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PREFACE

This final report has two parts. In the first, the results
obtained on fixed automata are summarized. (The detailed account
of these results is to be found in the technical report, The Logic
of Automata, by Arthur W, Burks and Hao Wang.) Results obtained
on growing automata are summarized in the second part.
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"THE LOGIC OF AUTOMATA"¥* —SUMMARY

Arthur W. Burks and Hao Wang
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Classes of automata are distinguished: fixed and growing, deterministic
and probabilistic (Section 2.1).* Attention is then focussed on finite auto-
mata. A finite automaton is a fixed finite structure with a fixed finite num-
ber of input junctions and a fixed finite number of internal junctions such
that (1) each junction is capable of two states, (2) the states of the input
junctions at every moment are arbitrary, (3) the states of the internal junc-
tion at time zero are distinguished, (4) the internal state (i.e., the states
of the internal junctions) at the time t+1 is completely determined by the
states of all junctions at time t and the input junctions at time t+1, ac-
cording to an arbitrary pre-assigned law (which is embodied in the given struc-
ture). An abstract automaton is obtained from an automaton by allowing an ar-
bitrary initial internal state (Section 2.1).

Let there be M possible input states (M possible combinations of acti-
vations or non-activations on the input wires). Designate by I the class of
input states. Let there be N possible internal states and designate by S the
class of internal states. Let there be P output states and designate by O
the class of output states. The values of M and N and P are not necessarily
powers of two since the structure or use of the automaton may prohibit certain
states from occurring (Section 2.2).

An Automaton is in general characterized by two arbitrary effective trans-
formations ( Tand N) from pairs of integers to integers. These integers are
drawn from finite sets (I}, {S}, and {0O}. (S} contains a distinguished inte-
ger S, (the initial internal state of the automaton). The transformations are
given by

5(0) = S5,
8(t+1) = [I(t), 8(t)]
o(t) = [I(t), S(¢t)]

(If we omit the condition S(0) = S
tion 2.2.)

, we obtain an abstract automaton.) (Sec-

o

We can produce a table of MxN pairs <<I,S , S'> such that, if <I,S>is
part of the state at t, then S' is part of the state at t+l. We shall call
this set the complete table of the given automaton. Each complete table is
a definition of the function t. In a similar way we can construct an output
table for the automaton, each now being of the form<<I,5S>, 0 >. ©Such a
table defines the function N. The function v and the complete table involve
a time shift, while the function A and the output table do not. For an in-
vestigation of the behavior of an automaton through time the complete table
is basic, the output table derivative (Section 2.2).

*Section references are to the complete version of The Logic of Automata.
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Two abstract automata are equivalent just in case they have the same com-
plete table. (If the complete tables are the same, then for the same initial
internal state and the same input functions, the initial complete states in
the two automata are the same, and the same complete state at any moment plus
the same input functions always yield the same complete state at the next mo-
ment. Section 2,2.)

In the case of automata with predetermined initial internal states (i.e.,
nonabstract automata), identical complete tables are sufficient but not neces-
sary to show the equivalence of any two automata. This is possible because it
can happen that, for every pair<<I,S>, S'> which occurs in one table but not
in the other, we can never arrive at the internal state S from the distirnguished
initial internal state S,, and hence can never have the complete state<I,5>,
no matter How we choose the input functions. To secure a necessary and suffi-
clent condition, it suffices to determine all the internal states which the
given initial internal state can yield when combined with arbitrary input words,
and then to repeat this process with each of the internal states thus found: if
two complete tables coincide insofar as all the palrs occurring in these deter-
minations are concerned, the two automata are equivalent. Since there are only
finitely many pairs in each complete table, the process of determination will
repeat itself in a finite time.

To describe the procedure more exactly, one can think of a "tree" with the
chosen initial internal state S, as the trunk, From the trunk M branches are
grown, one for each possible input word, with the corresponding internal state
at the next moment of time at the end of the branch. Whenever in the construc-
tion we come to an S that is already on the tree, we stop; otherwise we grow M
branches on it as before. This process is continued as long as some new in=-
ternal state 1s introduced at every height. ©Since there are altogether only M
a priori possible internal states, the number of distinct branch levels of the
tree cannot exceed M. Such a tree will be called the admissibility tree of the
automaton.

If we collect together the ordered pairs which represent branches of the
admissibility tree, we obtain a subset of the complete table which we shall
call the characterizing table of the automaton. Two automata are equivalent
if they have the same characterizing table. Since there is an effective method
of deciding whether two automata have the same characterizing table, we have a
decision procedure for testing whether two automata are equivalent (Section
2,2),

If the words of the characterizing table are put in a binary form and
the digits related to the Jjunctions of the automaton, it can be decided whether
or not two junctions behave the same (Section 2.2).

Automata can be represented by diagrams called automata nets, which show
the internal structure of automata. These nets are composed of switching ele-
ments which realize truth functions, and delay elements which delay an input
one unit of time. Well-formed nets are constructed by the following rules:
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(1) A switching element or delay element is well-formed.
(2) If Np and Np are disjoint well-formed nets, then

(a) the juxtaposition of Ny and Ny is well-formed:
(b) the result of joining junctions of Ny to input junctions
of No is well-formed;
(c) the result of joining input junctions of Ny is well-formed; and
(d) the result of Joining junctions of Ny to junctions of Ny which
are delay element input wires is well-formed (Section 2.3).

A normal-form net is organized as follows. It has a direct-transition
switch, fed by the net inputs and the delay outputs, and driving the delay in-
puts. It has an output switch, fed by the delay outputs and the net inputs,
and not driving any delay elements. Given a sufficiently rich set of switch-
ing elements, we can always obtain the normal form net for any well-formed net.
We can label the input wires to a normal form net and let I (the input state)
be the concatenation of the negated (for nonactivated) and unnegated (for ac-
tivated) symbols for the separate input wires., In similar fashion we obtain
designation for delay inputs, delay outputs, and direct-transition switch., We
let the initial concatenation of states of delay output wires be So (the ini-
tial state of the automaton). The remaining elements of S are the other con-
catenations of states of the delay output wires determined by the net and its
inputs. From the states of the net we can construct a complete table. By use
of the admissibility tree we can construct the characterizing table. There-
fore, glven a well-formed net, we can construct a complete table, a character-
lzing, and an output table describing its behavior. By considering the binary
codings, if we are given a complete table, characterizing table, and an output
table, we can construct a well-formed net realizing these tables (Section 2.3).
The information in a characterizing table can be arranged in a direct-transi-
tion matrix. The rows and the columns of the matrix are labeled with the in-
ternal states of the automaton; the matrix entries themselves are the input
states which will take the automaton from one internal state to another. When
there is no input which will directly take the automaton from a certain inter-
nal state to another particular internal state the matrix entry "g" is to ap-
pear (Section 3.1),

An abstract automaton is backwards deterministic if and only if for each
finite sequence I(0), I(1), ..., I(t), S(t+l), there is a unique sequence S(0),
S(1), ..., S(2) satisfying the complete table. A direct transition matrix is
backwards deterministic if and only if for each I and S there is at most one
other internal state such that I and this other internal state directly pro-
duce S. If a direct-transition matrix is backwards deterministic, the assoc-
lated abstract automata is backwards deterministic (Section 3.3).

Fixed, deterministic nets can be analyzed in terms of cycles. A sequence
of junctions Ay, Ap, ..., Ap, A} (possibly with repetitions) constitutes a
cycle if and only if each Aj 1s an input to an element whose output is Ay,
where k = j+1 modulo n. Thus a junction occurs in a cycle if it is possible
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to start at that junction, proceed forward (in the direction of the element
wire arrows) through switching elements and delay elements, and ultimately re-
turn to the Jjunction. A Junction which does not occur in a cycle has degree
zero, as does an input-independent junction. The degree of a noninput-inde-
pendent Jjunction which occurs in a cycle is the maximum number of distinct de-
lay elements it is possible to pass through by traveling around cycles in
which the junction occurs. The degree of a net is the maximum of the degrees
of its junctions (Section 4.1).

The close correspondence between switching nets and the theory of truth
functions has been noted earlier. If to the theory of truth functions we add a
5 operator (which when applied to the input value of a delay element gives the
output value of that delay element) and also allow the system to include ex-
pressions like t = a, t >a, (t-a) = ¢ mod b (where t is a variable and a, b,
and ¢ are integers) we can describe any periodic function. This system is
called the extended theory of truth-functions. For every Junction of a net
of degree zero, we can effectively construct a formula of the extended theory
of truth functions which describe the behavior of the junction as an explicit
function of the behavior of the inputs (Section k4.2).

For explication of all the foregoing remarks, including many examples of
the processes discussed (and also consideration of and comment on numerous
other automata problems), the reader is referred to the original technical
report.
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ABSTRACT

The paper describes a universal computer capable of simul-
taneously executing an arbitrary number of sub-programs, the num-
ber of such sub-programs varying as a function of time under pro-
gram control or as directed by input to the computer. Three fea-
tures of the computer are: (1) the structure of the computer is
a 2-dimensional modular (or iterative) network; (2) each sub-pro-
gram is spatially organized, thus facilitating the simulation of
"highly parallel" systems having many points or parts; and (3)
the computer's structure and behavior can, with simple generaliza-
tions, be formulated so as to make it a useful abstract tool for
investigating problems in automata theory.

SUMMARY

The main purpose of this paper is to describe a univeral computer capable of
simultaneously executing an arbitrary numher of sub-programs under program control.
The formulation is intended as an abstract prototype which, if current compo-
nent research is successful, could lead to a practical computer.

The computer can be considered to be composed of modules arranged in a 2-
dimensional rectangular grid; the computer is homogeneous (or iterative) in
the sense that each of the modules can be represented by the same fixed logical
network., The modules are synchronously timed and time for the computer can be
considered to be divided into discrete units or time steps, t = 0, 1, 2,

Basically each module consists of a binary storage register together with
associlated circuitry and some auxiliary registers. At each time-step a module
may be either active or inactive. An active module, in effect, interprets the
number in its storage register as an instructlion and proceeds to execute it.
There is no restriction (other than the size of the computer) on the number of
active modules at any given time. Ordinarily, if a module M(i,j) at coordin-
ates (i,j) is active at time-step t, then at time-step, t+1, M(i,j) returns to in-
active status and its successor, one of the L neighbors M(i+l,J), M(i,j+l),
M(i-1,3), or M(i,j-1), becomes active. The successor is specified by bits sq,
sp in M(i,J)'s storage register. If we define the line of successors of a
given module as the module itself, its successor, the successor of the suces-
sor, etc., then a given sub-program in the computer will usually consist of the
line of successors of some module.

The action of a module during each time-step can be divided into three
successive phases.



1. During Phase One, the input phase, a module's storage register can be
set to any number supplied by a source external to the computer. Although the
number in the storage register can be arbitrarily changed during Phase One, it
need not be; for many purposes the majority will receive input only during the
first few moments of time ("storing the program") or only at selected times
UERIYIREE ("data input").

2. During Phase Two, an active module determines the location of the
storage register upon which its instruction 1ls to operate by, in effect, mark-
ing a path to it. The path-building action depends upon two properties of mod-
ules. First, each module has a neighbor, distinct from its successor, desig-
nated as its predecessor by bits qj, gp in its storage register; the line of
predecessors of a given module is then defined as the sequence of all modules

MO’ Ml’ ceey Mk’ ... such that, for each k, Mk is the predecessor of Mk-l
and My _y is the successor of M. Secondly, by setting bit p in its storage
equal to 1, each module may be given a special status which marks it as a
point of origination for paths; the module is then called a P-module.

Fach path must originate at P-module, and only one path can originate at
any given P-module. The modules belonging to a given path can be separated in-
to subsequences called segments. Each segment consists of y modules extending
parallel to one of the axes from some position (i,Jj) through positions (itby,
Jtbo), (i+2by, 3+2by), ..., (i+(y-1)by, J+(y-1)by), where by=1l, O, -1 and by=
i(1'|b1|)3 the module at (i+ybl,-+yb2) will be called the termination of the
segment. FEach module possesses ﬂ *-registers and if the module belongs to a
segment in direction (by, by) the appropriate *-register, (by,bp)*, is turned
on gating lines between (i,J) and (i+by,J+bp). Since each *-register gates a
separate set of lines, a module may (with certain exceptions) belong to as many
as four paths. Once a ¥-register is turned on, it stays on until it is turned
off; thus a path segment, once marked, persists until "erased."

Each segment of a path results from the complete Phase Two action of a
single active module. At the start of Phase Two the path specification bits
Yy .-y Yo and dj, do are gated down the line of predecessors from the stor-
age register of the active module to the nearest P-module along the line of
predecessors. Let the termination of the final segment of the path originating
at that P-module be called the nearest path termination. Then,I1f y,= O, bits
Yn-1s +++» Yo and d;, dp determine the length and direction, respectively, of
a new segment which has as its initial module the nearest path termination.

If yn=1, then the final segment of the path is erased (bits Yn-1s --«s Yo and
d,dp not being used in this case).

3. ~Phase Three, the execution phase, depends upon the fact that, by set-
ting the pair of bits (p,a) in a module's storage register to the value (0,1)
the module can be given a special status which marks it as an accumulator; a
module in this status is called an A-module. The number in the storage reg-
ister of an A-module is treated simply as a binary number with yp being the
sign bit and y,_q the high-order digit.



Three modules play an important role during the execution phase of an
active module: the active module itself holds the order code in bits 1y, ip,
15 of its storage register; the storage register of the nearest path termina-
tion contains the word to be operated on; and the A-module nearest along the
line of predecessors, after the nearest P-module, serves as the accumulator.
For example, if an active module has a TRANSFER ON MINUS order coded in bits
1y, 1o, 13, and if the number in the nearest A-module is minus, then at the
end of the time-step the module at the nearest path termination becomes active
instead of the active module's successor.

In the present formulation there are 8 types of instruction: (1) TRANSFER
ON MINUS, which has already been described; (2) ADD; (3) SUBSTRACT; and (4)
STORE act similarly, the nearest path termination serving as the address for
the order; (5) NO ORDER causes the execution phase to pass without the execu-
tion of an order; (6) STOP prevents an active module from passing on its ac-
tivity; (7) ITERATE SEGMENT causes 1 to be subtracted from the number in the
the A-module, and, if the result is positive, the active module remains active
on the next time-step (rather than passing on its activity); thus the path-
building phase of the given module is iterated; and (8) SET REGISTERS causes
the first 9 bits of the A-module's number to be used to set all 9 auxiliary
registers at the nearest path termination; by setting the auxiliary register
which gives the module active status, both that module and the successor of
the active module will become active on the next time-step.

To resolve possible conflicts when several active modules interact, a
set of interlock and over-ride rules are required. In the present formulation
10 such rules suffice.

Recapitulating briefly, the universal computer described has three promi-
nent features:

1. The basic structure is iterative.

2. The sub-programs have a spatial organization and any number can
be executed simultanequsly.

3. Features (1) and (2) make possible theoretical investigation of
the interactions of various classes of sub-programs (e.g., by
considering the rectangular grid to cover an infinite plane, cf.
Church's potentially infinite automata and Von Neumann's scheme
for self-reproducing automata).

It should be noted that the present formulation is representative of a
broad class of similar machines.
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