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Abstract

Recent research lends credence to the belief that supply chain structure and product variety
are closely linked. We explore the effect of supply chain configuration on product variety, in
a competitive setting. We treat both non-functional as well as functional variety, and for
various supply chain configurations we examine equilibrium variety outcomes, assuming that
the structure of the market can be represented by a static one-period model belonging to the
class of Market Share Attraction Models.

1 Introduction

Recent research lends credence to the belief that supply chain structure and product variety are

closely linked (Ramdas (2002); Randall et al. (2002); Randall and Ulrich (2001)). Ramdas (2002)

provides a framework for understanding and explaining the relationship between variety and sup-

ply chain structure. Under this framework, variety decisions include variety-creation decisions that

determine the amount, type, and timing of end-product variety, and variety-implementation de-

cisions, which focus on the design of internal processes as well as a supply chain to support a

firm’s variety-creation strategy. Supply chain structure would therefore be categorized as a variety-

implementation decision under this framework. Using business examples, Randall et al. (2002)

explain that firms making the decision to offer high levels of product variety strategically choose

specific inventory structures. Randall and Ulrich (2001) characterize supply chain structure by the

degree to which production facilities are scale-efficient and by the distance of the production facility

from the target market. Using data from the U.S. bicycle industry they hypothesize that firms

with scale-efficient production will offer types of variety associated with high production costs, and

firms with local production will offer types of variety associated with high market mediation costs1.

This hypothesis implies that there is a coherent way to match product variety with supply chain

∗Stephen M. Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109.
1Market mediation costs include variety-related inventory holding costs, product mark-down costs occurring when

supply exceeds demand, and the costs of lost sales occurring when demand exceeds supply.



structure. Their empirical results suggest that firms which match supply chain structure to the

type of product variety they offer outperform firms which fail to match such choices.

Existing literature treats product variety as either of two types - non-functional variety or func-

tional variety. Examples of non-functional variety include videos in a video rental store and colors

of fabric lengths in a cloth shop (Schaffir (1963); Lancaster (1980); Hohenbalken and West (1991)).

Characteristics of such variety include similar demand and identical production and marketing costs

(Schaffir (1963); Kelvin Lancaster (1980)). Baumol and Ide (1956) consider variety simply as the

number of the different items available in a store and through a simple yet insightful model, consider

the effect of this aggregate variety on store profits. Schaffir (1963) conducts a marginal analysis to

examine profitability of adding an item to a set of existing items in a product line, that are avail-

able for sale. Kekre and Srinivasan (1990) empirically assess the impact of breadth of the product

line on profitability and market share and conclude that significant market share and profitability

benefits arise from having a broader product line. However, none of these papers consider variety

in a competitive setting, nor do they incorporate the effect of supply chain structure on variety.

Functional variety has been dealt with in economics literature through models similar in spirit

to that in Hotelling (1929). Rosen (1974) studies a spatial equilibrium in which the set of implicit

prices2 guides both consumer and producer location decisions in the characteristics space. Prescott

and Visscher (1977) consider a modification of Hotelling’s model in which location decisions are

made by firms sequentially, and once-and-for-all. Each firm takes into consideration the effect of its

location decision upon the ultimate configuration of the industry, and the equilibrium number and

location of firms are identified in specific examples. Stiglitz (1979) provides a descriptive account

of the nature of equilibria in markets with quality dispersion and product variety, under imperfect

information. Anderson et al. (1995) apply discrete choice models3 to oligopolistic competition

and deduce the equilibrium number of firms. Shaked and Sutton (1982) consider a game-theoretic

model of monopolistic competition in which potential entrants compete in three stages - entry,

quality choice and price. They conclude that the only perfect equilibrium is one in which only two

firms enter. None of the above papers study the effect of supply chain structure, though competition

is modelled in some of them.

Additional examples observed in practice reinforce the belief that variety and supply chain

structure are indeed related. Radio Shack r©manufactures electronics and communications products

and offers limited variety within each family in its broad product line. Radio Shack stores operate

on a franchise basis and exclusively offer Radio Shack products in addition to few other brands. Best

BuyTM stores, on the other hand, operate as retail outlets for various manufacturers and compete

with Radio Shack franchises. Best Buy has certain product families in common with Radio Shack,

but offers greater product variety in each of these families. For instance, in the portable CD player

family, as on August 30, 2002, Best Buy offered 36 brands of portable CD players while Radio

Shack offered only 10.4 Similarly, Do it Best r© and Home Depot r© have different supply chain

2Customers have utilities for characteristics of a product; associated with these utilities are implicit prices.
3Discrete choice models are used to describe heterogeneous customer tastes.
4Information obtained from www.bestbuy.com and www.radioshack.com.
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arrangements and offer different levels of variety in their common and hence competing product

families.

However, it is not clear whether existing supply chain configuration and firms’ desire for prof-

itability result in the observed product variety, or whether customer demand for variety and firms’

desire for profitability result in the observed supply chain configuration. In this paper we treat both

non-functional and functional variety and examine the impact of supply chain configuration and

the competition within, on equilibrium variety.

We consider two competing retailers catering to the same geographic market. These retailers

have to decide on variety, i.e., the brands to offer and volume in each brand, and the price for

each brand. We focus on a particular product family and define an offering5 as the triple (i, j, pij)

where pij is the price for brand j at retailer i. These offerings are partially substitutable. The

demand for an offering decreases with an increase in its own price, and increases with an increase

in a competing offering’s price. We assume that all customer demand must be satisfied.6 The

retailers’ objective is to maximize total product family profit; they source their products from profit-

maximizing manufacturers. The aforementioned decisions and resulting equilibrium outcomes are

influenced by the structure of the supply chain (e.g. whether decentralized or centralized) and

the retailers’ and manufacturers’ cost structures (e.g. dependence of cost on variety). We assume

complete information. For various supply chain configurations, we analyze the resulting games and

their equilibrium outcomes, assuming that the structure of the market can be represented by a

static one-period model which belongs to the class of Market Share Attraction Models.

In general, a market share attraction model specifies that the market share of a firm, in either

quantity or revenue terms, is equal to its “attraction” divided by the total attraction of all firms in

the market, where a firm’s attraction is a function of the values of its marketing instruments. Such

models are theoretically appealing because they are logically consistent; they yield market share

values that are between zero and one, and these values sum to one across all firms in the market

(Karnani, (1985)). Karnani (1985) investigates the conduct of firms and the performance of the

market when the structure of the market can be represented by a static one-period market share

attraction model. The solution concept of a Nash equilibrium is used, and strategic implications

of such an equilibrium are deduced. It is shown that, at equilibrium, each active competitor must

have market share above a certain threshold value, and that this threshold value is a function of

both - the cost structures of the firms as well as the demand structure of the market. The model

also predicts a positive relationship between market share and profitability. It is shown that these

implications are consistent with previous empirical research in marketing and business policy. Bell et

al. (1975) provide examples of empirical studies that have used the attraction specification to model

market shares. Cooper and Nakanishi (1988) provide a thorough treatment of market-share models.

They demonstrate how model extensions can accommodate differential and cross-competitive effects

(Lilien et al. (1992)). To further justify our choice of a market share attraction model, we quote

5Where unambiguous, the terms brand and offering are used interchangeably.
6In practice, a customer can place an order with the store if the demanded item is not available in stock.
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Cooper and Nakanishi (1988) - “We report that many studies on predictive accuracy of market-share

models found the logical-consistency property of the (market share attraction) models to produce

only marginally better predictions than the linear and multiplicative models. Why then all this fuss

about the (market share attraction) models? ...we do not believe that predictive accuracy is the

only important criterion for judging the value of a model. We would rather find the answer in the

construct validity (i.e., intrinsic meaningfulness) of market share attraction models.”

To the best of our knowledge, there is no research to date which explores the effect of supply

chain configuration on product variety in a competitive setting. In particular, we consider the

supply chain configurations as in Figure 1. M stands for manufacturer and R for retailer. The

supply chain structures we consider are similar to those in McGuire and Staelin (1983). The dotted

lines indicate flow of product from manufacturer to retailer and the solid lines represent competition

for final demand.

 

R1 R2 

M1 M2 

DD: Decentralized, Distributed 

M1 M2 

R1 R2 

CD: Centralized, Distributed R1 R2 

M 

DS: Decentralized, Shared 

Figure 1: Supply Chain Structures Considered

In the CD structure, Mi and Ri are one integrated firm Fi. The sequence of actions in the

game is as follows. The Fis simultaneously decide their sets of offerings {(i, j, pij)}, demand for

each offering is realized, and finally costs are spent and revenues are received. Note that in all

cases pij = ∞ implies that brand j is, in effect, not offered by retailer i. In the DD structure, Mis

and Ris are separate entities. The sequence of actions in this game is as follows. Simultaneously,

the Mis decide on the linear wholesale prices wijs to offer to the respective Ris, then the Ris

simultaneously decide their sets of offerings {(i, j, pij)}, demand for each offering is realized, and

finally costs are spent and revenues are received. In the DS structure, M and Ris are separate

entities. The sequence of actions in this game is as follows. M decides on the linear wholesale

prices wijs to offer to the Ris, then the Ris simultaneously decide their sets of offerings {(i, j, pij)},
demand for each offering is realized, and finally costs are spent and revenues are received.

As a logical buildup, the sections progress from the CD structure to the DD structure and

finally to the DS structure. For each structure, we begin with the single brand7 case and then

extend the analysis to the multiple brand setting. In the single brand case, retailers have access

7“In No Choice, Klein indicates how the promise of a huge array of consumer choice has been betrayed by
mergers, franchising and corporate censorship. Single-brand stores now predominate in many urban centres - Nike
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to one brand each, whereas in the multiple brand case, each retailer can offer a subset of several

available brands. Our notation and specifications of market share and profit functions are similar

to those in Karnani (1985). However, we assume that marketing expenses are sunk and that the

retailers compete on product price alone.

2 Centralized Distributed (CD) Configuration

In the CD configuration, the integrated firms Fis compete for final demand. We begin by analyzing

the single brand case and then move on to the multiple brand setting. As mentioned above, our

notation and specifications of market share and profit functions are similar to those in Karnani

(1985).

2.1 Single Brand Case

Notation:

pi = product price at retailer i

ci = cost parameter for retailer i

yi = sales volume in physical units for retailer i

βi = factor representing economies of scale for retailer i; 0 < βi ≤ 1

Ki = factor capturing ‘attractiveness’ of retailer i’s offering

si = market share in terms of revenue for retailer i

Qi = factor representing the contribution of relative market share to profitability of retailer i

−i = index for i’s competing retailer

R = total market size in terms of revenue

Vi = profit function for retailer i

α, θ are industry-specific parameters.

α > 0 captures the price sensitivity of demand in the industry. As in Karnani (1985) we assume

that consumers in the industry have decreasing marginal utility and that the total market size is a

non-decreasing, concave function of the total attraction. Since we assume that the retailers compete

on price alone, we can simplify the notation used in Karanani (1985). Thus,

si =
Kip

−α
i∑n

j=1 Kjp
−α
j

; R = [
n∑

j=1

Kjp
−α
j ]θ, 0 ≤ θ < 1 (1)

Since retailers competing in the same market are concerned with profitability as well as relative

market share, we specify the objective8 for retailer i as:

Town, Roots, The Body Shop - and single-brand pioneer Disney has gone far beyond Disney World to create the
Disney Magic cruise ship, and Celebration, Fla., where you can live the complete Disney life.” - Bronwyn Drainie,
“Brand names? Hate ’em,” The Globe and Mail, January 15, 2000.

8Since we consider a competitive one-period model, relative market share can be thought of as a surrogate for
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Maximize Vi = piyi − ciy
βi
i − Ei + Qi

si

s−i

; yi =
siR

pi

. (2)

Note that in this specification, the quantity sold by retailer i is a function of prices pi and p−i.

2.1.1 Parameter Restrictions

The results of this subsection apply to the single brand cases of all the supply chain structures

considered. In order for the model to be a reasonable representation of reality, we need to specify

ranges of admissible values for its parameters. We therefore state the following.

Proposition 1 For self-price elasticities to be negative and cross-price elasticities to be positive,

the parameter θ should satisfy 0 ≤ θ < 1.

Proof: The self-price elasticity of retailer i’s sales revenue with respect to its price pi, is:

νi,i :=
pi

(piyi)
· ∂(piyi)

∂pi

=
pi

[(Kipi
−α)(Kipi

−α + K−ip−i
−α)θ−1]

· ∂[(Kipi
−α)(Kipi

−α + K−ip−i
−α)θ−1]

∂pi

=
−α(Kipi

−α)(Kipi
−α + K−ip−i

−α)θ−1 + α(1− θ)(Kipi
−α)2(Kipi

−α + K−ip−i
−α)θ−2

(Kipi
−α)(Kipi

−α + K−ip−i
−α)θ−1

=
−α(Kipi

−α + K−ip−i
−α) + α(1− θ)(Kipi

−α)

(Kipi
−α)(Kipi

−α + K−ip−i
−α)

Since α, pi, p−i, Ki, K−i ≥ 0, 0 ≤ θ ≤ 1 is a sufficient condition for νi,i to be negative.

The cross-price elasticity of retailer i’s sales revenue with respect to the competitor’s price p−i, is:

ηi,−i :=
p−i

(piyi)
· ∂(piyi)

∂p−i

=
p−i

[(Kipi
−α)(Kipi

−α + K−ip−i
−α)θ−1]

· ∂[(Kipi
−α)(Kipi

−α + K−ip−i
−α)θ−1]

∂p−i

= α(1− θ)(K−ip−i
−α)(Kipi

−α + K−ip−i
−α)−1

θ < 1 is a necessary condition for ηi,−i to be positive.

future earnings. The profit function in Karnani (1985) does not include this additional term. Hiam and Schewe
(1992) note that a striking trend in the Profit Impact of Marketing Strategy (PIMS) database is that market share
and return on investment (ROI) vary together. A smaller share is associated with a lower ROI and vice versa. In fact,
the relationship is virtually a straight line, varying from an average ROI of 11 percent for businesses with market
shares of 10 percent or less, up to an ROI of 40 percent for businesses with shares of 50 percent or more.
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2.1.2 Analysis

Retailer i’s profit function is not concave in price pi - but a simple reformulation elegantly permits

us to establish properties relating to the retailers’ profit functions. Defining9 xi := p−α
i , mi :=

βi

α
(α + 1), ni := (θ − 1)βi, we have Vi = (Kixi)(Kixi +K−ix−i)

θ−1− ciK
βi
i xmi

i (Kixi +K−ix−i)
−ni −

Ei + Qi
xi

x−i
.

Lemma 1 Profit function Vi is strictly concave in xi if mi − ni > 1. Thus, if mi − ni > 1, there

exists p∗i = x∗i
− 1

α that uniquely maximizes Vi.
10

Proof: For notational convenience, denote

Ii := (Kixi)(Kixi + K−ix−i)
θ−1 + Qi

xi

x−i
;

Ci = xmi
i (Kixi + K−ix−i)

−ni − Ei

ciK
βi
i

;

A := Kixi + K−ix−i

dIi

dxi

= KiA
θ−2[Kixi(θ − 1) + A] +

Qi

x−i

d2Ii

d2xi

= (1− θ)(2− θ)K3
i xiA

θ−3 − 2(1− θ)K2
i A

θ−2

= (1− θ)K2
i A

θ−3[(2− θ)Kixi − 2A]

< 0 (3)

dCi

dxi

= xmi−1
i A−ni−1[miA− niKixi]

d2Ci

d2xi

= xmi−2
i A−ni−2[mi(mi − 1)A2 − 2minxiA + ni(ni + 1)K2

i x
2
i ]

= xmi−2
i A−ni−2

[
K2

i x
2
i

(
mi(mi − 1)− 2mini + ni(ni + 1)

)

+ 2KiK−ixix−i

(
mi(mi − 1)−mini

)
+ K2

−ix
2
−imi(mi − 1)

]
(4)

If mi − ni > 1, then

mi(mi − 1)− 2mini + ni(ni + 1) = (mi − ni)
2 − (mi − ni) > 0,

mi(mi − 1)−mini = mi(mi − ni − 1) > 0, and therefore

d2Ci

d2xi

> 0 (5)

9Note that the function x = p−α is a monotonic one-one correspondence. Also note that a concave function of a
monotonic function is pseudo-concave.

10Karnani (1985) differentiates a similar profit function with respect to price and equates the derivative to 0, in
order to arrive at the optimal price. Numerical counterexamples demonstrate that without restrictions as in Lemma
1 the profit function in Karnani (1985) is, in some situations, quasi-convex and therefore that the use of first order
conditions can yield a non-optimal price.
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Since Vi = Ii − ciK
βi
i Ci, from (3) and (5) we have d2Vi

d2xi
< 0, i.e., the profit function Vi is strictly

concave in xi if mi − ni > 1. Thus, if mi − ni > 1 there exists an x∗i that uniquely maximizes

Vi. Since the function xi = p−α
i is a one-one correspondence, there exists p∗i = x∗i

− 1
α that uniquely

maximizes Vi.

From this point forward, we will assume that mi−ni > 1, ∀i. This translates into the following

condition on the model’s parameters.

α

1 + αθ
< β ≤ 1 (6)

In other words, for the profit function, Vi, to be concave in the transform, xi, of price, economies

of scale cannot be arbitrarily large.11

We will also assume that the retailers will not sell at zero price. This means that xi is bounded

above for all i. Let Bi denote an arbitrarily large upper bound on xi. We denote the strat-

egy space for retailer i as Si = {xi : xi ∈ <1, 0 ≤ xi ≤ Bi} and the set of strategy profiles as

X = {x := (xi, x−i) : xi ∈ Si, x−i ∈ S−i}. Denote x∗i (x−i) as retailer i’s profit maximizing (best

response) to x−i. We state the following fact by inspection of the profit function Vi.

Fact 1 (a) Qi = 0 ⇒ x∗i (0) < ∞; (b) Qi = 0 ⇒ x∗i (∞) < ∞; (c) Qi > 0 ⇒ x∗i (0) = ∞; (d)

Qi > 0 ⇒ x∗i (∞) < ∞.

Proof: (a) By contradiction. If x∗i (0) = ∞, since mi−ni > 1, the term ciK
βi
i xmi

i (Kixi +K−ix−i)
−ni

in the expression for Vi dominates so that Vi = −∞. We are better off choosing xi(0) = 0.

(b) By contradiction. If x∗i (∞) = ∞, since mi − ni > 1, the term ciK
βi
i xmi

i (Kixi + K−ix−i)
−ni in

the expression for Vi dominates so that Vi = −∞. We are better off choosing xi(∞) = 0.

(c) If x∗i (0) = ∞, the term Qi
xi

x−i
in the expression for Vi dominates so that Vi = +∞.

(d) By contradiction. If x∗i (∞) = ∞, since mi − ni > 1, the term ciK
βi
i xmi

i (Kixi + K−ix−i)
−ni in

the expression for Vi dominates so that Vi = −∞. We are better off choosing xi(∞) = 0.

Lemma 2 The reaction function x∗i (x−i) is downward sloping when Qi →∞.

Proof: Since the profit function Vi is concave in xi, the first order condition, dVi

dxi
= 0, yields the

reaction function x∗i (x−i).

dVi

dxi

= 0 ⇒ f(xi, x−i) := KiA
θ−2[Kixi(θ − 1) + A]− ciK

βi
i xmi−1

i A−ni−1[miA− niKixi] +
Qi

x−i

= 0

11We believe that this is not a restrictive assumption. Note that lower β implies greater economies of scale. Several
numerical examples indicate that if economies of scale are larger than that specified by the bound in (6), the profit
function behaves in a non-concave manner.
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Using the implicit function theorem, the slope of the reaction function is:

dxi

dx−i

= −

(
∂f

∂x−i

)

(
∂f
∂xi

)

Where,

∂f

∂x−i

= (1− θ)KiK−iA
θ−3[(2− θ)Kixi − A]− nciK

β
i K−ix

m−1
i A−n−2[(n + 1)Kixi −mA]

− Qi

x2
−i

∂f

∂xi

= (1− θ)(2− θ)K3
i xiA

θ−3 − 2(1− θ)K2
i A

θ−2 − ciK
β
i xmi−2

i A−ni−2
[
K2

i x
2
i

(
mi(mi − 1)

−2mini + ni(ni + 1)
)

+ 2KiK−ixix−i

(
mi(mi − 1)−mini

)
+ K2

−ix
2
−imi(mi − 1)

]

From Lemma 1, we know that ∂f
∂xi

< 0. When Qi → ∞, ∂f
∂x−i

< 0, and dxi

dx−i
< 0. Thus, when

Qi →∞, the reaction function x∗i (x−i) is downward sloping.

The reason for stating Lemma 2 in the above manner is because a closed form expression for the

threshold value of Qi, above which the reaction function is downward sloping, does not exist. The

Lemma helps in supporting the fact there is a threshold value of Qi, perhaps large, beyond which

the optimal response to a price decrease, is a price increase. Figure 2 shows a typical response curve

for large Q.

0 1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x
1

x 2* (x
1)

Figure 2: Downward Sloping Reaction Function (Q large)

The reason for the observed shape can be explained as follows. For a low value of x1 there are

large revenue and market share benefits to R2 in responding with a high x2. As x1 increases, some

9



market share benefits still remain with R2 but since market size grows, it becomes costly for R2 to

serve the market and therefore R2 responds by decreasing x2. As x1 is increased further, it becomes

increasingly costly to serve the growing market and R2’s optimal response is to decrease x2. Facts

1(c) and 1(d) corroborate this explanation.

The following observation is stated without mathematical proof because of absence of closed

form expressions.

Observation 1 The reaction function x∗i (x−i) is unimodal when Qi = 0.

Observation basis: The graph in Figure 3 from a numerical example depicts the typical form of

the response function x∗i (x−i). Reaction functions in all numerical studies conducted behaved in an

identical manner.

0 1 2 3 4 5 6 7 8 9
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

x
1

x 2* (x
1)

Figure 3: Unimodal Reaction Function (Q = 0)

An explanation for the above behavior is that as x1 increases from 0, R2 responds by increasing

x2 with the aim of getting a larger fraction of the market revenue. This continues but only up to

a particular point. At this threshold, both R1 and R2 have a low price, and the market size is

relatively large and costly to serve. If R1 increases x1 beyond this threshold, R2 has to respond by

now decreasing x2 in order to keep the market size under control and to still profitably serve the

market. Facts 1(a) and 1(b) corroborate to this explanation.

Lemma 3 There exists at least one pure strategy Nash equilibrium in the game.

Proof: The strategy space Si = {xi : xi ∈ <1, 0 ≤ xi ≤ Bi} of retailer i, is a non-empty compact

convex subset of the Euclidean space <1. The profit function Vi is continuous in x := (xi, x−i) and
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concave in xi. Therefore, using Theorem 1.2 in Fudenberg and Tirole (1998), there exists at least

one pure strategy Nash equilibrium in the game.

Define the symmetric case (SC) as one in which Ki = K−i = K, ci = c−i = c, βi = β−i = β,

Qi = Q−i = Q.

Proposition 2 An asymmetric equilibrium is possible even in the symmetric case, i.e., there are

SC situations in which, at equilibrium, x∗i 6= x∗−i, and therefore p∗i 6= p∗−i.

Proof: By example. Consider the numerical example with the following parameter values: K =

100, Q = 2, α = 1, θ = 0.4, β = 0.75, c = 1.5. There are three Nash equilibria, i.e., three

points at which the reaction curves x∗i (x−i), and x∗−i(xi) intersect. One is a symmetric equilibrium

and the other two are asymmetric. Figure 4 shows one asymmetric equilibrium and the symmetric

equilibrium.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2
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x
1
* (x

2
)

          
x

2
* (x

1
)

asymmetric equilibrium 

Figure 4: Example of Asymmetric Equilibrium

In the numerical example, the asymmetric equilibria in terms of transform of price are x1:=

(0.3157, 9.4707) and x2:= (9.4707, 0.3157). In terms of price these equilibria are p1:= (3.1676,

0.1056) and p2:= (0.1056, 3.1676) respectively. Asymmetric equilibria exist because of the shape of

the reaction curve. As explained before, for large enough Q, the reaction curve is downward sloping.

For a low xi, the optimal response of R−i is a high x−i because of large revenue and relative market

share benefits. With an increase in xi, R−i’s relative market share benefit decreases at a faster rate

than cost, with the result that R−i best responds by decreasing x−i convexly in order to keep the

market size under control. As Figures 5 and 6 point out, R−i’s best response to xi= 0.3157, is x−i=
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Figure 5: x−i = 9.4707 is the best response to xi = 0.3157
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Figure 6: xi = 0.3157 is the best response to x−i = 9.4707

9.4707; and Ri’s best response to x−i= 9.4707, is xi= 0.3157.

2.2 Multiple Brand Case

For the multiple brand case, we use an additional index which represents the index of a particular

brand at a particular retailer. As mentioned earlier, pij is the price for brand j at retailer i. Notation

for other parameters and variables are to be similarly interpreted. Assume that the number of brands

at retailer i is ξi. The profit function for retailer i is:
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Vi =
∑

j

(pijyij)−
∑

j

(cijyij
βij)− Ei + Qi

∑
j sij∑

k s−ik

= [
∑

j

Kijxij][
∑

j

Kijxij +
∑

k

K−ikx−ik]
θ−1 −∑

j

cijK
βij

ij x
mij

ij [
∑

j

Kijxij +
∑

k

K−ikx−ik]
−nij − Ei

+ Qi

∑
j xij∑

k x−ik

, where 1 ≤ j ≤ ξ1, and 1 ≤ k ≤ ξ2.

2.2.1 Parameter Restrictions

The results of this subsection apply to the multiple brand cases of all supply chain structures con-

sidered.

Proposition 3 For self-price elasticities to be negative and cross-price elasticities to be positive,

the parameter θ should satisfy 0 ≤ θ < 1.

Proof: The elasticity of retailer i’s revenue from sales of brand j, with respect to its price pij, is:

νij,ij :=
pij

(pijyij)
· ∂(pijyij)

∂pij

The proof that 0 ≤ θ < 1 is a sufficient condition for νij,ij < 0 is identical to the corresponding

proof in Proposition 1.

The cross-price elasticity of retailer i’s sales revenue with respect to the competitor’s price p−ir of

brand r, is:

ηi,−ir :=
p−ir

(
∑

j pijyij)
· ∂(

∑
j pijyij)

∂p−ir

=
p−ir(

[
∑

j Kijp
−α
ij ][

∑
j Kijp

−α
ij +

∑
k K−ikp

−α
−ik]

θ−1

) ·
∂

(
[
∑

j Kijp
−α
ij ][

∑
j Kijp

−α
ij +

∑
k K−ikp

−α
−ik]

θ−1

)

∂p−ir

= α(1− θ)(K−irp
−α
−ir)(

∑

j

Kijp
−α
ij +

∑

k

K−ikp
−α
−ik)

−1

Since α, pij, p−ik, Kij, K−ik ≥ 0, 0 ≤ θ < 1 is a required condition for ηi,−ir to be positive.

2.2.2 Analysis

Lemma 4 Profit function Vi defined above is strictly jointly concave12 in xi := {xij, 1 ≤ j ≤ ξi} if

mij − nij > 1 ∀j. Thus, if mij − nij > 1 ∀j, there exists a vector of prices p∗i = {p∗ij, 1 ≤ j ≤ ξi}
(where p∗ij = x∗ij

− 1
α ), that uniquely maximizes Vi.

12Briefly stated as “jointly concave in xijs”
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Proof: We begin by proving that [
∑

j Kijxij][
∑

j Kijxij +
∑

k K−ikx−ik]
θ−1 is strictly jointly concave

in xijs. Because sums of jointly concave functions are again jointly concave, it is sufficient to

prove that Ki1xi1[
∑

j Kijxij +
∑

k K−ikx−ik]
θ−1 is strictly jointly concave in xijs, or, that f({xij}) :=

xi1[1 +
∑

j Aijxij]
θ−1 is strictly jointly concave in xijs, where Aijs are positive constants. We are

done if we can prove that f(
{x(1)

ij +x
(2)
ij }

2
) >

f({x(1)
ij })+f({x(2)

ij })
2

.

f(
{x(1)

ij + x
(2)
ij }

2
) = (

x
(1)
i1 + x

(2)
i1

2
)[1 +

∑

j

Aij(
x

(1)
ij + x

(2)
ij

2
)]θ−1

> (
x

(1)
i1 + x

(2)
i1

2
)
[
[
1

2
+

∑

j

Aijx
(1)
ij

2
]θ−1 + [

1

2
+

∑

j

Aijx
(2)
ij

2
]θ−1

]

= (
1

2
)θx

(1)
i1 [1 +

∑

j

Aijx
(1)
ij ] + (

1

2
)θx

(2)
i1 [1 +

∑

j

Aijx
(2)
ij ]

> (
1

2
)x

(1)
i1 [1 +

∑

j

Aijx
(1)
ij ] + (

1

2
)x

(2)
i1 [1 +

∑

j

Aijx
(2)
ij ]

=
f({x(1)

ij }) + f({x(2)
ij })

2

Thus we have proved the (strict) joint concavity of [
∑

j Kijxij][
∑

j Kijxij +
∑

k K−ikx−ik]
θ−1. We

now proceed to prove that
∑

j cijK
βij

ij x
mij

ij [
∑

j Kijxij +
∑

k K−ikxik]
−nij is strictly jointly convex in the

xijs if mij−nij > 1. We are done if we can prove the strict joint convexity of xmi1
i1 [1+

∑
j Aijxij]

−ni1

(where Aijs are positive constants), assuming that mi1 − ni1 > 1. We first consider the case when

ξi = 2. Denote f(x, y) := xm(1 + A1x + A2y)−n. We use the Hessian matrix to show that f(x, y) is

jointly convex in (x, y).

fx = mxm−1(1 + A1x + A2y)−n − nxmA1(1 + A1x + A2y)−n−1

fxx = m(m− 1)xm−2(1 + A1x + A2y)−n − 2mnxm−1A1(1 + A1x + A2y)−n−1

+ n(n + 1)xmA2
1(1 + A1x + A2y)−n−2

fy = −nxmA2(1 + A1x + A2y)−n−1

fyy = n(n + 1)xmA2
2(1 + A1x + A2y)−n−2

fxy = −mnA2x
m−1(1 + A1x + A2y)−n−1 + n(n + 1)xmA1A2(1 + A1x + A2y)−n−2

For fxx > 0, require that m(m− 1)(1 + A1x + A2y)2− 2mnxA1(1 + A1x + A2y) + n(n + 1)x2A2
1 > 0

i.e.,

m(m−1)(1+A2
1x

2+A2
2y

2+2A1x+2A2y+2A1A2xy)−2mn(A1x+A2
1x

2+A1A2xy)+n(n+1)A2
1x

2 > 0

The above will hold if m(m−1)−2mn+n(n+1) > 0; i.e., if (m−n)2−(m−n) > 0; i.e., if (m−n) > 1.

The determinant of the Hessian matrix is fxxfyy − f 2
xy.

fxxfyy−f 2
xy = mn(m−1)(n+1)A2

2x
2m−2(1+A1x+A2y)−2n−2−m2n2x2m−2A2

2(1+A1x+A2y)−2n−2
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fxxfyy − f 2
xy > 0, if mn(m− 1)(n + 1)−m2n2 > 0; i.e., if (m− n) > 1.

Since fxx > 0 and fxxfyy−f 2
xy > 0, the Hessian matrix is positive definite. Thus, when (m−n) > 1,

f(x, y) := xm(1 + A1x + A2y)−n is strictly jointly convex in (x, y). We now prove the strict joint

convexity of xmi1
i1 [1 +

∑
j Aijxij]

−ni1 . When (mi1 − ni1) > 1, we know that ∀ {(x(1)
i1 , y1), (x

(2)
i1 , y2)},

(
x

(1)
i1 + x

(2)
i1

2
)mi1 [1 + Ai1(

x
(1)
i1 + x

(2)
i1

2
) + A2(

y1 + y2

2
)]−ni1 <

1

2
[x

(1)
i1 ]mi1(1 + Ai1x

(1)
i1 + A2y1)

−ni1

+
1

2
[x

(2)
i1 ]mi1(1 + Ai1x

(2)
i1 + A2y2)

−ni1 (7)

In particular, if y1 =

∑
j:j 6=1

Aijx
(1)
ij

A2
, and y2 =

∑
j:j 6=1

Aijx
(2)
ij

A2
, then inequality (7) becomes,

(
x

(1)
i1 + x

(2)
i1

2
)mi1 [1 +

∑

j

Aij(
x

(1)
ij + x

(2)
ij

2
)]−ni1 <

1

2
[x

(1)
i1 ]mi1(1 +

∑

j

Aijx
(1)
ij )−ni1

+
1

2
[x

(2)
i1 ]mi1(1 +

∑

j

Aijx
(2)
ij )−ni1 (8)

Which proves the strict joint convexity of xmi1
i1 [1 +

∑
j Aijxij]

−ni1 , and therefore the strict joint con-

vexity of
∑

j cijK
βij

ij x
mij

ij [
∑

j Kijxij +
∑

k K−ikxik]
−nij .

Finally, since −Ei +Qi

∑
j

xij∑
k

x−ik
is clearly jointly concave in xijs, we conclude that the profit function

Vi for retailer i is strictly jointly concave in xijs if mij − nij > 1 ∀j. The function x = p−α is a one-

one correspondence. Hence, if mij − nij > 1, there exists a vector of prices, p∗i = {p∗ij, 1 ≤ j ≤ ξi}
(where p∗ij = x∗ij

− 1
α ), that uniquely maximizes Vi.

Denote the strategy space for retailer i as the ξi-dimensional space Si = {xij : xij ∈ <1, 0 ≤
xij ≤ Bij}ξi and the set of strategy profiles as X = {x := (xi,x−i) : xi ∈ Si,x−i ∈ S−i}.

Lemma 5 There exists at least one pure strategy Nash equilibrium in the game.

Proof: The strategy space Si = {xij : xij ∈ <1, 0 ≤ xij ≤ Bij}ξi of retailer i, is a convex, non-empty,

closed and bounded and therefore compact subset of the Euclidean space <ξi . The profit function

Vi is continuous in x := (xi,x−i) and concave in xi. Therefore, using Theorem 1.2 in Fudenberg

and Tirole (1998), we conclude that there exists at least one pure strategy Nash equilibrium in the

game.

3 Decentralized Distributed (DD) Configuration

In this configuration, the sequence of actions is as follows. Simultaneously, the Mis decide on the

linear wholesale prices wijs to offer to the respective Ris, then the Ris simultaneously decide their
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sets of offerings {(i, j, pij)}, demand for each offering is realized, and finally costs are spent and

revenues are received.

3.1 Single Brand Case

The profit function for manufacturer Mi, is VMi
= wiyi − ciy

βi
i , and that for retailer Ri is Vi =

piyi − wiyi −Ei + Qi
si

s−i
= (Kixi)(Kixi + K−ix−i)

θ−1 − wiKix
α+1

α
i (Kixi + K−ix−i)

θ−1 −Ei + Qi
xi

x−i
.

Fact 2 Manufacturer Mi’s profit function VMi
is strictly convex and increasing in yi for yi >

( ciβi

wi
)

1
1−βi .

Proof:

dVMi

dyi

= wi − ciβiy
βi−1
i

d2VMi

dy2
i

= βi(1− βi)ciy
βi−2
i

> 0, since 0 < βi < 1.

Therefore, VMi
is convex in yi. VMi

is increasing in yi when wi − ciβiy
βi−1
i > 0, i.e., when yi >

( ciβi

wi
)

1
1−βi .

From this point forward, we will assume that profit function VMi
is increasing in yi.

13

Fact 3 Given wholesale prices wis, retailer Ri’s profit function Vi is strictly concave in xi if mi −
ni > 1. Thus, if mi − ni > 1, there exists p∗i = x∗i

− 1
α that uniquely maximizes Vi.

Proof: From Lemma 1, we know that (Kixi)(Kixi + K−ix−i)
θ−1 −Ei + Qi

xi

x−i
is strictly concave in

xi. It suffices to show that Ψi := xa
i (Kixi + K−ix−i)

θ−1 is convex in xi, where a = α+1
α

> 1.

dΨi

dxi

= axa−1
i (Kixi + K−ix−i)

θ−1 − (1− θ)Kix
a
i (Kixi + K−ix−i)

θ−2

d2Ψi

dx2
i

= a(a− 1)xa−2
i (Kixi + K−ix−i)

θ−1 − 2a(1− θ)Kix
a−1
i (Kixi + K−ix−i)

θ−2

+ (1− θ)(2− θ)xa
i K

2
i (Kixi + K−ix−i)

θ−3

= K2
i x

2
i [a(a− 1)− 2a(1− θ) + (1− θ)(2− θ)] + K2

−ix
2
−i[a(a− 1)]

+ 2aKiK−ixix−i[(a− 1)− (1− θ)] (9)

13yi > ( ciβi

wi
)

1
1−βi may not hold when yi ≈ 0+. However, for most practical situations, it is safe to make the said

assumption

16



Consider the terms within square braces in (9) separately.

a(a− 1)− 2a(1− θ) + (1− θ)(2− θ) = (a + θ)2 − 3(a + θ) + 2 > 0, since a + θ > 1.

a(a− 1) > 0, since a > 1.

(a− 1)− (1− θ) = a + θ − 2; (mi − ni) > 1 ⇒ a− (1− θ) > 1
β
⇒ a + θ − 1 > 1.

Since Ki, K−i > 0, the right hand side of (9) is greater than 0, implying that Ψi := xa
i (Kixi +

K−ix−i)
θ−1 is strictly convex in xi.

Proposition 4 There exists at least one pure strategy Nash equilibrium in the subgame between the

retailers.

Proof: Given wholesale prices wis, the strategy space Si = {xi : xi ∈ <1, 0 ≤ xi ≤ Bi} of retailer i, is

a non-empty compact convex subset of the Euclidean space <1. The profit function Vi is continuous

in x := (xi, x−i) and concave in xi. Therefore, using Theorem 1.2 in Fudenberg and Tirole (1998),

there exists at least one pure strategy Nash equilibrium in the subgame between the retailers.

Lemma 6 There exists at least one Nash equilibrium in the overall game.

Proof: Let W ∗
i be an arbitrarily large upper bound on wholesale price wi such that if Mi prices be-

yond this bound then Ri would stay out of the market and make zero profit rather than participate

in the market and make a loss. Such an upper bound exists because as wi →∞, Vi → −∞. Thus

the strategy space of Mi is constrained to be a closed and bounded convex, compact set [0, W ∗
i ].

Since the extensive form game is finite and strategy spaces of Mis and Ris are closed and bounded,

using the technical properties in section 8.3.3 of Fudenberg and Tirole (1998) we conclude that

there exists at least one Nash equilibrium in the overall game.

Corollary 1 There exists at least one subgame perfect pure strategy Nash equilibrium in the overall

game.

Proof: Since for any specification of wholesale prices there exists at least one pure strategy Nash

equilibrium in the subgame between the retailers, it is possible to deduce equilibrium y∗i s (derived

from equilibrium x∗i s), for all combinations of wi between 0 and W ∗
i and w−i between 0 and W ∗

−i.

Since Mi’s profit is assumed to be increasing in the quantity yi sold to Ri, we can pick w∗
i which

results in the largest equilibrium y∗i , given w−i. The continuous reaction functions w∗
i (w−i) and

w∗
−i(wi) yield a subgame perfect pure strategy Nash equilibrium.

Lemma 7 For any specification of wholesale prices, the symmetric equilibrium quantity in the

retailer subgame of the DD configuration is smaller than the symmetric equilibrium quantity in the
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CD configuration game. Hence, the symmetric equilibrium quantity in the overall DD configuration

game is smaller than that in the CD configuration game.14

Proof: For clarity, denote the integrated firm i’s profit in the CD configuration, as V CD
i . We know

that V CD
i = (Kixi)(Kixi + K−ix−i)

θ−1 − ciK
βi
i xmi

i (Kixi + K−ix−i)
−ni − Ei + Qi

xi

x−i
. Denote Ri’s

profit in the DD configuration as V DD
i .

V DD
i = V CD

i + ciK
βi
i xmi

i (Kixi + K−ix−i)
−ni − wiKix

α+1
α

i (Kixi + K−ix−i)
θ−1

Denoting a = α+1
α

and A = Kixi + K−ix−i,

dV DD
i

dxi

=
dV CD

i

dxi

+ ciK
βi
i (mix

mi−1
i A−ni − niKix

mi
i A−ni−1)− wiKi(axa−1

i Aθ−1 − (1− θ)Kix
a
i A

θ−2)

(10)

We consider the last two terms on the right hand side of (10) separately.

ciK
βi
i (mix

mi−1
i A−ni − niKix

mi
i A−ni−1)− wiKi(axa−1

i Aθ−1 − (1− θ)Kix
a
i A

θ−2)

= x−1
i a(ciβiy

βi
i − wiyi)− (1− θ)A−1Ki(ciβiy

βi
i − wiyi)

=
1

Kixi

(aA− (1− θ)Ki)(ciβiy
βi
i − wiyi)

(aA−(1−θ)Ki) > 0 because a > 1 and 0 ≤ θ < 1. If Mi’s profit is increasing in the quantity yi sold

to Ri, then from Fact 2, ciβiy
βi
i − wiyi < 0. Therefore

dV DD
i

dxi
<

dV CD
i

dxi
, and xDD

i
∗

< xCD
i

∗
, because

V DD
i and V CD

i are concave in xi. Since yi = Kix
a
i A

θ−1,
dyi

dxi

= Kix
a−1
i Aθ−2(aA− (1− θ)Kixi) > 0;

implying that yDD
i

∗
< yCD

i
∗
. Thus, for any given x−i, the best response x∗i and hence y∗i is smaller

in the DD configuration than in the CD configuration. The reaction functions x∗i (x−i) and x∗−i(xi)

are shifted closer to the origin in the DD configuration, and so is the symmetric equilibrium.

3.2 Multiple Brand Case

The notation we use is identical to that used in section 2.2. The profit function for manufacturer

Mi, is VMi
=

∑
j wijyij −∑

j cijy
βij

ij , and that for retailer Ri, is:

Vi =
∑

j

pijyij −
∑

j

wijyij − Ei + Qi

∑
j sij∑

k s−ik

14Through numerical studies, we observe the following effect of decentralization on asymmetric equilibria. The
retailer that prices low in the CD configuration asymmetric equilibrium, prices still lower in the asymmetric equi-
librium of the retailer subgame in the DD configuration (if such an equilibrium exists). Vice-versa for the retailer
that prices high. The absence of scale economies at the retailers’ in the DD configuration diminishes the effect of
relative market share significantly. Therefore, asymmetric equilibria rarely exist in the retailer subgame of the DD

configuration.
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= [
∑

j

Kijxij][
∑

j

Kijxij +
∑

k

K−ikx−ik]
θ−1 −∑

j

wijKijx
a
ij[

∑

j

Kijxij +
∑

k

K−ikx−ik]
θ−1 − Ei

+ Qi

∑
j xij∑

k x−ik

, where a = α+1
α

, 1 ≤ j ≤ ξ1, and 1 ≤ k ≤ ξ2.

Fact 4 Manufacturer Mi’s profit function VMi
is strictly jointly convex and increasing in yi =

{yij, 1 ≤ j ≤ ξi} if yij > ( cijβij

wij
)

1
1−βij ∀j.

Proof: VMi
(yi) is separable in the components of yi; i.e., we can write VMi

(yi) =
∑

j VMij
(yij), where

VMij
(yij) = wijyij − cijy

βij

ij . From Fact 2, we know that VMij
is strictly convex and increasing in

yij if yij > ( cijβij

wij
)

1
1−βij . Since VMi

(yi) is separable and its separate parts are strictly convex and

increasing, we have that VMi
is strictly jointly convex and increasing in yi = {yij, 1 ≤ j ≤ ξi} if

yij > ( cijβij

wij
)

1
1−βij ∀j.

Fact 5 Given wholesale prices wijs, retailer Ri’s profit function Vi is strictly jointly concave in

xijs if mij − nij > 1 ∀j. Thus, if mij − nij > 1 ∀j, there exists there exists a vector of prices

p∗i = {p∗ij, 1 ≤ j ≤ ξi} (where p∗ij = x∗ij
− 1

α ), that uniquely maximizes Vi.

Proof: From Lemma 4, we know that [
∑

j Kijxij][
∑

j Kijxij +
∑

k K−ikx−ik]
θ−1 − Ei + Qi

∑
j

xij∑
k

x−ik

is strictly jointly concave in xijs. What remains to be shown is that
∑

j wijKijx
a
ij[

∑
j Kijxij +

∑
k K−ikx−ik]

θ−1 is strictly jointly convex in xijs. Since the sum of jointly convex functions is again

jointly convex, it suffices to show the joint convexity of Ψi1 := xa
i1[1 +

∑
j Aijxij]

θ−1 (where Aijs are

positive constants), assuming that mi1 − ni1 > 1.

mi1−ni1 > 1 ⇒ aβi1− (1− θ)βi1 > 1 ⇒ a− (1− θ) > 1, since 0 < βi1 < 1. The proof of Lemma

4 can be replicated by replacing m with a, and n with (1− θ).

Proposition 5 There exists at least one pure strategy Nash equilibrium in the subgame between the

retailers.

Proof: Given wholesale prices wijs, the strategy space Si = {xij : xij ∈ <1, 0 ≤ xij ≤ Bij}ξi of

retailer i is a non-empty compact convex subset of the Euclidean space <ξi . The profit function Vi is

continuous in x := (xi,x−i) and concave in xi, where xi ∈ Si,x−i ∈ S−i. Therefore, using Theorem

1.2 in Fudenberg and Tirole (1998), there exists at least one pure strategy Nash equilibrium in the

subgame between the retailers.

The proof of the existence of at least one Nash equilibrium in the overall DD game is similar

to the proof of Lemma 6 and is therefore omitted. The proof of the existence of a subgame perfect

pure strategy Nash equilibrium in the overall game is similar to the proof of Corollary 1 and is also

omitted.

19



Corollary 2 For any specification of wholesale prices, the symmetric equilibrium quantities in the

retailer subgame of the DD configuration are respectively smaller than the symmetric equilibrium

quantities in the CD configuration game. Hence, the symmetric equilibrium quantities in the overall

DD configuration game are respectively smaller than those in the CD configuration game.

Proof: Since the profit function of each retailer Ri is jointly concave in the xijs, the first order

condition with respect to each xij must hold at the maximum of the respective retailer’s profit

function. The remainder of the proof is similar to the proof of Lemma 7 mutatis mutandis.

4 Decentralized Shared (DS) Configuration

In the DS structure, M and Ris are separate entities. The sequence of actions in this game is as

follows. M decides on the linear wholesale prices wijs to offer to the Ris, then the Ris simultane-

ously decide their sets of offerings {(i, j, pij)}, demand for each offering is realized, and finally costs

are spent and revenues are received.

4.1 Single Brand Case

The profit function for the manufacturer M , is VM =
∑

i wiyi −∑
i ciy

βi
i , and that for retailer Ri is

Vi = piyi−wiyi−Ei+Qi
si

s−i
= (Kixi)(Kixi+K−ix−i)

θ−1−wiKix
α+1

α
i (Kixi+K−ix−i)

θ−1−Ei+Qi
xi

x−i
.

Fact 6 Manufacturer M ’s profit function VM is strictly jointly convex and increasing in y = {yi, i =

1, 2} if yi > ( ciβi

wi
)

1
1−βi ∀i.

Proof: VM(y) is separable in the components of y; i.e., we can write VM(y) =
∑

i VMi
(yi), where

VMi
(yi) = wiyi − ciy

βi
i . From Fact 2, we know that VMi

is strictly convex and increasing in yi if

yi > ( ciβi

wi
)

1
1−βi . Since VM(y) is separable and its separate parts are strictly convex and increasing,

we have that VM is strictly jointly convex and increasing in y = {yi, i = 1, 2} if yi > ( ciβi

wi
)

1
1−βi ∀i.

Fact 7 Given wholesale prices wis, retailer Ri’s profit function Vi is strictly concave in xi if mi −
ni > 1. Thus, if mi − ni > 1, there exists p∗i = x∗i

− 1
α that uniquely maximizes Vi.

Proof: Identical to the proof of Fact 3. Hence omitted.

Proposition 6 There exists at least one pure strategy Nash equilibrium in the subgame between the

retailers.
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Proof: Given wholesale prices wis, the strategy space Si = {xi : xi ∈ <1, 0 ≤ xi ≤ Bi} of retailer i, is

a non-empty compact convex subset of the Euclidean space <1. The profit function Vi is continuous

in x := (xi, x−i) and concave in xi. Therefore, using Theorem 1.2 in Fudenberg and Tirole (1998),

there exists at least one pure strategy Nash equilibrium in the subgame between the retailers.

For both the single brand as well as the multiple brand cases of the DS configuration, the proof

of the existence of at least one Nash equilibrium in the overall game is similar to the proof of Lemma

6 and is therefore omitted. Also, the proof of the existence of a subgame perfect pure strategy Nash

equilibrium in the overall game is similar to the proof of Corollary 1 and is omitted.

Lemma 8 The symmetric equilibrium quantity in the overall DS configuration game is no less than

that in the overall DD configuration game.

Proof: We prove the lemma by argument. In the DD game, manufacturer Mi chooses wi conditional

on the competing manufacturer’s w−i in order to achieve the largest equilibrium yi. However, in

the DS game, since the same manufacturer M supplies to both retailers, the choice of both wi

as well as w−i is within the control of M . Manufacturer M thus optimizes over a set larger than

that available to each of the Mis in the DD game. Hence M cannot be worse off than the Mis.

Since, by construction, a manufacturer’s profit is increasing in quantity sold, we can conclude that

manufacturer M sells no less than manufacturer Mi, to retailer Ri.

4.2 Multiple Brand Case

The notation we use is identical to that used in section 3.2. The profit function for manufacturer

M , is VM =
∑

i

∑
j wijyij −∑

i

∑
j cijy

βij

ij , and that for retailer Ri, is:

Vi =
∑

j

pijyij −
∑

j

wijyij − Ei + Qi

∑
j sij∑

k s−ik

= [
∑

j

Kijxij][
∑

j

Kijxij +
∑

k

K−ikx−ik]
θ−1 −∑

j

wijKijx
a
ij[

∑

j

Kijxij +
∑

k

K−ikx−ik]
θ−1 − Ei

+ Qi

∑
j xij∑

k x−ik

, where a = α+1
α

, 1 ≤ j ≤ ξ1, and 1 ≤ k ≤ ξ2.

Fact 8 Manufacturer M ’s profit function VM is strictly jointly convex and increasing in y =

{yij, i = 1, 2; 1 ≤ j ≤ ξi} if yij > ( cijβij

wij
)

1
1−βij ∀i, j.

Proof: VM(y) is separable in the components of y; i.e., we can write VM(y) =
∑

i

∑
j VMij

(yij), where

VMij
(yij) = wijyij − cijy

βij

ij . From Fact 2, we know that VMij
is strictly convex and increasing in yij

if yij > ( cijβij

wij
)

1
1−βij . Since VM(y) is separable and its separate parts are strictly convex and increas-

ing, we have that VM is strictly jointly convex and increasing in y = {yij, 1 = 1, 2; 1 ≤ j ≤ ξi} if
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yij > ( cijβij

wij
)

1
1−βij ∀i, j.

Fact 9 Given wholesale prices wijs, retailer Ri’s profit function Vi is strictly jointly concave in

xijs if mij − nij > 1 ∀j. Thus, if mij − nij > 1 ∀j, there exists there exists a vector of prices

p∗i = {p∗ij, 1 ≤ j ≤ ξi} (where p∗ij = x∗ij
− 1

α ), that uniquely maximizes Vi.

Proof: Identical to the proof of Fact 5. Hence omitted.

Proposition 7 There exists at least one pure strategy Nash equilibrium in the subgame between the

retailers.

Proof: Given wholesale prices wijs, the strategy space Si = {xij : xij ∈ <1, 0 ≤ xij ≤ Bij}ξi of

retailer i is a non-empty compact convex subset of the Euclidean space <ξi . The profit function Vi is

continuous in x := (xi,x−i) and concave in xi, where xi ∈ Si,x−i ∈ S−i. Therefore, using Theorem

1.2 in Fudenberg and Tirole (1998), there exists at least one pure strategy Nash equilibrium in the

subgame between the retailers.

Corollary 3 The symmetric equilibrium quantities in the overall DS configuration game are re-

spectively no less than those in the overall DD configuration game.

Proof: Similar to the proof of Lemma 8.

5 Conclusion and Future Work

Recent research supports the belief that supply chain configuration and equilibrium product variety

are closely linked. In this paper we have explored the effects of supply chain configuration on equi-

librium product variety, in a competitive setting. Thus far we have been able to prove important

existence results pertaining to equilibrium variety, and specific properties of such equilibria, under

three distinct supply chain configurations - CD, DD, and DS - depicted in Figure 1. In the CD

configuration, when relative market share is a concern for the vertically integrated retailers, we

find that asymmetric equilibria exist even in symmetric situations. The propensity for asymmet-

ric equilibria in symmetric situations is diminished when, in a decentralized situation, retailers no

longer have manufacturing economies of scale. While we have dealt with the CD configuration

in detail, further analysis with regard to the DD and DS configurations is needed to gain deeper

insights into the relationship between supply chain structure and product variety. In addition, a de-

tailed comparative analysis of equilibrium variety outcomes of the three configurations, is required.

As a further direction, we foresee that an examination of the impact of cost structure on equilib-

rium variety will help us gain a better understanding of equilibria associated with functional variety.
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