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FOREWORD

This translation by Frederick Weiner
of North Armerican Aviation, Inc., has been
reproduced by the Icing Research Center of
the University of Michigan for the convenience
of interested persons and organizations.
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CAICULATIONS FOR A THERMAL ANTI-ICER

1l. Object of the Calculations

In a communication concerning thermal anti-icing made to the same
Congress by one of the authors in collaboration with Messrs. Caron and Petit,
there were distinguished two possible methods of thermal anti-icing of an
airfoil. For complete evaporation, only the area of impingement by the water-
drops need be heated, but it is essential that this heating be high enough so
that the waterdrops which impinge on the airfoil are individually evaporated,
without having the time to agglomerate on each other.

For a "running wet" surface, the impingement area is not heated
enough to evaporate all the collected water impinging on the surface. Accord-
ingly, a thin film of water covers the surface and extends beyond the impinge-
ment area; to prevent icing it is necessary to heat a larger area of the air-
foil.

We shall compare numerically the amount of heat required for two
. methods of anti-icing, for the case of a GSttingenn 430 airfoil (see Figure
1). The wing considered has a length of 3 meters (measured along the chord)
and flies with a theoretical angle of attack of 6°33' at a speed of 91 meters
per second (CZ = 0.8) in a cloud composed mainly of waterdrops 30 microns in
diameter.

The choice of this profile allows a rapid calculation of the aero-
‘dynamic flow fields in the vicinity of the airfoil by a conformal transforma-
tion (the work having been accomplished by Mr. Max Plan). At the present time
such calculations were taken up again on two sections of the lat€ 631 airfoil,
for which the aerodynamic flow fields have been determined experimentally in
the laborastory of Mr. Malavard, by means of an electrolytic tank.

2. Water Catch on the Airfoil

By a graphical method described in a recent report,! we have traced
the water droplet trajectories in the vicinity of the airfoil (Figure 2) for
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the conditions fixed as follows: the tangent trajectories define the effi-
ciency of catch, that is, the relation of the mass of water which, during a
unit of time, impinges on a unit of length of the airfoil, to the mass of
water which, during the same time, will pass through a unit of length of the
maximum thickness in the absence of the airfoil. This efficiency is equal
to 0.%2; this relatively high value is due to the fact that the waterdrops
are rather large; meanwhile, the impingement zone extends only to about 9%
chord.

The trace of four intermediate trajectories allows the division of
the impingement area into five divisions (see Figure 2) in which each of the
efficiencies of average catch is known. By taking the abscissa x along the
chord of the airfoil, beginning with the stagnation point, the following ta-
ble is calculated:

Abscissa, cm -31 -6.7  -1.6- . +2.5 . +10.5 +35.5

Efficiency
of Catch

0.101 0.471 0.770 0.371 0.121

It is then possible to trace approximately the graph of the local
water-catch efficiency as a function of chordwise distance along the surface
from the stagnation point (Figure 3). At the point N (Figure 2) where the
waterdrop trajectories are normal to the airfoil, the efficiency will be
equal to 1, if the point N coincides with the stagnation point A; in an ac-
tual case, the local water-catchefficiency at the point N is a little less
than 1.

3. Convection of Heat along the Airfoil

.A recent report? illustrates the method of calculation of a local
convection coefficient along an airfoil, for the case of laminar flow. We
shall recall here the elements which permit this calculation.

The following symbols are defined:

x = the abscissa of a point along the surface measured chordwise from
the stagnation point.

y = the coordinate of a point normsl to the surface measured from the

surface.
U = the local velocity at the edge of the boundary layer, at a point on

the airfoil defined by the abscissa x.
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U, = the free-stream velocity.
v = the kinematic viscosity of the air.
fox = the local convection coefficient at a point defined by the abscissa
X, ¥
k = the thermal conductivity of air.*¥
©6 = the difference between the temperature of a point M along the surface

and the temperature of a point situated a distance y from the point M
on the normal to the surface at this point.

8y = the difference between the temperature of a point M on the surface and
the temperature of the ambient free stream air.

Consider a wedge*** of included angle B¥¥**¥* placed in an airstream.
The local coefficient of convection f,, &t a point M on the surface located
at a distance x from the stagnation point is given by the relation

- Xk (d8 . 1
fex o <QY>y=o (1)

Replacing the coordinate y by a dimensionless number

= y U
z = == /= (2)

2 - vX
which, for the given abscissa x, is proportional to it. The coefficient fox

may be written as —_ [
U

fox / . (3)

2

3 Jz—O

The calculation shows that the temperature gradient at the surface, put in
the form

*In the original French report, @ was used for the convection coefficient;
this was changed in the translation to f.y to conform to current usage.
**Similarly for k which, although not defined in the original French report,
was denoted by A in the Prandtl number in the same manner as k, the ther-
mal conductivity, is currently used.
**¥Original report shows "diedre", which is literally a dihedron.
*%¥¥% was used in the original French report.
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|

ke z2=0

is the same at every point. It depends only on the Prandtl number, Pr =
uCp/k which characterizes the fluid, and the included angle B of the wedge.
Eckert has pointed out that within 2% (and as long as B 1s not zero) one may
write the following:

) (o=
92

- A = 0.5 <Q+ 0'2)0.11 ppO-35 * (0.028/% ) . (%)
2=0 n

We will assume that, in what follows, Pr equals 0.7, which is prac-
tically the case for air. Consequently A depends only on 8. Taking account
of equation (U4), the local coefficient of convection may be written

F.. = KA g (5)
* B Jw
11

Designating by Ay* the discharge thickness of the thermal boundary layer, Ay*
is defined by the following equation:

e [ (D) o

0
For the dimensionless thickness Az* the following equation is writ-

Ay* U
¥ = JFQL== —_— (7
Q-E VX )
b

In taking account of equation (7), equation (5) containing the local convec-
tion coefficient may be rewritten as

ten:

kAAzZ*

As was the case for A, Az¥ depends only on the Prandtl number and
the angle B. For Pr = 0.7, the following table is given:
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B 8/5x T /2 /5 0 ~0.1hx

A 0.514% 0.496 0.470 O.44k O0.414 0.370
Ay* 1.15 1.19 1l.2% 1.30 1.38 1.53

AAz* 0.591 0.590 0.583 0.577 0.570 0.566

The table shows that the product AAz* changes only slightly when the angle B
varies. It may, with small error, be considered constant and equal to 0.58.
The local coefficient of convection fox varies then according to equation
(8), on account of the inverse relationship of the discharge thickness Ay*.

In the méthod of approximation which permits the determination of
the local coefficients of convection for the airfoil, one may identify each
point M of the airfoil with a point P on the wedge (according to Eckert).
The angle B of the wedge and the value Ay¥ at the polnt P are defined by the
two equations

Ay*Z g
aay* | B\ pagx2 (¥ _ (10)
dx b1 UAy¥*

in which U and dU/dx are known, after differentiation of the velocity, at the
outer edge of the boundary layer of the airfoil. For the airfoil considered,
this differentiation is easily obtained by a suitable transformation (Figure

ll’).

We shall commence by representing the numerical correspondence for
Pr = 0.7, among the values of B/n, Az*2 and B/ﬂ Az*2 on the graph of Figure
5.¥ To find the value of Ay* as a function of x we shall construct, in a
system of x, Ay* axes, the field of tangents dAy*/dx. For this, we shall ar-
bitrarily fix a pair of values x, Ay¥*; equation (9) then gives the values of
B/n and Az*®, and consequently the values of B and Az*2; next, equation (10)
will provide the value of dAy*/dx. )

In this way, for example, at a point on the top surface for the ab-
scissa x = 2.4 cm, Figure 4 gives U = 6440 cm/sec, dU/dx = 653 cgs. In

*In the original French report, Figure 5 shows Az* and B/x Az*, which is ob-
viously in error.
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arbitrarily fixing Ay* = 0.0153 cm, equation (9) and the curves of Figure 5
give B/n bz*? = 1.148, B/n = 0.875, and Az*2 = 1.46.

All the values are now known to calculate the gradient dAy*/dx,
which is equal to 4.06 x 10=4. At the same point defined by x = 2.4 cm, Ay*
is given successively the values 1.208, 1.26, 1.38, etc; the corresponding
values of dAy*/dx are calculated.

Next, another point on the profile defined by a new abscissa is
chosen, and so on. When a sufficient number of tangents have been determined
on the plot of x, Ay* it is easy to trace a network of curves. Only one of
these curves is suitable; it is determined by the known quantities at the
stagnation point. One may say, in effect, that at the point A, defined by
x = 0, the tangent is parallel at the x axis. In addition, according to
Equation (7), Ayp* = 1.19 VVX/U. The relation x/U is given at the stagna-
tion point in the form O/O; the value dx/dU replaces it. The value of
(dx/dU)A = 1/754 cgs, whereby Ayp* = 0.0158 cm. Finally, the graph showing
Ay* as a function of x is represented as shown in Figure 6.

Equation (8) then allows the calculation of fox as a function of
x in which, for each value of x, there corresponds a value of B, AMz¥, and
Ay*. In meking k = 5.65 (10-5) cal/(cm)(sec)(°C), (air at 0°C), the curve
of Figure 7 is thus traced, which gives the local coefficient of convection
along the surface from the stagnation point.

4. Evaporation of Water along the Profile

It is convenient to consider a local coefficient of evaporation V¥
defined by
mPB
(PS - poo) d

(11)

where m is the mass of water evaporated per unit of surface per unit of time,
Pg is the pressure of water vapor* in the immediate vicinity of the surface
(the pressure of the saturated water vapor at the temperature beyond the air-
foil); p,, the pressure of the water vapor at infinity; Pg, the ambient pres-
sure;* and d, the water-vapor density with respect to the air (molecular
weight of water with respect to air, = 18/29 = 0.62).

A study of the relation between convection and diffusion phenomena,
in a laminar region, gives the relation

f
¥y o= — L2/3 ’ (12)
Cp

*In the original French report, Pp and P were used, respectively.

11
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where Cp is the specific heat of air which is equal to 0.2k cal/(gm)(°C),
and L the Lewis number of the water vapor diffusing into the air (the rela-
tion of the coefficient of diffusion of the water vapor in the air at the
kinematic viscosity of the air) which is equal to 0.866. Equation (12) then
permits one to express numerically an experimental f. in cal/(cm)2(sec)(°C)
and ¥ in gm/(cm)2(sec) by

v = 3.78 fc . (12a)

In this way the graph of Figure 7 represents, with different ordi-

nates, the local coefficient of evaporation just as well as the local coeffi-
cient of convection.

5. Anti-Icing with a Running Wet Surface

We shall first be concerned with the area of impact. We shall sup-
pose that, to prevent icing of this area, it will be necessary to maintain a
temperature 6° higher than the temperature that the surface would have without
heating. Furthermore, in taking account of the effects of frictional heating,
anti-icing would still be assured for tempersastures in the neighborhood of
-10°C,.

The heat that is required is evaluated by taking account of the heat
removed by convection, the heat removed by evaporation, and the heat which
serves to elevate the temperature of all the water caught (sensible heating).

Heat Removed by Convection. The area of impact is contained between
the points -30.9 cm and +35.4 cm along the surface. The estimate, on Figure 7,
of the area contained on the graph between points -3%30.9 and +35.4 on the ab-
scissa allows an estimate of an average coefficient of convection in the im-
pact area; it is about 1.55 x 10-3 cal/(cm)2(sec)(°C). The supply of heat for
a temperature differential of 6°C is therefore 9.3 x 10-2 cal/(cm)2(sec), or
335 keal/(m)2(hr).

Heat Removed by Evaporation. The mean coefficient of evaporation in
the area of impact is, from Equation (12a), equal to 5.84 x 10-3 gm/(cm)2(sec).
In presupposing that the whole area of impact remains constantly wetted, we
shall determine the amount of water evaporated per unit of surface per unit of
time by means of Equation (11). We shall suppose that the saturated atmos-
phere is at -5°C (p, = 0.317 cm of mercury) and the atmospheric pressure is
normal (Pg = 76 cm of mercury); the surface is then at a temperature of about
+5°C (pg = 0.651 cm of mercury).

m = (5.84)(10-3)(0.62)(0.651 - 0.317) _
76

Accomplishing the evaporation at 5°C carries away an amount of heat
equal to 603 cal/gm. Consequently, the loss of heat by evaporation is 9.6 x

1.59 x 10~° gm/(cm)2(sec) .

14
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1073 cal/(cm)2(sec), corresponding to 346 kcal/(m)2(hr). This amount of heat
is practically equal to that removed by convection.

Heat Absorbed by Elevation of the Water Temperature. The maximum
thickness of the airfoil is 42.75 cm. With the efficiency of catch 0.32 and
the velocity about 91 m/sec, the amount of water which impinges per meter of
span per second in the impingement area is contained within a volume of air
equal to

Vo= (0.32)(0.4275)(91) = 12.34 (m)® .

This amount of water distributes itself over a surface area of
0.663 m2 so that the average amount of water caught per second per square me-
ter over the impact area is equal to 18.6 m3,

If the cloud contains a liquid-water content of 1 gm/mS, the amount
of heat required to raise the water 10° is 0.0186 cal/(cm)2(sec), correspond-
ing to 670 kcal/(m)2(hr). In the case of a cloud whose liquid-water content
is much less than 0.1 gm/m3, the amount of heat necessary to raise the water
temperature is much less than that necessary for convection or evaporation,

67 kcal/(m)2(hr). In the case of a high liquid-water content, however, it ex-
ceeds the heat losses by convection and evaporation.

Summarizing, in the case just examined, the heat required over the
impingement area to prevent the formation of ice is 1350 kilocalories per
hour per square meter (335 + 346 + 670). Of course, it is not necessary that
the distribution of heat be uniform over the leading edge, and it is easy, by
means of the curves presented, to calculate a better distribution. A careful
calculation is unnecessary because the distribution law depends essentially
on the volume of water in the cloud.

For a cloud of low liquid-water content, for which the heat supplied
for heating of the water (sensible heating) is relatively small, the heat sup-
plied is twice as much at the stagnation point as at the tangent impingement
point. For a cloud of high liquid-water content, wherein a heavy water-catch
is present at the stagnation point (the fifth part of the impingement zone re-
ceives half of the water), it is necessary, for clearing the leading edge of
ice, to provide an amount of heat much larger at the stagnation point (for ex-
ample, four times as large as at the tangent impingement point).

The water may run back along the length of the airfoil beyond the
zone of impingement; it is therefore necessary to heat a much larger area of
the airfoil. However, the heating of this part can be much less for two rea-
sons: first, the water temperature having been raised above 0°C at the im-
pingement zone, no more heat is required to raise the temperature of the wa-
ter; secondly, the local coefficients of convection and evaporation are quite
small, at least as long as the flow is laminar.

15
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Suppose, to take up again the preceding example, that it is desired
to maintain the airfoil at +5°C as far aft as MO% chord: this amounts to
heating an area about three times larger than that of the impingement area.
The average water-catch efficiencies are, on the portion of the airfoil that
is being considered, 0.45 times smaller than in the impingement zone. The
heat to be supplied over this area is (0.45)(3%5 + 346) = 300 kcal/(m)2(hr).
On the whole, for this large area, the total expenditure of energy is about
that which was necessary over the impingement area.

6. Anti-Icing for Complete Evaporation

The case is first treated of a cloud of low liquid-water content,
corresponding to 0.1 gm/(m)3. An average of 1.86 x 10~* gm/(cm)2(sec) of wa-
ter will be deposited. For evaporation to be complete over this area, it is
necessary, according to equation (11), that the water-vapor pressure at the
surface be

_ IPg b = (1.86)(10"*)(76)

» + 0.317 = 4.22 cm of mercury .
dy (0.62)(5.84)(107%)

Consequently, it is necessary that the temperature of the surface at the im-
pingement area be about 35°C.

The heat loss by convection is then six times larger than that cal-
culated for a running wet surface, being about 2000 kcal/(m)2(hr). To raise
1 gram of water from -5°C to 35°C and to evaporate it at this temperature,
622 calories are necessary. When 6700 gm/(m)2(hr) of water are deposited, the
heat required to evaporate the water is 4170 kcal/(m)?(hr). Finally, the to-
tal heat required for the impingement ares is 6170 kcal/(m)2(hr).

Of course it is enough to heat this impingement area, but, as is the
case for a cloud of much lower liquid-water content, the total required heat
is much greater than for a running wet surface.

The calculations will be taken up again for a cloud of higher liquid-
water content, corresponding to 1 gm/ms. The water-vapor pressure at the sur-
face is 39.3 cm of mercury, corresponding to a surface temperature of 82°Cc.
With this value, the heat loss by convection is 4600 kcal/(m)2(hr). The heat
required to raise the water from -5°C to 82°C and to evaporate the water at
this temperature is 42,600 kcal/(m)3(hr).

In all, it is necessary to supply, over the impingement area,
47,200 keal/(m)2(hr), which is rather high. Complete evaporation can be ef-
fective only in the case of a very light icing condition for the airfoil con-
sidered here.

16
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