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An experimental design for the development of adaptive
treatment strategies
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SUMMARY

In adaptive treatment strategies, the treatment level and type is repeatedly adjusted according to ongoing
individual response. Since past treatment may have delayed e�ects, the development of these treatment
strategies is challenging. This paper advocates the use of sequential multiple assignment randomized
trials in the development of adaptive treatment strategies. Both a simple ad hoc method for ascertaining
sample sizes and simple analysis methods are provided. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive treatment strategies are emerging as a new paradigm for the treatment and long term
management of chronic, relapsing disorders such as alcoholism, smoking cessation, cocaine
abuse, depression and hypertension [1–7]. In adaptive treatment strategies the treatment level
and type is repeatedly adjusted according to the individual’s need. The rationale is that the
response is optimized by varying treatment type and dosage as a function of measures of time-
dependent information such as response to past treatment. An adaptive treatment strategy is
characterized by a sequence of decision rules, one per treatment decision. Adaptive treatment
strategies are frequently called dynamic treatment regimes [8–13].
Currently scientists use a combination of clinical experience, trial and error, behavioural,

psychosocial and biological theories, results from observational studies and randomized ex-
perimental studies conducted for other purposes, to formulate the decision rules composing
adaptive treatment strategies. In this paper we propose the use of experimental trials for the
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development of the decision rules. Our long term goal is to optimize the adaptive treatment
strategies, that is produce a treatment strategy that yields the best mean value of the outcome.
We concentrate on a major challenge, that of delayed e�ects, to designing randomized trials
in this setting. We propose the use of sequential multiple assignment randomized (SMAR)
trials for developing decision rules as these trials do not make a priori assumptions on the
existence or form of the delayed e�ects. In a SMAR trial, each individual may be randomized
multiple times; the multiple randomizations occur sequentially through time.
A number of SMAR trials have been or are being conducted. These include the CATIE

trial for antipsychotic medications in patients with Alzheimer’s [14], the CATIE trial for
antipsychotic medications in patients with Schizophrenia, STAR*D for treatment of depression
[15, 16] and phase II trials at MD Anderson for treating cancer [17]. In most cases the goals
of these trials are to develop adaptive treatment strategies (sequences of treatments for an
individual) and are not con�rmatory. That is, the goal does not include con�rming that one
adaptive treatment strategy is better than control or standard treatment. Con�rmatory trials
comparing an optimized adaptive treatment strategy with the appropriate control or standard
treatment would follow such studies.
To �x ideas we use the following simpli�ed example throughout.

Example
Consider an addiction management study for alcohol dependent subjects. In this
simple example there are only two decisions, choosing the initial treatment and
the secondary treatment. Following an intensive outpatient program, alcohol de-
pendent subjects may be prescribed either an opiate antagonist (med with low
level of counselling) or intensive cognitive behavioural therapy (cbt). Then in the
next two months clinicians record heavy drinking, adherence, self-management
skill and other intermediate outcomes. Individuals are classi�ed as responders
or non-responders based on their level of heavy drinking. Note that the terms
responder/non-responder refer to the level of heavy drinking while the individual
is on the initial treatment. If an individual is a non-responder to med then we
must decide whether to either switch to cbt or assign an enhanced motivational
program with a step up(em+cbt+med). If an individual is a non-responder to cbt
then we must decide whether to switch to med or provide the step-up in treatment,
em+ cbt + med. Responders to the initial treatment should be assigned either to
telephone monitoring (tm) or telephone counselling and monitoring (tmc). The
goal in the decision making is to formulate an adaptive treatment strategy that
results in the highest per cent of days abstinent over a one year period. We seek
two decision rules that will maximize the mean per cent days abstinent over the
de�ned period. The �rst decision rule can use pretreatment information such as
level of addiction to choose the initial treatment. The second decision rule can
utilize intermediate outcomes such as adherence to initial treatment, present level
of self-management skill and number of heavy drinking days while on initial
treatment to choose the second treatment.

In the next section we de�ne adaptive treatment strategies and the optimal adaptive treat-
ment strategy. In Section 3 we discuss delayed e�ects. It is the presence of delayed e�ects
that motivates our experimental design proposal of SMAR trials in Section 4. Section 4 also
contains a discussion of other experimental design principles. In Section 5 we propose a par-
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ticular primary analysis; associated with this analysis is a simple approach for ascertaining
the sample size. Lastly we provide an simulation based evaluation of our sample size for-
mula and in the discussion section we discuss methods and areas that need further scienti�c
development.
Note that the term ‘adaptive’ as used here refers to a time-varying therapy for managing a

chronic, relapsing illness rather than an experimental design. This should not be confused with
‘adaptive’ experimental designs such as designs in which treatment allocation probabilities for
the present patient depend on the responses of past patients References [18, 19] nor should
this be confused with two stage adaptive experimental designs in which design parameters of
an experimental trial are altered mid-trial [20, 21].

2. ADAPTIVE TREATMENT STRATEGIES

Suppose we will need to make at most k decisions, a1; a2; : : : ; ak per individual. S1 denotes
pretreatment information whereas Sj, j6k denotes the intermediate outcome (ongoing in-
formation) available after decision aj−1 and prior to decision aj. Thus the time order is
S1; a1; S2; a2; : : : ; Sk ; ak ; Sk+1. We use an overbar to denote past and present information (e.g.
�Sj= {S1; : : : Sj}). The primary outcome is Y = u( �Sk+1; �ak) where u is a known summary func-
tion. In the addiction management study, Y is the mean per cent days abstinent so u counts the
number of days abstinent and divides by study length in days. An adaptive treatment strat-
egy is a sequence of decision rules, one per decision. Thus we denote an adaptive treatment
strategy by the decision rules {d1; d2; : : : ; dk} where the decision rule dj takes the information
available at time j ( �Sj= {S1; : : : ; Sj} and past treatment �aj−1 = {a1; : : : ; aj−1}) and outputs a
treatment type/level, aj. For example in the addiction management study, k=2 and the possi-
ble treatments, values for a1, at the �rst decision time point are med and cbt. The information
available for making the second decision includes pretreatment information denoted by S1, the
�rst treatment, and the intermediate outcomes denoted by S2. A simple example of a decision
rule, d2, is: if the individual responds to initial treatment assign telephone monitoring with
counselling or if the individual does not respond to initial treatment assign em+med+ cbt.
As discussed in the introduction, the goal is to develop an adaptive treatment strategy

that leads to the highest mean of Y (as compared to other possible adaptive treatment
strategies). If we knew the multivariate distribution of �Sk+1 for each array of treatments
�ak , then this goal would be easily achieved. In this case, the ascertainment of the opti-
mal or best adaptive treatment strategy is an optimization problem treated at great length
by many authors [22–24]. Classical algorithms use dynamic programming which is based
on a backwards induction argument. We denote the optimal adaptive treatment strategy by
{d∗

1(s1); d
∗
2( �s2; a1); : : : ; d

∗
k ( �sk ; �ak−1)}. Below we review the formulae for the optimal adaptive

treatment strategy when k=2; the formula for general k is similar [24].
The optimal decision at time 2 maximizes E �a2 [Y | �S2] over a2. Note that E �a2 [Y | �S2] is the

conditional mean of Y given �S2 when the treatment decisions are set at �a2. The optimal
decision is given by

d∗
2( �s2; a1)= arg maxa2

E �a2 [Y | �S2 = �s2] (1)
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De�ne

V2( �s2; a1)= max
a2
E �a2 [Y | �S2 = �s2]

Intuitively V2 is the highest mean of Y achievable given that we are at time 2, have made the
previous decision, a1 and have recorded information �s2. V2 is called the optimal bene�t-to-go
at time 2. The optimal decision at time 1 is

d∗
1(s1)= argmaxa1

Ea1 [V2( �S2; a1)|S1 = s1] (2)

That is we integrate the optimal bene�t to go at time 2 over the conditional distribution
of S2 given S1 for treatment a1 and then maximize. The optimal bene�t-to-go at time 1 is
given by

V1(s1)= max
a1
E �a1 [V2( �S2; a1)|S1 = s1]

The mean of Y when the optimal rules are used to assign treatment (set a1 =d∗
1(S1); a2 =

d∗
2( �S2; a1)) is given by the expected optimal bene�t-to-go at time 1:

E[V1(S1)]=E
[
max
a1
Ea1

[
max
a2
E �a2 [Y | �S2]|S1

]]
(3)

The optimal adaptive treatment strategy is (d∗
1 ; d

∗
2). Observe that to obtain the optimal

decision at time 2, we use the previously obtained optimal decision at time 1.
The above formulae are imprecise because we did not indicate the set of possible treatments

over which each maxaj is formed. In general the set of treatments is not the same for each time
point and in addition past Sj’s may restrict the set of possible treatments. In the addiction
management study, the possible treatments at time 1 are med and cbt. But at time 2 the
possible treatments depend on response to initial treatment.
In this paper the multivariate distribution of �Sk+1 indexed by the treatments �ak is unknown;

thus we cannot directly use the arguments given above to develop an optimal adaptive treat-
ment strategy. Our goal is to propose experimental trials that will yield data for the formulation
of an optimal adaptive treatment strategy. First we discuss the issue of delayed e�ects; this
will motivate the design of the experimental trial.

3. DELAYED EFFECTS

In this section, we discuss why we want to observe intermediate and long term outcomes
following each possible pattern of treatments across time; this motivates our design proposal
of randomizing each individual multiple times. For clarity, we temporarily ignore sample
variability and focus on correctly estimating which initial and subsequent treatments are best.
Thus we use expectations rather than sample averages below. Once we have justi�ed why it
is important to observe intermediate and long term outcomes following each possible pattern
of treatments we consider sampling issues (see the following sections).
For simplicity consider k=2. Recall that the optimal rule for assigning treatment at time

two is the output of argmaxa2 E �a2 [Y | �S2 = �s2]. Certainly if this rule yields di�erent secondary
treatments depending on the initial treatment then in order to estimate the best secondary
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treatment we need to observe outcomes following each pattern of initial and secondary treat-
ments. Also estimating the best initial treatment may require outcomes following each pattern
of initial and secondary treatments. To see this consider the criterion function for ascertaining
the best decision at time 1 (see (2)) and note that this criterion function depends on the
optimal decision at time 2. To ascertain the �rst decision we must maximize

Ea1

[
max
a2
E �a2 [Y | �S2]|S1 = s1

]
=
∫
s2
max
a2
E �a2 [Y | �S2 = �s2]fa1 (s2|s1) ds2 (4)

over a1 (note fa1 (s2|s1) is the conditional density of S2 given S1 indexed by a1). Thus a1 plays
a role in the criterion function (4), both through the product of the density fa1 (s2|s1) and the
maximized conditional mean maxa2 E �a2 [Y | �S2 = �s2]. Thus if maxa2 E �a2 [Y | �S2 = �s2] depends on a1
then in general to estimate the best initial treatment we need to observe intermediate and
long term outcomes following each possible pattern of {a1; a2}. Certainly a treatment a1 that
produces very good values of S2 (e.g. optimizes the mean of the density fa1 (s2|s1)) may not
be the best initial treatment in an adaptive treatment strategy.
We have argued that if maxa2 E �a2 [Y | �S2 = �s2] depends on a1 then in general to estimate

the best initial treatment we need to observe intermediate and long term outcomes follow-
ing each possible pattern of {a1; a2}. One way in which the maximized conditional mean,
maxa2 E �a2 [Y | �S2 = �s2], may depend on a1 is if the e�ect of treatment at time 2 varies by the
initial treatment (an interaction between initial and secondary treatments on the primary out-
come, Y ). There are at least two ways in which the e�ect of treatment at time 2 varies
by the initial treatment. We discuss these two ways in the context of our simple addiction
management study. First a particular initial treatment may set the stage for an enhanced e�ect
by a particular secondary treatment. For example, suppose counselling is more e�ective than
monitoring among responders to cbt; that is the individual learns to use counselling during
cbt and thus is able to take advantage of the counselling o�ered to responders. Individuals
who received med during the initial treatment will not have learned to use counselling and
thus among responders to med the addition of counselling to the monitoring does not improve
abstinence (Y ) relative to monitoring alone. If an individual is a responder to cbt it is best
to o�er tmc as the secondary treatment, but if the individual is a responder to med it is best
to o�er the less expensive tm as the secondary treatment. In summary even if cbt and med
result in the same proportion of responders, cbt may be the best initial treatment as part of the
adaptive treatment strategy. This would be due to the enhanced e�ect of tmc when preceded
by cbt.
A second way in which the e�ect of secondary treatment varies by the initial treatment

is a consequence of Berkson’s fallacy [25, p. 73]. Suppose that there is an unknown factor
U that a�ects one’s ability to respond to treatment. Here we conceptualize this factor as
level of structure in one’s life; U =H if highly structured environment and U =L if chaotic
environment. We can expect that U is positively related to the intermediate outcome of
responder/non-responder status and also U is positively related to Y , per cent days abstinent.
Suppose also that the initial treatments have di�ering e�ects on responder/non-responder status.
Berkson’s fallacy is the conditional correlation between U and initial treatment assignment
given non-response to initial treatment. Intuitively a non-responder who received the better
initial treatment is more likely to live in a chaotic environment.
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The following numerical example illustrates how Berkson’s fallacy results in an interaction
of secondary and initial treatments on outcome Y . Suppose the following relationship holds
among non-responders:
Mean of Y among non-responders by secondary treatment and given structure of envi-

ronment, Ea1 ; a2 [Y |S2 =NR;U ]

U =H (highly structured)U =L (chaotic)
a2 = switch 20 15

a2 = step− up 30 10

Recall Y is per cent days abstinent and thus large values are good. Thus non-responders
who live in a chaotic environment do not bene�t from the step-up in treatment (possibly due
to non-adherence), yet if a non-responder lives in highly structured environment, the step-up
in treatment is more bene�cial than switching treatment. The conditional means in the table
are the same regardless of the value of the initial treatment a1. This table re�ects the in�uence
of the unobserved background variable U on Y . The level of structure in one’s life U is also
related to the intermediate outcome of responder/non-responder as follows:
Probability of response by initial treatment and given structure of environment, Pa1 [S2 =

NR|U ]

U =H (highly structured)U =L (chaotic)
a1 =med 0.3 0.3
a1 = cbt 0.1 0.5

Lastly suppose that 1
2 of addicted individuals live in a chaotic environment. Using the

formula,

Ea1 ;a2 [Y |S2 =NR]

=

∑
u∈{H;L} Ea1 ; a2 [Y |S2 =NR;U = u]Pa1 [S2 =NR|U = u]P[U = u]∑

u∈{H;L} Pa1 [S2 =NR|U = u]P[U = u]

we obtain the table.
Mean of Y among non-responders by secondary and initial treatments, Ea1 ; a2 [Y |S2 =NR]

a2 = switch a2 = step-up
a1 =med 17.5 20
a1 = cbt 15.8 13.3

Thus if an individual is a non-responder to med it is best to o�er the step-up in treatment (to
em+med+cbt) whereas if the individual is a non-responder to cbt it is best to o�er a switch
in treatment (to med). So we see that there is an interaction between initial and secondary
treatments; this interaction is due to Berkson’s fallacy (there is no interaction conditional on
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unobserved U ). Since many chronic disorders (in particular, substance abuse and mental ill-
ness) appear to have psychosocial, biological and genetic causes, one can expect that U is high
dimensional and that Berkson’s fallacy may occur; maxa2 E �a2 [Y | �S2 = �s2] may depend on a1.
Thus in order to estimate the best initial treatment we should observe the primary outcome
following each pattern of initial and secondary treatments (recall (4)).
In many settings prior randomized trials of initial treatments (followed by standard or no

treatment or treatment as available in the community) may indicate that a particular treatment
rule, say, d′

1(S1) is best in terms of maximizing long term outcome (Y ). Unfortunately the
best initial treatment when the secondary treatment is set to a standard treatment (say b2) is
not necessarily the best initial treatment in an adaptive treatment strategy. That is, d′

1(S1) an
estimator of

argmax
a1
Ea1 [Ea1 ; b2 [Y | �S2]|S1 = s1]

is not necessarily an estimator of

argmax
a1
Ea1

[
max
a2
Ea1 ; a2 [Y | �S2]|S1 = s1

]

Thus the resulting rule may not be optimal in the context of an adaptive treatment strategy (the
resulting rule is optimal if the only available secondary treatment is the standard treatment).
An interesting open problem would be to document the kinds of assumptions that make it

possible to estimate the best adaptive treatment strategy from multiple experiments, one per
decision. In the �eld of medical decision making (see for example, [24, 26, Chapter 5] the
applied example in Reference [27], Markovian assumptions along with the fact that earlier
decisions are used only to reveal information (early decisions are diagnostic tests and only the
last decision is a treatment) permit one to combine information across multiple experiments.

4. SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZED TRIALS

We propose that SMAR trials be used to develop adaptive treatment strategies. This type of
trial has been proposed by Lavori and Dawson [28, 13]. In a SMAR trial each individual is
randomized multiple times; that is, at each decision time. Thus individuals following each of
the possible treatment patterns are observed. The randomization probabilities may depend on
past and present observations. Since the treatments are randomized we use Aj instead of lower
case aj as in previous sections. Thus the data for one individual in a SMAR trial is given
by ( �Sk+1; �Ak). Data from SMAR trials satis�es P[Sj+16sj+1| �Sj= �sj; �Aj= �aj]=P�aj [Sj+16sj+1| �Sj
= �sj] for each j; that is the conditional distributions required to form optimal adaptive treat-
ment strategies (for example, the optimal decisions in (2) and (1)) are identi�ed by the
corresponding empirical distributions in the SMAR trial. See the appendix for a proof of this
equality.
Adaptive treatment strategies can be viewed as multi-component treatments with many com-

ponents (e.g. which primary treatment, when to alter treatment, which treatment to provide
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non-responders, form of monitoring or secondary treatment to provide responders to the pri-
mary treatment, what information to use to decide which treatment is best, etc.). Consider
the addiction management study. It is natural to expect that pretreatment information such
as the presence of co-occurring disorders such as mental illness and homelessness might dis-
criminate between individuals for whom it is best to receive med as the initial treatment in
the strategy versus individuals for whom it is best to receive cbt initially. Furthermore, on-
initial-treatment information such as the level of adherence to initial treatment and evolving
level of self management skill in addition to responder status may be useful in discriminating
who should get which secondary treatment. Thus the development of an adaptive treatment
strategy not only requires consideration of possible treatments but also consideration of what
information should be used in the decision rules. Viewed in this light the development of an
adaptive treatment strategy is indeed a high dimensional problem. We propose several design
principles that have the goal of reducing the dimensionality and we propose randomization
probabilities that equalize sample size among di�erent adaptive treatment strategies.
Principle I: When designing the trial restrict the class of treatment options at each decision

point only by ethical, scienti�c or feasibility considerations. We conceptualize the Sj’s as
containing only information that is to be used to constrain treatment options due to ethical,
scienti�c or feasibility considerations. In practice Sj would be a known function of a larger
amount of data, Xj that is collected prior to the jth decision time. The Xj’s contain auxiliary
information that may be useful in optimizing treatment but except via the information in
Sj will not constrain treatment options in the trial. Thus the randomization probability for
each Aj will depend on at most ( �Sj; �Aj−1). We expect that in most practical settings Sj will
be of low dimension (e.g. binary or trinary). Note however that the formulae given in the
previous sections hold with X in place of S and with Y = u( �X k+1; �Ak). An additional rationale
for allowing the randomization probabilities to only depend on the S’s (the ethical, scienti�c
or feasibility constraints) is to prevent undue restriction of the class of adaptive treatment
strategies. When the experimental design for a SMAR trial speci�es that the class of alternative
treatments is to be restricted by past history, we are in e�ect restricting the class of adaptive
treatment strategies to be considered. This point surfaces in the next section in the form of
assumption (8).
As an example of this principle consider the addiction management study. Here the X ’s

might include measures of an individual’s experiences with the past treatments such as
acceptability, adherence, burden, level of side e�ects, motivation level and also might in-
clude ongoing developments such as the level of craving, stress levels and other poten-
tial indicators of an impending relapse to heavy drinking. In general, information that is
predictive of how one might respond di�erently to di�erent kinds of treatments should be
included in the X ’s. Indeed it would be tempting to specify di�erent secondary treatment
options for initial-treatment-non-adhering-non-responders and initial-treatment-adhering-non-
responders. However this would mean that we would only consider strategies that treat these
two groups of non-responders di�erently. Unless this is known to be necessary, this constitutes
an unnecessary restriction on the class of possible adaptive treatment strategies. Of course ob-
serving degree of adherence to initial treatment makes possible secondary analyses in which
we test if adherence to initial treatment should be used to discriminate between secondary
treatments.
Principle II: View this trial as one trial in a series of developmental, randomized trials see

[29, Chapters 9, 15] prior to a con�rmatory trial. This viewpoint reduces the dimensionality
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problems since we do not expect this one trial to produce an optimized adaptive treatment
strategy. Note this viewpoint is consistent with the present ongoing SMAR trials discussed in
the introduction(CATIE and STAR*D); these trials are not designed to con�rm a best adaptive
treatment strategy. Each developmental trial would build on the results of prior trials. A full
development of Box’s approach in this setting is an open problem (see the discussion for
simple examples of how such developmental trials might proceed). A con�rmatory randomized
control trial of the developed adaptive treatment strategy versus the appropriate comparison
(control or standard care) would follow.
Randomization probabilities proposal: We provide randomization probabilities that create

equal sample sizes across strategies. In other words we set the randomization probabilities so
that the proportion of subjects whose treatment assignments are consistent with an adaptive
treatment strategy is constant across adaptive treatment strategies; equivalently, P[ �Ak = �dk] will
not depend on �dk . Achieving this is more complicated than at �rst appears as the treatments
for any subject are consistent with more than one adaptive treatment strategy. One can view
this approach as being consistent with the working assumption that the variance of Y under
di�erent strategies is constant. (Recall the classical result that in a large sample comparison
of two means, assuming equal variances, equal sample sizes in the two groups maximizes
power).
Actually in setting the randomization probabilities we go one step further. We equalize

sample sizes at each decision j among the possible treatment strategies beginning at that
decision. That is, if we consider the adaptive treatment strategies beginning at decision j with
‘pretreatment’ information equal to ( �Sj; �Aj−1), then the sample size for each of these strategies
should be the same; for each j, P[ �Ak = �dk | �Sj; �Aj−1 = �dj−1] will not depend on (dj; : : : ; dk). This
approach of balancing sample sizes across di�erent strategies is ad hoc; the best choice of
randomization probabilities is an open question.
Denote the number of treatment options for the history, ( �sj; �aj−1) by nj( �sj; �aj−1). Note the

possible dependence both on prior treatment and on the S’s. First we provide simple formula
for the randomization probabilities when each nj( �sj; �aj−1)= nj( �aj−1), that is the number of
treatment options does not depend on the S’s and for k=2. See the appendix for arbitrary k.
In this case formulae for the randomization probabilities do not depend on the S’s and are as
follows: Set N2(a1)= n2(a1). Denote the randomization probability of assigning treatment a2
at time 2 for an individual with past history, ( �S2; A1)= (�s2; a1) by p2(a2| �s2; �a1) and similarly
for initial treatment. Then

p2(a2| �s2; a1)=N2(a1)−1 (5)

Note the time 2 randomization probabilities are uniform. Next

N1 =
n1∑
b=1
N2(b)

and

p1(a1|s1)= N2(a1)N1
(6)

See the appendix for a proof that these randomization probabilities result in strategies with
equal expected sample sizes.
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The above formulae simplify further when the number of treatment possibilities do not
depend on past treatment; in this case Nj=

∏k
‘=j n‘ and each pj(aj)=1=nj. The randomiza-

tion probabilities are uniform over the options at each time. Consider the addiction manage-
ment study; there are two treatment options for each responder class at decision 2 and two
treatment options at time 1, thus all randomization probabilities are equal to 0.5. Suppose
instead that the only secondary treatments following medication (med) are telephone mon-
itoring for responders, and a step-up for non-responders. Secondary treatments remain the
same for individuals initially assigned cognitive behavioural therapy (cbt). In this case med
responders are assigned telephone monitoring with probability one whereas cbt responders are
assigned one of the two options with probability 0.5. Similarly for med non-responders and
cbt non-responders. Next, N2(med)=1 and N2(cbt)=2, so N1 = 3 and we assign cbt therapy
with probability 2=3 (N2(cbt)=N1) and medication with probability 1=3 (N2(med)=N1).
When the number of treatment options depend on the S’s, randomization probabilities that

equalize sample size across strategies become more complicated and more importantly depend
on the distribution of each Sj given ( �Sj−1; �Aj−1). We provide the general formulae in the
appendix along with a proof. When k=2, these formulae yield, p2(a2| �S2; A1)= n2( �S2; A1)−1
and

p1(a1|S1)= E[n2( �S2; a1)−1|S1; A1 = a1]−1∑n1(S1)
b=1 E[n2( �S2; b)−1|S1; A1 = b]−1

To use these formulae, we need to make a working assumption concerning the probability dis-
tribution of S2 given (S1; A1). In the simulations we make the extreme working
assumption that the distribution of each Sj given ( �Sj−1; �Aj−1) assigns mass 1 to the value
of Sj with the largest number of subsequent treatment strategies. For k=2 this implies that
p2(a2| �S2; A1)= n2( �S2; A1)−1 and

p1(a1|S1)= maxs2 n2(s2; S1; a1)∑n1(S1)
b=1 maxs2 n2(s2; S1; b)

See the appendix for the formula for general k. In both of the CATIE studies, there are mul-
tiple treatment possibilities for non-responders but only one possible treatment for responders.
Consider the addiction management study and suppose responders are provided one partic-
ular maintenance treatment and non-responders are randomized between the two treatment
alternatives. If we assume that the responder rates for cbt and med are the same, then the
randomization probabilities for non-responders are 1/2 and the initial randomization probabil-
ities are also 1/2.

5. TEST STATISTIC AND SAMPLE SIZE FORMULA

In order to power the SMAR trial a primary analysis must be speci�ed. For example in
the addiction management study, a natural and simple primary analysis would be to test if
cbt di�ers from med in terms of the intermediate outcome, responder status. But we saw
in Section 3 that in the absence of additional scienti�c assumptions, the results of such an
analysis are not useful in ascertaining the initial treatment in an optimal adaptive treatment
strategy. Of course an advantage of this primary analysis is that it is of low dimension! We
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advocate that the primary analysis test if two adaptive treatment strategies each beginning
with a di�erent initial treatment yield di�erent mean outcomes. In this primary analysis we
lower the dimension by considering only very simple adaptive treatment strategies.
Principle III: The primary analysis should consider adaptive treatment strategies that depend

only on S’s (the ethical, scienti�c or feasibility constraints). Thus, for example, the primary
analysis for the addiction management study would not consider rules depending on adherence
to initial treatment. Note however that secondary analyses may investigate decision rules
depending on the larger data including the X ’s.
Power proposal: Power the developmental SMAR trial to discriminate between two adaptive

treatment strategies, each depending only on the S’s and each beginning with a di�erent initial
treatment. That is, compare pairs of adaptive treatment strategies in which the initial treatment
varies by member of the pair. The rationale is that we need to decide which of the possible
initial treatments are worthy of further investigation. The second and further randomizations
will create comparable groups receiving di�erent subsequent treatments, so even though we
have not powered the study for discriminating between subsequent treatments, the random-
ization will permit an valid causal comparison between subsequent treatments. Subsequent
developmental trials would then consider only the initial treatments that performed well in
this trial; a simple, ideal result would be that a particular initial treatment A produces a much
better adaptive treatment strategy (in terms of mean Y ) than alternative initial treatments,
then further experimental trials would use treatment A and be powered to contrast adaptive
treatment strategies with di�erent secondary treatments.
Note that one could power the trial so as to compare initial treatments, ignoring subsequent

treatments. However this comparison will not generally assist us in formulating an adaptive
treatment strategy because the mean of Y ignoring subsequent treatments will depend on the
randomization probabilities. That is, the estimand will change depending on how one ran-
domizes to subsequent treatments. Algebraically the mean response to the initial treatment
a1 ignoring subsequent treatment is given by (k =2) Ea1 [(

∑
a2 E �a2 [Y | �S2]p2(a2|s1; a1])|S1 =

s1]. The argument of the maximum of this quantity need not be the same estimand as (2).
The fact that SMAR trials are relatively new, with little practical experience by scientists,

motivates us to consider sample size formulae in a simple setting. Thus in the following we
focus attention on the setting in which there are a few major decisions (hence randomizations,
say k=2–4 randomizations per individual). Interpreting S1 as containing only strong scienti�c,
ethical or feasibility constraints on the class of initial treatments, there will be no S1 if there
is no need to place restrictions on the class of initial treatments. So the formulae below have
no S1 with the understanding that if restrictions on the class of initial treatments are necessary
then we consider the subpopulations de�ned by values of S1 separately. A consequence of this
is that the initial decision rule, d1, is simply a constant function specifying the same initial
treatment for all within a subpopulation. Note this does not preclude consideration of d1 a
function of X1 in secondary analyses.
The test statistic is based on the following estimator of the mean of Y under treatment

strategy �dk (denote by � �dk ). De�ne

U ( �Sk ; �Ak ; �dk; � �dk )=

(
k∏
j=1

I{Aj=dj( �Sj; �Aj−1)}
pj(dj| �Sj; �Aj−1)

)
(Y − � �dk )
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where the indicator, I{B} is 1 if the event B occurs and 0 otherwise. Solve

0=PnU ( �Sk ; �Ak ; �dk; � �dk )

for � �dk and call the solution �̂ �dk . �̂ �dk is our estimator of � �dk . In this equation, Pnf(X ) is
de�ned as the average over the sample, 1=n

∑n
i=1 f(Xi). In this case

�̂ �dk =

Pn

[∏k
j=1
I{Aj = dj( �Sj; �Aj−1)}
pj(dj| �Sj; �Aj−1)

Y

]

Pn

[∏k
j=1
I{Aj=dj( �Sj; �Aj−1)}
pj(dj| �Sj; �Aj−1)

] (7)

See Murphy et al. [12] for technical details. The estimating formula can be generalized to
be doubly robust [30]; see the appendix for details. A crucial assumption underlying the
consistency of this estimator is that

P �dk

[
k∏
j=1
pj(dj| �Sj; �dj−1))¿ 0

]
=1 (8)

where subscript, �dk on the probability symbol indicates that this probability is calculated under
the distribution of �Sk+1 when all treatments are assigned according to the strategy �dk . That is
we assume that at any decision time, and for any given history, the treatment speci�ed by the
adaptive strategy has a positive probability of being assigned. Since we will be comparing
strategies, intuitively this assumption is that all feasible treatments have a non-zero probability
of being assigned in the study.
Given data from a SMAR trial, we can perform two-way comparisons of adaptive treatment

strategies with di�erent initial treatments, say �dk and �d′
k , by approximating the distribution

of the di�erence in estimators of mean response by a normal distribution. Since the primary
purpose of the trial is to develop adaptive treatment strategies (as compared to attempting
to con�rm the superiority of one strategy over the others), we are more concerned about
missing signi�cant di�erences between means rather than accidently concluding that two means
are equal; thus we have not provided an adjustment for multiple comparisons. A consistent
estimator of the variance of

√
n(�̂ �dk − �̂ �d′

k
) is Pn(U 2( �Sk ; �Ak ; �dk; �̂ �dk )+U

2( �Sk ; �Ak ; �d′
k ; �̂ �d′

k
)). Since

one individual’s treatment assignments cannot be consistent with multiple adaptive treatment
strategies each beginning with di�erent initial treatments, there is no cross product in the
above formula for the variance estimator. The statistic

√
n(�̂ �dk − �̂ �d′

k
)√

Pn(U 2( �Sk ; �Ak ; �dk; �̂ �dk ) +U
2( �Sk ; �Ak ; �d′

k ; �̂ �d′
k
))

(9)

has, in large samples, a standard normal distribution under the null hypothesis that E �dk [Y ]
=E �d′

k
[Y ]. See Murphy et al. [12] for a list of technical assumptions. The primary assumption

is (8).
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Sample size formula: To derive a sample size formula, we re-express the variance of
√
n�̂ �dk

in terms of the distribution of �Sk+1 when all treatments are assigned according to �dk as

E �dk

[
k∏
‘=1

1
p‘(d‘| �S‘; �d‘−1))

(Y − � �dk )
2
]

(10)

The subscript, �dk on the expectation symbol is meant to act as a reminder that this expectation
is calculated under the distribution of �Sk+1 when all treatments are assigned according to �dk .
This formula for the variance is proved in the appendix.
We provide sample size formula utilizing simple upper bounds on the variance (10). We

consider two cases. First suppose the randomization probabilities are uniform on the possible
treatment alternatives; it is immediate that an upper bound on the asymptotic variance of√
n�̂ �dk is max �sk ; �ak−1

∏k
j=1 nj( �sj; �aj−1)�

2 where �2 is the variance in response between individuals
following the same adaptive treatment strategy (�2 =Var �dk [Y ]).
Alternately, suppose we use randomization probabilities that produce equal sample sizes

across the strategies as in (5) and (6). If the number of treatment options depend at most
on the past treatment (nj( �sj; �aj−1) depends at most on �aj−1 for each j), then (10) is equal to
N1�2. This equality is derived in the appendix. Indeed if the number of treatment options does
not depend on either �sj or on �aj−1 for each j then (5) and (6) are uniform randomization
probabilities and N1 =

∏k
j=1 nj. If number of treatment options depends on the S’s, we make

the extreme working assumption that the distribution of each Sj given ( �Sj−1; �Aj−1) assigns
mass 1 to the value of Sj with the largest number of subsequent treatment strategies (j6k).
In this case, N1�2 is again an upper bound on (10) where

N1 =
n1∑
a1=1

max
s2

n2(s2 ; a1)∑
a2=1

max
s3
: : :

nk−1( �sk−1 ; �ak−2)∑
ak−1=1

max
sk
nk( �sk ; �ak−1)

See the appendix for a proof.
Recall that we set the sample size so that we can compare two adaptive treatment strategies

each beginning with a di�erent initial treatment. Let z�=2 be the standard normal (1 − �=2)
percentile. Then the total sample size should be

n=2(z�=2 + z�)2Ñ
�2

(��)2

where Ñ is the appropriate upper bound from the previous paragraph, � is the type I error
of the two-sided test, and 1 − � is the power of the test to detect a di�erence in the mean
response of ��. Since these trials are meant to be developmental, � might be set at a value
larger than 0.05 and � might be small (say 0.05, 0.1).

6. SECONDARY ANALYSES

The multiple randomizations permit a variety of experimental secondary analyses. All of these
analyses use randomization to justify causal inferences. For example, since the last decision
optimizes a conditional mean (1) we can use regression analyses to test for di�erences between
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the �nal treatments. However note that only the last decision maximizes a conditional mean
of Y (compare (1) with (2)) so use of a simple regression is limited to the last decision. See
both Murphy [31] and Robins [32] for comments about other regression methods. Alternately
we can compare two strategies with the same initial treatment using the statistic:

√
n(�̂ �dk − �̂ �d′

k
)√

Pn(U ( �Sk ; �Ak ; �dk; �̂ �dk )−U ( �Sk ; �Ak ; �d′
k ; �̂ �d′

k
))2

An asymptotic justi�cation for this statistic can be found in Murphy et al. [12]. However
if X is of moderate or high dimensions, then this type of statistic will not be useful for
consideration of adaptive treatment strategies depending on the X ’s (each dj is a function
from ( �X j; �aj−1) to a class of treatments) because very few or no individuals in the data will
have treatment patterns consistent with any given treatment strategy based on the X ’s. In this
case one could estimate each conditional distribution, P[Sj+16sj+1| �X j= �xj; �Aj= �aj] and then
use Robin’s ‘G-computation formula’ to estimate the mean response to a given strategy. This
method has not yet received much attention.
Other secondary analyses might estimate optimal decision rules; that is rules, �dk , leading

to the highest mean response (assume large values of Y are preferred). Such rules might very
well be a function of the larger data, the Xj’s. These methods use the sequential multiple
assignment randomization to eliminate bias; see Murphy [31] and Robins [32] for methods
that can be used to estimate such rules.

7. SIMULATION RESULTS

The purpose of the simulations is to evaluate the utility of the sample size formula and
corresponding test statistic. We consider settings in which there are two decisions (k=2).
There are three scenarios. Each has no S1, two initial treatments and a binary S2. In Scenario
I, there are two secondary treatments for each of the values of S2. In Scenario II, there are
two possible secondary treatments for each of the values of S2 as long as the initial treatment
is treatment 1. If the initial treatment is treatment 2, then there is only one possible secondary
treatment for each value of S2. In Scenario III, there are two secondary treatments if the
value of S2 = 0 and only one possible secondary treatment if the value of S2 = 1. To recap,
in scenario I, the number of secondary treatments, n2 does not depend on s2; a1; in Scenario
II, n2 depends on a1 but not on s2 and in Scenario III, n2 depends on s2.
In the simulations, S2 is binary with the probability of a 1 equal to f1 or f2 depending

on whether the initial treatment, A1 = 1 or 2. The possible secondary treatments are ts2 ;a1 ;1
or ts2 ;a1 ;2 following treatment a1 and outcome S2 = s2. We generated the response Y using
Murphy’s [31] generative model for adaptive treatment strategies. This model is described in
the appendix. In all of the scenarios, the optimal strategy, �d∗

2 , is to assign treatment 1 initially
then if S2 = 0 assign the secondary treatment t0;1;1 and if S2 = 1 assign the secondary treatment
t1;1;1. In each of the three scenarios, we simulated the data so that the di�erence between the
mean response to the optimal strategy (E �d∗

2
Y ) and the mean response to a strategy with initial

treatment 2 (say E �d2Y ) is proportional to a common standard deviation,
√
Var �d∗

2
Y =

√
Var �d2Y .

This proportionality constant or signal-to-noise ratio is ��=�. For each scenario we simulated
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Table I. Scenario I.

��=� (Sample size) P[S2 = 1|A1 = 1] P[S2 = 1|A1 = 2] Type 1 error Power

0.25(1097) 0.5 0.5 0.093 0.900
0.25(1097) 0.3 0.7 0.109 0.902
0.5(275) 0.5 0.5 0.097 0.901
0.5(275) 0.3 0.7 0.093 0.902
0.75(122) 0.5 0.5 0.117 0.891
0.75(122) 0.3 0.7 0.109 0.905

Table II. Scenario II.

��=�(sample size) P[S2 = 1|A1 = 1] P[S2 = 1|A1 = 2] Type 1 Error Power

0.25(823) 0.5 0.5 0.107 0.860
0.25(823) 0.3 0.7 0.115 0.905
0.5(206) 0.5 0.5 0.113 0.900
0.5(206) 0.3 0.7 0.122 0.895
0.75(92) 0.5 0.5 0.120 0.882
0.75(92) 0.3 0.7 0.127 0.905

data for a variety of signal-to-noise ratios and values of f1, f2. We also ensured that there
were at least one pair of adaptive treatment strategies with di�erent initial treatments but with
the same mean response. In this way we are able to check that the proposed procedure has
the correct type one error rate (Table I).
In all cases the estimator is (7); the test statistic is given by (9). We set �=0:1 and �=0:1

for the two-sided tests. Each simulation is of size 1000 data sets.
Consider �rst Scenario I. We use randomization probabilities that balance the sample size

among strategies; in this case these randomization probabilities are uniform, (0.5), because
there are always two treatment options at each decision. Given a signal-to-noise ratio, we set
the total sample size equal to the smallest integer greater or equal to

2(z�=2 + z�)2(2× 2) �2

(��)2

Clearly in this simple scenario the sample size formula and associated statistic perform well
(Note that the binomial standard deviation for 1000 trials with p=0:1 is approximately 0.01.)
Recall for any data set, we can estimate the mean outcome to multiple adaptive treatment
strategies with di�ering initial treatments. The entries under the column labelled ‘type 1 error’
are due to comparisons of adaptive treatment strategies with di�erent initial treatments but
the same mean (��=0), whereas the entries under the column labelled ‘Power’ are due to
comparisons of adaptive treatment strategies with di�erent initial treatments but means di�er
by ��=�.
In Scenario II we also use randomization probabilities that balance the sample size among

strategies (Table II). Recall that there are two possible secondary treatments for each of
the values of S2 as long as the initial treatment is treatment 1. If the initial treatment is
treatment 2, then there is only one possible secondary treatment for each value of S2. So
the p2(a2|s2; 1)=0:5 for a2 = ts2 ;1;1 or ts2 ;1;2 whereas p2(ts2 ;2;1|s2; 2)=1. The randomization
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Table III. Scenario III.

��=� (Sample size) P[S2 = 1|A1 = 1] P[S2 = 1|A1 = 2] Type 1 error Power

0.25(1097) 0.5 0.5 0.088 0.965
0.25(1097) 0.3 0.7 0.095 0.968
0.5(275) 0.5 0.5 0.095 0.964
0.5(275) 0.3 0.7 0.101 0.953
0.5(275) 0.2 0.2 0.115 0.909
0.75(122) 0.5 0.5 0.105 0.958
0.75(122) 0.3 0.7 0.108 0.954

probability at time 1 is p1(1)=2=3. Given a signal-to-noise ratio, we set the total sample size
equal to the smallest integer greater or equal to

2(z�=2 + z�)2(2 + 1)
�2

(��)2

As in scenario I, the sample size formula and associated statistic perform well (Note that
the binomial standard deviation for 1000 trials with p=0:1 is approximately 0.01.)
Recall that in Scenario III, the number of treatment options at decision 2 depends on S2;

there are two secondary treatments if the value of S2 = 0 and only one possible secondary treat-
ment if the value of S2 = 1. If we make the extreme working assumption that P[S2 = 0|A1]= 1,
then the p2(a2|0; a1)=0:5 for a2 = t0; a1 ;1 or t0; a1 ;2 whereas p2(t1; a1 ;1|1; a1)=1. The randomiza-
tion probability at time 1 is p1(1)=2=4. Given a signal-to-noise ratio, we set the total sample
size equal to the smallest integer greater or equal to

2(z�=2 + z�)2(2 + 2)
�2

(��)2

As expected, the sample size formula is (see Table III) conservative since not all individ-
uals will respond with S2 = 0 and thus be eligible for 2 rather than 1 secondary treatments.
However note the additional �fth row in which the probability of an individual responding

with S2 = 1 is 0.2. In this setting most of the individuals will be eligible for two secondary
treatments rather than one and the working assumption that P[S2 = 0|A1]= 1 more closely
approximates reality. In this case the sample size formula is accurate (0.909 is close to 0.9).

8. DISCUSSION

As stated above we view the SMAR trial as one trial in a series of developmental, randomized
trials [29, Chapters 9, 15] prior to a con�rmatory trial. The generalization of Box’s approach
is an open problem. However to provide a indication of how such a sequence of trials might
proceed consider the development of an adaptive treatment strategy for managing alcohol
addiction. Suppose the treatment options are as in our example. To set the sample size, we
begin with �=�=0:1 and a given e�ect size (i.e. signal-to-noise ratio, ��=�). Then we use
the formula in Section 5 with Ñ =4 to calculate the sample size. After conducting the trial
we �nd that a strategy beginning with med produces a higher per cent abstinent days than
the strategies beginning with cbt. In secondary analyses we use regression to discover an
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unanticipated result that non-adhering-non-responders to the initial treatment do better when
assigned the step up in treatment (em+ cbt + med) whereas adhering-non-responders to the
initial treatment do better when switched to cbt. In secondary analyses, using the methods of
Murphy [31] or Robins [32] we do not �nd any pretreatment covariates that would produce
subpopulations responding best (in terms of Y ) to adaptive treatment strategies beginning with
cbt. Now we are ready for a second randomized trial. This trial would seek to replicate the
unexpected results of the secondary analysis and further develop possible secondary treatments;
this trial would involve only one randomization per individual as follows. We power the trial
using the responder proportions from the prior trial so as to ensure su�cient non-responders
and responders. All individuals would be initially assigned med; responders would then be
randomly assigned either to tm or tmc; non-responders might be assigned to one of cbt,
em+med, or em+cbt+med. Thus in addition to attempting to replicate the results associated
with adherence level, we also provide the opportunity to check if the improved Y of non-
responders is due to the addition of em or to the combination of em+ cbt. Note that analyses
for this second trial are standard regression analyses. Suppose that we see no di�erence in
the mean of Y for individuals receiving tm or tmc; since counselling is expensive we then
decide to use tm as our secondary treatment for responders to med. Furthermore suppose that
in the regression analysis of the non-responders to med the adherence level does not appear to
make a di�erence in mean Y and em+med+ cbt continues to yield better mean Y than other
secondary treatments. Now we are ready to proceed to a randomized-controlled con�rmatory
trial. This would be a two group trial, the �rst group assigned to the strategy: med if responder
then tm, if non-responder then em+ med+ cbt, and the second group assigned to treatment
as usual.
Here is an alternate possible sequence of trials. Suppose as before a strategy beginning

with med produces a higher per cent abstinent days than the strategies beginning with cbt.
However using the methods of Murphy [31] or Robins [32], secondary analyses of the data
from the SMAR trial lead to the unexpected �nding that if an individual has a low pretreatment
addiction level then adaptive treatment strategies beginning with cbt produce (scienti�cally)
signi�cant higher per cent days abstinent than treatment strategies beginning with med. In
this case a second SMAR trial with the same design would be run in an e�ort to replicate
this result. If this result replicates then separate trials would need to be conducted for the
individuals with di�erent pretreatment levels of addiction.
Even the simplistic scenarios presented above illustrate how the development of adaptive

treatment strategies presents a di�cult challenge to experimental design due to the fact that
these treatment strategies are high dimensional multi-component strategies evolving through
time. Ideally the formulation of a powerful adaptive treatment strategy involves many deci-
sions such as, when to start treatment, which treatment to start, when to step up treatment,
which step-up treatment is best, when to step down treatment to maintenance=monitoring,
which maintenance=monitoring treatment is best and what information to use to make each of
the above decisions. This high dimensional problem appears insurmountable, but is crucially
important as adaptive treatment strategies provide a paradigm whereby empirical evidence
and statistical methods can improve clinical practice in which most treatment is adaptive,
particularly in the management of chronic, relapsing disorders.
We envision that Box’s approach [29] of multiple experimental trials (that take advantage

of working assumptions based on clinical experience, scienti�c theories and past studies)
will provide a paradigm for reducing the dimensionality in a principled fashion. How best
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to formulate the paradigm in this setting remains an open problem. However before Box’s
approach can be utilized, we must understand the array of potential working assumptions,
including working assumptions concerning delayed e�ects. This is an open area of research.
The work presented here makes steps in this direction however it ignores an important issue
that must be considered in order to fully assess the importance of delayed e�ects. This is
the issue of how to provide a principled method for trading o� immediate outcomes against
longer term outcomes. The rich area of reinforcement learning may o�er some guidance [23].
An alternate to Box’s approach is the adaptive experimental design as developed by Berry

and colleagues [33–36, 18]. Here the word ‘adaptive’ refers to the experimental design rather
than the treatment strategy as in this paper. That is, adaptive refers to the practice of using
outcomes from prior individuals to specify the probability of assigning a given treatment to
the present individual. Thall et al. [36] considers a combination of two stage experimental
design (drop poorly performing strategies halfway through trial) with a SMAR trial for de-
veloping strategies in the treatment of acute myelogenous leukemia. This combination along
with the Bayesian analysis represents an attractive alternative to our approach. It is unclear
how the adaptive experimental design would deal with the high dimensionality present in the
development of adaptive treatment strategies.
Other open problems include the development and evaluation of sample size formulae in

settings in which the number of treatment alternatives depends on the intermediate outcomes
(S’s) and one can make good working assumptions concerning the conditional distributions
of the intermediate outcomes. In this paper we made the extreme working assumption that
with probability one, S takes the value leading to the largest number of strategies. Clearly
in many settings this assumption will lead to excessively large sample sizes. Another open
problem is the best choice of randomization probabilities. We chose to set these randomization
probabilities so that the sample size is balanced at each decision among subsequent strategies.
It is unclear when, if ever, this is optimal. Indeed since the variance of the estimator of the
mean response depends on the randomization probabilities it may be that in some settings
using randomization probabilities depending on the larger X will reduce variance.

APPENDIX

Sequential multiple assignment randomized (SMAR) trial: In order to prove that SMAR trial
produces data that permits the development of optimal adaptive treatment strategies, we must
prove that

P[Sj+16sj+1| �Sj= �sj; �Aj= �aj]=P�aj [Sj+16sj+1| �Sj= �sj]
holds for all values of �sj+1, �aj and for each j. Note that data from a SMAR trial provides infor-
mation about the conditional probabilities on the left hand side; whereas the optimal adaptive
treatment strategy is de�ned in terms of probabilities on the right hand side. The di�er-
ence between these two probabilities is subtle. The former probability refers to a multivariate
distribution that permits variation in treatments; possibly because treatments are chosen by
individuals or are chosen for them or treatments are randomized. P[Sj+16sj+1| �Sj= �sj; �Aj= �aj]
is the distribution of Sj+1 among the subpopulation of individuals with values ( �Sj= �sj; �Aj= �aj).
The latter probability refers to a multivariate distribution corresponding to all individuals hav-
ing the same treatments �ak . There is no variation in treatment in this multivariate distribution;
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all have treatments �ak . According to this multivariate distribution P�aj [Sj+16sj+1| �Sj= �sj] is the
distribution of Sj+1 among subpopulation of individuals with values ( �Sj= �sj). Note the di�ering
multivariate distributions and di�ering de�nitions of the subpopulations. In general these two
probabilities need not be equal; however they are equal under sequential multiple assignment
randomization. To prove this equality we use the potential outcomes model [8, 37–39].
Instead of considering a di�erent distribution of the vector �Sj for each possible value of

the treatments, �aj−1, we consider a di�erent vector of random variables corresponding to
each value of the treatment; these di�erent random variables are the potential outcomes.
Thus corresponding to each �xed value of the treatment vector, �aj−1 we conceptualize a
potential outcome denoted by Sj( �aj−1) where Sj( �aj−1) is the response at the end of the jth
interval that a subject would have if he/she were assigned the treatments, �aj−1. For each
j=1; : : : ; k, the multivariate distribution of (S1; S2(a1); : : : ; Sj( �aj−1) is the section 2 distribution
of �Sj for the treatment vector �aj, e.g. for a measurable set B, P�aj−1 [Sj ∈B| �Sj−1 = �sj−1] is the
conditional probability that the potential outcome, Sj( �aj−1)∈B given the potential outcomes,
(S1; S2(a1); : : : ; Sj−1( �aj−2))= �sj−1. Similarly E[Y ( �ak)] is the same as E �ak [Y ].
Let Ak be the collection of all possible k-vectors of treatments decisions. The set of all

potential outcomes is {(S1; S2(a1); S3( �a2); : : : ; Sk+1( �ak+1)) : �ak varying in Ak} (S1 does not
vary by treatments but is included for completeness). We can rewrite Section 2 formulae for
the optimal rules in terms of potential outcomes. For simplicity let k=2. De�ne Y ( �a2) as
u(S1; S2(a1); S3( �a2); �a2). Then the optimal decision rules are given by

d∗
2( �s2; a1)= argmaxa2

E[Y (a1; a2)|S1 = s1; S2(a1)= s2]

and

d∗
1(s1)= argmaxa1

E[Y (a1; d∗
2)|S1 = s1]

And the optimal mean response is given by,

E[Y (d∗
1 ; d

∗
2)]

We use the potential outcomes to connect the formulae in Section 2 to the distribution for
the observable data ( �Sk+1; �Ak) from a SMAR trial. First we make the consistency assump-
tion [11] that Sk+1 from the observable data is the same as the potential outcome Sk+1( �ak)
evaluated at �ak = �Ak , and so on, including S2 = S2(A1). Robins’ consistency assumption is
the assumption that an individual’s response to treatment (the S’s) in the study is a�ected
only by his or her treatment not by the treatment of others and that we have represented
the treatment adequately by the aj’s (i.e. if there are 5 values of aj there are only 5 treat-
ments). Because the treatments are randomized with randomization probabilities depending
only on past and present information, we have that for each j=1; : : : ; k, Aj is independent of
{(S1; S2(a1); S3( �a2); : : : ; Sk+1( �ak+1)) : �ak varying in Ak} given ( �Sj; �Aj−1). Thus

P[Sj+16sj+1| �Sj= �sj; �Aj= �aj] = P[Sj+1( �aj)6sj+1| �Sj= �sj; �Aj= �aj]
(consistency assumption)

= P[Sj+1( �aj)6sj+1| �Sj= �sj; �Aj−1 = �aj−1]
(randomization)
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= P[Sj+1( �aj)6sj+1| �Sj−1 = �sj−1; Sj( �aj−1)= sj; �Aj−1 = �aj−1]

(consistency assumption)

= P[Sj+1( �aj)6sj+1| �Sj−1 = �sj−1; Sj( �aj−1)= sj; �Aj−2 = �aj−2]

(use randomization

and consistency repeatedly : : :)

= P[Sj+1( �aj)6sj+1| �Sj( �aj−1)= �sj]

= P�aj [Sj+16sj+1| �Sj= �sj]

(by de�nition)

So the consistency assumption in addition to the proof above allow us to connect the distri-
bution of the data, denoted by P or E with no subscript to Section 2 multivariate distributions
of �Sk+1 indexed by �aK , denoted by P�ak or E �ak . Now we see that the formulae for optimal de-
cisions in Section 2 can be written as functions of conditional distributions for the observable
data; thus optimal decisions are identi�able from a SMAR trial.
Randomization probabilities: Set Nk( �sk ; �ak−1)= nk( �sk ; �ak−1) and then

pk(ak | �sk ; �ak−1)=Nk( �sk ; �ak−1)−1 (11)

Note the time k randomization probabilities are uniform. Then for each j set

Nj−1( �sj−1; �aj−2)=
nj−1( �sj−1 ; �Aj−2)∑

aj−1=1
E[Nj( �Sj; �aj−1)−1| �Sj−1 = �sj−1; �Aj−1 = �aj−1]−1 (12)

and

pj−1(aj−1| �sj−1; �aj−2)= E[Nj(
�Sj; �Aj−1)−1| �Sj−1 = �sj−1; �Aj−1 = �aj−1]−1

Nj−1( �sj−1; �aj−2)
(13)

Lastly set

N1(s1)=
n1(s1)∑
a1=1

E[N2( �S2; A1)−1|S1 = s1; A1 = b]−1

and

p1(a1|s1)= E[N2(
�S2; A1)−1|S1 = s1; A1 = a1]−1

N1(s1)

Proceeding backward through time we will see that the randomization probabilities de�ned
above balance the sample size among subsequent strategies at each decision. First at the last
decision, note that P[Ak =dk | �Sk = �sk ; �Ak−1 = �dk−1]=pk(dk | �sk ; �dk−1) which does not depend
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on the rule dk (see (11)). Next

P[Ak = dk; Ak−1 =dk−1| �Sk−1 = �sk−1; �Ak−2 = �dk−2]

=pk−1(dk−1| �sk−1; �dk−2)E[Nk( �Sk ; �dk−1)−1| �Sk−1 = �sk−1; �Ak−1 = �dk−1]

By de�nition of pk−1, this probability does not depend on the rule dk−1 (see (13). Contin-
uing backwards we see that for each j P[ �Ak = �dk | �Sj= �sj; �Aj−1 = �dj−1] does not depend on
(dj; : : : ; dk). Thus if these randomization probabilities are used then we have that

P[ �Ak = �dk | �Sj; �Aj−1 = �dj−1] = E

[
k∏
‘=j
p‘(d‘| �S‘; �d‘−2)| �Sj; �Aj−1 = �dj−1

]

=Nj( �dj−1)−1

Note this probability is the same for all rules (dj; : : : ; dk) and also note that this probability
implicitly depends on �Sj−1 and past treatment through the decision rules �dj−1.
If the number of treatment options at each time depends only on past treatment (i.e.

nj( �sj; �aj−1) can be written as nj( �aj−1) for each j) then Nk depends only on past treatment
and furthermore from (12) we see that if any Nj is a function only of past treatment, Nj−1
must also be a function of only past treatment.
Consider the situation in which the number of treatment options at each time can de-

pend not only on past treatment but also on past S’s. Suppose we make the working as-
sumption that the distribution of Sj given ( �Sj−1; �Aj−1) is a point mass at a value of Sj
with a maximal number of subsequent strategies. Thus P[Sk = s0| �Sk−1 = �sk−1; �Ak−1 = �ak−1]= 1
if s0 = argmaxsk nk( �sk ; �ak−1). And for any j P[Sj−1 = s0| �Sj−2 = �sj−2; �Aj−2 = �aj−2]= 1 if s0 =
argmaxsj−1 (nj−1( �sj−1; �aj−2)maxsj ;:::;sk

∏k
i=j nk( �sj; �aj−1)). Using this working assumption

(12) becomes

Nj−1( �sj−1; �aj−2)=
nj−1( �sj−1 ; �aj−2)∑

aj−1=1
max
sj
Nj( �sj; �aj−1)

The formulae for the randomization probabilities follow immediately.
Test statistic: In the following the potential outcomes notation from the beginning of this
appendix is used. The following estimating formula is a doubly robust generalization of (7).
The goal is to estimate the mean response to strategy �dk (EY ( �dk) or � �dk ). For each j=2; : : : ; k,
denote E[Y ( �dk)| �Sj= �sj; �Aj−1 = �dj−1] by �j( �sj; �dj−1). De�ne

U ( �Sk ; �Ak ; �dk; ��k ; � �dk ) =

(
k∏
j=1

I{Aj = dj( �Sj; �Aj−1)}
pj(dj| �Sj; �Aj−1)

)
(Y − �k( �Sk ; �dk−1))

+
k−1∑
‘=2

(
‘∏
j=1

I{Aj=dj( �Sj; �Aj−1)}
pj(dj| �Sj; �Aj−1)

)
(�‘+1( �S‘+1; �d‘)− �‘( �S‘; �d‘−1))

+
(
I{A1 =d1}
p1(dj)

)
(�2(S2; d1)− � �dk )
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where the indicator, I{B} is 1 if the event B occurs and 0 otherwise. Given approximations
for each �j, (say �̂j) solve

0=PnU ( �Sk ; �Ak ; �dk; �̂�k ; � �dk ) (14)

for � �dk and call the solution �̂ �dk . �̂ �dk is our estimator of EY (
�dk). In this equation, Pnf(X ) is

de�ned as the average over the sample, 1=n
∑n

i= 1 f(Xi). One possible estimator for each �̂j
is

�̂‘( �s‘; �a‘−1)=
Pn
(∏k

j=‘
I{Aj = dj( �Sj ; �Aj−1)}
pj(dj| �Sj ; �Aj−1)

YI{( �S‘; �A‘−1)= (�s‘; �a‘−1)}
)

PnI{( �S‘; �A‘−1)= (�s‘; �a‘−1)}
(15)

�̂‘( �s‘; �d‘−1) is a consistent non-parametric estimator of E[Y ( �dk)| �S‘= �s‘; �A‘−1 = �d‘−1]. The
estimating formula, U can be greatly simpli�ed because it is doubly robust [30] in that even
if the approximations �̂j are inconsistent, as long as the �̂j’s are bounded in probability the
estimator �̂ �dk of EY (

�dk) remains consistent. Thus, for example, the estimator (7) for EY ( �dk)
results if we set each �̂j to the constant mean � �dk and solve for � �dk in (14).
Asymptotic variance of

√
n�̂ �dk : Again the potential outcomes notation from the beginning of

this appendix is used. We derive the asymptotic variance for the doubly robust estimator;
estimator (7) follows if one replaces each �j by � �dk . Classical Taylor series argument along
with technical assumptions (e.g. Reference [40]) imply that

√
n(�̂ �dk −� �dk ) is, in large samples,

equal to

(
−E

[
@
@� �dk

U ( �Sk ; �Ak ; �dk; ��k ; � �dk )
])−1 (√

nPnU ( �Sk ; �Ak ; �dk; ��k ; � �dk )

+
k∑
j=1
E
[
@
@�j
U ( �Sk ; �Ak ; �dk; ��k ; � �dk )

]√
n(�̂j − �j)

)

plus terms converging in probability to zero. Note however that E[@=@�jU ( �Sk ; �Ak ; �dk; ��k ; � �dk )]
=0; this is the Robins’ double robustness property. Additionally, it is easy to see that
E[@=@� �dkU (

�Sk ; �Ak ; �dk; ��k ; � �dk )]=1. Thus the asymptotic variance of
√
n(�̂ �dk − � �dk ) is equal

to the asymptotic variance of
√
nPnU ( �Sk ; �Ak ; �dk; ��k ; � �dk ). Next, express all variables in terms

of potential outcomes as in the beginning of this appendix and use the fact that randomiza-
tion implies that for j=1; : : : ; K , Aj is independent of {(S1; S2(a1); S3( �a2); : : : ; Sk+1( �ak+1)) : �ak
varying in Ak} given ( �Sj; �Aj−1). To be complete yet conserve space we provide a proof for
k=2 (the general proof is similar but requires more space).

Var(U ) =Var
[
I{A2 =d2(S2(d1); d1)}I{A1 =d1}
p2(d2(S2(d1); d1)|S2(d1); d1)p1(d1) (Y (d1; d2(S2(d1); d1))− �2(S2(d1); �d1))

+
I{A1 =d1}
p1(d1)

(�2(S2(d1); d1)− � �d2)
]
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Using the independence property in addition to the fact that for any random variables, U , Z ,
Var(U )=Var(E(U |Z)) + E(Var(U |Z)) (put Z =(Y (d1; d2(S2(d1); d1)); S2(d1))) we obtain

Var(U ) =Var
[
I{A1 =d1}
p1(d1)

(Y (d1; d2(S2(d1); d1))− �2(S2(d1); �d1))

+
I{A1 =d1}
p1(d1)

(�2(S2(d1); d1)− � �d2)
]

+E
[
(1− p2(d2(S2(d1); d1)|S2(d1); d1))I{A1 =d1}

p2(d2(S2(d1); d1)|S2(d1); d1)p1(d1)2 (�2(S2(d1); d1)− � �d2)
2
]

Simplify the �rst term and use the independence property on the second to obtain,

Var(U ) =Var
[
I{A1 =d1}
p1(d1)

(Y (d1; d2(S2(d1); d1))− � �d2)
]

+E
[
(1− p2(d2(S2(d1); d1)|S2(d1); d1))
p2(d2(S2(d1); d1)|S2(d1); d1)

1
p1(d1)

(�2(S2(d1); d1)− � �d2)
2
]

Once again applying similar arguments to the �rst variance term yields

Var(U ) =Var[Y (d1; d2(S2(d1); d1))− � �d2 ]

+E
[
1− p1(d1)
p1(d1)

(Y (d1; d2(S2(d1); d1))− � �d2)
2
]

+E
[
(1− p2(d2(S2(d1); d1)|S2(d1); d1))
p2(d2(S2(d1); d1)|S2(d1); d1)

1
p1(d1)

(�2(S2(d1); d1)− � �d2)
2
]

Now if all treatments are assigned according to �dk then each observed Sj is equal to the poten-
tial outcome, Sj( �dj−1) and the observed Y is equal to the potential outcome Y (d1; d2(S2(d1);
d1)), hence we can re-express the above (for general k) as

Var �dk (Y )

+
k∑
j=2
E �dk

[
1− pj(dj| �Sj; �dj−1))
pj(dj| �Sj; �dj−1))

j−1∏
‘=1

1
p‘(d‘| �S‘; �d‘−1))

(Y − �j( �Sj; �dj−1))2
]

+E �dk

[
1− p1(d1)
p1(d1)

(Y − � �dk )
2
]

where �j( �sj; �aj−1) is the limit, in probability, of �̂j( �sj; �aj−1).
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The variance in (10) follows immediately by setting each �j=� �dk in the above variance
formula. Murphy et al. [12] prove that U is the e�cient in�uence function for estimation of
� �dk ; thus the variance of U is no larger than the variance of any regular estimator of � �dk . This
means that (10) which is the variance of (7) must be not smaller than the above variance
formula.
Alternate representation of the variance in (10): Suppose we use the randomization proba-
bilities as in (5.6). Then

k∏
j=1
pj(Aj| �Sj; �Aj−1)−1 =

(
k∏
j=2
Nj( �Sj; �Aj−1)E[Nj( �Sj; �Aj−1)−1| �Sj−1; �Aj−1]

)
N1(S1)

Now if the number of treatment options at each time depends only on past treatment (i.e.
nj( �sj; �aj−1) can be written as nj( �aj−1) for each j) then as seen above each Nj( �Sj; �Aj−1) does
not depend on �Sj. This means that the term in parentheses is one and the above simpli�es to∏k
j=1 pj(Aj| �Sj; �Aj−1)−1 =N1. In this case the variance in (10) is equal to N1�2.

Upper bound on variance under extreme working assumption: We make the extreme working
assumption that the distribution of each Sj given ( �Sj−1; �Aj−1) assigns mass 1 to the value of
Sj with the largest number of subsequent treatment strategies (j6k). From the beginning of
this appendix we have that pk(ak | �sk ; �ak−1)=Nk( �sk ; �ak−1)−1 and for each j¡k,

pj(aj| �sj; �aj−1)=
maxsj Nj( �sj; �aj−1)
Nj−1( �sj−1; �aj−2)

where

Nj−1( �sj−1; �aj−2)=
nj−1( �sj−1 ; �aj−2)∑

aj−1=1
max
sj
Nj( �sj; �aj−1)

Then
k∏
j=1
pj(aj| �sj; �aj−1)−1 =

k∏
j=1

Nj( �sj; �aj−1)
maxsj Nj( �sj; �aj−1)

N1

Each fraction in the product is bounded above by 1, leaving N1 as the upper bound.

Simulation design:
The model is

Y ( �a2)=�0 − �1(a1) + �(S2; a1)− �2(S2; �a2) + �
where the e�ect of treatment relative to the optimal treatment at decision one and two is en-
coded in the non-negative �1 and �2, respectively. We call �1 and �2 the regrets as they are
the regret one has for not assigning the optimal treatment. Recall the optimal adaptive treat-
ment strategy is d∗

1 = 1, d
∗
2(s2; 1)= ts2 ;1;1. Thus �1(1)=0 as we have no regret for assigning

the initial treatment 1 and �2(0; 1; t0;1;1)=�2(1; 1; t1;1;1)=0 as t0;1;1 and t1;1;1 are the optimal
treatments following a1 = 1 for each value of S2. The term �(S2; a1) has conditional mean
zero (fa1�(1; a1) + (1 − fa1)�(0; a1)=0 for a1 = 1 or 2). The error term �, has conditional
mean zero (given S2(a1)) for each value of a2; otherwise the distribution of the error term can
depend arbitrarily on (S2(a1); �a2). See Murphy [31] for a detailed discussion of this model.
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In all simulations, � is a normal random variable with mean zero and variance depending
on the value of (S2; �a2), (say �(S2; �a2)). Also �0 = 0.
In Scenario I, we set all the values of �1; �2 to zero except �1(2)=1, �2(1; 1;

t1;1;2)=�2(1; 2; t1;2;2)=1, indicating that if the initial treatment is 2 and then S2 = 1 then
it is best to choose treatment t1;2;1 over t1;2;2. Also �2(0; 1; t0;1;2)=�2(0; 2; t0;2;2)=1 as well.
The nuisance parameters are �(0; 1)=f21 (1−f1) and �(0; 2)=f22 (1−f2) (note since �(S2; a1)
has conditional mean zero this de�nes �(1; 1); �(1; 2) as well). The values of f1; f2 are spec-
i�ed in Table I. This is enough to determine the di�erence in mean response to the opti-
mal strategy as compared to the least desirable strategy (��). In Table I, we specify the
signal-to-noise ratio, ��=�. This ratio divided by �� speci�es the desired standard deviation
�=Y ( �d2) for each strategy. We set the values of �(S2; �a2) so as to achieve this standard
deviation. In this scenario the poorest strategy is (d1 = 2; d2(s2; 2)= ts2 ;2;2). Two strategies that
performed equally well (so as to permit an assessment of the realized type I error rate) are
(d1 = 1; d2(s2; 1)= ts2 ;1;2) and (d1 = 2; d2(s2; 2)= ts2 ;2;1).
In Scenario II, we set all the values of �1; �2 to zero except �1(2)=1, �2(1; 1; t1;1;2)=1 and

�2(0; 1; t0;1;2)=1. Recall there is only one possible secondary treatment for a1 = 2 and both
values of S2. The nuisance parameters are as before, �(0; 1)=f21 (1−f1) and �(0; 2)=f22 (1−
f2). In this scenario the poorest strategy is (d1 = 2; d2(s2; 1)= ts2 ;2;1). Two strategies that
performed equally well are (d1 = 1; d2(s2; 1)= ts2 ;1;2) and (d1 = 2; d2(s2; 2)= ts2 ;2;1).
In Scenario III, we set �1(2)=1 − f2, �1(1)=0 and all the values of �2 to zero except

�2(0; a1; t0;a1 ;2)=1 for both a1 = 1 and 2. Recall there is only one possible secondary treatment
following S2 = 1. Setting �1(2)=1−f2 was one way to ensure that there were two strategies
with equal mean response. The nuisance parameters are as before, �(0; 1)=f(21(1− f1) and
�(0; 2)=f22 (1−f2). The values of f1; f2 are speci�ed in Table III. As in Scenarios 1 and 2,
we set the values of �(S2; �a2) so achieve the standard deviation �. In this scenario the poorest
strategy is (d1 = 2; d2(1; 1)= t1;2;1; d2(0; 1)= t0;2;2. Two strategies that performed equally well
are (d1 = 1; d2(0; 1)= t0;1;2; d2(1; 1)= t1;1;1) and (d1 = 2; d2(s2; 2)= ts2 ;2;1).
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