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THE MECHANICS OF SUSPENSIONS

1. AIM OF THE MECHANICS OF SUSPENSIONS

1.1. A fluid which contains small particles of solids (dust, coal,
ete.) orcof liquids (droplets of water, oil, paint, or liquid metal) con-
stitutes a su.spensionT If the fluid is a gas, and if the particles are
small, a few microns at most, such a suspension is called an aerosol.

i .

With a suspension having at infinity upstream a velocity Up, let

us place an obstacle, G, in the flow (Fig. 1). The phenomena which we shall

‘Fig., 1

describe would be the same if the suspension were stationary and the obstacle,
G, instead of being immobile, were moving with a velocity of translation Up,.

The streamlines (dotted lines), which are rectilinear at infinity
upstream, have some curvature in the neighborhood of the obstacle. The par-
ticles follow the streamlines 1if these are rectilinear but they have tra-
Jectories distinct from those of the streamlines in the neighborhood of the
obstacle where the dynamic field is no longer uniform.

In what follows we propose to determine analytically and graphi-
cally the trajectories of particles in suspension in a nonuniform, but known,
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dynamic field when the motion of the fluid is two-dimensional or axi-
symmetric, in other words, when the streamlines are plane.

1.2. We shall deal later with the applications of this study. It
seems worth noting from the outset the most important of these.

1.2.1, If the particles have a specific mass larger than that of
the fluid, the trajectories are less curved* than the streamlines; some of
them hit the obstacle, G, and if the particles have adhesive properties, they
will be caught by it, Such is the case for droplets of tar hitting the walls
of a shock purifier; such is also the case for supercooled droplets of water
which freeze upon impact (freezing on airplanes).

We shall learn to determine those regions of the surface of the
body G which are hit by the particles (surface of catch) and the intensity
of the number of particles caught around a given point on the impact surface
(coefficient of catch).

1.2,2. Downstream from the surface of catch and in the potential
flow of the fluid, there are some regions which are deprived of particles as
a result of the deflection of the trajectories (zones of clear air)., The
knowledge of such zones permits the protection of bodies from the impact of
particles while expoging them to the potential flow.

1.2.3. One can also inject small particles into a flow in order
to visualize it, Yet, according to what we have just said, solid particles
do not follow the streamlines. The Mechanics of Suspensions enables one
to find under what conditions the deviation of the trajectories of particles
from the streamlines is small enough for this method of visualization to be
acceptable.

2. EQUATIONS OF THE MECHANICS OF SUSPENSIONS

2.1. General Equafion

2.1.1. We sghall make the hypothesis that the particles are too
few to disturb the fluid flow, so that everywhere the streamlines are iden-
tical to what they would be if the fluid did not have particles in suspension.

* Original article reads "plus tendues” and is presumed to be in error.
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We shall also assume that all the particles are identical. In
reality such is never the case, but the over-all result will be obtained by
superposing the results obtained for particles of various dimensions.

2.1.2, The flow of the fluid is defined by:

1) The characteristics of the fluid, that is, its specific
mass, p': its kinematic viscosity,y/; and its velocity
at infinity upstream, —30'

2) The characteristics of the obstacle, that is, its shape
and one of its diménsions, D,

Starting from the above information,; fluid mechanics allows us to
determine theoretically the dynamic field around the obstacle. We suppose
that the dynamic field is effectively known.

The Mechanics of Suspensions will now permit us to determine the
trajectories of the particles if we define:

3) The characteristics of the particles, that is, their shape,
their specific mass, p; their volume, V; or their total
area, S; or one of their dimensions, d; in the case of a
spherical particle, d is the diameter.

2.1.3. Let M be a point in a dynamic field,-jgf the velocity of
the fluid at that point, and that of the particle at M (Fig. 2)., The
relative velocity, u, of the particle with respect to the fluid is defined
by the relation

2-T-7 . (1)

- =
Let o be the angle between the velocities U and U'; the absolute
value of U is given by the relation

u = V/UE + U'e - 2UU' cos O . (2)
2,1.4, The forces applied to the particle passing the point M are

1) The inertia force, - pV gg;;
dat

2) The pressure forces, Yﬂf;ﬁp dS, where —3 designates the
unit vector normal toithe surface and directed from the inside toward the
outside of the particle. '




Fig. 2

One can transform the surface integral . into a volume integral and write:

_(ffglp as = -J‘J'J; ig—rgp,dv.

Because of the smgll dimensions of the particle, one can replace the volume
integral by V grad p and write:

- ﬁ
]ﬁfs npdS = -V grad p.

3) The drag forces with which the fluid opposes the notion of
the particle moving with the relative velocity U. Because of the small di-
mensions of the particle these forces reduce to a resultant R, which we
shall write, by introducing the projected area S', in its classical form

-
R:-%p*sw’ﬁ. (3)

The drag coefficient is a function, P(ud/N), of the Reynolds
number with re%ggive speed u, The shape of the particle being defined, one
can also write R as

— 1 wp

= - pVuge (udy
R dﬂ(v) (L)
The comparison of Equations 3 and 4 shows that

udy = S'd
£(33) = ¢ - (5)

L) The forces of gravity, equal to g per unit mass. . The
gravitational force which is exerted on a particle is then pVEO
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To sum it up, the equation of motion. of a particle going through
a point M can be written

-oV = d_U) <V grag _p'Vu? f(uvd) + QV? = 0
d
or, dividing by V,
—_ :
o @8+ e pr ot ut) - @ = 0, (6)
dt d %
The Euler equation for the motion of a fluid is
T — =~
o?gf+gradp-pg=0- (7)

Subtracting term by term Equation 6 from 7, one obtains the general
equation which defines the motion of a particle as it goes through M.

—>
? % [ -
o W .o 0T _ _puPeudy (5o on)F (8)

dt dt d v

This is the general equation of the Mechanics of Suspensionsl.

2.2. Possible Simplification of the General Equation

2.2.1. If the relative velocity, u, is very small, the drag force
is proportional to u. Therefore,

rudy - K, (9)

Y ud

where K is a constant which depends on the shape of the particle. The ex-
pression for the drag is

lone can imagine an equation which would be even more general by assuming
that the particle is acted on by a field of uniform forces, H, which may
not necessarily be a gravitational field. One has then

o‘ia p“dU“ < ) s ST (8v)
dt > d bd _
In the particular case where p'g is negligible compared to pH, Equation 8b
"is written

- , -
p@-p'ﬂy = - "uf(Ud)+bHu (80)

pu f(ua
dt at a Yy
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—-) ___;
R = -Kp' Y_i.j_u.
2

2.2.2.  When the particle is spherical (fog drop), Equation 5 shows
“that

f(%‘l) .2 c. © (10)

The coefficient of drag, C, varies with the Reynolds Number
R = ud/b’according to the curve of Fig. 3 (logarithmic coordinates).

2.2v3. In the case where the relative velocity, u, is small and
where the particle
is spherical, it is
known that the drag

100
is given by Stokes' 80 [C i\ %
Law 60 \
- - %0 \
R = —Bﬂ))p' ud . 50 \\
By comparing this 20 \
relation to the 10 \\\
relation of Equa- 8 A\
tion 4, one finds 6 \\\\
that 4 I
5 NAN
p(udy - 18Y(11) 2 NN
7 ud \ \
VN
o.é 1,
and 6 \
O' N
) \ ™
0.
c - & p(Ud) - 2y, 0.3
3 ) ud
0.2
(12) : | R
0.1 ‘ j
0.1 0.5 2 10 50 200 1000 5000
0.2 1 5 .20 100 500 2000 10,000
Fig. 3
On Fig. 3 has been traced in dotted lines the straight line ex-
pressed by Stokes' Law. One sees that beyond R = 1 the drag line deviates
notably from Stokes' Law; from R = 10, the drag coefficient is already twice

that given by Stokes' Law. This law can therefore be applied only to re-
latively small velocities.
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2.2.4. In most applications, and in particular in a case of an
aerosol, the specific mass, p' of the fluid is small compared to the specific
mass oﬁ}the particles; to the contrary, the absolute valg;s of the_gplocities
U and U' and the absolute values of their derivatives, dU/dt and dU"/dt,
are of the same order of magnitude. Therefore, under Formula 8, the term
representing inertia p‘dU'/dt is negligible compared to the term representing
inertia de/dt. Likewise, the term p'g is negligible compared to dé?

The general equation is then simplified and becomes

- I ,
pg.g = _pvﬁf(ﬂd)‘_,_éz
dt a )
2.2.5. We shall show later that as soon as the velocities become
appreciable, the term allowing for gravitation is negligible. The general
equation is simplified further and becomes
dﬁa uf? ud (1k)

e o =
° T P 3 (¥)

(13)

Of course, in either Formula 13 or 1k, one can use the value of
the function f(ud/y’) defined in the particular case 2.2.1, 2.2.2, and 2.2.3.

5. SIMITARITY REIATIONS IN THE MECHANICS OF SUSPENSIONS

The study of similarity in the mechanics of suspensions is of great
interest for the interpretation of experiments on models and, as we shall see
later, for the comstruction of trajectories.

3.1. General Conditions

3.3.1. Let us vary the quantities which characterize the particles
and the fluid, retaining the shape of the particle and of the obstacle, ac-
cording to the following conditions:

- the dimensions of the obstacle are multiplied by a factorl‘&(similarity
relationship between the obstacle and the dynamic field);

- the dimensions of the particle are multiplied by a factor \;
- the specific mass of the fluid is multiplied by a factor A';
- the specific mass of the particles is multiplied by a factor A;

- the kinematic viscosity of the fluid is multiplied by a factor “X;

the velocity of the fluid at infinity upstream is multiplied by

INY
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In general, such variations result in important modifications in
the network of trajectories and streamlines.

3.1.2. Let us imagine that the preceding variations modify neither
the relative positions of the trajectories of the particles nor those of
the streamlines. In other words, the velocity field is in the second flow
gimilar to what it was in the first one. It follows from Equatigns 1 and 2
that the magnitudes of all the veloc1t1es are multiplied bylf&/ and,
therefore, the accelerations by - /GD . Equation 8, therefore, becomes

AU _ prgr A\ AU' _ Ao AN e (AN ud Lo e
— -4 — . = £ (25 dp - A . (1
Apé%dt B2 & VRGO LY + (dp p')g" (15)

If the following conditions are imposed on the multiplier:

AoE A A= s @‘?; 1; @‘% = 1, (16)

it is seen that Equation 15 is identical to Equation 81.

3.1.3. Let us consider two geometrically similar obstacles of
which D and D are two characteristic lengths. Iet us place these obstacles
in fluids of kinematic viscosities g; and Lj 12 of specific masses p' and
pl and with velocities at infinity Upy and UOl similarly oriented with respect
to the corresponding, obstacles. Let us assume that particles of similar
shapes are in suspension in each of these fluids; d and dj are two character-
istic lengths of these particles, and p and Py are thelr specific masses
respectively.

If the equations

" 2

o . P1.p _ D1 up _ Uoibi, 5 Yol (17a)
. > = T = N ’ a
p! o 4a a’ VY y D Dy !

which follows from the conditions in (16), are satisfied, the networks formed
by the streamlines and the trajectories of the particles around each of the
obstacles are geometrically similar,

1t Equation 8c, given in Footnote 1 of Paragraph 2.1.4, let us imagine that
the field H is in addition multiplied by the factor K. This equation
becomes

e 4 2 4
A @ - A'pt __Z_&? ant L o ap! AR A ud) \KoE (15¢)
@9 G- at Xl @2 @'X,Y
This equation is identical to Equation 8¢ if

A = A A_—_}\; A;g__l; K:—@[_\‘E

@L (16c)
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It is immediately seen that the system in (17a) is equivalent to
the system

UgD _ UoiD1 ., Uod _ Ugqidy o _ R1, U%_U%l
i o
)/ 1 1 P Dl 1
or else
) 2
Ud _ Uoidg, D _ D1 p _ Pl U0 _ Ugl .

= B} = T = s =
Y vy oa d;” B o, d dq
These similarity conditions show that the flow remains similar to
itself if, having varied arbitrary p and D (or d), we choose the four re-
maining quantities p', Up, d, and Y~ in such a way that the conditions in
(17) are satisfiedl.

3.2. Simplification of the Similarity Conditions

3.2.1. When gravitation is negligible, the last term of Equation
15 disappears and, as a result, the last condition in (16) is superfluous.
The first three are enough for Equation 15 to be identical to Equation 8.
Similarity conditions are therefore reduced to

o - DD WD Igh | (18)
d dq Y 1
3.2.2. For an aerosol, assuming gravity negligible as well as the

term p! dU'/dt, the last terms of each member of the relation in Equation 15
disappear. To ensure similarity, the only conditions required are

AN AT
A _)\A.,@i 1

which can be written

1In the case of a uniform field ﬁz the size of which varies (footnote 1 of
paragraph 2.1.4), the conditions of similarity are retained according to
Equation l6c (footnote 1 of paragraph 3.1.2),

p_ _ e, D = Dy, UD _ Toihy, di _ dif1 (17¢)
or T el d g Y i’ % %

One derives easily from the above relations

5 @_lf (?[1)2 %)5 G‘EY (172)
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3.35. A Few Conclusions

From the conditions of (17), (18), and (19) one can make certain
conclusions concerning the possibility of experiments with models. -

3.3.1l. Assuming gravitation is not negligible, let us define the
value of D. The second equation in (17) gives the dimension, d, of the
particle; the fourth gives the velocity, UO; and, finally, the third gives
the kinematic viscosity, )/ . This last factor is hard to modify, so that
experiments with scaled-down models are practically impossible if gravitation
cannot be neglected.

3.3.2. Let us assume that gravitation is negligible and define
the value of D. The second equation in (18) gives the value of d; the third
equation gives the value of UO/)/ . It is then possible to define the value
of Y/ and to modify Uy in order to realize similarity.

The case of an aerosol 1s the same as the latter, since we have
assumed above that the specific masses p and p' remain constant, which makes
Equation 19 coincide with Equation 18.

3.3.3. Therefore, let us consider the fluid of defined character-
istics (p' and M) constants) and a solid of constant specific mass, p. If
the dimensions of the obstacle are divided by N , the flow will be similar
to itself if the dimensions of the particles are divided by A and the ve--
locity at infinity upstream is multiplied by A 1,

4. CGRAPHICAL DETERMINATION OF TRAJECTCRIES

4,1. Conditions of Application

We shall develop a graphical method which permits one to trace,
from point to point, the trajectory of particles in suspension in a fluid

LConsider the case where the factors D and o' vary together and where we
are dealing with an aerosol with negligible gravitation (the case of air
models flying at variable altitudes). It is easy to see that in order

to have similarity of flow, when D is divided byA and p' by A', one
must, according to relation 19, divide d by the product A A' and multiply
Uo by the product Z\ A'.

10
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in motion. This method as presented assumes that the following conditions
hold.

4y 1,1, First Condition. The fluid has a negligible specific mass
compared to that of the particles. We are referring to an aerosol such as
a fog, a cloud, a sand storm, etc. In addition, the velocities are large
enough for gravitation to be negligible.

We have seen that under these conditions the motion of a particle
is defined everywhere by the vectorial equation

.ﬁ
pdU = -p'uR () . (14)
dt a K4
In addition, the similarity conditions are defined by the two
relations
. 1

_ Thus, all the characteristics of the flow are defined by the two
dimensionless numbers Uod/)/ and p'D/pd.

4,1.2. Second Condition. The trajectories of the particles are
contained in planes. This second condition holds if the obstacle is a
cylinder of infinite span of‘ﬂﬁich the generating lines are perpendicular
to the velocity at infinity, 0. All that is required then is to trace
the trajectories in a plane perpendicular to the generating lines.

This condition is also satisfied if the obstacle is a solid of
revolution, the velocity at infinity being parallel to the axis of rotation.
It is only necessary then to trace the trajectories in a meridian plane.

4.2, Principle of the Method

4.2.1. TLet us consider the
trajectory which goes through point M
(Fig. 4). Tet us project the vectorial i -
equation (14) onto the tangent MU to the N
trajectory, oriented in the direction of
the vector U and onto the normal MN to
the trajectory obtained from MT by a
rotation of + n/2 around M. /A

N
al e

11
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We thus obtain the intrinsic equation of motion of a particle
going through M. '

Let us call d{ the element of arc of the trajectory, o the alge-
braic angle 'ﬁ, HV which forms the two velocity vectors at M, and R the
radius of curvature of the trajectory at the point M (R positive when the

center of curvature goes through the half-normal MN, negative in other cases).

The intrinsic equations are written

UdU =p' (U' cos @ - U)u f(ud) (20)
af- pd v
and
EE' .yt ginau f(Eg) (21)
R Y Y/
where, as above,
- -
T = U0-1. (1)
-7 -

4 .2,2. Let us assume that at point A, we know velocity TU' and U
of the fluid and of the particle. Equation 1 then gives us the relative
. = . .
velocity, U; its absolute value is

u =V U2+ U2 - 2uU' cos (2)

Equation 21 gives the algebraic value R of the radius of curvature
of the trajectory at A and, therefore, the position of the corresponding
center of curvature. We can trace the element AB of the trajectory by
equating it at point A to the arc of a circle of the same curvature (Fig. 1).

To know the absolute value Ug = Uy + AU of the velocity of the
particle going through point B, one need only substitute in Equation 20
(considered as a difference equation) the value of the arc AB for the
differential element d.£.

The velocity vector of the particle at point B is as dqggrmined
and since we know from the aerodynamic field the velocity vector U} of the
fluid at point B, we can construct, starting from B, a new arc BC, and so
on from point to point;

4,2.3, The preceding reasoning assumegfghat at point A, where we
start the construction of the trajectory vector, U is known. This is never
the case. To begin with, it is_asesumed that at point A (far enough from
the obstacle for the velocity UA of the fluid to be very little different

~ 12
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-
from its velocity at infinity) the particle has kept the velocity Uy which
it had far away.

By starting from different points A at different distances away
from the obstacle, we have been able to confirm that the error made at the
start is readily noticed. The method has a kind of autocorrection of local
errors which is worth stressing. ILet us assume that at point C of the
trajectory (Fig. 1) we have used too high a radius of curvature. As a result
the trajectory is too straight and the angle which it makes with the stream-
lines going through D is too large; Formula 21 shows that the radius of
curvature computed at point D 1is too low. This deviation by error which
one gets at point D compensates in part for the deviation to excess which we
had at point C.

4.3, Practical‘Computation of the Radius of Curvature at a Point

4.,3.1. If the aerosol is fog, the particles are spherical droplets
of diameter d, and to every value of the velocity u corresponds a value
of the function f(udég ) g%zgn by the curve of Fig. 3. Thus, knowledge at
one point of vectors U and U' determines the numerical values of U, U', u,
a, and f(ud/y ). Equation 21, therefore, permits us to calculate readily
the radius of curvature, R, at this point. The following remarks show
that a computation of this radius is often simplified.

- —

4.,3,2, If the absolute values of U and TU' are close to each
other, a condition which holds if the point in question is not too close to
the obstacle, the absolute value of the relative velocity U is, according
to Equation 2, equal to

u = 20 gin &
2

Relation 21 then leads to the following expression of the radius
of curvature, which involves only the values of U' and of a:
pd 1

R = .
2p' sin a sin % f/ 2u'd

e (e2)
sin &
2

S

4.3.3. If one is still far from the obstacle and if the angle Q
is small enough for its sine to be equated to its value in radians, Equation
22 simplifies further to give

R = & | L
plal 7 U'dlﬁ al
%

4,34, Finally, if the velocity u is itself small, Stokes' Law
is applicable and one can write, according to (9), (10), and (12),

(23)

13
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. pdfUr 2l
l8p';/| O&' (24)

This last formula can be used as long as the Reynolds Number ud/;/
is smaller than unity.

4.3.5. If, in the course of the construction of a trajectory,
Formula 24 is proven to be continually applicable, a remaining small, the
trajectory follows the streamlines close enough for U and U' to be used con-
stantly one for the other; only Formula 24 is involved in the construction
while Formula 20 is not.

Let us imagine, in that case, one obstacle around which we have two
flows with the same streamlines and differing only by velocities at infinity
Ug and Upy. Consider two spherical particles of the same density, and of
diameters d and dj, one of each placed in two flows and in the same positionm.
If the relation 1s satisfied, Formula 24 shows that the two trajectories
coincide.

As a result, if one has constructed, making use only of Formula 24,
a field of trajectories corresponding to a velocity Up and of particles of
diameter d, the same network of trajectories will be obtained for a flow
velocity U < U, and particles of diameter d, so that the relation
5 0l ~, 0 ] 1
Upd= = UOldl is satisfied-+.

4.3.6. In order to know which one of the preceding formulas should
be used, it is important to determine the approximation that can be tolerated
in the computation of the radius of curvature. This approximation causes not

- only an error in construction of the corresponding small arc of a circle but
also an error in the angle of the tangent to the end of the arc and the tan-
gent to the streamline which goes through that end; this last error has an
influence of a compuﬁation of a réddius of curvature of the following arc.

Let MM'" be the arc of a circle
with which we replace an element of tra-
Jectory (Fig. 5). Let us call the angle - v 4
at the corresponding center (W , which
is also the acute angle between the tan-
gents of both ends of the arc. Let us
use two coordinate axes, Mx' and My',
the first tangent at M to the arc of
circle and oriented in the direction of
motion and the second perpendicular and
oriented toward the center. If we M M
define M' = ¢ = wWwR, the coordinates
of M' are

Fig. 5

1This last remark has been made by Mr. Le Gallo, of ONERA, while using this
method.

1k
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X' = Rsin W/ ; y!

R(1 - cos V).

The length /Z of the arc being satisfied, an error AR made in the
computation of the radius of curvature causes an errorg:

1 ;
= - Z=_ AR
A REA

on the angle, «t/ , and, as a consequence the following errors on the coordi-
nates of M':

Ax' = (sin e -w cos &)A “.22 sR = L2 R
2 2R?
Ayt = (1 - cosu) - wsin W)R = -'4)5.2_ AR = -'ZER—EABG

Let us determine the importance of these errors by two numerical
applications. ILet us take, for instance, R = 56 cm, and L= 1cm. If
the radius R is calculated to approximately 1 cm, the errors Ax', Ay', and
A,u) are negligible, since

radian.

Ay?

1 ' 1
AxHY cm; cm; IALL)
| < ’ < 6000 ~~ < 3000
Let us consider now the case where R = 10 cm, while [ = 2 cm.
If the approximation in the radius R is 1 mm, the errors in Ax', Ay'’, and
fu) remain acceptable, since

3. 105

< —2_ cm; AVJ <
5000 1000

Therefore, as long as the radius of curvature is large (R > 25 cm),

it can be computed with an approximation of 1 cm; when it is around 20 cm,

it is necessary to compute it with an approximation of only a few mm.

AR radian.

Ay! < 2, cm;
- 1000

4.k, Case When Gravitational Forces Are No Longer Negligible .

4.4.,1. We shall determine now the trajectories of particles in a
different case from that studied in paragraph 4.1.

1) We shall assume that the fluid has a negligible specific mass
copared to that of the particles, but we shall keep the gravitational term
of the particles. The vectorial equation of motion is then everywhere

- >
-
0 a - . o! w e (1_)1}1.) + pg. (13)
dt d

2) The streamlines are planes and, furthermore they are in vertical
planes., ' A ;

15
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This last condition holds if the obstacle is a cylinder, of which the gener-.
ating lines perpendicular to the velocity at infinity upstream are horizon=
tal, and equally, if the obstacle is a body of revolution of which the axis
parallel to the velocity at infinity is vertical. The trajectories are
obviously in the same planes as the streamlines.

4.4,2. Let us consider a
vertical plane containing a group of
streamlines (Fig. 6); let us state that
in that plane the trigonometric sense
hag the positive sense of rotation. ILet
us define

@ -0 OB - s

Let us project the two sides
of Equation 13 on the tangent MT to the
velocity of the particles oriented pos-
itively in the direction of that velo-
city and on the normal MN deduced from Fig. 6
MT by rotation of the angle, x/2, around
point M. We have

N 1
v - po_ (Utcos @ - U) u f(Eg) + g cos B (25)
o/ od v
‘and
gé _ e U' sin qu f (ud) + gsinB (26)
R pd 7 '

R is the radius of curvature of the trajectory (positive if the center of
curvature is on the positive semi-straight line MN; negative, in the opposite
case) .

We define
Lo p! Ui gr@dy; L - _€sinp. (27)
Ry od U2 /7 Ry U2

Relation 26 can be written

Hence the theorem:

The eurvature l/R of the trajectory at a point M is
equivalent to the curvature l/Rl which it would have if gravity
were neglected, plus the curvature l/R2 which it would have if -

16
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the velocity U and U' of the particle and of the fluid had the

same direction!.

Gravitation thus introduces in the computation of R a correction
term which depends only on the velocity U and on the angle B.

L.4.3. The construction of a trajectory is accomplished as in
the case where gravitation is negligible (L4.2.2).

Knowing the velocitiesjgland.ﬁ? at a given point A, one measures
on the drawing the angles o and B. Then the quantities appearing in the
second terms of Formulas 25 and 26 are known and one can, in particular com-
pute l/R. An element AB of the trajectory can be drawn by comparing it to
an arc of a circle with radius R and then continuing step by step.

L.k, We are now able to evaluate the error made when gravita-
tion is neglected. Formula 28 can be written

Rl -R _ Bl . %ﬁsinﬁ. : (29)
R Ro )
The relative error (R; - R)/R which is made on the radius of cur-
vature R when 1t is replaced by Ryl repeatedly diminishes when the velocity
U increases.

Let us illustrate this point by a few numerical examples, assuming
g = 10m/s?, B = x/2, and Ry and Ry to have the same sign (the most un-
favorable case), For U = lm/s andR; = 8cm, (Ry - R)/R = 0.8. Tt
would be absurd, in this case, to neglect gravity.

Ry, = 80cm BL-R = 0.08
R
For U = 10 m/s
R, = 8 cm, Elﬁ_]%__li = 0.008..

The error of 6.5 cm on a radius of the order of 85 cm is not neg-
ligible. However, one can tolerate an error of 0.65 mm on a radius of 8 cm,

Ry

80 em, B1 =R - 0.009
R

For U = 30 m/s
Ry = 8cm 8L -8 = 0:0009.
R

lThe curves are algebraic numbers, the symbols for which have been defined
above.

17
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Up = 10m/s 4 = 1240 UD = 26800 4 = 51074
L

Fig. 12

w)

It is possible to tolerate an error of 0.72 cm on a radius of 80 cm
and, consequently, an error of 0.07 mm on a radius of 8 cm.

To sum up, to neglect gravity for velocities inferior to 1 m/s
would lead to absurd results. On the contrary, it is permissible to neglect
gravity when velocities are greater than 20 m/s, especially when the radii of
curvature of trajectories are smaller.

5. APPLICATION OF MECHANICS OF SUSPENSIONS TO VISUALIZATION

5.1. The method of visualization of streamlines of suspensions of
particles cannot rigorously give a picture in the neighborhood of an obstacle
since, as we have seen, the trajectories of particles are distinct from
streamlines,

We want to learn in which cases the deviation of the trajectories
of particles from streamlines is small enough for this method of visualiza-
tion to be of interest. With this goal in mind, we have drawn (solid lines)
the trajectories of aluminum particles; assumed spherical and put on suspen-
sion in a flow, with a wake, around a cylinder of revolution of infinite span,
the velocity of the fluid at infinity being perpendicular to the generating
lines of the cylinder.

The various cases which were studied are summed up in the table on
the following page.

5.2. Iet us examine Figs. 7, 8, 9, and 10 corresponding to a velo-
city of Ub = 125 m/s and to a cylinder of diameter D = L4 cm. These fig-
ures show us the influence of particle size.

19
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S R ] :
7 125 2 336,000 0.5 x 1074
8 125 3 336,000 0.75 x 1074
9 125 5 336,000 1.25 x 1074
10 125 12 336,000 5 x 1074
11 5 12 13,400 3 x 107}
12 10 12 26,800 3 x 1074
13 25 12 67,000 3 x 10'1*

Fig. 13

In the case of Fig. 7, where the particles have a diameter of 2
microns, the deviation of the trajectories from the streamlines is insignifi-
cant, It can be said that with such fine particles, visualization is good,
even for high Reynolds Numbers.

As Fig. 8 shows, when the diameter of the particle increases from
2 to 3 microns, the catch is already appreciable, but on the whole, visuali-
zation remains good. For a diameter of 5 microns the network of trajectories
is quite distinct from that of the streamlines. We find downstream an appar-
ent wake of greater width than the real wake. In other words, there exists
a reglon of clear air belonging to the potential flow.

With particles of 12 microns, the discrepancy between the two net-
works is considerable and visualization is very poor.

5.3, Figs. 10, 11, 12, and 13 refer to particles of diemeter
d = 12 microns and to a cylinder of diemeter D = 4 cm. They show the
influence of the velocity Up. If U, = 5 m/s, visualization is good.
Streemlines and trajectories differ but little.

20
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If Uy = 10 m/s, the deficiency between the network of streamlines
and that of trajectories is already considerable. One finds again an apparent
wake of greater width than the actual wake. If Uy = 25 m/s visualization

is really poor.

5.4, The particles in suspension in fluids are not homogeneous;
both their sizes and their shapes necessarily differ. As a result, if two
particles are placed in identical conditions the drag force will not be the
same. In order to elevate this influence, when one considers first one par-
ticle and then another in the same stream, we have superposed in the same
drawing the trajectories of particles of 2 microns and 5 microns in diameter
for a velocity Uy = 125 m/s (Fig. 14); then, the trajectories of two other
particles of 2 microns and 12 microns, respectively, in diameter at the same
flow velocity (Fig. 15).

Fig. 14 shows that in the neighborhood of the obstacle the trajec-
tories mix or cross; in particular, two trajectories are seen intersecting
each other twice. From this must result a certain lack of definition in
the visualization, which might lead one to believe in the presence of a tur-
bulence which in reality does not exist. ILet us observe, on the other hand,
that a slight turbulence cannot alter trajectories because of the inertia of
the particles. We conclude that visualization by the suspension of particles
may lead to erroneous interpretations in the matter of turbulencel,

Fig. 15, where the trajectories of particles of very different di-
mensions (2 microns and 12 microns) have been superposed, shows that with a
very large heterogeneity of particles the aspect of a suspension must be very
i1l defined and visualization makes no sinse,

6. APPLICATION OF THE MECHANICS OF SUSPENSIONS
TO CHRONOPHOTOGRAPHIC MEASUREMENTS

"
6.1. The measurement of the velocity U' at a given point of a

rapid flow can be made by successive photographs of particles in suspension
in a stream. This process assumes first of all that the trajectories are

lOne might also wonder what happens to the particles which strike the obstacle
and which are more numerous the greater the dimension, d, is. Carried away
by the air stream, they must increase the density of the trajectories in

the neighborhood of the tangent trajectory. To this fact may be due the
precision with which one may see the apparent wake in certain photographs

of aerosols in motion.
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considered with the streamlines and we know that such a result requires, rig-
orously, a uniform dynamic field.

Let us then imagine a cylindrical fluid stream where the velocity
is equal td—ﬁ% at every point. ILet us release a solid particle without in-
itial velocity at a given point O of this fluid flow; its trajectory will be
coincident with a streamline, but the absolute value of its velocity will
reach the value Uy only at point A situated downstream of 0. Chronophotography
as a means of measuring the velocity of a stream can be used only from
point A on. Tt is therefore useful to know the order of magnitude of the
distance OA.

6.2. Let U = k Uy be the velocity of the particle at a point M
defined by OM = j{ . Since & = O and since u = Uy - U, Equation 20

yields
v _ o' LUo-U [(Uo- ]
il

dk é_'_(l-k)g Uo(l - k)d| .
: EZZ - o) d £ [_ Y i]

Thus, the distance 4€?traversed as the particle reaches the fraction
k of the velocity UO;is

g= &4 k 1 dk. (30)
p'oj -1 fEl-k)U_%_ﬂ

If we assume that Stokes' Law applies, the integration is made easy
and leads to

= 04 Uad 100 [(1- k) +X%] .
4 187 v gek: ) j

Thus, the length that the particle must traverse in order to reach
a given fraction of the stream velocity UO is proportional to the velocity
Ug, to the square of the diameter d, and to the ratio of the specific masses
of the particle and of the fluid.

A numerical application in a case of a spherical aluminum particle
10 microns in diameter placed in an air stream of which the velocity is
30 m/s, under standard conditions, leads to the following table.

k|0.9 - 0.98 0.99
Z |2.8 em 6 cm 7.2 cm

Stokes' Law is not applicable if, everything else remaining the
same, the velocity Up 1s 300 m/spinstead‘of 30'm/s. The computation of the

23
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integral appearing in Equation 30 can be made by an approximate method using
the experimental curve of Fig. 3. One thus finds that if k = 0.932:: 10 cm
Stokes' Law would have given 25 cm.

6.3. Although it is possible to follow, with the help of Equation
20, the evolution of the velocity of a particle on its trajectory, we have
often assumed that in the drawing of trajectories around an obstacle the ab-
solute values of the velocities U and U! are close together.

We shall shoy that this assertion is justified as long as the gradi-
ent of the velocity U' is small and the angle o is relatively small.

1) Let us first assume that in the neighborhood of point A of the
field a velocity UA of the fluid can be considered constant and that the
angle @ between the two velocities 1s zero. Let U = k,U{ be the velocity
of the particle at point A. The computation made above (62) immediately
shows that the dlstance 4 which a particle must traverse for its velocity

U to the equal to kUA is

/é? 9—»‘// 1 - k2 [(l % ¥) Uéj]dk

In the case where Stokes' Law applies, let

pd UAd 1l -k
—— —— |lo -
1801 V ge l ~ kA ~+ k kA °

In particular let us consider a droplet of water 10 microns in di-
ameter placed in air under standards conditions. If at point A the fluid has
a velocity of 10 m/s and the drop a velocity of 0.75 x 10 m/s, the drop will
have, after having gone 1 cm, a velocity of 0.99 x 10 m/s,

One sees from this example that the droplet regains rapidly the ve-
locity of the fluid when the latter does not vary.

2) Let us now seek the influence that the angle o of the two veloc-
ities can have on the variations of the absolute value of this velocity U,

Let us therefore assume that at point A the absolute values of the
two velocities are practically equal and that the angle o is small. Since

u = 2U sin 0/2, Equation 20 can be written
. 2ud sin -
v QQ— 2(cos o - 1) sin &
dL od

| 20d sin 2
v _ L 81n5 =
al
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If the angle @ is small enough to be equated to the sine and to the

U _ _Up' Befvax ).
al 2pd @3{7>

If, finally, Stokes' Law is applicable

g‘.g = _______9Q')) (g)
al o} d
In particﬁlar, if we consider again the case of the preceding water
droplet, & = 0.4 radian, dU/d  is smaller than 40. After a distance of 1
cm the velocity has changed by less than 40 cm/s, or 4% of its value.

6.4%. TFinally, let us examine the influence of gravity on the
velocity of a particle.

Equation 25 can be written

pd \ U
and in this form one sees that dU is the sum of two terms; the first gives
the variation of velocity when gravity is neglected; the second measures the
correction to be made in order for gravity to be taken into account.

aw = o° Ecoso:—l)uf(u_d)d[ +§.cos§d/,
U

This corrective term, inversely proportional to U, is negligible
when speeds are large, especially if the angle B is close to 90°. Thus,
with U = 10 m/s and B = 96°, the relative error made in the variation of
velocity by neglecting gravity is only 1%.

7. APPLICATION OF THE MECHANICS OF SUSPENSIONS TO CATCH PHENOMENA
- - l

7.1, Definition of the Total Coefficients of Catch

7.1.1. At the beginning of our study (1.2.1) we have mentioned the
interest created by the study of catch phenomena. Let us make a few defini-
tions.

Let us consider a plane, P, perpendicular to the velocity at infin-
ity upstream and far from the obstacle (Fig. 16). Consider the sections made
by the plane, P:

-_gﬁ the cylinder circumscribing the obstacle parallel to the velocity
Ups let 3} be the area of this section (projected area).
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- of the tube made by the particles which strike the obstacle; let S be
the area of that section.

—_9£ the cylinder whose generating lines are parallel to the velocity
Up and whose directrix is the curve which bounds, on the obstacle, the
region of impact;l let ¢ be the area of that section.

We shall designate the ratio

L= = (31)

as the total coefficient of catch relative to the projected area...It is

the ratio of the mass of the particles caught by the obstacle in a unit time
to the mass of the particles which would flow through the projected area
during the same time if the obstacle were removed.

We shall designate the ratio

l_'I = = . (52)

ag the total coefficient of catch relative to the region of impact. It is -

the ratio of the mass of the particles caught during the unit time to that -

which would hit the region of iImpact during the same time 1f the trajectories
remained rectilinear.up to the obstacle.

T.2. Definition of Local Coefficient of Catch

Let us consider, within the region of impact, an area A simply con-
nected and a point M within this area (Fig. 17).

The trajectories of the particles caught within area A are inside
a tube the trace of which on plane P at infinity upstream is a surface area
Slo

The cylinder whose generating lines are parallel to U. and whose
directrix is the boundary of the area A has for a trace on the plane P a

curve which is the boundary of the area oy -

We shall designate A the ratio

PA = %i‘ (55)

IThe curve is the locus of the points of tangency of the trajectories to the
obstacle.
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as the mean coefficient of catch relative to ared.A., The local coefficient
of catch, ¥~ , at point M is the limit of this ratio when the area A tends to
zero uniformly, while the point M remains inside this area.

7.3. Remarks on Preceding Definitions

7.3.1. The total coefficient of catch relative to the zero of im-
pact is equal to the mean of the local coefficients of catch. The reason
we have considered it is that the total coefficient relative to the projected
area has more visual meaning.

Lo 0

Figs. 16 and 17

T.3.2. The ratios of the masses of particles which were inter-
jected into the definitions of the coefficients of catch can be replaced by
the ratios of the numbers of particles, when these particles are identical.

7.3.3. Under the assumption that the particles are few enough to
cause no perturbation in the flow of the fluid, the coefficient of catch,
everything else being equal, is independent of the number of particles con-
tained in the unit volume of the fluid.

7.4. Application of the Similarity Relations to the Coefficients of Catch

7.4.1. If the two flows are similar, in their streamlines as well
as in their particle trajectories, the coefficients of catch are equal for

27
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these two flows, They differ, on the other hand, if any one of the similarity
conditions fails to be satisfied (17).

Thus, in case gravity forces are negligible (3.2.1), the total co-
efficient of catch is a function of the three dimensionless numbers, UOD/)/g

' D
Pz"f’(l?},g:g? : (34)

D/d, and p/p'.

Figs. 18 and 19

If, in addition, we are dealing with an aerosol (3.2.2), the expression for
the coefficient of catch becomes

Updp'  p'D

= 1 S .

r' '\// /b( 5 od (55)
T7.4.2, It is possible to give some qualitative information on the

variations of the functions yr and yr*.

1) The relative motion of the particles is hindered by the viscos-
ity of the fluid; the greater this viscosity, the smaller the coefficient
of catch which is thus an increasing function of the Reynolds Number
R = UOD/L) or Uod/L) . One can thus conclude that the coefficient of
catch is an increasing function of the velocity at infinity Up.

2) When the dimensions of the particles increase, the inertia forces
which are proportional to the volume increase faster then the forces which
oppose the relative motion of the particles in the fluid., The latter are
proportional to a power of the dimension d between 1 and 2. Accordingly the
coefficient of catch is an increasing function of the characteristic dimen-
sion d of the particles, Hence in Relation 34 it is a decreasing function
of the dimensionless number D/4.
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3) If, all other things being equal, the specific mass p of the
particles increases, their inertia forces increase; the coefficient of catch
is an increasing function of the specific mass of the particles. Hence in
Relation 34 it is an increasing function of the dimensionless number p/p’ or,
in Equation 35, of the dimensionless number p'D/pd.

4) The theory yields no direct information on the way in which the
coefficient of catch varies when the characteristic dimension D of the ob-
stacle or the specific mass of the fluid p' (viscosity being assumed constant)
vary. The coefficient[ﬁ is an increasing function of the Reynolds number
UOD/»/ (where p' and D appear in the numerator) and a decreasing function
of the numbers D/d and p'/p (where p' and D also appear in the numerator).

The predominant factor cannot be known a priori.

However, Relations 34 and 35 show that the factor D hasia smaller
influence on the coefficient of catch than the factors UO and d. For if we
multiply by p the dimension D we modify the coefficient of catch in the same
way as if we multiplied simultaneously by p the velocity Uy and by l/p the
dimension d of a particle. Since those two effects cancel each other, the
resulting effect is smaller than that of each appearing separately.

Similarly, for the particular case of Equation 25 it is seen that
it is equivalent, as.far as catch is concerned, to multiply p' by p or to
multiply simultaneously U0 and D by p. Since it has been seen that the in-
fluence of the velocity Up on the coefficient of catch is greater than the
influence of the dimension D on that coefficient, when p' diminishes the
coefficient of catch also diminishes. Thus the intensity of catch has a
tendency to decrease slightly as the altitude increases.

7.5. Graphical Determination of the Catch Coefficients

The drawing of the trajectories can be made both for plane flow and
for axially symmetric flows (4). Starting from the curves thus obtained it
is possible to evaluate the various coefficients of catch.

7.5.1. Iet us consider the case of a cylinder of infinite span
whose generating lines are normal to the velocity at infinity upstream U,
(Fig. 18).

The areas S, 2: 5 0y 51, and o7 defined above are here rectangles
of equal base (the length being arbitrary and chosen on one generating line
of the cylinder). The ratio of any two of these areas is thus equal to the
ratio of the two heights which can be read on the drawing.

It follows that with the notations shown in the figure, the total
coefficient of catch relative to the projected area is h/D; the total
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coefficient relative to the region of impact is h/H; the mean coefficient
around the point M, which can practically be identified with the local
coefficient at point M, is hy/Hj.

1
Ic
0.8 “i
IR

0.4 \\\\\ .
T~

R=11

0.2

s s o S s M — — — e

e e e ——

e o —o— O—— ottt e

~—~
Figs, 20 and 21 ~~—_- —

7.5.2. Let us consider the case of a body of revolution, whose
axis is parallel to the velocity at infinity UC (Fig. 19).

The streamlines and the trajectories are contained in planes which
go through the axis and the network which they form remains identical to it-
self when one passes from one meridian plane to another.

The areas of impact which we shall consider will therefore be con-
tained in zones generated by meridian arcs. Hence, using the notation shown
on Fig. 19, the total coefficient of catch relative to the projected area is
(r/RO)E; the total coefficient relative to the zone of impact is (r/R)2; the
local coefficient at point M is the 1limit of the mean coefficient on the

20
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hatched region when r! and Ri reépectivelg tend towards ry and Ry; it is rep-
resented by rldrl/Rlde = d(ri)/d(Rl)Q.

7.5.3. In order to take into account the influence of gravitational
forces, the conditions specified in 4.4 must be fulfilled so as to be able to
draw trajectories. For instance, we know that if the body of revolution does
not have a vertical axis the trajectories are not plane and the method which
has been developed does not permit the construction of the trajectories and
congequently the graphical determination of the coefficients of catch cannot
be made.

7.6. A Few Results

The graphical method has been used to determine the coefficients of
catch of a cylinder of revolution of infinite span placed normal to the ve-
locity at infinity. Fig. 20 gives the total coefficients of catch relative
to the projected area as a function of the dimensionless number p'D/pd for
three Reynolds Numbers. The results already specified in 7.4 are found on

this graph. 1
.95
I 0.9
0.8
o. 77 \\o )
| &6
N
0.1 71 0 l;\\ i
intrados ol3[ \. 0.1t extrgdos
oj2 \\\‘
0410 )/ i Opl ~— 0.[21
cm 30 25 20 15 10 5 0 5 10 15 20 25 30 35 cm
Fig, 22

We have also studied, by the graphical method, catch rates on a
Joukowski profile (GOttingen 430). Fig. 21 corresponds to a profile with a
3-meter chord, a 6°33' angle of attack, a 91-m/s velocity, Up, and a suspension

Lite nave supposed implicitly that the obstacle was limited by a surface simply
commected (sphere, ellipsoid, etc.). In the case of the torus (order of
connection equal to two), the total coefficients of catch are calculated by
formulas anologous to those which glve the mean coefficients on a zone of a
surface simply connected.
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of droplets of water 30 microns in diameter. Curve 22 gives the local coef-
ficient of catch as a function of the curvilinear abscissa with the stagnation
point as an origin. The total coefficient of catch[_1c is 0.32 and the zone
of impact extend over about 9% of the chord length.

7.6.2. If the graph of the trajectories are continued beyond their
point of contact with the obstacle it is found that some streamlines are be-
tween the obstacle and the tangent trajectory. Hence there exists a region
of air deprived of particles yet within the potential flow region (Fig. 23).
Such a region exists even 1f the wake i1s considered: this has been demon-
strated both by the graphical method and by experiments.

It is obvious that in the immediate neighborhood of the tangent
trajectory, the trajectories crowd each other and mass flow of particles per
unit volume becomes very large.

7.6.3. The applications of the above results are varied. Aside
from the icing of flying objects, for which our study was undertaken, one
could mention the cooling of bodies in motion across ¢louds, the catching
of droplets of fog for study purposes, the operation of shock purifiers, the
inhalation of medical aerosols, etc. We shall pass over the details of
these applications as well as the numerous experimental works which have been
used as a basis for Qur theory. It should be mentioned that Mr. R. Caron,
one of our collaborators, has had the greatest share in this experimental
work,

Fig. 25
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NOTE BY ICING RESEARCH GROUP, UNIVERSITY OF MICHIGAN
\

Since there is some controversy concerning the accuracy of the cylinder-
catch data in A Mathematical Investigation of Water Droplet Trajectories by
Langmuir and Blodgettl, it is of interest to compare their results with those in
the preceding report. Figure 20 of this report is reproduced below with data of
Langmuir and Blodgett superimposed.

10
- BRUN-VASSEUR
9 ; - w= _LANGMUIR-BLODGETT
! R= Uodp'
m
8
g
6 \
~
N\..\
3 i
s\#h R=11
.' /F&\ \‘L-<
i g —
]
0
0 3 4 5

Fig. 20

1AAF Technical Report 5418, February, 1946.
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The differences are seen to be large and as yet no explanation is available.,
However, a forthcoming report of the National Advisory Committee for Aeronau-
tics is to contain new cylinder-catch data and will serve as an independent
check.

The following table contains a comparison of the sphere-catch data
of Langmuir and Blodgett with that of Vasseurl. Here rja denotes local catch
at the stagnation point, d/2 is the droplet radius in microns, and the sub-
scripts V and L-B refer to Vasseur and Langmuir-Blodgett, respectively.

a/2 [c, | [o.-5 [2, | B

12 .06 .09 .12 .27
20 .16 .22 .25 L6
30 Al ST .33 .58
Lo L6 48 .50 .69

sphere diameter - 20 cm
air velocity - 90 m/sec
ambient condition - sea level (approx.)

Again, there is as yet no explanation of the differences, but it is hoped that
trajectory work now béing done at the University of Michigan will clarify the
situation in the near future.

L"captation par un Corps de Révolution”, La Recherche Adronautique, Mai-Juin,
. Numéro 9, 1949.
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