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ABSTRACT

The discussion first concerns itself with establishing limits
on the validity of the low density approximation. These depend not only
on the electron line density (as has sometimes been loosely stated) but
also on the wavelength of observation and on the altitude of the trail.
Next, a model is developed for scattering by a super-critical density
distribution of electrons, based on the idea that the process can still
be viewed as a superposition of individual Compton effects, but with the
wave incident on the electron attenuated because of refraction (in analogy
to the skin effect). Results of this model are compared with those obtained
by the usual approach of replacing the electron distribution by a metallic
scatterer whose surface is the critical density contour. Some calculations
with non-Gaussian electron distributions help to clarify the physical

interpretation.
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1. Phase Error in Individual Scatterer Model.

Scattering by a meteor trail of low electron density is usually
treated by considering each electron to be subject to the incident field
and to scatter independently (according to the Thomson cross section),
the contributions from the electrons being added up coherently}

For a moderately higher density (still below the critical density
everywhere), with an electron collision frequency well below the frequency
of the radiation, the model is disturbed by the deviation from unity of
the index of refraction of the inner region (which alters the phase rela-
tions between electrons). As an indication of when this effect can become
significant, the phase error made in neglecting the variation of the index
of refraction is computed for a ray coming in from infinity to the axis of
a cylindrical Gaussian distribution. When this phase error is small, the
individual scatterer model is good; as it becomes large, the model breaks
down.

The index of refraction, n, is given by

n2 =1 - (h1rNro/k2), (1)

where
N = electron density

r, = e2/mc2 = classical electron radius

k = 2 1/wavelength.

1. H. Brysk, "Electromagnetic Scattering by Low Density Meteor Trails",
J. Geophys. Res., Vol. 63, 693-716(1958).
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The electron distribution in a meteor trail is approximated locally by

a cylindrical Gaussian

N(r) = (ot/7ra") exp(-r2/a?). (2)
The phase error, @ is then ©
@ =k csc 6 J/n (1-n) dr (3)
0

where © is the angle between the trail axis and the fay (under the stip-
ulated conditions, the bending of the ray can be neglected). From equations
(1) and (2)
n(r) = 1-(Lco¢ro/k2 a?) exp(-r’/a?) (L)
and the minimum value of n is that at r = 0
n?(0) = 1 -(uexr %), (5)

The expression in equation (3) can be reasonably well bounded by

noting that
1-n = (1-n°)/(1n). 6)
Since
1>=n =n(0), (7)
2 2 1+n =1+(0) (8)
and ® ®
[1 + n(O)]-l k csc 6 / (1-n®)ar=g=2"1 k cse 9'/'(1-n2)dr.
0 0
(9)

The integral is simple:
o aad 1/2
/ (l-nz)dr = (Lo ro/k2a2)/ dr exp(—rz/a2)=2 7 oiro/kza
0
0

(10)
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so that
1/2
1/2 2 92 1/2
2 / ocro csc 8/ka \1 + [1—(ho<ro/k a )] =9 27'1'/ olT  cSC 8/ka.
(11)
It is convenient to refer to the characteristic dimensionless
constants
- 1/2
B = 2(oLro ) (12)
K=%ka . (13)

In terms of these, the last equation reads

1/2 [~
2-11T1/2(B2/K) csc 6)1 + [l—(B/K)z] =z0= L‘.l 1'—1/2(B2/K)CS° .

()
For B<< K, the phase error, f,is exactly determined. At worst, for B = K

(eritical density reached on axis), there is a factor of 2 uncertainty.
The definition of what constitutes a small phase error is somewhat
arbitrary. The simplest reasonable choice from equation (1) is
(B2/K) =1 (15)
(For 6 = 0, this leads to # =< 25° from the right-hand estimate). At the
same time, if the trail is to be of subcritical density everywhere
B £K (16)

Hence, the rough criterion of applicability of the underdense model is that

B <K, B <1 (17)
B <K, B >1 (18)
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Figure 1 exhibits the limiting value of the electron line density as a
function of the wavelength, using for "™a" the initial width computed by
'(’ink2 with densities at four altitudes obtained from‘WatanabeB, for a
meteor velocity of LO km/sec. This set of curves is to be contrasted
with the frequently made unqualified statementh that the transition from

12

the underdense to the overdense case occurs at (= 10~ “electrons/cm.

2, Attenuation Factor Due to Phase Variation on Critical Density Contour

Consider a plane perpendicular to the trail axis. If there is a
critical density region, the intersection of this plane with the critical
density contour will be a circle. The phase variation of rays reaching
this circle will next be investigated. For simplicity, the rays will be
assumed parallel. (This is fully justified, comparing the radius of the
critical density region, ﬁ, with the source size and range, although it
would be incorrect over the length of the trail.)

The phase of a ray coming in frém infinity and reaching the critical

density contour is in general
oo

§ =k csc 8/ n(A) dz, (19)

where /4 is the azimuthal angle.

-
2 « E. J, Opik, Physics of Meteor Flight in the Atmosphere", Interscience
Publishers, Inc., New York (1958).

3. K. Watanabe, "Ultraviolet Absorption Processes in the Upper Atmosphere",
Advances in Geophys., Vol. 5, 153-221(1958).

4. L. A, Manning and V. R, Eshleman, "Meteors in the Ionosphere", Proc. IRE,
Vols L7, 186-199(1959).
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FIG 1: MAXTMUM ELECTRON LINE DENSITY FOR WHICH INDEPENDENT SCATTERER MODEL
ASSUMPTIONS ARE VALID
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For a ray whose extension would hit the axis of the trail,

®
¢o = k csc © / n, dz . (20)
R

The phase difference between the rays is
R oo

ﬂ-ﬂo =k csc O / n dz - [no-n] dz (21)

R cosﬂ

The index of refraction is given by

ot

n’ = 1—(B/K)2 exp [-—rz/a.z]

S 12 e [(PF sl f)/a (22)

Since the index of refraction is zero at the critical density contour, (B/K)2

and R are related, so that equation (22) can be rewritten more concisely

as

n2 =1 - exp [( i 0032/5 -22)/&2 ] . (23)

To evaluate the integrals approximately, an inequality like equation

(7) is again resorted to, after expressing

2
n = 1-(1-n )/(1+n) (24)

n-n = (nc2> - ne)/(no+n), (25)

by replacing the denominators by estimated mean values. Thus

p-g, =k csc © ﬁ(l-—cos/ﬁ )--(1+n)"'1 ueaxp(i"tecosz/g/e12)2m1 ﬂl/ea[ @(ﬁ/a)- @(ﬁcos ﬂ/a)]

+(no+n)-l [exp(ﬁ2/a2)-exp(§20052 ﬁ/az)} 2™t 1‘\’1/2& [ 1- @(R/a)] (26)
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In the asymptotic limit for R cos,ﬂ > > a, the last two terms in equation
-2
(26) are small to order (a/R) compared with the first, so that equation (26)

can be reduced approximately to

g - ¢° = kR csc © (l-cOS/@) . (27)

As (a/R) increases, a less tidy situation ensues. For a reasonable indi-
cation of the effect of phase variation (accepting a possible error in
phase of as much as a factor of 2), equation (27) will be used.

Within the critical density contour the wave suffers no further
phase change. Hence, if the electron distribution has cylindrical symmetry,
contributions for all values of /3 are equiprobable., Due to these phase
differences, there is an attenuation factor, fp, at a given point along the

axis, given for a two-way traversal by

T
-1 - -
fp=(2“') dﬂ exp [-2ikR csc 6 cos/ﬁ:l= J°(2chsc e)

-

(28)

For large argument, the asymptotic expression yields
- -1/2 -
fp = (kR csc 6) cos [ZkR csc 6-(1 /L) (29)

Averaging out the oscillatory factor (i.e., averaging over time during the
expansion of the trail, or simply recognizing that the critical density
contour is less than perfectly sharp), equdtion (29) reduces to

-1/2

fp = (2kR csc 8) (30)
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3. Attenuation in Super-Critical Region

Scattering by an overdense region is usually handled by replacing
the region by a perfect conductor whose surface is defined by the critical
density contour. Aside from problems of computation of the scattering by
the conductor, there are intrinsic objections to this model. An ionized
region can maintain a transverse current, while a conductor cannot. Within
a metal, the real and imaginary parts of the index of refraction are equal
in magnitude, whereas within the overdense ionized region the real part is
zero (so that phase properties are entirely different). Furthermore, the
critical density contour is not a perfect reflector. There is penetration
into the overdense region with an attenuation factor, analogous to the skin
effect for a metal., The electron density usually increases toward the
center of the overdense region, so that there are the counteracting trends
of the skin effect tending to reduce the scattering from deep inside per
electron while the density distribution indicates an increase in the number
of scattering centers.

The approach attempted here is a mongrel model. The scattering is
considered to consist of three distinct regimes: the incoming wave, the
Compton process itself, and the outgoing wave. The Compton process is
treated as an individual particle effect, just as for the underdense case.
The waves, on the other hand, are handled from a ray-tracing viewpoint.

The amplitude of the wave being scattered by the electron is taken to be
the incident amplitude reduced by the skin-effect attenuation, the latter

being computed along the shortest optical path from the critical density
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contour to the electron., The amplitude of the scattered wave is reduced
by the same factor in coming out of the overdense region. It should be
noted that the skin effect represents a reduction of amplitude due to re-
fraction away from a region rather than absorption in the region. The dis-
cussion assumes that the frequency of the electromagnetic radiation is
sufficiently higher than the electron collision frequency that absorption
can be neglected.

The results will be expressed as the ratio of the scattering
amplitude obtained from the overdense region to that which would be ob-
tained from the same number of electrons treated as individual scatterers
without phase differences, i.e., in effect, the reduction in effectiveness
of scattering due to the denseness.

In particular, for a cylindrically symmetrical distribution of

electrons the attenuation factor, f; will be given by

R R R
fr = J/7 r dr N(r) exp | -2k n(r') dr! U/Q r dr N(r)
0 0 0

(31)
where n denotes the absolute value of n.
For the Gaussian distribution, with the further notation
x = r/a, X = R/a, (32)
the exponent in equation (31) becomes
R _ X » s 1 1/2
2k d/ﬂ n(rt) drt = 2%//7 [(B/K) exp (-t )-1] dt
r X
X (33)
2 2] /2
=2B | [exp(-t )-exp(=X¢) dt
x

10
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The denominator is simply

R X
/ rdr N = (ot /o )/ x dx exp(—x2)=(0‘/217) [l- exp(-Xz)] .
0

X

(3L)

Thus, the attenuation factor is

a2 , X . ,q1/2
fr=2 [l—exp(-xzﬂ '}P x dx exp(-x )exp -ZBJ/’ [exp(-t )-exp( =X ﬂ dt

(3%)

The indicated integrations cannot be done analytically. Two special cases

will be studied below.

a. Very High Density

If the electron line density parameter, B, is much larger than the
critical-density-region size parameter, K, equation (35) simplifies a bit
on going to the limit X —» co. (This limit can be used provided X is greater

than about 3.) The integral in the exponent becomes
X 00
1/2 1/2 1/2
/ [em(—tz)-exp(—xz)] dt—>f exp(—t2/2)dt = (m/2) / erfc(x/2" )
x
X

(36)

so that equation (35) reduces to

00
£1 = 2 U/P x dx exp(—x?)exp [—(211')1/2 B erfc(X/Zl/z)] (37)
0]

11
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In this last form, f! depends only on B (i.e., only on X ). Thus for a
sufficiently dense region the attenuation depends only on the line density
of electrons, and not on the wavelength of the radiation or the width of
the distribution. These quantities do enter (in the combination ka) in the
determination of what constitutes a "sufficiently dense"™ region. Figure 2
exhibits f', from equation (37), as a function of ©¢; on a log-log plot,
the curve is very nearly a straight line.

The scattering amplitude of the meteor trail is proportional to o<f!
and hence to Bzf'. In Figure 3, Bzf' has been plotted against B. The curve
is fitted by

Brt = 0.91 frB | (38)
apart from the small-B end (where equation (37) is not a good approximation
anyhow).

For an intuitive grasp of the characteristics of the scattering, it
is instructive to compare equation (38) with the scattering amplitude
obtained for two simpler electron distributions - a uniform cylinder and
two coaxial uniform cylinders - with the same line density and in the high
density limit.

For the uniform cylinder, N is a constant, hence h is also a constant,

and equation (31) reduces to

R
fr =4N r dr exp[-Zkﬁ drﬂ N r dr

0] r 0]

R
‘/p r dr exp [ZKE r]

0 (39)

(2/§2) exp [-2kﬁ§]

(Rﬁﬁ)—l l—(2kﬁf_i)_l[l-exp(—2kﬁ§)]} .

12



THE UNIVERSITY OF MICHIGAN
2871-1-T
-
10 —
-2
10 =
107
-4
10 : : |
13 14 15 16
10 10 10 10
a(cm™)
FIG 2: ATTENUATION FACTOR FOR VERY HIGH DENSITY
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For a large electron density, the second term in equation (1) predominates,

so that

/2

ki = (hﬁNro)l (40)

The electron line density, o< , is

2 R
CX’:U//n d¢i//n rdr N = 'ﬂ'ﬁz N (41)
0 0

so that k i R reduces to

1/2

kaR =2(*r)"" =B. (42)

For large B, the attenuation factor is then simply

1

f1 = B (43)

and the scattering amplitude
Bf! = B. (L4)

For two coaxial uniform cylinders, the procedure is analogous except
that the r-integral is split into two portions (O to R' and R' to R) for
each of which N and n are constants (denoted by subscripts 1 and 2 respect~

ively). The denominator of equation (31) is always (&¢/2 ), so

R! Rt R
KE£r/2M0 = Ny f rdr exp -21{51 f drt + 7, f dr']
0 r Rt
R R
+ Nz/n rdr ex;{ -2k 52 J/n dr']
R r (45)

= (Nlﬁ'/2kﬁl)'{}-—(Zkﬁlﬁ')—l[l—eXP(-Zkﬁlﬁ'ﬂ exp[-Zkﬁz(ﬁ-ﬁ'ﬂ
+ (N,R/2kn, )[1-(2k52§>"1] ~(N,R*/24R, ) [ 1— (2, R )‘l] exp [-2k52(ﬁ-ﬁ' )] .

15
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In the limit of large density and extent for both regions (i.e. for
equation (40) valid and the negative exponentials on the right-hand

side of equation (45) all small), there results

2 1/2 -
B ft = (4rrr N,) / R (46)
(o}
Note that
) R 2 2 2
= =2 =12 = 12
- - - - w )
o= 2 Nl rdr+N2f rdr _'n'[NlR' +N2(R R )]_'ﬁNZR-\- (Nl NZ)R .
0 RY

(47)

If the inner region has the higher electron density, there is thus a lower
f* (for a given X ) than in the uniform cylinder case.

For definiteness, the coaxial cylinder case will be specialized by
making the proviso that each of the two regions contain the number of

electrons that would be present in the corresponding part of the Gaussian.

Then R 2 _ _
// rr N = N(R - B'2)/2 = (/27 ) [oxp(-R12/a?)-exp(-R%/%)] .

R
(48)
It was shown above that
exp(-F2/a%) = (K/B)2 . (49)
For convenience, write
Rt? = pi? (50)
where
0<p<l, (50)'
so that
exp(-R1%/a%) = (k/B)%P . (51)

16
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The value of N, can then be expressed simply by

2

(/N (1-p)E = (/B)*P ~(x/B)° (52)

so that equation (46) becomes

1/2
8200 = B1-p) 2 (/0 ~(x/8)7) = (53)

As the discussion applies to high densities (B>>K), only the first term
in the bracket need be retained since p < 1 (with some care that p not be
too close to 1). Thus

Borr - (1-p)"1/ 2 P glP (54)

Comparing now the high density limits of the three cases, we find
that:

(1) for a given line density, the scattering amplitude is less for
the two-region case (with inner region more dense) than for the uniform
cylinder case, and still less for the Gaussian;

(2) the scattering amplitude for the two-region case is in fact,
according to equation (46), Just that which would occur if both regions
had the density of the outer one;

(3) the scattering amplitude varies as the square root of the line
density in the uniform region case, as a smaller positive power of the line
density in the two-region case, and as its logarithm (still slower) in the
Gaussian case.

The implication of these observations is that, for a region of radially
decreasing high electron density, the scattering characteristics are pre-

dominantly determined by the outer portions of the super-critical density

17
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region (the core not being sufficiently penetrated by the radiation).
The result from increasing the line density of electrons is primarily
to push the effective scattering region outward, rather than to increase
its density. This does result in an increase in the scattering because

the surface area is increased (hence more electrons are accessible).

be Critical Density Contour of Maximum Width

The electron distribution spreads out in time due to diffusion,
and Ma" increases. From equation (4) it can be deduced that the radius

of the critical density region is given by

-2 2
R = o In(hatr fi%a? (55)
The maximum value that it can attain (as a function of Mam - i.e.y, of

time) is given by

3F/da° = ,&L(ho(ro/kzaz -1-0 ' (56)
which means that
X=1 . (57)
Heuristically, the widest critical density contour might be expected
to yield the largest scattering return from the super-critical region,
because it corresponds to the greatest number of electrons being exposed
to an unattenuated incident field. This argument would be much weakened if
it should turn out that f' (viewed as a function of X) has resonance-type
oscillations.
Ideally, the maximum value of f' should be obtained by setting
0f'/dX = 0, where f' is given by equation (35). Unfortunately, this is

impractical because Jf'/d X includes a term in f' and also a term involving

18
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an integral like f' with an additional integral as a factor in the inte-
grand, as well as a term independent of the f'-integral; the equation
Oft/OX = O cannot be solved unless both f!' and the somewhat more compli-
cated companion integral are known as a function of X. Hence, there 1is
no direct way of determining the maximum value of f' short of actually
computing f' as a function of X. Since this must then be repeated for
each B of interest, the computational effort required is quite large.

In what follows, it will be assumed that the maximum value of f?!
is indeed attained for X = 1. This is also the assumption in the metallic
scatterer approximation, so there will be a direct comparison of results

for the same configuration. The resultant special case of equation (35)

} 1/2

is -1 1 1
-1] 2 2, -1
ft = 2 |1-e J/n x dx exp(-x )exp --ZB/1 exp(-t~)-e

dt
0 0
(58)
This is plotted in Figure 4. The curve is well fitted by
o o1.058 0 . (59)

So far, the "skin effect™ attenuation and the phase relations
around the critical density contour have been considered. There remains
to examine the phase change along the trail axis due to the deviation of
the index of refraction from unity. This consists of two contributions:
The phase error in reaching the critical density contour (evaluated in
Section 1), plus the error incurred in including the region inside the

critical density region in the optical path

¢' -k Rcsc ® (60)

19
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FIG 4: ATTENUATION FACTOR FOR CRITICAL DENSITY CONTOUR OF MAXIMUM EXTENT
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During the growing phase (case a), the contribution of equation (14)
dominates over that of equation (60) and leads to oscillations superposed
on the scattering integrand. Near the maximum expansion of the critical
density contour (case b), on the other hand, the two contributions are
comparable and vary in opposite directions, so that the longitudinal
phase variation is very slow.

Accordingly, for the maximum critical density contour the atten-
uation factor, instead of the exponential of Reference 1, is approximately
the product of the phase reduction factor of equation (30) and the "skin
effect” attenuation factor of (59). In (30), the relations for this maxi-

mum lead to
-1/2
e / B

kﬁ - ka = K = (61)
so that
-1/2 - -+69 -1,
f = (21e / B e¢sc 0) 1/2 1.05 B = 52 sinl/2 e B 1.19
(62)

The maximum return is now given by
.81 2
S = 076 csc 6 P GG"??(C*rO) (& - 3')2 16 m RR'(R+R!)

(63)

or monostatically

.81

3
S = .038 P GG' A (acro) (& - %92 16112 R. (64)

This result is to be compared with that obtained by assuming

the critical density region to scatter the electromagnetic radiation

21
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like a metallic cylinder, the return from the latter being computed
by geometrical optics, i.e., in the limit R >) A . The correct
geometrical Mcross section® for broadside backscattering from a
metallic cylinder is
o = TRR . (65)

This is a factor of two less than quoted by Greenhow 5, and it
leads to

S = 048 PG G 7\3(01.:'0)% (& é\')z /16 ’TT.2R3. (66)

Figure 5 compares the maximum return from an overdense trail
as obtained by the present Mskin effect" model with that obtained by
the "metallic cylinder' model. The Lovell-Clegg low-density result
is also shown for orientation. For clarity of display exclusively,
the overdense and underdense trail curves have been extended to meetj
the temptation to bridge the transition by fairing in from one curve
to the other should be resisted -- the intermediate region very prob-
ably does not behave that simply. The two overdense trail curves
cross for relatively low oL ( ~ 7 x 1013 ecm™1). On the low- o side,
they yield essentially undistinguishable predictions (especially taking
into account the pile-up of theoretical errors in the transition region).
On the high- ol side, the "skin effect! model yields an increasingly
larger result, as expected intuitively.

A feature deserving of comment is the specular nature of the

return. In this respect, the present model leads to the same variation

5« JeSe Greenhow, "Characteristics of Radio Echoes from Meteor Trails:
III The Behaviour of the Electron Trails After Formation", Proc.
Ph!So SOCey Vol. 65, Pt. B, 169—181 (1952)0
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FIG. 5: COMPARISON OF "SKIN EFFECT" MODEL WITH "METALLIC CYLINDER"™ MODEL
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as the underdense trail model. The metallic cylinder model of course
shows a strong aspect dependence. On the other hand, a loss of spec-
ularity as the electron line density increases has been reported
experimentally. Insofar as there is such a loss of specularity in

the relatively early history of the trail (i.e. before enough time

has elapsed for some form of turbulence to be invoked), it would ap-
pear that the basic assumption of a uniform line density of ionization
underlying both models must be abandoned -- that, although a uniform
line density can be satisfactorily assumed for underdense trails, it
is an essential feature of scattering by overdense trails that the

line density is markedly non-uniform.

2L
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