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Turing-Machines and the Entscheidungsproblem*

by J. Richard Biichi

Let Q be the set of all sentences of elementary quantification theory
(without equality). In its semantic version Hilbert's Entscheidungsproblem
for a class X€Q of sentences is:

[X]: To find a method which, for every SgX, yields a decision as to whether
or not S is satisfiable.

Church (19%36) showed that [Q] is recursively unsolvable. Shortly there-
after Turing (193%6) obtained this result more directly by reducing to [Q] an
unsolvable problem on Turing-machines. This reduction, however, is rather in-
ﬁolved, and requires much detailed attention of the kind which does not add to
one's over-all understanding of the,situation.J'We will show in this paper
that the connection between Turing-machines and quantification theory is reéally
a rather simple one. The key to it is lemma 3, which is closely related to the
Skolem-Gﬁdel-Herbraﬁd work .on quantification theory. As a result we obtain the
first really elegant proof of unsolvability of [@]. It can be outlined thus:

Lemma 1: The set Hlt, consisting of all Turing-machines which eventually halt,

if started on the empty tape, is not recursive.

Lemma 2: To any Turing-machine M, one can construct a matrix M(x,u,y), with

¥The results of this paper were announced in the Notices, Am. Math. Soc., §
(1961), 354. The work was supported by a grant from the National Science
Foundation and contracts with the Office of Naval Research and U. S. Army

Signal Corps.




individual variables :,u,y, monadic predicate letters Z,...., and 5 binary

predicate letters S, K, and H, such that MfHIt if and only if Zoa(Vxy)M(x,x',y)
is satisfiable in the natural number system <N,o, '>.

Egggg_zz For any matrices Z(x) and M(x,u,y), the sentence (ix)Z(x)A(Vx)(Hu)
’(Vy)r_a(x,u,y) is satisfiable if and only if Z(o)a(Vxy)M(x,x',y) is satisfiable
in <N,o, '>.

By lemmas 2 and 3, to any Turing-machine M one can construct a sentence S
of form HAY@Y, such that M;Hlt if and only if S is satisfiable. Therefore, by
lemma 1,

Theorem 1: The problem [IAVEV ] is not recursively solvable, even if restricted
to sentences in which, besides monadic letters, only three binary predicate
letters occur.

To stress the simplicity of this argument, we wish to claim that the fol-
lowing hints suffice to prove the three lemmas: Lemma 1 is well known and im-
mediately follows from the basic unsolvability result on Turing-machines (ma-,
chine halting on the tape carrying its description). Proving lemma 2 just
means describing the operation of a Turing-machine M on the empty tape in the
form Q(Q,S,K,o,',x,y), whereby Qy = state at time y, Kxy = position x is
écanned.at time y, Sxy = tape-symbol at position x and time y. MEHLt then
means that no Q, P and S exist such that for all places x and all times Yy,
Q(Q,S,o,',x,y). As the functions Q and S are finite-valued, theywcan be coded
as vectors of monadic and binary predicates on natural numbers. It remains to
invent some tricks to put the matrix C(o,',x,y) into the form Z(o)AM(x,x',y),

by adding auxiliary predicates. Lemma 3 is trivial in the "if-direction". In



the other direction one might use the axiom of choice to introduce a monadic
Skolem-function fx for (Zu) and a constant ¢ for (#x). It remains to establish
that g(c)A(ny)b_a_(x,fx,y) is satisfiable if and only if it is satisfiable by
predicates in N and c=o, fx=x'.

Our proof has the further advantage of directly yielding unsolvability
for the very simple type H,VAV of sentences. By passing to the Skolem-form
of yay, theorem 1 also yields unsolvability of [HAVEAVYY ]. Compare this with
Bernays' (1958) analysis ofnTUring‘s proof, and note that such results are
usually obtained by reduction of [Q] [see Suranyi (1959)]. Another feature of
our proof is that, with slight modifications, it yields an improved version of
Trachténbrot's (1950) result about satisfiability in finite domains:
Theorem 2: There is no recursive set which separates the not-satisfiable sen-
tences from those satisfiable in a finite domain, even if only sentences of
form AAVEY are considered.
Corollary: The set of @AVAV sentences, which are finitely satisfiable, is not
recursive.

Clearly theorem 2 follows from the following stronger versions of lemmas
1, 2, and 3:

Lemma I: Let Cyl be the .set of all Turing-machines which eventually cycle, if

started on the empty tape. The sets Hlt and Cyl are not recursively separable.

Lemma IT: The construction M*M of lemma 2 has the further property: MeCyl if -

and only if Zoa(Vxy)M(x,x',y) is satisfiable in <WN,o,'> by periodic predicates.

Lemma III: Add to lemma 3: The sentence (EX)%(X)A(VX)(Eu)(Vy)M(x,u,y) is sat-

isfiable in a finite domain, if and only if Z(o)a(vxy)M(x,x',y) is satisfiable



iﬁ <N,o0, '> by periodic predicates.
We will now indicate the proofs of the lemmas, and add some further dis-
cussion at the end of the paper.

Proof of lemmas 2 and IT: A (Turing-) machine we define to be a system

M=<D, A, L, R, P, Q, 8> consisting of a finite set D of elements called

states; an AZD called the initial state; three binary predicates L[X,Y],

R[X,Y], P[X,Y], called commands of left-move, right-move, and print; a binary

function Q[X,Y] with values in D, called the new-state-function; and a func-

tion S(X,Y] with values in (T,F}, called the print-function. All these pred-

icates and functions have arguments XeD and YE(T,F}; furthermore, L, R, P are
to be exclusive and complementary. The tape-symbols are T and F; a tape is a
one-way infinite sequence of tape-symbols, i.e., a predicate Ix on N. The
tape Ix = F is called the empty tape.

The operation of a machine M, set to work on a tape I, is as follows.
M is started in its initial state A, scanning the zero-position of the tape I.
If at any time t it is in state X aﬁd scans position u of the tape, which now
carries the symbol Y, then,

if L[X,Y], it moves to scan position u-1;

if R[X,Y], it moves to scan position u+l;

if P[X,Y], it prints S[X,Y] in place of Y at position u.
In all cases it goes into the new state g[X,Y]. Note that, if u=o0 and the
command is E[X,Y], then M will next scan position -1, i.e., it runs off the
tape. In this case we say that the machine halts at time t+l, and that the

tape I is accepted by M; in symbols H1(M,I). The set Hlt consists of all



machines M which eventually halt if put to work on the empty tape.
Now suppose that M is put to work on the empty tape, and never comes to
a halt (i.e., MfHIt). Then the functions

state of M at time x

Qx =
Syx = tape-symbol at time x and position y
Kyx = at time x position y is scanned by M
Ix = at time x the command is left-move
Rx = at time x the command is right-move
Px = at time x the command is print

are defined for all x and y in N, and satisfy the conjunction C of the fol-

lowing conditions:

Q =A A ~8yo Koo A ~Ky'o
Kyx 2. ' = Q[Qx,Syx] Lx 2 Kyx' = Ky'x
Kyx A L[Qx,8yx] 2. ILx A ~Px A ~Rx Px O+ Kyx' = Kyx
Ky>.c A Plax,Syx] 2. Px A ~Ix N ~Ex Rx I Ky'x'= Kyx
Kyx A R[@x,Syx] 2. Rx N\ ~Lx A ~Px Rx 2. ~Kox'
[«Kyx A Px]vLxvRx 2. Syx' = Syx ~[Kox A Lx]
KyxAPx 2. Syx' = §[ax,8yx]

éonversely, the existence of Q, S, K, L, R, and P,. which satisfy (Vyx)g,
implies that M will not come to a halt if started on the empty tape. Thus

(1) M#H1t .=. (Vxy)C is satisfiable in <N, o, '>. Note that the states of
a machine may be coded as vectors of truth-values, 80 that the function-letter
Q simply stands for a vector <Q, ..., @n> of predicate-letters (n depending

on the number of states of M), and C therefore is a matrix of quantification



theory. With the construction M>C, andvthe established (1), we thus are pretty
close to a proof of lemma 2. All that remains to be done is to note that the
following modifications of C do not affect the validity of (1).

1. Introduce an additional binary predicate-letter H. On the right side of

C replace Ky'o by Hyo, Ky'x by Hyx, Ky'x' by Hyx', and conjoin Hxy = Kx'y. The

resulting matrix is of form C*(o0,x,x',y).

2. Introduce an additional monadic predicate-letter Z. To C* conjoin Zon~Zx'
and replace Qo=A A~Syo byka 2. Qx=AN ~Syx, Koon~Hyo by ZX:D.KXXA~ny; ~Kox'
by Zy>~Kyx', and ~[KoxALx] by Zy O~[KyxALx]. The resulting formula is of
form ZoAM(x,x',y). M>M is the construction required in lemma 2. The same

construction also satisfies lemma II, as will now be shown.

The machine M, if started on the tape I, goes into a p-cycle at time 4,

if at the later time (X+p) it is faced with an identical situation, i.e., at
times X and (Z+p) M is in the same state and scans identical tapes in the same
position. We will say that M (eventually) p-cycles on I, in éymbols Cyp(M,I),
if at some time it goes into a p-cycle. (It may be shown that for some p,
Cyp(M,I) holds if and only if M never runs off the tape and scans only in a
bounded part of the tape. ) The set Cyl is defined to consist of all those
machines M which eventually cycle, if put to work on the empty tape.

A predicate Ux on N is called periodic with phase 4 and period p>o, if

U(x+p) = Ux for all x2¥. A relation Vxy on N is called periodic with phase &

and period p>o, if V(x+p)y = Vxy for all x2%¥ and all y, and Vx(y+p) = Vxy for
gll x and all y2¥. (Note that the entire line Vx¥ has to repeat at Vx(¥+p),

and not just from x=% on!)



Suppose now that MeCyl, that is, M goes into a p-cycle at time Zj‘if
started on the empty tape. Then clearly the functions Q, L, R, P are periodic
and Syx and Kyx are periodic in the time-argument x, all of them with phase ¥
and period p. Furthermeore, if d is the maximum of all positions scanned by M

before time (X+p), then at no time t a position y>d will be scanned. It fol-

F and M never scans

i

lows that Kyx = F, for all x and all y>d, and because Syo
beyond d, also Syx = F for all x and all y>d. Thus, also K and S are periodic
(with phase 2%,d and perioé p). In other words, the implication from left to
right of (2) is valid.

(2) MeCyl .E./(Vyx)g is satisfiable by periodic predicates in <N,o0, '>.

In the other direction (2) is trivially valid because the only solution of
(Vyx)g are the predicates Q, S, K, L, R, P describing the operation of M; and
to say that Q, S, K are periodic (in the time argument) just means that M
eventually cycles. Because the modifications 1. and 2. of C to C¥ to ZoAM
clearly do not affect the validity of (2), this ends the proof of lemme II.

Proof of lemma I: We omit giving a direct proof of lemma 1, since it is well

known from the literature. Of the proof of lemma I we present an intuitive
sketch:
The block of length ¥ is the tape given by Iy = (y<x). It is clear that

one can effectively set up a coding function cd(M) which maps one-to-one all

machines onto all blocks. A set X of blocks is called recursive if there are
machines M; and Mo such that for all blocks I,
1€ X HL(My ,T)

IfX

]

(a)
H1 (Mg, I).

i



A set X of machines is called recursive if the set, cd(z) of blocks is recur-
sive. As to the equivalence of this to other definitions of "recursive sets,"
we remark:

1. It is well known that the restriction to two tape-symbols (one of them the
blank) and one-way infinite tapes is not a serious one.

2. Machines which print and move at the same time can, by adding new states,
easily be modified so as either only to print or only to move in each atomic act.
5. We might have added another command predicate E[X,Y], to obtain halt-
situations in addition to "running off the tape." But these can be eliminated
by adding an additional state B, such that H[X,Y] implies that the next state
is B, and B requires M to stay in B and move left.

Note that for a machine M to l-cycle simply means that it keeps scanning at
the same position. Thus, one can find a predicate gl[X,Y] such that M at time
t goes into a l-cycle just in case C;[X,Y] holds for the state X and scanned
symbol Y. Let now M' be obtained by adding a new state B with Q[B,Y] = B, and
conjoining Cy to the right-move condi.tion R. Then clearly lHl(M,I) = H1(M',I),
but M' never l-cycles. Similarly, one can modify a machine M to M' such that
H1(M,I) = Cy1(M',I) and M' does not halt on any block I. Thus in the defi-
nition of recursive sets of blocks one may replaée (a) by

I & X .=. Cyy(My,I), My does not halt on blocks
(b) B
I § X .= HL(Mg,I), Mg never l-cycles
It now is possible to combine M; and Mo into one machine M which l-cycles

on I £X and halts on I¢§. Thus, to every recursive set X of blocks there is a

machine MO such that for all blocks I,



IeX Cyl(Mo;I)

I¢§

By the usual diagonal-argument we now can prove lemma I:

it

(c)

1]

H1(M,I)

Suppose that Y is a recursive set of machines and separates the sets of
machines for which H1(M,cdM) respectively Cyi(M,cdM), i.e.,
HL (M,cdM) =2 MEgY
Cy(M,cdM) 2 M# Y.
By (c) there is a machine M;), such that
Mg Y 2 Cyi(Mg,cdM)
M%X D Hl (My,cdM).
Now M €Y implies Cyi(M,,cdM,) implies MO¢ Y, and MO¢ Y implies H1(M,,cdM,)
implies.MoE Y. This is contradictory, and therefore
(d) The sets A = {M; H1(M,cdM)} and B = (M; Cyy(M,cdM)}
are not separable by a recursive set.
Because there is a recursive mapping f from machines to machines such that
H1 (M,cdM) > fM € Hlt
Cyi(M,cdM) > fM € Cyl;
it follows from (d) that also H1t and Cyl; are not separable. Finally, be-
éause Cyl, < Cyl, we conclude that H1t and Cyl 'are. inseparable.

Proof 9£ lemma _5_ and ITT: We will assume that the matrices Z and M contain

only one predicate-letter R, which is binary. The general case does not pre-
sent any new problems. Let L(R) stand for the sentence (#x)Z(x)A (Vx)(Hu)

(vy)M(x,u,y), and Y#*(a,f,R) for its Skolem-transform Z(a) A(Vxy)M(x,fx,y).



Now suppose that L(R) is satisfiable; i.e., has a model <D;, R;>. By
the axiom of choice it follows that there is an a;€D; and a function fi: Di~Do,
such that Dy = <Dy, ai, f1, Ri> is a model of Z*‘(a, f, R). Let Do be the
smallest subset of D; which contains a; and is closed under f1, let ao = aj,
fo = restriction of f; to Do, Ro = restriction of R; to Ds. Because 2% is a
universal sentence it follows that Do = <Dz, @z, fz, Ro> still is a model of
2%. Next we note that <W,0, '> is the free algebra with one generator and one
monadic function. Becausé <D2, ap, fo> is generated™by az and fo, it follows
that there is a homomorphism h from <N,o, '> onto <Dz, as, fo>. If we now
define Rgxy = Ra(hx)(hy), then it is clear that D is homomorphic image of
<N,o0,',Rz>. Again because Y% is universal it therefore follows that <N,o, ',Ra>
is still a model of 2*(a, f, R). Thus,

(1) X is satisfiable .. ¥ is satisfiable in <WN,o, '>.

Suppose now further that the model <D;,R:> of L. is finite. Then clearly
the algebra <Ds, ap, fo> is finite. It follows that the congruence relation
‘hx = hy on <N, o, '> is‘of finite index, and therefore must be of form

hx = hy .=. x = yv[x =4AAy 2 ZAx = y (modp) ]
for some 4 and p>0. It follows that the relation Rsxy is periodic with phase
4 and period p. Thus we have shown |
(2) Y, finitely satisfiable .D. o periodically satisfiable in <WN,o0,>
The converse to (1) is trivial, so that lemma 3 is established. To establish
lemma III it remains only to prove the converse to (2). This goes as follows:

Suppose D = <N,o0,',R;> is a model of Zf(a, f, R), whereby R; is periodic,

say of phase & and period p>o. The relation

10



X~y .= xX=7 V[XxZXxA y2t A x = y(modp) ]

is clearly a congruence relation of <N, o, '>, and because R; has phase &4 and
period p, it is also a congruence relatién of Ry. Consequently one can form
the factor Q/w of the relational system D. Because > is universal and Q/~
is homomorphic image of D, it follows that Q/~ is still a model of. 2. Further-
more Q/~ is finite, because ~ is of finite index. But from any model of Zﬁ‘
(a, T, R) one obtains a model of L(R), if one just omits the interpretations
of a and f. Thus ) has a finite model.

This concludes the proof of the lemmas. We add some further discussion
of the results.

General form of lemma ITII: Without any essential change in the presented

proof, one can establish the result for general sentences of Q. In place of
<N,o0, '> appear the totally free algebras Enml""’mk = <N, 01,+++,0n,
f1,...,fx> with n generators and k operations, f; having my arguments. A peri-

odic relation on F is one which admits a congruence of F of finite index.

A Skolem-transform Zf(ol,...,oh, f£1,...,f),R) of an arbitrary sentence %(R)

in Q is obtained by first writing 2 as a conjunction of prenex sentences,

and next replacing existential quantifiers by individual—letters and function
letters, in the well-known manner (suggested by the axiom of choice). The
general form of lemma III now is

*
Lemme III: Let Z(Rl,...,RS) be any sentence of @, let L (03,...,0p, f1,-++,f,

Ri,...,Rg) be a Skolem-transform of 2.
*
(¢) L is satisfiable if and only if 2 is satisfiable in the totally free

LOPRERE

-algebra En

11



(b) X is satisfiable in a finite domain if end only if Y is satisfiable in

m
Fp 12" ™ by periodic relations.

The proof we gave (using the axiom of choice) simply carries one step
further Skolem's first proof of Lowenheim's theoremi A more elementary proof
of part (a) actually is contained in Skolem's second proof. It may be out-
lined thus.
The free algebra F can be built up by levels: L, = [ol,...,on}, Lk+l

is obtained by adding to L£ the elements fx...y whereby X,...,y &€ Lk and T is
one of fl,.f.,fm. Let 2 be a sentence. Its Skolem-transform Z% is a univer-
sal sentence, say (Vx...y)A(x,...,y). For any k we define Zk to be the con-
junctiéh of all é(u,...,v) whereby u,...,v range over Iy. By a quite elementary
argument one shows:
(e) If Y is satisfiable, then for every k, Zk is satisfiable in Iy.
Furthermore, by Konig's infinity lemma,
(d) If for every k, Zk is satisfiable in Ly, then Z% is satisfiable in F.
Because the "if-part" is trivial, this yields a new proof of (a). It makes

use of the infinity lemma, while the first proof uses the axiom of choice:

We have not analyzed whether (b) also can be obtained in this second way.

Syntactic version of the Entscheidungsproblem: If in the statement of problem
[X] one replaces "satisfiable" by "formally consistent,” one obtains the syn-

- tatic version [X],. By Gddel's completeness theorem it followé‘that [X] and
[X], are equivalent, so that also [AAVEV ], is not recursively solvable. How-
ever, one can prove this more directly by using Herbrand's theorem. It can

be stated thus:

12



(¢') L is formally consistent if and only if for any k, )y is satisfiable
in Lg.

Now (c¢') and the infinity lemma (d) yield

(a') Y is formally consistent if and only if Zf is satisfiable in F.

From lemmas 1, 2, and (a') the unsolvability of [IAVAV ], follows.
Reduction: If one does not accept Church's thesis, theorem 1 is of less
interest. But our method also yields that EAVEV is a reauction-type, i.e.,
the problem [Q] is effectiv;ly reducible (in fact 1l-l-reducible) to the
problem [AAVHY]. This can be seen by using Myhill's theorem, because our
proof clearly shows that [AAVEV] is of unsolVability degree 1. More directly
one can obtain a reduction from [Q] to [HAVEV] as follows.

To the sentence 2. in Q construct a Turing-machine M which, if started
on the empty tape, begins by checking ZO for satisfiability in L,. M halts
if it finds Zk not to be satisfiable in Iy, and it proceeds to Zk+l in case
it has found a model of Zk. Thus by'(c),

Y. satisfisble .=. M;‘ H1t
The construction of -lemma 2 now ylelds a matrix M(x,u,y), which by lemma 2
and 3 is such that |

M # Hit .=. A satisfiable,
whereby A is the sentence (#x)Zx A (Vx)(Hu)(Vy)M. Thus, the effective con-
struction X + A reduces [Q] to [AAVEY ]. |

Prefix of length four: The unsolvability of [VVHY ] does not follow from

theorem 1, but it can be proved by the same method. (However, to obtain the

necessary modified version of lemma 2, the author had to make use of ternary

13



predicate letters.) We note that all prenex-types with pgefix of length L4 are
now settled; all except VAVV and those falling under #ayay and Suranyi's (1959)
VVHAAVVY have a solvable decision problem. There remains the question whether
[EAVHY ] is unsolvable if one admits, besides monadic letters, only two (only

one) binary predicate letters.

The prefix VAV: The really important outstanding question is to prove [vav ]

unsolvable. For the first time there now is hope of obtaining this result.
A1l that is missing is thé following‘strongérvform of lemma 2.

Problem: To any Turing-machine M to construcf a matrix M(x,u,y), with indi-
vidual variables x,u,y, monadic predicate letters, and binary predicate let-
ters, such that M ;? H1t if and only if (Vxy)M(x,x',y) is satisfiable in the
natural number system <N, '>.

In our proof of lemma 2 we fell short of obtaining this stronger result, be-
cause in describing the action of M on the empty tape we used special con-
straints on two axes, namely, the tape-axis and the time-axis. It is impor-
tant to realize that also in conditions of form (Vxy)M(x,x',y) one still has
use of one axis, namely, one can formulate special restraints on the diagonal!
In September, 1961, the author explaihed this situation to Hao Wang. He now
claims, in collaboration with A. S. Kahr and E. f. Moore, to have found a
construction M + M as required in the above problem. Thus, even [VHYV ] seems
to be unsolvable, and the unsolvability of [yHAVVYV ] follows by passing to
Skolem-form. These results would settle (up to detailed questions, like num-
" ber of binary predicate-letters) the Entscheidungsproblem for all generalized

prenex types (conjunctions of prenex sentences). It is easy to see that for

14



every generalized prenex type X either one of the following four alternatives
holds:

A;: Every conjunct of X is of form Ty

As: Every conjunct of X is of form Envgﬂm

B;: There is a conjunct of form ... V ... & ... ¥V ... in X.

Bo: There are conjuncts ... V ... V ... and ...V ...V ... ¥V ... in X,
Thus, there are Jjust two cases:

A:  [X] trivially reduces to [anm] or [Env2ﬂm]

B: Either [ VAW or [EAVVV ] trivially reduces to [X].

nvzﬁm

Tt is well known (see Ackermann, 1954) that [anm] and [H ] are solvable.

Thus, in case A, [X] is solvable, while in case B, depending on the result of
Kahr, Moore, and Wang, [X] is unsolvable.

Let us say that a set X of sentences has property o, if every sentence of
X which is satisfiable also is finitely satisfiable. In other words ~0X means
that X contains an "infinity-axiom." It is well known (see Ackermann, 1954 )
that 7% 7" and ®%™ both have property ¢, while VAV and VEAYYY do not. The
trivial reductions mentioned preserve property &, so that the cases A and B
also divide those generalized prenex types X having property o from those

which do not,

Matrices of special form: We will show now that if in theorem 1 one drops the

remark concerning the number of binary predicate-letters, one can in tufn add
very strong restrictions on the form of the matrices in the HAVHY sentences.
We note that monadic letters can be eliminated (replace Sv by Svv) without

changing satisfiability of a sentence. In the following discussion R, S,

15



will stand for vectors of binary predicate-letters. By lemmas 1 and 2 the fol-
lowing is an undecidable problem,
(D) .For any matrices Z[Roo] and M[Rxx, Rxx', Rxy; Rx'x, Rx'x', Rx'y; Ryx,
Ryx', Ryy] to decide whether Z(o)A (Vxy)M(x,y) is satisfiable in < N,o,.'>.

The following modifications of M do clearly not affect satisfiability
of Z(o)A (vxy)M(x,y):

1. To M conjoin Sxy =-Ryx and make the proper substitutions in M to obtain

a new matrix of form é[Rx;g, Rx'x, Rx'x', Rxy, Rx'y, RyyJAB[Rxy, Ryx].
2. To AAB conjoin Sxy = Rx'y and make the proper substitutions in A to ob-
tain a new matrix of form

A[Rxx, Rxx', Rxy, RyyAB[Rxy, Ryx]JAC[Rxy, Rx'y].
3. To ApBAC conjoin [Rxy = Syx]A [Sx'y = Txy] and make the proper substi-
tutions in A to obtain the new matrix of form A[Rxx, Rxy, Ryy JA B[Rxy, Ryx]A
C[Rxy, Rx'y].

L. To ApBAC conjoin [Sxx = Rxx]A [Sx'y = Sxy] and in A substitute Syx for Rxx,
and Sxy for Ryy to obtain a new matrix of form W[Rxx]A B[Rxy, Ryx]JAC[Rxy, Rx'y].
It therefore follows that the following is still an undecidable problem,

(D') For any matrices Z[Roo], W[Rxx], B[Rxy, Ryx] and C[Rxy, Rx'y] to decide
| whether Z(o)A (Vx)W(x)A (Vxy)B(x,y)A (Vxy)C(x, x‘., y) is satisfiable in

<N, o, '>.

By lemma 3 one now obtains,

Theorem 1': There is no recursive method for deciding satisfiability of sen-

tences of form (&v)Z[Rvv]A (Vx)W[Rxx]A(Vxy)B[Rxy, Ryx]A(vVx)(#u)(vy)C[Rxy, Ruyl,

whereby R is a vector of binary predicate letters.
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Depending on the mentioned result of Kahr, Moore, and Wang the initial
condition Z[Roo] may be dropped without making (D) decidable. Correspondingly
theorem 1' remains true if "(@v)Z[Rvv]" is dropped. The question, whether in
addition the axial restraint E[RXX] can be avoided, remains unanswered.

Domino problems: The reduction (D) to (D') discussed in the previous section

can be carried one step further by the following observation. Suppoée_that

the predicates Rxy on N satisfy

(1) (¥xy)D[Rxy, Ry%, Rx'yl.

Then clearly the predicates Pxy = Rxy and Qxy = Ryx satisfy

(2) (vx)[@xx = Pxx]A (Vxy), 5 DIPxy, Qxys Px'yJA(V2Y)yo DIy, Pxy, Qxy' ]
Conversely, if Q and P satisfy (2) then the predicates R defined by Rxy = Pxy,
if x2y and Rxy = Qyx, if xsy satisfy (1). Thus, (1) is satisfiable if and
only if (2) is satisfiable. Note furthermore that the following formula

uniquely defines the predicates xzy and x>y:

(xzy A [y ]D[x2y]

(3) xzxp ~[2x]A [x'>7]
Thus, in case D[Rxy, Ryx, Rx'y] is of form B[Rxy, Ryx]a C[Rxy, Rx'y] one ob-
tains an (as to satisfiability) equivalent formula of form W[Rxx]A U[Rxy, Rx'y]A
V[Rxy, Rxy'], by conjoining (3) to (2). Consequently the problem (D') reduces

to the following, |

(D'') For any matrices Z[Roo], W[Rxx], U[Rxy, Rx'y], V[Rxy, Rxy']:-to decide
whether Z(o) A (Vx)W(x) A (Vxy). U(x,x',y)AV(X,7,y') is satisfiable ink< N,o0, '>.
It therefore foliows fhat also this proglem is unsolvable, and by lemma 3,

Theorem 1'': There is no recursivé method for deciding satisfiability of sen-

tences of form (E[V)_Z_[RVV]/\(VX)E[RXX]/\(VX)(EU.)(V;Y). U[Rxy, Ruy]A V[Ryx, Ryu].
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Depending on the result of Kahr, Moore and Wang the conjunct Z can be
dropped. However, the question whether in this theorem both restraints on
(Zv)z(v) and (Vx)W(x) may be dropped is a challenging unsolved problem. It
can be stated thus,

Problem 1l: TIs there an effective method which applies to any <S8, U, V>, U
and‘z binary relations on the finite set §, and decides whether or not there
is a valuation R: NxI»§ which satisfies the condition (Vxy). U[Rxy, Rx'y]A
V[Rxy, Rxy']. In a slighgly different form this was first stated by Wang
(1961), and called the domino problem. U and V may be interpreted as sets

of bars of length one, whose ends are marked with colors from a finite set S.
The problem then takes the following rather appealing form: To decide whether
the lattice NN can be filled with bars from U along the x-direction and bars
from V along the y-direction, such that the ends of all ba?s meeting at any
lattice point carry the same color.

The domino problem 1 is distinguished from other decision-problems by the
complete lack of "initial restraints." This seems to make it very hard to
reduce to it any one of the standard unsolvable problems, which all contain
initial conditions of one kind or another (empty or finite initial tapes,
initial states, axioms = initial theorems). In contrast, such a reduction was
possible in the case (D''), which is the domino problem 1 with initial restraints

Z[Roo] and W[Rxx] added. In fact, the claim of Kahr, Moore and Wang is that the

domino problem becomes unsolvable even in case only the axial-restraint E[Rxx]

is added.
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Related to the domino problem is the following, also unanswered, question:
Problem 2: Is there a finite set S and binary relations U and V on § such
that (Vxy). U[Rxy, Rx'y]a V[Rxy, Rxy'] has a solution R, but none which is
periodic?

By lemma III this is simply thg question whether or not there still is an
infinity-axiom of form (yx)(mu)(vy). U[Rxy, Ruy]A ¥ [Ryx, Ryu], i.e., whether
the set ViV,, consisting of all these sentences, has property ¢. As noted by
Wang (1961), a negative answer to problem.E would mean solvability of the
domino problem 1. (This corresponds to the well known fact that ©X implies
solvability of [X].) However, we rather expect problem 1 to be unsolvable
(possibly not of maximal degree 1, which would explain the mentioned diffi-
culties in setting up reductions of standard unsolvable problems ).

An unsolved problem on Turing-machines: We will now present a very natural

halting problem on Turing-machines. It came up in connection with VAV ], but
seems to be of interest in its own right.
(To) To find an effective method, which for every Turing-machine M decides
whether or not, for all tapes I (finite and infinite) and all states B, M
will eventually halt if started in state B on the tape I.

This problem also displays the feature of lack of initial restraints.
Stanley Tennenbaum has shown to the author that (T5) becomes unsolvable if
either one of the following initial restraints is added: 1. Distinguished

initial state A, 2. Initially the tape is empty.
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