, and by other research

groups and laboratories of The University of Michigan.

The emphasis of the Project is upon basic and applied research in radar, infra-
red, information processing and display, navigation and guidance for aerial platforms,
and systems concepts. Particular attention is given to all-weather, long-range, high-
resolution sensory and location techniques, and to evaluations of systems and equip-

ments both through simulation and by means of laboratory and field tests.

Project MICHIGAN was established at The University of Michigan in 1953. It is
sponsored by the U. S. Army Combat Surveillance Agency of the U. S. Army Signal
Corps. The Project constitutes a major portion of the diversified program of re-
search conducted by the Institute of Science and Technology in order to make avail-
able to government and industry the resources of The University of Michigan and to
broaden the educational opportunities for students in the scientific and engineering

disciplines.

Progress and results described in reports are continually reassessed by Proj-

ect MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Technical Director
Project MICHIGAN
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MECHANICS OF ROTATING PLATES AND PRISMS

ABSTRACT

This is the report of an analysis of rotating plates and prisms from a theoret-
ical viewpoint for the purpose of setting limits on the size and rotational speed of
such bodies for scanner applications. The analysis was carried completely through
for a fused-quartz elliptical plate rotating about an axis, in the plane which contains
a normal to the plate and the major axis, at a 45° angle to the major axis, and for
a fused-quartz prism of triangular cross section rotating about an axis through its
centroid, normal to the cross section. The analysis indicated that the stresses
and displacements are quite large for a 0. 5-inch-thick plate with a 9-inch major
axis and a 9/v2-inch minor axis, but negligible for a 6-inch prism whose cross sec-
tion is an equilateral triangle of 3-inch altitude. The foregoing applies for rotation-
al frequencies of approximately 100 cps, which is a typical operating speed for an
infrared scanner.

1
INTRODUCTION
Modern scanning techniques (infrared and other) require the use of mirrors which rotate
at extremely high velocities. The high-resolution requirements of the optical systems used
for such applications cause some concern about the effects of forces upon the shapes of the

mirror surfaces during the process of rotation.

The problems which are the subject of this report lend themselves well to solution by stress
functions, which satisfy the equations for equilibrium of the body, continuity of deflection, and
certain applicable boundary conditions. The solutions may be used in numerous situations where

one is concerned with the mechanics of rotating plates or prisms.

The specific purpose of this report is to give the deflections and stresses for two particular
scanning mirrors. However, every attempt has been made to make the solutions general and

of a form convenient for application to other situations.

2
SUMMARY OF RESULTS

2.1. DEFLECTIONS AND STRESSES IN ROTATING PLATES
Several problems were solved in an attempt to obtain a comparison of rotating plates of
similar shapes. Circular and elliptical plates were of conern in this case, and hence are those

used in the calculations.
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9.1.1. ROTATING ELLIPTICAL PLATES. The plate to be considered as a numerical
example for this analysis is elliptical in shape (Figure 1). It is 0.5 inch thick and has a major
axis of 9 inches and a minor axis of 9/V2 inches. The center of rotation is the center of the
ellipse, and the axis rotation makes an angle of 45° with the major axis and 90° with the minor
axis. The speed of rotation is assumed to be 5000 rpm. The plate is constructed of fused

quartz, although only the numerical results depend upon the type of material.

(0", 9/v2")

C
/ (9", O")
K i

FIGURE 1. ROTATING ELLIPTICAL PLATE

The magnitudes of the stresses and deflections in a rotating plate depend in large measure
on the method of supporting the plate. Two extremes may be considered: (1) the edge simply
supported, or (2) the edge rigidly clamped. In the general case, something intermediate would
be encountered. In no event would one consider a thin plate inclined to the axis of rotation ro-
tating at high speed with no edge support, since the bending stresses would either shatter the

plate or at least warp it hopelessly out of shape.

For a plate with a clamped edge, the results are:

(a) Maximum deflection: 0.223 x 10_3 inch

(b) Maximum bending stress: 406 psi along major axis
350 psi along minor axis

(c) Maximum shearing stress: 187 psi

(d) Maximum total tensile stress: 753.3 psi
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For a simply supported plate, the maximum deflection is 1.1 x 10.3 inch. No stresses

were calculated for this case.

In the general case, the deflection would fall somewhere between those given above, which
are possibly 5 to 25 times the desirable limit for a high-resolution system. The deflection can
be held to within a desirable tolerance by decreasing the area of the plate or by increasing its

thickness, or both, as discussed in Section 6. 2.

The maximum total tensile stress in the rotating elliptical plate under consideration is
753.3 psi, which is much less than the 7110-psi design limit of fused quartz. The practicality
of using crown glass in such an application is marginal since the design limit of glass is gen-
erally assumed to be 1000 psi. However, the deflection curves are given for crown glass as

well as for quartz in Figure 8.

2.1.2. ROTATING CIRCULAR PLATES. An analysis of a circular plate (Figure 2), of
dimensions comparable to the elliptical plate described in Section 2.1.1, was made for the sake
of comparing results. The plate is 0.5 inch thick and has a radius of 4. 5 inches. The center
of rotation is the center of the plate, and the axis of rotation is at an angle of inclination of 45°
to the surface of the plate. The rotational speed is 5000 rpm. The plate is constructed of
fused quartz, although, as in the elliptical case, only the numerical results depend upon the

material.

8,

95— )~

FIGURE 2. ROTATING CIRCULAR PLATE
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If the plate has a clamped edge, the maximum deflection of the surface is 0. 363 x 10

inch. This is the same magnitude as the deflection of the elliptical plate.

2.1.3. COMPARISON OF PLATE MATERIALS ON BASIS OF STRENGTH. A survey of
the available materials for use in rotating plates showed that preference should be given as

follows:

Clamped-Edge Case Simply Supported Case

) {Aluminum (1) {Quartz Fused
Fused Quartz Molybdenum

(2) Molybdenum (2) Aluminum

(3) Steel (3) Steel

(4) Magnesium (4) Magnesium

(5) Light Borate Crown (5) Light Borate Crown

The difference between fused quartz and crown glass is not great enough to warrant giving
serious consideration to the selection of a material on the basis of deflection alone, since in
each case the crown glass deflects only 1.5 times as much as the fused quartz. The complete

analysis of these materials is discussed in Section 6. 1.

2.2. ROTATING TRIANGULAR PRISMS

A 6-inch-long fused-quartz prism, with a cross section in the form of an equilateral tri-
angle 3 inches in altitude, is rotated at 100 rpm about the centroid of its cross section
(Figure 10). The maximum deflection of the face of the prism, in a radial direction from the

axis of rotation to the corners of the prism, is 12.6 uin.

The natural frequency of vibration of the prism is 8. 17 kcs if the ends are simply supported

and 18. 8 kes if the ends are clamped.

3
ROTATING ELLIPTICAL PLATES (CLAMPED EDGES)

A plate of elliptical shape is rotated about an axis passing through its center, the axis of
rotation making a 45° angle with the major axis of the ellipse, as shown in Figure 3. The co-

ordinate axes are such that the edge of the ellipse is described by the equation (x/ a)2 +(y/ b)2 =1.

The constants which describe the plate are
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w = deflection of plate (inches)

w = angular velocity of plate (radians/second)
q = load intensity (pounds/ inchz)

D = flexural rigidity of plate (inch-pounds)

E = Young's modulus (pounds/ inchz)

h = thickness of plate (inches)

v = Poisson's ratio (inches/inch)

p = density of plate (pound-secondz/ inch4)

FIGURE 3. GEOMETRY OF ELLIPTICAL PLATE

3.1. DEFLECTIONS IN ELLIPTICAL PLATES

The equation governing the bending of plates (Reference 1) is V4w = q/D. The load to which
the plate is subjected is due entirely to the centrifugal forces in the plate (neglecting gravity),
of which the normal component is distributed as shown in Figure 4. The load intensity on any

element dA (Figure 4) is defined as the normal force per unit area. Hence,

_ normal component of centrifugal force _ pwzhx

dA 2

The differential equation to be solved is therefore

4w_pw2hx
VY9
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FIGURE 4. LOAD DISTRIBUTION ON ROTATING
ELLIPTICAL PLATE

Since the quantity D is the flexural rigidity and is given by the relationship

Eh3

2

D= ————
12(1 - vY)

the final equation is
2

4 12 pw2(1 - V)X
vWETT e
2Eh
The boundary conditions are:
_dw _
atx =a, W= s 0

A solution which satisfies the boundary conditions and also the differential equation is

2.5 2
o P At [

b b

Since the major axis has the greatest dimension, the maximum deflection (W) will occur

along the major axis. Differentiation of w with respect to x for cos § = 1 and sin § = 0 yields

a
X =4a, + &
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for %w = 0. Since the deflection at x = +a is zero, the maximum deflection must occur at

X=z \/-—%. Substituting this into the deflection equation,

8 [pw2a5(1 ; 1/2):\
W=14% N 5
25V5 | 96ER

a—
fOI'l—)—\/—Z_.

Using the above relationships, the deflection may be calculated for any portion of the plate.
The deflections along the major and minor axes for crown glass and fused-quartz elliptical plates

are given in Figure 8.

3.2. BENDING STRESSES IN ELLIPTICAL PLATES

The bending stresses created in the plate may be calculated from the following relation-

ships:

Mx = moment causing stresses in the x-direction

2 2
- pl¥w, 2w

and ox = normal stress in the x-direction

M)
n3/12
or
o - 80[2w i
2\ a2

Combining the above with the solution for w obtained from the preceding calculation, the final

result is
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Differentiation yields the result that the maximum stress occursalong the major axis at

The value of the radical is very close to unity for reasonable values of Poisson's ratio (v << 1),

so the maximum bending stress occurs near the point of maximum deflection ('1. e.,atx= :!:%).

Hence, the maximum bending stress in the x-direction is

In

4 pw a
(Ox)maximum 135 < 4h >(1 +v)

Similarly, from the relationships

My = moment causing stresses in the y-direction

2 2
= -D u+ya—w

d y2 ax2
and

0‘y = normal stress in the y-direction

My(h/Z) _ %

Cm/12) bl

or
. _-60(%w, ow
y h2 8y2 ax2

the normal stress in the y-direction is
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and

which, for reasonable values of v, is approximately x = +

WL

Hence

8 pu)za3
(oy)maximumz 3973\ an ) (1Y)
Since the ratio of the maximum stresses is

(Gx)maximum _ |27
(o) . ~\20
y' maximum

the stresses are of the same order of magnitude.

3.3. SHEARING STRESSES IN ELLIPTICAL PLATES
The shearing stresses createdinthe plate are calculated from the following:

'rxy = shearing stress of yz-plane in the y-direction

(=) (3) ()

For the elliptical plate, the result is

o Bl e

It can be determined by differentiation that the maximum value of this function occurs along
the y-axis at

The maximum shearing stress is therefore

8 pw2a3
(Txy)ma.ximum ~ *39/6 4h (1-v)
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3.4. MAXIMUM TOTAL STRESS

The greatest total stress in the plate is of interest in that, if the plate cannot withstand the

stress, regardless of how small the deflections, it obviously cannot suit the purpose for which

it is intended.

The total bending stress at a point is given by the expression

The centrifugal stress in a plate whose edges are restrained from expansion is given by

o - pw2a2 [2(3 + 1) <£>2 -(1+ v)}
= - a
r 16
The total stress will then be
"2 2 "\2
t(o )" < (0)" < (’crl + lot I)
Taking the upper limit to allow an adequate margin of safety,

2.2

1/2
(Ot) _pw-a <%> (1+v2)

pw a 13540
maximum 13 * 16 v

this maximum occurring at (a, 0).

3.5. SAMPLE CALCULATIONS

Assume that the plate is made of fused quartz and has the following constants.

a = 4.5 inches

h = 0.5 inch

E=10.12 x 106psi

v = 0.144 inch
5007

w= =5 radians/ second

p=2.07x 1074 pound-secondz/inch4

25 2
B ) N
W=soom {E‘”a(—lz")jl - £0.233 x 10™° inch
26Eh

10
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23
4 a .
(0 ) paximum = * 1375 <p“’ > (1 + 1) = +406 psi

4h
8 pw2a3 .
(Uy)maximumzi39\/§ < W >(1 + V) = +350 psi
_ 8 pw2a2> )
(‘xy)maximum- i39ﬁ§< 4h (1-v)= +187 psi

1/2

pw2a2 a 2 13
(Ut)maximum “ 13 (H) 1+ ) *16 (5+v) | =153.3 psi

4
ROTATING CIRCULAR PLATES (CLAMPED EDGES)

A plate of circular shape is rotated about an axis passing through its center, the axis of

rotation being inclined at 45° to the surface of the plate, as shown in Figure 5. The plate edge

2_ 2

is described by the equation x2 +y =a.

FIGURE 5. GEOMETRY OF CIRCULAR PLATE

The constants which describe the plate are:

w = deflection of plate (inches)

w = angular velocity of plate (radians/second)
q = load intensity (pounds/ inchz)

h = thickness of plate (inches)

D = flexural rigidity of plate (inch-pounds)

E = Young's modulus (pounds/ inchz)

v = Poisson's ratio (inches/inch)

p = density of plate (pound—secondz/ inch4

11
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4.1. DEFLECTIONS IN CIRCULAR PLATES
The equation governing the bending of plates is V4w = q/D. Using the concept of normal

load intensity described in Section 3.1, the general solution (Reference 1) is
25 2
w=pPwall-v) (1 2_ V) \:<§>5 + A(g) + B<§>3
32Eh
+ C<i> + D(E) (n (EH cos 6
r a a

At the center of the plate, w and %V are both finite. Hence, C =D = 0. Also, along the edge

of the plate,
w = a—“l =
or

Using these boundary conditions, the final result becomes

0

32Eh? a

25 2
w=|pwa (-v) 1-<£>2 (E)cosé)
It should be noted that this is the same result as would be obtained by letting a=b, x =r cos 6,

and y = r sin 6§ in the equation of the elliptical plate (Section 3.1). Hence, the validity of the

equations is verified.

The maximum value of this function occurs at 8 =0 and r = ﬂ:%. That is,

W= ii pw2a5(1 -v2)
25V5 62
4.2. SAMPLE CALCULATION

Assume that the plate is made of fused quartz and has the following constants:

a = 4.5 inches

h = 0.5 inch
E=10.12 x 106 psi
v = 0.144 inch/inch

w = 503()” radians/second

p=2.07x 10.4 pound-secondz/inch4

Then
8 pwzas(l - v2) -3
W= d:25\/'§ —|* +0.363 x 10 “ inch
16Eh

12
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5
ROTATING ELLIPTICAL PLATES (SIMPLY SUPPORTED EDGES)
Section 3 discussed the mechanics of rotating elliptical plates with clamped edges. How-
ever, in the general case, the edge of the plate is neither clamped nor simply supported, but
rather is supported in some intermediate manner. Hence, the simply supported case should

also be considered.
The required deflection curve must satisfy the relations
V4W =q/D
and
w (boundary) =
m (boundary) = 0

After an unsuccessful attempt to find an exact solution to these equations, an approximation
was used in order to determine the magnitude of deflection in a simply supported rotating

elliptical plate.

The condition which is difficult to satisfy in the simply supported case is that which spec-
ifies that the moment be zero at the edge. A method of obtaining this is to find the deflection
(Figure 6) caused by the edge moment in the clamped plate and subtract the result from the
solution for the clamped-edge case. From Sections 3.1 and 3. 2, the deflection and moment

equations for the clamped-edge case are

_ pwzas(l - vz) 1 1- (5)2
4ER 5 a 2 <a)4 a
+ 2 + (=
b
5 ()
_ E
1(r.s
_ pw ha X
Mx - > 4 8‘:(3.)
5+ 2 +

£ (—zf(%ﬂ -
x Eﬂ}

13
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and

-M&@W

FIGURE 6. PLATE ACTED UPON BY A BENDING
MOMENT ONLY

Since it was desired to find the deflection curves for lines passing through the point of

a
maximum deflection, i.e., the point (— , 0), the "equal and opposite' moments were applied

at the points ( ‘/—?5_'_, 3‘_\2——2_ > and (a, 0) as shown in Figure 7. It should be noted that the results

will be valid only for the lines y = 0 and x = 2,

FIGURE 7. LOCATION OF MOMENTS APPLIED TO AN
ELLIPTICAL PLATE

The existing moment at (a, 0) in the clamped-edge plate is, for a = v2b,

M. = - pcozha3
1° 78

14
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a a2
At the point | —, ——
P <«3 N3

>, the moment is

M __pwzha3 8+v
27 T8 545

where these moments act as shown in Figure 7.

Hence, the deflection of a plate acted upon only by the moments MX = -M1 and My = -M2
may be computed, and the results superimposed upon the clamped-edge deflection curves to
obtain the solution for the simply supported plate. From Section 3.2, the moments are re-

lated to the deflections by the expressions

2 2
M =-M.=-plLY, ., 0¥
X 1 2 2
0X oy
and
2 2
M ='Mz='Da_;v +,,§_;1>
y ay ax
These may be combined to give
o2 My + M,
T D(1+v)
for which the general solution is
Ml-l/M2 9 Mz-vM1 9
WE| T | X T T [V taEa by e
2D(1 - v 2D(1 - v

The constants are evaluated from the following boundary conditions:

(1) At (0, 0), w

0

(2) At (a, 0), w=0

3 Ata—a—@, =0
(3) <J§’\/5>W

From condition (1), ¢, = 0. From condition (2),

1
. _a|:M1 - VMil
1 ap( - v

15
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Finally, from condition (3)

M, - vYM M, - YM
b =-2 L 2y |2

1 10| |ap(1 - %) 2D(1 - v

For a = v3b, the solution for the deflection is therefore
(e -
G909 |l
2

Once again, it should be noted that this equation applies only along the lines y = 0 and

The deflection curve for a simply supported elliptical plate (along y = 0) is given in Figure 8.

0.0028 a = 4. 5 inches

/ \ h = 0.5 inch
0. 0024 w = 5007 radians
/ \ 3 second
I
0. 0020 / | Light Borate Crown
/ \ (Simply Supported)
0.0016 Fused Quartz
(Simply Supported)
0.0012 +
/ <\ )( Light Borate Crown
Cl d-Ed
0. 0008 / (Clamped-Edge)
/ /<\ XFused Quartz
0. 0004 (Clamped-Edge)

L=

0 0.2 0.4 0.6 0.8 1.0
(x/a)

DEFLECTION (inches)

FIGURE 8. DEFLECTIONS OF SIMPLY SUPPORTED AND
CLAMPED-EDGE ELLIPTICAL PLATES

16
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6
COMPARISON of PLATE MATERIALS from VIEWPOINT of RIGIDITY

The deflection equation for a rotating elliptical plate, as discussed in Section 3, contains

essentially two constants:

La-ih clamped edge

W "1+8“’z} simply supported ed
Lf[ (5J5) ply supported edge
w23.5

@ o3

The first of these depends only upon the material, whereas the second is a function of the

plate geometry and rotational speed.

6.1. SURVEY OF MATERIALS

A comparison of the material-dependent constants for different plate materials can be
easily made by using numbers from a reliable engineering handbook. The magnitude of the
constants will be directly proportional to the magnitudes of the deflections for a fixed- speed

and-geometry situation. Table I is a summary of the physical constants for seven plate ma-

terials.
TABLE I. PHYSICAL CONSTANTS FOR PLATE MATERIALS*
4 -6 p 2 10 »p 8 +v 10
MATERIAL px 10 v Ex 10 i(l—v)xlo E 1+<5\/§ >V x 10
Aluminum 2.55 0. 47 10. 10 0.197 0. 425
(98. 3 Rolled)
Fused Quartz 2.07 0.14 10. 12 0.201 0. 355
Molybdenum 9.02 0.00 42.1 0.211 0. 362
Steel .35 0.24 29.01 0.239 0. 440
(C. 38 Annealed)
Magnesium 1. 64 0.25 6. 06 0.254 0. 471
Light Borate 2.11 0.27 6. 60 0. 296 0. 554
Crown
Celluloid 3.46 0. 41 0.53 5. 431 11,172

*See Reference 2.

17
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It can be seen from Table I that (with the exception of celluloid) the selection of a plate
material cannot be made on the basis of rigidity. However, other criteria (such as reflectivity,
ultimate strength, and grain size) may be such as to confer preference upon a particular ma-

terial for a given application.

6.2. RELATIONSHIP OF PLATE DIMENSIONS
Since the material cgnstants do not offer much versatility for restricting plate deflections,
the geometric constant % (for constant speed) will be considered. It is clear that, for a given

5
material and speed, the deflection is proportional to %- Hence, if a deflection LA is calculated
5 h
a, a5
for a particular —;, the corresponding deflection w for any other 5 may be obtained by in-
h

h
0
a o h0 ’
(-) (—) . The relationship between a and h may be illustrated by a plot of

aoh

i

. w
spection: <w—>
0
a h0 w
<a_>versus <F> for (v_v_) = constant, as shown in Figure 9. A decrease in deflection by approx-
0 0

imately a factor of 10 is obtained by decreasing a to§a0 or by increasing h to 3h,, whereas

0,
doing both at once gives a decrease in deflection by a factor of almost 100. The indication

here is that a change in size is far more effective than a change in material as far as de-

AN
NN\ e

flections are concerned.

0.8 ' T
AN 040
3o \<"<£\) .
0.4 \\¥
0.2

0 0.25 0.50 0.75 1.00 1.25 1.50

FIGURE 9. DIAMETER-THICKNESS RELATIONSHIPS
FOR ROTATING PLATES
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7
ROTATING TRIANGULAR PRISMS
The prism to be considered here has a cross section which is an equilateral triangle and
a length which is greater than its greatest cross sectional dimension (Figure 10). The prism

is acted upon by centrifugal forces resulting from rotation about an axis passing through its
centroid.

7.1. DEFLECTIONS IN ROTATING TRIANGULAR PRISMS

Using the same notations for stress as before, the equations of equilibrium for the prism

are
aor 187r9 or-og
—_—t =+ +R=0
or r 0 r
and
lai_6+a7—_r9+&—0
r 96 ar r

where R is the body force (per unit volume) in the prism. The body force may be expressed

in terms of a potential function V:

_ v
R=-3r

1 22
V—-Epw r

2
_1og 12°¢
Oy rar T3 2"V
r o
2
_d 9
09——2+V
ar

Z=-" "\

FIGURE 10. GEOMETRY OF ROTATING PRISM

19
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and

R ( 1?&)
r§ or\raé
where ¢ is a stress function.

The general two-dimensional stress function in polar coordinates (Reference 2) is

¢=Aﬂnr+Br2+CrZQnr+Dr29 + Ef

34 3 1 ‘

_* : [ 1

i) rd sin 6 + (blr + alr + blr {n r) cos 6
1 3 1
_* [ t :

+ 3 rf cos 6 + (dlr + clr + dlr In r) sin 6
0

+ 2 , (a 2 4b rnJr2 +a'r ® +b'r2-n) cos né
oo \ B n n n

0
+Z (c N +d'r2-n> sinné + ¢
T \ 1 n n n 1

where ¢1 is the particular solution of the compatability equation

4 1-2v\_2 1-2v 2
V¢=-(1_V>VV=2(1_V>pw

This is the governing equation for the case of plane strain (no axial deformation). For plane

stress (no axial stress) the compatability equation is

V4¢ =-(1- V)VZV =2(1 - 1/)pw2

which, for v << 1, is the same as for plane strain.

The displacements in the prism are (for plane strain)

=1+1/

u, B f[(l - 1/)0r - V()’ej! dr +£(9)

and

uy = 15 VH:(I - 1/)09 - vor}dG —furdG + g(r)
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From the symmetry of the prism,

u, (6) =ur(-9) = ur(e + 2—")

3
and
i} , ﬁ)
u9(9) = -ug(-9) =u, (9 +3
The stress-displacement relationships may be derived as follows:
0 _=XZa sinnd +Zb cosnb + Zc
r n n n
and
0,=2d sinnf +Ze cosnf +2f
0 n n n

where a, b, ¢, d, e, and f are not functions of §. Hence

1+v .
U= {E sin nej[(l - 1/)an - vdn] dr
+Ecosn9J’[(1-v)b - ve ]dr+2f[(1—v)c - vf ]dr
n n n n

. Ef(())}

1+v

and

u, = 1}; 4 <Z c_(%né)”l}an -(1- V)dn]r
+J[(l - V)an - vdn] dr} +2 -S—iﬂnﬁ{[(l - z/)en - Vbn]r

+J[(1 - U)bn - l/en] dr}+ rg Te +6 EJ[(I - V)Cn - an]dr
Eg(r)>

+ —

1+v

Since u, (9) = -u, (-6) and ur(e) = ur(—G), c, and fn must be independent, or r and a =

dn = g(r) = 0. Also, since the displacement at the center is zero,

f(6) =0
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Any terms which yield infinite stresses at the center must also be zero, so the final stress

function is

¢=Br2+Z

0
( 3n 3n+2>
ar +br

n n
n=1

cos 3né + q&l

Since the forces are only functions of r, let

_ 1—1/) 2. 4
"’1‘(12 pw T

Letting

(1=5)-a-»

the associated stresses become

0
o= 2B - ; {{3n(3n - l)anr3n'2} + [(Sn - 2)(3n - l)bnr3n:|} cos 3nd

and

An approximate solution is obtained by using n = 1 and n = 2 in the above equations.

Along the face of the prism,

. 2b
V3 sin 8 + cos 6

and the normal stress is

- T in (T _
on—crcos(3 6)+09sm(3 6)—0
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These conditions are applied at the four points indicated in Figure 11, yielding the following

results:

0, = pwzbz{(o. 424 + 0. 286v) + [(o. 151 + 0. 2141»)@

4

=2

- (0.019 + 0. 054u)(rﬂ cos 36 + [(o. 092 - 0.005)1

6
- (0. 009 - 0. oosv)( )} cos 66 - (0.375 + 0. 1251/)}

o=

and
2 2
0, = p0’b” {(0.424 + 0.286)
r r 3
; {(o. 151 + 0.2141/)(5) - (0.096 + 0. 2681/)(6) cos 38
4 6
) - (0.017 - 0. 0091/)(5) cos 64

<)

- [(o. 092 - 0. 0051/)(

- (0.125 + 0. 3751;)}

It may be shown by differentiation that the maximum stress will be the radial stress at

r) _0.60 +0.86v

6 =0, (B 330 For small values of v this is

=0.201 + 0. 352v

o=

e
3

FIGURE 11. POINTS USED IN SOLUTION OF PRISM
EQUATIONS
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The maximum radial stress is therefore

~1 22
(Gr)maximum T L b (1+3)

The radial displacement is given by the relationship

2 3

_pwb (1+v) ) <£>
T (13. 56 + 9. 14v)(1 - 2v) 5

I r 2 r 4
o @417+ 3. 4241/)(5) - (0.153 + 0. 429v)(5) cos 30
+ [(0.588 - 0.0200)(1 - 41/)(5)

L

7
- (0,039 - 0.0200)(1 + v)(%) } cos 69}

m

The above relationships are valid for 6 =0, %, %’ and 3° The maximum radial displacement

is

- pwzbz(l

() * V) (48 - 360 + 3807

r’'maximum 32E

atr=2band 9 =0.

7.2 VIBRATIONS IN ROTATING PRISMS

Section 7.1 discussed the stresses and deflections in a rotating triangular prism whose
length is much greater than its greatest cross-sectional dimension. The sample calculations
(Section 7. 3) indicate that the stresses and deflections caused by centrifugal forces in the
member are very small in magnitude, even for applications involving large prisms rotating
at high speeds. Another effect encountered in rotating members of this type is vibration
caused by dynamic unbalance in the prism itself. Such an effect may be encountered in any

rotating shaft whose length is greater than its cross-sectional dimensions.

Reference 1 gives the expressions for the natural frequencies of clamped-end and simply
supported beams in free vibration, involving a procedure developed by Lord Rayleigh. Using
the constants

L = length of prism

I = moment of inertia of the prism cross section = Jj y2 dA
E = Young's modulus of elasticity ' A
m = mass of prism

w = angular velocity of prism
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the corresponding natural frequencies are

-7 [ EI_
f.. =3 )

| mL
for the simply supported member, and

Zﬁ[ﬁi

f =— |—
c2 ‘/B_\JmLz

for the clamped-end member. If the prism rotates at its natural frequency, any unbalance
will cause resonance leading to an infinite amplitude of vibration. Due to the large magnitude
of E, the natural frequencies are of the order of kilocycles. Since the amplitude of the vi-
bration is always proportional to —1—2, then for f < << fc the amplitude will be very

small. 1- (t/1c)

7.3. SAMPLE CALCULATIONS
The triangular prism shown in Figure 12 is rotated about the centroid of its cross section,
which is an equilateral triangle 2v3 inches on a side. The prism is 6 inches long, and is made

of fused quartz with a density of 2. 07 x 10_4 (pound-secondz/ inch4) and Young's modulus of
6 .
10.12 x 10" psi.

1 22 .
(Ur)maximum = 150w b (1 + 3v) = 9. 44 psi

pw2b3(1 + V) 2 -6
(ur)maximum = (48 - 36v + 38V°) = 12.6 x 10 inch

The mass of the prism is

m = p[%(2\/§b)(3b)L] =64.5x 10-4 (pound—secondz/inch)

ol

2\/_3-H

\f/ "

FIGURE 12. ROTATING TRIANGULAR PRISM
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The moment of inertia of the cross section is

I= ff y2 dA =3.175 (inches4)
A

The natural frequencies are therefore

fc =% /21—3 = 8.17 kes
1 mL

and
£ il -El-s-=18.8kcs
2 V3 mL
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