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COMPLETE DECODING HETS:
GENERAL THEORY AND wINIMaL1TY!

1l. Introduction.

A digital computing circuit is a physical device

with input and output wires and which functions as follows,
At any moment of time each wire assumes one of & finite
number of discrete states, IMoreover, the state of the
output wires is determined by the past history of the
states of the input wires. A telephone exchange, a di-
gital electronic computing machine, &nd probably the hu-
man nervous sy;tem are all digital computing circuits.

For reasons of simplicity we will consider only digital
computing circuits in which every wire has one of two

states, 1.2., 1s either activated or not &activated.

We will be concerned in this paper exclusively
with digital computing circuits without memory or useful
internsl delays. ©Specifically, we will deal with complete

decoding circuits. ©Such & circuit may be roughly char-

acterized as follows. Its input wires mey be partitioned
into two or more sets each consisting of one or more wires.
Moreover, it is such that when exactly one wire of each in-
put set is activated exactly one of the final output

wires is activated, and no two different ways of acti-

vating exactly one wire of each input set cause the same



final Qutput wire to Dbe activated.

The present paper falls into two parts. In the
first part (consisting of the following five sections)
we will define precisely three important kinds of com-
plete decoding circuits (exponential switch circuits,
tree circuits, and balanced multiplicative switch cir-
cuits) and study their interrelations. In the second
part (consisting of the last section) we will establish
a minimality result concerning complete decoding cir-
cuits which may be approximately stated as follows;
on certain assumptions concerning the relative costs
of different kinds of components, the balanced multi-
plicative switch circuit is the most economical type of
complete decoding circuit. ©Some of the ideas of this
paper are already employed by computer engineers; what we
have done is to extend, systematize, and make rigorous
what is already known in this field.

We will treat the subject matter of complete de-
coding circuits rigorously by using the methods of sym-
bolic logic. This is done as follows. A digital computing
circuit may be (and often is) represented by a diagram
or net Which gives the logical structure of the circuit
in abstraction from many physical features of the circuit

that are not relevant to this logical structure (e.g.,
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actual voltage levels, certain time delays). These
diagrems may be regarded as symbols in & non-linear
language, this language can be formelized in somewhat
the same manner as the langucges of symbolic logic, &nd
then theorems can be proved about this formel lenguage.
This wes done in a previous paper,2 and in the present
paper we will use these results to define precisely,
end to prove various theorems about, complete decoding
circuits., ©Since certain wmodifications need to be made
in ocur earlier theory of logical nets to meke it most
convenient Ifor the problem at hand (in perticular, we
do not need delay elements in the present peper) and,
since we desire that the present paper be independent

of the earlier one, we will construct the theory anew,



2. Ihe net language.

The basic symbols of our formal net language

consist of brackets of various sizes, the truth con-
stants "O" and "1", and an infinite number of primitive
elements. FEach element consists of an enclosure or

nucleus containing a function symbol representing a two-

valued truth-functional logical operation of M argu-

ments, M 1inwardly directed line segments or input wires,

and a single outwardly directed line segment or gg;gg;
wire. Some examples are: the two-input alternation
("or") element (Fig. la), the three-input conjunction
("and") element (Fig. 1b), the stroke element (Fig. lc),

the negation ("not") element (Fig. 1d), the material

implication ("if-then") element (Fig. le), where "A",

ngw, mwg", WN", and "C" represent alternation, conjunction,
the stroke function, negation, and material implication

respectively.3
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Fig. 1



The reader meay find it strange to consider this
system of dizgrams a language. For (1) he usually
thinks of a language as treating linearly arranged enti-
ties: 1letters are strung together to form words, words
to form sentences, etc., all in one direction. And (2)
he usually thinks of &a language as & vehicle for eX-
pressing complete thoughts in sentences. Clearly neither
of these is the case in our net language. To justify the
use of the word "language" we note that as explained be-
low the diagrams do represent objects in the same sense
that some word§ of ordinary language (like "cat", "moon',
etc.) represent objects. We also note that, although a
diagram does not literally make any assertion, in effect
it can tell us much about the circuit which it represents;
for example, whether two wires are joined together. Also,
engineers do use such diagrams to communicate with each
other. The linear language introduced in Section 6 is
more like ordinary language in all these respects.

The elements of our formal net language represent
electronic, relay, or neural devices that perform the
functions indicated by the symbols of the nuclei. Cir-
cults constructed from these devices may be represented

by symbols compounded out of the elsments, &s in Fig. 2.



Such a diagram as that of Fig. 2 is called a "plain net";
the reason for the qualification "plain" will become
apparent in & moment. In some applications, such as de-
coding (see the next section), the inputs of a circuit
are operated in groups. To represent digital computing
circuits wused in this way we use‘diagrams called "parti-
tioned nets." The diagram of Fig. 3 is a partitioned net
and represents a complete‘decoding circuit with two pairs

of inputs and four outputs.
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Fig. 3



Both plain nets znd partitioned nets are called "nets."
It is sometimes useful to symbolize not merely a
digital computing circuit but that circuit in a parti-
cular state. We do this by means of diagrams called
"net states" which are derived from nets by labeling each
junction with the truth constant ("O" or "i");'"O" indi-
cates that the junction labeled is inactive, "1" that it
is active. Fig. 4 is a net state of Fig. 3, and repre-
sents a complete decoding circuit with one input from

each pair activated and one output activated.

Fig. 4

We proceed now to define formally the concepts of
plain net, partitioned net, and net; the concept of net
state will be defined formally in the next section.

A plain net consists of elements (possibly one)
and a finite number of points called junctions, such that

the at least one

every Jjunction is onAaiaiaasﬁaunz outer end oan-wire of

some element, and such that the outer end of any wire of



any element is on at least one junction. If there is no
arrowhead at a junction, it is an input junction; other-

wise, it is an output junction. An output junction to which

only one wire is connected is a final output junction.

A partitioned net is a plain net plus a bracketing

of &ll input junctions into two or more disjoint sets

(called bracketed sets). A b-d net is a partitioned net with

d Dbracketed sets each of which contains b junctions. A
net is either a plain net or a partitioned net. The de-
finitions of "junction", "input junction", "output junction",
and "final output junction" are extended in the obvious way
to coVer partitiohed nets as well as plain nets.

Not all netsi;:gzaszni physically realizableoesgggszsf

is therein

Fig. 5aA§EEB not, for example, for the conjunction elementA
represents a component whose input and output wires aré
in the same state while the negation element repre-
sents & component whose input and output wires are in

opposite stateéo




We will next define a certain class of nets, called
"well-formed nets" ("W.f.n,") which will exclude these as
well as other kinds of nets we are not interested in here,
and which is sufficiently large to. include representations
of almost all digital computing circuits without delays.4

To define this class precisely we need the following
notions. Any junction which is common to two or more

output wires is a multiple junction. A junction OF

directly drives a junction A if and only if there is an
element such that O< is on an input wire and 4 is on the
output wire of this element. X g;izgg @3 if and only

if there exists a sequence o<l,,°a,CxI such that &

1
is &K, (X_ is (@, and (x, directly drives ox
each ilsuch that 1 ivl

forA4l £1 1. Note that the driving relation is
transitive: if X drives (S and (& drives § then o<
drives ¥ . A cycle is a sequence of junctions
Xgseoey XK such that X, y .1 directly drives
(o4 i.e., such that each junction of the cle

(i+1)iod 1’ ’ Junets y
directly drives the next Jjunction of the cycle.

We can now define: a net N is well-formed (w.f.)
if and only if N has (1) no multiple junctions aznd (2) no
cycles. The nets of Figs. 1, 2, 3, and 4 are w.f.n.,
while the nets of Fig. 5 are not w.f.n.

We will often be concerned with the following
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11.

3. Complete decoding nets.

A function that digital computing circuits are
often constructed to perform 1is that of code conversion.
We will make & few remarks about code conversion in
general as & background for our discussion of complete
decoding circuits.

The heart of the process of code conversion is a

character by character translation or transliteration,

based on a unique assignment of a character of the second
code to each character of the first code, Transliterations
are realized by circuits which will translate or convert
any arbitrary character (sequence of digits) of the first
code into the corresponding character of the second code.
The code conversion of a complete message will then con-
sist of & sequence of these character conversions plus,
perhaps, other minor operations,

A standard procedure for converting a character from
one code to another is first to decode and then to encode.
We will illustrate this process with a conversion from one
six-bit code to another. ©Suppose a six-bit character is
represented on six input junctions going to a polarizing
circuit whose output consists of six pairs of junctions,
exactly
one junction of each pair being activated. These six pairs

of junctions are inputs to a complete decoding circuit with
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sixty-four outputs, of which exactly one is activated,

and such that for two different ways of activating
exactly one junction of each input pair two different out-
put Junctions are activated. These sixty-four Junctions
in turn become the inputs to an encoding circuit with six
output junctions on which are represented the converted
characters,

This example makes clear the role of & complete de-
coding circuit in the general process of code conversion.
This is only one way of making a code conversion, of course,
and there mey Qe other more direct end efficient ways,
depending on the circumstances, the equipment availableg
etc. But this particular technique has certain adventages.
The complete decoding circuit meay be constructed entirely
of conjunction elements (and hence may be represented by a
w.f.c.n.) connected in any one of & number of systematic
weys, and the encoding circuit can be constructed entirely
of alternztion elements (end hence mey be represented by a
w.f.a.n.) connected in & systematic way. Complete de-
coding circuits are also of interest in their own right,
for in many instences & decoding is needed without a sub-
sequent encoding.

1t is evident from the preceding example that com-
plete decoding involves the use of a circuit in & certain
way: the input wires are partitioned into subsets and

exactly one wire of each subset is activated. Circuits



used in this way are represented by partitioned nets; the
partitioning of the input Jjunctions of the partitioned

net represents the partitioning of the input wires of the
circuit. Thus the complete decoding circuit of the pre-
ceding example may be represented by a partitioned net with
six bracketed sets of two junctions each. Only partitioned
nets with bracketed sets of two junctions each are needed
for code conversion of the type Jjust illustrated, but we
allow bracketed sets with any number of Jjunctions in the
interest of greater generality. The various states which a
complete decoding circuit has when operated in this way may
be symbolized by what we called "net states." We will now
formally define this concept, for plain nets as well as for
partitioned nets, so we may be able to symbolize the states
of circuits represented by plain nets and by partitioned
nets.

A net state (n.s.) of a w.fon., N is the net N plus
truth constants inserted according to the following rules:
(la) If N is & plain net, label the input junctions of N
erbitrarily with the truth constants "O" end "1",

(1b) If N is a pertitioned net, label exactly one input
of each bracketed set with the truth-constant "1" and label
all other input junctions with the truth-constant "0O".

(2) Repeat as many times as possible the following operation:
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Find an element of N all of whose input wires are Jjoined
to labeled junctions. Let these labels be Xy, ..., Xyjy
respectively, counterclockwise from the output wire of the
element, and let the function symbol contained in the

nucleus of the element be GM, Label the junction to which
the output wire of the element is joined with (X, where
Koz oty -

The definition of "junction", "input junction", "out-
put junction", and "final output junction" are extended in
the obvious way to cover n.s. as well as nets. It is
worth noting that we have defined n.s. only for w.f.n.,
and that an application of the rules of the above definition
to a w.f.n. will result in a diagram in which every junction
is labeled with exactly one truth-constant.

We can now define precisely the kind of symbol of our
net language which represents a complete decoding circuit.

N is a complete decoding net if and only if N is a w.f.

partitioned net such that for every n.s. N' of N there
exists a junction (called alggggg;gg junction) of N
which is labeled 1 in N' and in no other n.s. of ﬁoé
Fig., 3 is a complete decoding net.

The kind of complete decoding circuit described at the

beginning of this section has the special property that the
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sets into which its input wires are partitioned have the
same number of elements. Complete decoding circuits of
this special kind &re represented by b-d decoding nets,

defined as follows. N is a b-d decoding net if and only if

N is a complete decoding net which is a b-d net. Fig. 3
is & 2-2 decoding net.
Let N Dbe a b-d decoding net and let K be & set

of junctions of N obtained by selecting for each n.s.

N' of N exactly one decoding junction which is labeled -
The set

1 in N".ﬂ“ _
has ’Q_d eléments,,\% there are Qd N.S. oanz b-d
es=msimy net. Each"of these n.s. can be represented by a
d-digit base-b number, of which the i'th digit tells which
of the b Jjunctions of the i'th bracketed set is activated.
This shows the relation of a b-d decoding net to a type of
code conversion more general than that of the example given
earlier in this section.

We are usually interested in b-d decoding nets in
which the elements of K are all the final output junctions
of the net. However, we do not require that the elements
of K Dbe final output Jjunctions nor that a b-d decoding
net have exactly p? final output junctions. We thus
broaden the scope of some of our theorems without compli-

cating their proofs. One could also allow for extra
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input junctions, but here the complexity introduced does

not seem warranted by the gain in generality.
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do Multiplicat;ve switch nets.

We will study three different species of com-
plete decoding circuits (exponential switch circuits,
tree'circuits, end balanced multiplicative switéh
circuits) that are in common use. These turn out on
careful analysis to belong to the same genus, that of

multiplicative switch circuits. In this section we

will define precisely a class of nets (called "multi-
plicatiVe switch nets") which represent circuits of this
genus and then define classes of nets (called "ex-
ponential switches", "trees", and "balanced multipli-
cative switch nets", respectively) representing these
three s@ecies of this genus in such a way as to bring
out their interfelations° |

compounds
Multiplicative switch nets are ) o of

multiplicative switches, so we will define this concept
first, | ‘ |

The 11, i, +eoy i .mglzip;icagive switeh (m.s.)
is the partitioned net consisting of |
(1) i; + i, + ..o + ig input junctions, bracketed into
d sets of 11, coos ld members respectively;
(2) i i, * ..o - iy output junctions;
(3) i - i, * «.o + 1g elements, each of which is a

d-input conjunction,
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The
tggA connection of the wires of the elements to
the junctions can be described as follows:
(4) By "representative set", we mean a set of g
input Jjunctions, one from each bracketed set; there are

o

11 ceo ° id representative sets. Each representative
set is the set of input junctions on the input wires

of exactlyvone element.

(5) Every output junction is on the output wire of
exactly one element.’

Note that an m.s. is a w.f.c.n. and also a complete

decoding net., Fig. 3 is an m.s., as is also Fig. 6a.

?(,_
%e_.

Fig. 6

The structure of the m.s. of Fig. 6a i$ more clearly

a mOdlflCatlon
shown in Fig. 6b. Fig., 6b is p== St

mQdify
We will hereafter &éhaazszﬁe m.s., in a similar way when

of Fig. 6a,

it is convenient to do so.

"m.s, ne-f-ﬂ
Roughly, an A @=wss

is composed of m.s.

=
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m.s. net (m.s.n.)
More precisely,,\’ﬁ is defined recursively as follows:

(1) An m.s. is an m.s.n.

(2) Assume l_\l_l and ﬁz are disjoint m.s.n. with

Fl’ cooy PJ the final output junctions of l:l_l and

Al’ .o0s B3 @ bracketed set of N_ . Then the result

20
of dropping the bracket around Al” QOO,AJ and

joining (i.e., identifying) Pl to Aly soos FJ to

AJ is an m.s.n.

Fig. 7 is an m.s.n. composed of two m.s.

\

-
5

An m.s.n. is a complete decoding net and hence an m.S.n.
with d bracketed sets of Db Jjunctions each is a b-d
decoding net. An m.s.n. is a w.f.c.n,

It is obvious that an m.s.n. has sufficient regu-
larity of structure to permit abbreviation of it. An

m.s., may be abbreviated by a single symbol as follows.
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An ll’ soey ld m.s. symbol consists of a box with d

input cables labeled ij, ..., igq éend a single output
cable labeled ll * eeo ¢ 13. 1t abbreviates an

115 20ey 14 mes. Thus Fig. & abbreviates Fig. 3.

2 - 4

L

Fig, 8

Fig. 9 abbreviates Fig. 6.

Fig. 9

An m.s. net diagram is defined recursively as follows:

(1) An m.s. symbol is an m.s. net diagram. An input

(output)‘cable of the m.s. symbol is a net input (output)
cable. |

(2) 1f i, 1is an m.s. net diagram with a net output
cable labeled x and MZ is an m.s. net diagram with-a
net input cable labeled x, the result of joining the two

cables is an m.s. net diagram. An input (output) cable of

any m.s. symbol is & net input (output) cable if &nd only




if it is not joined to the output (input) cable of
another m.s. symbol.

For example, in Fig. 10 below there are three
input cables each labeled 2, and two output cables one
labeled 4, the other 8.

It is clear that every m.s.n. is abbreviated by
exactly one m.s. net diagram and that every m.s. net
diagram abbreviates exactly one m.s.n. Thus Fig. 10

abbreviates Fig. 7. 2 2

N

Fig. 10

A b-d m.s. net diagram is an m.s. net diagram having

d net input cables each labeled Db.

We are now prepared to define exponentiel switches,
trees, and balanced multiplicative switch nets in terms
of m.s.n. In what follows we shell not always meke a
clear distinction between the m.s.n. and the m.s. net

diagram,

A b-d exponential switch is an m.s. symbol with d
input cables each labeled Db or a net which is abbre-

viated by such. Fig. 3 is a 2-2 exponential switch
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while Fig. 11 is a 3-5 exponential switch.

243
|

LobuluobLol

Fig. 11

The b-d tree is the m.s. net diagram (or the net

abbreviated by it) composed of a b

d-

,p m.s. symbol,
a Qz,p m.s. symbol, ..., and a b 1,g m.S. symbolj;
these d-1 m.s. symbols are connected in the following
way: for every j, i=1, ..., d-2, the output cable
j _ having the same label
of the b°,b m.s. symbol is joined to the input cable,
of the QJ+1,§ m.s., symbol., Fig. 10 is a 2-3 tree while

Fig. 12 is a 3-5 tree.

It should be noted that the kind of tree defined here
is the so-called standard tree as contrasted to a
folded tree. A folded tree, while composed of m.s., is

not an mes.n,8
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We now define "p-d balanced m.s.n." To do so, we
make use of the commonly used notation " [z] " which
means the integral part of x, i.e., the greatest

integer not greater than x. The b-d balanced m.s.n.

is the m.s. net diagram (or the net which it abbre-
viates) which can be constructed as follows:

(1) 4 p_@/ 2] ,p[(d“)/ 2Jm.s. symbol is drawn.

(2) The following step is iterated until all net

input cables &re labeled Db: where there is an input

ceble labeled b, a bl/3 ,:_19[("”)/2] m.s. symbol

is drawn, its output cable joined to that input cable,?

R56

Fig. 13

Fig., 13 is a 2-8 balanced m.s.n. while Fig. 14 is a
3-5 balanced m.s.n. It should be noted that for each

b and d ‘there is a unique balanced m.s.n.



Fig. 14

b-d exponential switches, b-d trees, and b-d
balanced m.s.n. are all b-d decoding nets, and hence
they all represent complete decoding circuits.

(Thus Figs. 11, 12, and 14 are all 3-5 decoding nets.)
These three kinds of b-d decoding nets are of particular
interest because of the regularity and simplicity of

their structure.
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practical engineering skill and judgment. There are
nevertheless problems of pure logic capable of precise
formulation and of rigorous solution which heve an im-
portant practical bearing on these engineering problems.
We will formulate and partially solve one such class of

problems., The element-input count of & net N 1is the

number of (element) input wires of N, i.e., the number

of input wires of each element summed over all the ele-

ments of N, Anet N 1s minimal in a given class of

nets if end only if the element-input count of N 1is as
small as the element-input count of every other net of
that class., The minimality problems we are interested
in are those of the form: For any class of b-d decoding
nets, to find & net minimal in this class.,

For the most part, this problem is quite trivial
in any case where Db = 1. For the remainder of this
paper, therefore, we shall consider only cases in which
b > 1.

We will meke a few remarks to indicate the becring
of these theoretical minimality problems on practical
circuit design. Certainly one factor in the cost of a
complete decoding circuit is measured by the element-

input count of the corresponding net. In some instances
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this is a dominating factor. For example, for a cir-
cuit constructed out of crystal rectifiers connected to
form logical conjunctions, the element-input count is

equal to the number of rectifiers.lo

Further, in this
case two cost factors which are difficult to compare
need not be compared, for, &s we shall show iater, the
b-d decoding net minimal in the class of b-d decoding
w.f.c.n. is very uniform and simple in structure, and
there is no problew of comparing it with a slightly
more uniform net having a few more elements,

We will consider now the element-input counts of
our three fundamental kinds of m.s.n. Let QE(Q’Q)’
QT(p,g), QB(Q,Q) be the element-input counts of b-d
exponential switches, b-d trees, and b-d balanced m.s.n.,
respectively. These functions are defined only for
b,d natural numbers = 2.

(l) Q_E(D,Q_) = _@:_Qd

2bd+l 3 2b2
b-1

(2) Cp(,a) =

We know of no exact, simple formula for QB(Q,Q), but
(3) is a simple recursive formula (derived from the
rules of construction fd; & b-d balanced m.s.n.) giving

the values of this function; (3) is a non-rescursive
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formula for the case where d = 2k°

(3) cplb,2) = 2%
c (2,3) = 2 + 2b°
o (0, 0) = 2 + C(b, [0/2] ) # gy(e, [(ard2]) (@24,

. integral .
where ! [z;_]' means 'the gy purt of x' as before.

| K s o]
() gy(0,25) = 2 - 3 2,
=1

The following minimelity results may be established
by algebraic and inductive proofs from these formulas, |
For d =2 and for d =3, b = 2: QT(Q,Q) =‘QE(29Q)°
In the first case (d = 2) this equality holds because a
b-2 tree is a b-2 exponential switch. For other values
of b,d (i.e., for d =3 and b >2, and for 4> 3)
Cp(,@) < Cp(byd). For d =2,3 Cp(b,d) = Cq(D,d),
because a b-2 balanced m.s.n. is a b-2 tree and a
b-3 balanced m.s.n. is a b-3 tree. For other values éf
a (d=4), Cz(b,d)< Cp(b,d). We can summarize these
results by saying that a b-d balanced m.s.n. is as small
(in the sense of having as small an element-input count)
as a b-d tree, and in general is smaller, and a b-d
tree 1s as small as a b-d exponential switch, and in
general is smaller. The actual element-input count for
each kind of net for Db,d €5 ig given in the following
tables, .We have stopped the development of the table
for QT(Q,Q) as soon as the values become larger than those

of QB(Q,Q), and similarly for QE(p,g) with respect to Cr(p g),
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Values of Cp(b,d)

Table 3

d
b 2 3 A 5
p 8 R4 48 96
3 18 72 198 576
4 32 160 576 2240
p) 50 300 1350 6600
Table 1
Values of Cp(D,d)
d
‘b 2 3 A p)
2 8 24 56
3 18 72 234
4 32 160 672
5 50 300
Table 2
Values of QE(Q,Q)
d
b 2 3 4 2
2 g8 24 64
3 18 81
4 32
5 50
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Though we know of no exact, non-recursive formula
for QB(Q,Q), it follows from the results of the pre-

ceding paragraph that

del 2
(4) cglb,) = =28 sor g= 2,3,

Approximate information concerning QB(Q,Q) for larger
velues of d (d » 3) may be gained from the following
formulas. An upper bound on QB(Q,Q) may be found by
replacing the two subnets driving the final m.s. of a

b-d balanced m.s.n. by a b-[d/2] tree and a Q—[Kd+l)/é]

tree, Hence

¢ (b,d) = 2p° +(.2_b,I) (_b@/ﬂ R E[(d—l)/zj) i %?—i

b

for 4 » 3.

A lower bound on QB(Q,Q) may be found by deleting all of

the b-d balanced m.s.n. except the final three m.s. Hence
(6) cg(b,d) 2 2 4 2(2[‘1/"2:’ + _lg[(d”)/ZJ) for 4 > 3.

An approximete formula for QB(Q,Q) useful for d % 3
may be derived from (5) and (6) by deleting the last
term of (5) and averaging the rmsult with (6).

(7) () = 2b” + (2.%—%) (Q[d/Z:I +Q[(d+l)/2:])

for 4 > 3.
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Except for some of the values of QB(Q,Q) given in
Table 1 (and except for d € 3, of course), this
formula is accurate to better than 0.6 of one per cent.
decoded '
TheA§===&==§ information produced by a b-d decoding

net appears on Qd output Jjunctions. A useful

criterion of the "cost" of a b-d decoding net is the

element-input count per used output of & b-d deqoding
net, defined as the element-input count divided by »o.
Let Rp(b,d), Bp(b,d), and Ry(b,d) be these ratios
for a b-d exponential switch, a b-d tree, and a b-d
balanced m.s.n., respectively. The Hllowing relations
may be easily established:

(8) By(b,d) =d

(9) 2% Rp(b,0) <2+ 52 =4

(10) 2 = Ry(b,d) < 3.

It may be shown that the element-input count per output
of any b-d decoding net is &t least 2. The superiority
of & b-d balanced m.s.n. over the other two types of
b-d decoding nets is indicated by the fact that this
value of 2 is approached be a balanced m.s.n. as it
becomes larger and larger, but not’in general by an
exponential switch or tree:

(11) Limit Ro(b,d) = 2 + ===
d o0 = b-1



32,

(12) Limit R
d=>o00 B

(b,d) = 2.
The latter may be proved from (5)°ll

The most important result established in this
section so far is the minimality of a b-d balanced
m.s.n. in the class composed of a b-d balanced m.s.n.,
a b-d tree, and a b-d exponential switch. This leads
naturally to the question: What is the broadest
class of b-d decoding nets with réspect to which a
b-d balanced m.s.n. is minimal? We are able to prove

conjunc tion
that a b-d balanced m.s.n. is minimal in the class ofA

12

b-d decoding nets. & —---—-»:——:‘—..--. The proof of

this result involves some new concepts of interest in
their own right, so it will be postponed to the final

section., We also offer the following conjecture:

CONJECTURE: A b-d balanced m.s.n. is minimal in the

— o O ————— v m——

class of b-d decoding nets.

It will be recalled that a b-d decoding net was defined
to be a w.fon. It isrpossible to extend this definition
to include any net, whether w.f, or not, which performs
essentially the same decoding function, and we con-
jecture that & p-d balanced m.s.n. is minimal even in

this wider class of nets.
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6., The equation language.

Any ordinary language is linear in the sense that
its symbols normally occur in & linear order; in contrast,
our formal net language is non-linear: 1its symbols nor-
mally require a two-dimensional medium. There are
meny ceses in which the net lenguage permits the
simplest and most satisfactory description of & di-
gital computing circuit. On the other he&nd, there are
some situations where & precise linear lénguage is more
suitable.t3 In the present section we will introduce such

a language, called the eguation language,

The equatibn language is equal in expressive power
to the net language, that is, the same information can
be expressed in each, and every net or net state may be
translated into a suitable expression of the equation
lenguage cnd vice-versa, We could give a formal de-
finition of the equation language, and then prove this
intertranslatability as & theorem, but in the interest
of brevity we will give only an informal exposition
of the eqguation language, usually proceeding by
showing how to translate an expression of the net language
into it, and usually working in terms of examples rather
than general principles.

A plain net N of the net language may be trans-

lated into a set of equations of the equation lenguage
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as followé. Asgsociate with each junction of N a
distinct propositional variable; these variables may
also be regarded as associated with the wires ter-
minating in the junctions. Considsr un eiement with
function symbol 6 (of degree W), variables

K15 ooy Xy associated with its input wires (num-
bered sequentially in & counterclockwise direction
from the output wire), and veriable /8 associated
with its output wire. For this element write the
equation /8 = @Ckl.,ecxm.l4 For example, Fig. 2
translates into the set of equations "gl = KglﬂB’

4 = Kpp), 43 = Kp,pgs 9, = Kpop,"s see Fig. 15.

a4 q, 4 9

A few comments on this notation are in order.
The equivalence sign "z=" means the same as "if and
only if." To the right of this sign we write the

function symbol found in the nucleus followed by the
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variables associated with the input wires in the proper
order. We ﬁse here the symbolism of Jukasiewicz! paren-
thesis-free notation for the propositional calculus: for
example, "Apg" for "p or g", "Apgr" for "p or g or r",
"Kpg" for "p and g", "Kpgr" for "p and g end r",

"Np" for '"not-p", "Cpg" for "if p then g", and "Spg"
for "either not-p or not-g." Thus "g = Kp;p," means
that the junction associated with "g" is activated if
and only if the two junctions associated with "91". and
"HZ" are both activated. Note finally that Fig. 16

translates into "g = _ngz" and not into "g = nggl."

Fig. 16

In the case of a completely commutative function symbol
© the order in which the input variables follow the
symbol doesn't matter (e.g., "Apg" is equivalent to
"Agp") but in other cases it does (e.g., "Cp, p,"

is not equivalent to "nggl"), and to be uniform we
always follow the function symbol by the variables asso-
ciatad with the input wires of the element taken in a

counterclockwise direction from the output wire.
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Partitioned nets are translated into sets of
equations by using both variables with subscripts and
variables with superscripts and subscripts in the way
indicated by the following example. Fig. 3 translates
. 11 1.2 2.1 v R R

e = - 1 j = , = n.
into "g; = Kpipy, 4, = Kpips, 45 2 £pjpy, 4, = 807055

see Fig. 17.

Note that "g?" is associated with the x'th member of the
y'th bracketed set.

A net state N! of a net N may be translated
into a set of equations as follows. Translate N
into a set of equations according to previous instructions.
Then for each variable X associated with an input
junction of N, add " Xz O" or " (= 1" to this set
of equations accordingly as the junction associated with
< is labeled "1" or MO" in N'., Thus Fig. 4 translates

, oL 1 12 - -
into "g; = Kp1psy, 45 = KpjDo, 43 = KQ%Q%, 9, = éﬁfﬂg,

- 2 - 1_ 2
py; =0, pp =1, py =0, pp =0."
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An equation expresses the state of an output
junction in terms Qf'the states of the junctions which
directly drive it. In some cases it is useful to ex-
plain the state of an output junction in terms of the
states of the input junctions (of the net) which drive
it. :This may be accomplished for w.f.n. as follows,
Let N bea w.f.n. First, associate a distinct
variable with each input junction of N; if N is a
partitioned net these variables must have subscripts
and superscriptsiéEEEﬁEEﬂEE:ihdicated in the last para-
graph. ©Second, iterate the following step as long as
possible: if [1 is an output junction of N on an
output wire of an element with function symbol 6 of
degree M and directly driven by junctions to which are

counterclockwise
associated formulas Aq, ..., Ay (taken in & e

A
order), associate Ql\looqAM to . The junctions of
the net of Fig. 18 are labeled with formulas associated

with them Dby these rules.

Fig. 18
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If these rules are applied to a w.f.n. N, every
junction of N will have a formula associated with it,15
The net may then be represented by the set of formulas
associated with its final output junctions. We regard
such & set of formulas as an abbreviation for the set
of eqguations into which the net translates. Thus
"AKpNgKgr" abbreviates the set of equations into which
Fig. 18 translates, i.e., "r; = Ng, r, = Kar, I3 = Kpr,,
L = ££3£2. nl6

One may specify the desired structure of a net by
specifying & set of formulas. In this case we must
proceed in the bpposite direction. For example, given
"AKpNgKgr" we would construct the net of Fig. 18 by
starting with the input junctions assocdiated with "p'",
"g", and "r" and proceeding through the formulas "HNg",
"KpNg", "Kgqr", "AKpNgKgr" in that order. ©Similarly,

o Ll 11 112 ,.121 ., 122 ,211
"KK 1E293 ’ K_l_{_glp.zﬂgy K—-&ﬁlﬂzﬁ’j, @.@.1_.9.2.9.3’ K_K_QleQB)

R L 2 221 ., R 22 . .
KKpip,p3, KKpipops, KKpjpop3" translates into Fig. 10.

It should be noted that such & set of formulus always
translates into a w.f.n.

The last mentioned set of formulas is very systematic
in structure and consequently permits even further abbre-
viation. If we denote the three net input cables of

Fig. 10 by ﬂaf", Qg%", and gg§", where the superscript
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"2" indicates the degree of the cable, and use "x" to
denote the operation of combining cables in an m.s., then
Fig. 10 translates into "«gixgs)xgé)." We shall call
such formules construction formulas end regard them as
abbreviations of sets of equations. {for example,
"((gfxgé)xgg)" abbreviates the set of equations into
which Figs. 10 and 7 translate. Lvery set of equations
which is & translation of an m.s.n. may be so abbreviated.
It will be noted that construction formulas abbreviate
sets of equations in very much the same way as m.S. net
diagrams abbreviate m.s.n.

Construction formulas show the structure of our
three basic kinds of m.s.n. very clearly. 4 construction
formula for & b-d m.s. net diagram contains d "P"'s
each with & different subscript and each with a super-
script b. A construction formula for a b-d exponential
switch contains only one pair of parentheses; e.g.,
"Qgixggxggggngé)" rapresents the 3-5 exponential switch
of Fig. 11. BEvery construction formula for & b-d m.s.
net diagram in which all the left-hand parentheses are
together and each ﬁgﬂ except the first is foliowed by a
single right-hand parenthesis represents a b-d tree,
and every b-d tree may be so represented; e.g.,

"(((Qgi xﬁé)xﬁ%)&ﬁi)gﬁé)" represents the 3-5 tree of
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Fig. 12. The construction formulas for b-d balanced
m.s.n. may Dbe characterized by the following conditions:
(1) It is a construction formula which represents a
b-d m.s. net diagram.

(2) Every occurrence of the operator "x" in it has
exactly two arguments; moreover the number of ﬂgf's in
the first and the number of ng's in the second are
equal or differ by one.

n(( (,13,,32_%85) X (géxwlfz) ) x( (&?x&g) X (gng’z’;) ))" is the con-
struction formula for the 2-8 balanced m.s.n. of Fig. 14,
while "((gixgé)x((ggxgi)xgé))" is the construction

formule for thé 3-5 balanced m.s.n. of Fig. 14.
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7. A proof of the minimelity theorem.

In this section we shail prove that the b-d
balanced m.s.n. is minimel in the class of all
conjunction b-d decoding nets. It turns out that
there are other minimal nets in this class; these
zre, however, only slight variations of the b-d
balanced m.s.n. We shall define in bubsection 7.2
"guasi belanced mo.s.n." denoting balanced m.s.n. and
these other nets. In Subsection 7.3 we shall prove
(in the main theorem) that a necessary and suffi-
cient condition thet a net be minimel in the afore-
mentioned class is that it be & quasil balanced
m.s.n. 1t therefore follows as & corollary that the
balanced m.s.n. is minimal.

Before introducing these nets, we introduce a
few helpful concepts and prove some theorems about
them. It is hoped that some of these concepts,

. such as that of prorated cost, level, potential cost,
overlap (Subsection 7.1), &nd quasi balanced con-
figuration (Subsection 7.2), may be useful in the
solution of other minimality problems. One such
problem might be to find a conjunction b-d net with
a minimal element input count serving some purpose

other than that of complete decoding. For example,
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we might went a net with only a certain subset of

the decoding junctions as its final output junctions.

7.1. Some basic concepts.

We make use of a reduction procedure, &applied to
conjunction b-d decoding nets. By considering only
nets to which this procédure has been applied, we
limit the class somewhat, but we do not thereby ex-
clude eny minimal nets; the result is thet our prob-
lem of minimelity is simplified. The reduction pro-
cedure consists of steps which are applications of
the following rules in eny order end repeated any
number of times.

Rule 1. If two junctions ox and /& ( /S not
driving ©< ) are driven by exactly the same input
junctions then delete /3 and the element whose output
wire is on /5, reconnecting any input wires on el
to (X .

Rule 2. Delete a final output junction and the
element whose output wire is on 1t if that junction
is not a decoding Jjunction.

Rule 3. If an element hes two input wires on
the same junction, then delete one of the wires

(thus changing en n input conjunction to an n-1
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input conjunction).

An irreducible b-d net is a conjunction b-d

decoding net which cannot be reduced by any of the
above rules. We prove the following.

(A) No two junctions of an irreducible net are
driven by exactly the same input junctions. If there
were two such junctions, &t least one of them would
not drive the other, for otherwise the net would
contain & cycle and not be well-formed. Therefore,
Rule 1 is applicable and the net is not irreducible.

(B) No junction is driven by two distinct
members of"the same bracketed set. Such‘a junction
could not drive a decoding junction. 1t would,
therefore, either be a final output junction or drive
a non-decoding final output junction. In either case,
Rule 2 could be applied.

(C) The element input count is decreased by
an application of Rule 1, 2, or 3 to a conjunction
b-d decoding net and the resulting nét is also a
conjunction_p—g decoding net. This is obvious from
the rules.

(D) Any net which is minimal in the above-
mentioned class is irfeducible. This follows directly

froum (C),
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In what follows, because we are interested in
minimality, we shall, in the light of (D), consider
only irreducible nets. We shall sometimes make use
of (4), (B), (C), and (D) without explicit reference
to them.

We say that an (element) input wire W directly
drives a junction o< if W is part of an element
whose output wire is on &X . We say that an input
wire W drives a junction O if the junction & di-
rectly driven by W either is oX or drives o . The
use of an input wire W, u(W), is the number of
final output junctions driven by W. It is convenient
to prorate the cost of a net C(N) among the final
output junctions of the net. To this end, where (X is

a final output junction, the prorated cost c(X) is

the sum of the reciprocals of the uses of all the wires
driving &X . Note the 3-2 net, & portion of which is
shown in Fig. 19. W (W') drives the final output
junctions & and ¥'. The use of W (W') is 2. The
use of every other input wire shown is 1. The pro-

rated cost of /3(:K) is therefore 3.
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Fig. 19

THEOREM 1. C(N) = % c(o¢), summing over all the

final output junctions < in N.

Proof: C(d) is the number of input wires in N.
Consider any input wire W in N. There are u(W)
final output junctions driven by W. To the prorated
cost of each of these W contributes E%WT , &and

to the prorated cost of all the other final output
Junctions W contributes nothing. Therefore, to the
sum of the prorated costs of all final output junctions

W contributes exactly 1, which is what it contributes
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to C(N). Since this is true of all input wires

W, Theorem 1 follows.

A junction X represents a bracketed set when
some net input junction of the bracketed set either
drives, or is identical to, &X . The level of &
junction is the number of bracketed sets represented
by the junction (i.e., assuming the net is irredu-
cible, the number of input junctions driving it).

The configuration of & junction C< is the subnet

consisting of X itself &and all junctions driving

X, together with all elements whose output wires
are on such junctions. Thus, &ll input wires driving
X will be in the configuration of ox ;-and, con-
versely, any input wire in the configuration of Ox
drives OK. Any junction /f in the configuration of
X which is not ox itself is of lower level than

O\ ; any bracketed set represented by /? is also re-
presented by OK .

Corresponding to the concepts of driving, use,

and prorated cost, we have the concepts of potentially

driving, potential use, &and potential cost. We say

that a junction ox potentially drives a junction /A,

when X is not /3 end every input junction driving X
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also drives /? . We say that an input wire W

potentially drives a junction f? , if the junction

X directly driven by W either is /& or potentially

drives (5 . The potential use of &n input wire W

is the number of fin&l output junctions potentially
driven by W. We shall use the fact that, in an
irreducible b-d net, the potential use of a wiré
directly driving a junction of level i 'is Qd_i.

The potential cost of a final output junction OX

is equal to the sum of the reciprocals of the potential
uses of &ll wires driving X . Note the portion of

a 3-2 net in-Fig. 20. The junction X and the wires

W and W' potentially drive /? and ¥ , but drive
only ¥ . The use of W (W') is 1 while the potential
use is 2. The prorated cost of X/is 43 the potential
cost of ¥ is 3.
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THEOREM 1I, The prorated cost of & final output
junction X equals the potential cost of X if and
only if every wire in the configuration of (X drives
all the finel output junctions which it potentially

drives. Otherwise the prorated cost is greater.

The proof of this is obvious from the definitions
of the concepts involved. (Note, in Fig. 20, that
the prorated cost of X is greater than the potential
cost of X/ because W and W', which are in the con-
figuration of X , potentially drive but do not
drive /f,)

We definé g(;,/g) to be the number of wires
directly driving Jjunctions of level i (2 £ i)
in the configuration of & junction A4 of level J
(2 23] < d). Where there are no junctions of level i,

n(i,8) = 0; in particular, this is so where 1 > j.
i . ,
Let g(/s) =z Qﬁi4§2%'o The following theorem shows
i=2 bd ™
the importance of n(/83) where /3 is a final output

Junction.

THEOREM III. For a final output junction /f of an
irreducible net, m(/f) is equal to the potential

cost of ﬂ .
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The proof is direct from the definition of
g(/3) and the observation made above that, in an
irreducible net, the potential use of any wire directly
driving a junction of level i is bi™3,

Where /? and ¥ are in a net, then the configu-
rations of /& and Y overlap if there is at least
one wire W driving both /f and X: We are interested
in the case where /? and B/ each directly drive a
junction &X . Note that such a situation exists in
Fig. 21. (Fig. 21, and all the diagrams which follow
are abbreviated. The nuclei and output wires of ele-
ments, all of which are conjunction elements, are
omitted, the input wire being drawn directly from one

Junction to another. Junctions are represented by

small circles. Arrowheads are omitted, always being

understood as pointing upward. Finally, junctions of the

same level are placed on the same horizontal level.)

Fig., 21
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THEOREM IV, If /?l, ooy Fp of levels 1y, ceey Iy
respectively, are the r Jjunctions directly driving a

junction oKX of level 1 1in an irreducible net, then

n(X) £r +n_1__Qéu R (<2
- ot ptTIr

The equality holds if and only if the configurations

of no two of the ﬁ 's overlap,

Proofi Suppose first that there is no such overlap.
Then n(i,«K) = r. For each p, 2= p<i,

n(p, ) = n(p,B;) + ... +10(p,B,). Hence (by
definition of m(&X) ), the equality in the theorem
holds. Where there is such overlap, suppose there is
a wire W driving ﬁk and S (k # k'). Suppose
that the level of the junction which W directly
drives is p, which will be greater than 1. Then

n(p, o) <_g(p,/§l) + eoe + Q(Q,/fr), Hence the in-

equality in the theorem holds.

7.2. Guasi balanced m.s, nets.

We now define "quasi balanced configuration."
The significance of this concept is contained in

Theorem VI below. A configuration is guesi balanced

if every one of its output junctions ﬁ is directly
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driven as follows, assuming Jj 1is the level of /(3 :
(1) if b=2 and j = 3, either by one junction of
level 1 and one of leve1’2 or by three junctions each
of level 1; (2) in all other cases, by two junctions
of level [j%t] and ['iglje Thus Fig. 22(a) is a

quasi balanced configuration of /? of level 3 in any
net, while Fig. 22(b) is quasi balanced in a 2-d net

but not in a b-d net for which b > 2.

(a) (b)
Fig. 22

(Note that a quasi balanced configuration of a

junction of level J dis like the configuration of a
Junction of level Jj in & balanced m.,s.n. in every
respect except possibly in the case of junctions driving

junctions of level 3 in 2-d nets.)



Note that in & quasi balanced configuration no
two configurations of junctions directly driving4another
Junction overlap, &s cen be seen as follows. Suppose
the configurations of b/ end J\, directly driving

/3 of level Jj, overlap. Then the sum of the levels
of X/and § would be greater than J, whereas in a
quasi balanced configuration the sum is always equal
to or less than jJ.

We note that, for a given b and J, for all
junctions /6’of level Jj in b-d nets (regardless of
d) which have quasi balanced configurations, m(/ﬁ)
has a constant value. Let m(j,b) be this value.
The following theorem summarizes some properties of

mn(i,b).

THEOREW V, (a) m(2,b) = 2.
(5) m(3,b) =2+ £,
(¢) For j =2, m(Ri,b) =2 + —mil*—l

(d) For iz 2, m(2i+1,b) = 2 + —il:il —ii§%¢910
bl
(e) m(h,b) = 2 + &,

uy

bR
(£) m(5,b) = 2 + & + 2,
b3 bR

(g) For all j=2, m(i,b) €3
(h) For j>2, m(i,b)> 2.

(i) For all j = 2, m(i,b) - m(i+l,b) < 3.
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() and (b) are obvious. The proofs of (c)
and (d) are direct:from Theorem IV and the definition
of a quasi balanced configuration, since there is no
overlap in a quasi balanced configuration which would
lead to an appliéation of the inequality of Theorem 1V,
(e) follows directly from (z) and (c). (f) follows
directly from (&), (b), and (d). (h) follows from
the fact that in the configuration of any junction
/f of level 3 or more, there must be at least two
wires directly driving /? and at least one other wire
somewhere in the configuration, |

The proofs of (g) and (i) are given in Appendix 1.

Note that (a), (b), (c), end (d) resemble (3) of
Section 5, the recursive formulas for the element-.
input count of the balanced m.s.n. The former
characterize m(j,b) which will be the potential
cost of & junction with & guasi balanced configuration,
Now, as we show later, the potential cost equals the
prorated cost of a final output junction of & balanced
m.s.n. and every configuration of an m.s.n. is quasi
balanced. ©Since there are pd final output junctions
in a b-d m.s.n., one cun find the ele&ent input count

from m(d,b) by multiplying by bY.
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THEOREW VI, For a given b, if a junction & of
level Jj does not have a quasi balanced configuration,

then m(/3) > m(i,b).

The proof of this theorem is given in Appendix 2.
It follows from this theorem that in the class of all
cohjunction b-d nets, in order that a final output
junction have a miniggfigggg} it is necessary and
sufficient that it have a quasi balanced configuration.

We proceed to define "b-d quasi balanced m.s.n."
in several steps.

We define first "2-3 quasi balanced m.s.n." Our
definition préceeds by describing the alternative ways
in which the junctions of level 2 are driven. Once
the junctions of level 2 have been specified, & unique
2-3 decoding net is determined as follows. Hach pair
of junctions, one of level 2 and the other an input
junction in the brackested set not represented by the
first, is put on the inputs of & conjunction whose
output wire is on & final outbut junction. Then
each set of three input Jjunctions, one from edach
bracketed set such that no two directly drive a junction
of level 2, 1s put on the input wires of a three input

conjunction whose output wire is on a final output
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junction. (Note that Fig. 26 below is determined
in this way from Fig. 25.) Supposing that X 1s
O<:‘L of the first bracketed set, X, O(é
of the second, and X 3, 0<§ of the third are

the input junctions of a net N, N 1is a 2-3 guasi
balenced m.s.n. if and only if it is determined by
the following.

(1) There are four junctions &, A4', /3,

and /4 '" such that 4 is driven by X1 and o< g,
/3 ' by Xy and X, A by O<i and X o,
and ﬁ"" by Oc]'_ and X 4. (See Fig. 23.)

Fig. 23

(2) There are four junctions ﬁl’ ﬁ]", ﬂB’
/3 } such that /5, is driven by ; and X o,
ﬁi by o] and oX,, ﬁB by <) and Ox 5,
B4 by o) end o< 1. (See Fig. 24.)
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] 1 '
&) SN/ Ie! %3
Fig. 24
(3) There are three junctions /&, /32, /fl
such that A?B is driven by X] end o}, /s by
ot , and X4, and ﬁl by O, and K. (See

1
Fig. 25.)
51. '6; /63
1
X1 ) SOR 3
Fig. 25

(4) The same as (1), (2), or (3) except that one
or more (possibly &ll) the junctions of level 2 are

deleted.
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The reader, with some effort, can ascertain
that there are exactly ten 2-3 quasi balanced m.s.n.
The net determined by (1) is the 2-3 balanced m.s.n.
The net determined from (1), (2), or (3) by deleting
all junctions of level 2 is the 2-3 exponential
switch. The net determined from (3) is pictured in

Fig. 26,

!

C&lL__“___J 1

Fig. 26

ADb-3net N (b>2) is a quasi balanced m.s.n.
if end only if it satisfies one of the following
conditions. (1) N is a b-3 balanced m.S.n.

(2) N is constructed as follows. Let the three
bracketed sets be ll’ I,, and l3° Teke any

subset K of ;2 of cardineality k, 1 £k é-[pJ .

2
Construct the m.s. which has as its bracketed sets
ll and K, Construct the m.s. which has as its

bracketed sets lz—ﬁ and 130 Let 07 and 0
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be, respectively, the sets of outputs of these m.s.
Construct & third m.s. whose bracketed sets of in-
puts are 07 and LB, and a fourth m.s. whose
bracketed sets of inputs are 0, and Iy The
outputs of these two m.s. are the final outputs of
N in which 12 is bracketed and superfluous

brackets are deleted. (Cf. the 3-3 net of Fig. 27.)
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Note that the radical difference between the
definition of "b-3 quasi balanced m.s.n." for
b = 2 and the definition for b > 2 1is related to
the difference between the case in which b = 2
and that in which b > 2 in the definition of
"quasi balenced configuration."

Anet N 1is a b-5 quasi balanced m.s.n. if &and
only if it satisfies one of the following conditions.
(1) Wnere N; is a b-3 quasi balanced m.s.n. and
N

=2
respectively, and where EB is an m.s. having 0

is & b-2 m.s. with output sets 0; and 055

and Qp &s its bracketed sets of inputs, the net N
consists of Ny, Ny, end Nj with superfluous
brackets deleted. (2) N has five bracketed sets of
inputs Ly, <., ;5, each with Db junctions, Is
consisting of K and ;B—K. N is the net consisting
of El; ..., Ng (described as follows) with super-
fluous brackets deleted. Nj 1s the m.s. having 13
and 1, &s its bracketed sets of inputs. N, 1s the
m.s. having 14 and ;5 as its bracketed sets of
inputs. Where Ql and 0, are the output sets of
El’ Nz, respectively, EB is the m.s. having 03
and K as its bracketed sets of inputs, and E4 is

the m.s. having 0O, and 13-K as its bracketed sets



60,

of inputs. Where QB and Q4 are the output sets

of N_B, 21_4 respectively, M5 is the m.s. having

a4s its bracketed sets of inputs Q3 and  0O,, and

ﬂé is the m.s. huving as its bracketed sets of

inputs 05 Vand QA' The outputs of N are, of course,

those of N, together with Ng. (Cf. the 2-5 net of

5

w

Fig. 28.)

‘\
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A b-d balanced m.s.n. N may have a b-3 or
b-5 balenced m.s.n., N' &s & part. N' has in com-
mon with the remainder of N Just the set of 93,
or 25, junctions which are the final output junc-
tions of HN'. (8ees the definition of "balanced
m.s.n." in Section 4.) The operation which consists
of replacing N' by another Db-3 or b-5 queasi
balanced m.s.n. is used in the definition below.,

We define b-d guasi balanced m.s.u. for d$ 3

and d ¥ 5 as follows:
(1) The b-d balanced m.s.n. is & b-d quasi balanced
Mm.S.0.
(2) The result of replacing any number of b-3 and b-5
balenced m.s.n. by b-3 and b-5 (respectively) quasi
balaenced m.s.n. in the b-d balenced m.s.n. is a b-d
quasi balanced m.s.n.

Note that & b-d quasi balanced m.s.n., if it
is not a b-d balanced m.s.n., differs from it only
in junctions of level 5 or less. Thus, we are justi-
fied in saying that & quasi balanced m.s.n. is
either a balenced m.s.n. or a slight variation
thereof. It is also interesting to note that a b-d
quasi balanced m.s.n. where d 1s a power of 2

must be a balanced m.s.n., since in this case there
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are no pb-3 or b-5 subnets, &ll Jjunctions in such &
balanced m.s.n. being of level Zr, for some non-
negative integer r. Note, finally, that a guasi
balenced m.s.n. is not necessarily &an m.s.n., &as
defined in Section 4. (The word, "quasi," is used

as an adjective modifying the phrase,"balenced m.s.n.,"

not as an adverb modifying "balanced.")

7.3. Proof of the mein theorem.

MAIN THEOREM, A net is minimal in the class of
conjunction b-d decoding nets i and only if it

is & b-d quasi balanced m.s.n.

This theorem follows directly from Lemmas 2 &and
7 below since we know thet minimal nets must be ir-
reducible and since any quasi balanced m.s.n. is
irreducible. The series of lemmas refers to the
presence and absence in nets of two important pro-

perties, The first minimizing property of a net is

that every final output junction has & quasi balanced

configuration. We note that, by Theorems 1II and VI,

a net has the first minimizing property if and only if
each final output Junction has & minimal potential

cost. The second minimizing property of & net is that
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the potential cost of every final output junction
equals the prorated cost. Before presenting the
lemmas we state an important corollary of the main
theorem which depends on the fact that the balanced

m.s.n. is a quasi balanced m.s.n.

COROLLARY. The b-d balanced m.s.n. is minimal in

the class of conjunction b-d decoding nets.

Note that the corollary requires only the first
two of the following lemmas, since a balanced m.s.n.
is a quasi balanced m.s.n. and is irreducible. Illost
of the complication in the proofs of Lemmas 3 through
7, as well as that in the definition of "quasi bal-
anced m.s.n." itself, is included in this paper
because we wished to give a condition which is neces-

sary, as well as sufficient, for minimality.

LEMMA 1., A quasi balanced m.s.n. has both minimizing

properties.

Proof: It is possible to check all the cases to see
that each quasi balanced m.s.n. has, for every final
output junction, a quasi balanced configuration. It

is also possible to check that every junction (and
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thus every wire) in such & net drives every final
output junction which it potentially drives. There-
fore, by Theorem 11, a quasi balanced m.s.n. also

has the second minimizing property.

LEMMA 2, A net is minimel in the class of irre-
ducible b-d nets if and only if it has both mini-

mizing properties.

Proof: Lemma 2 can be established if we can esta-
blish the following: (1) there exists a b-d net
having both minimizing properties; (2) if N has
both minimizing properties, then C(ll) = gdg(g,p);
(3) if N lacks either of the two properties, then
C(l) > bdm(é,b). (1) follows from Lemma 1. Suppose
N has both minimizing properties; consider any final
output junction & . c(X) equals the potential cost
of X, by the second minimizing condition, which
equals m( ), by Theorem 11, which equals m(d,b)

by the first minimizing condition. Hence, (2)

follows by Theorem I. Suppose that N lacks the
first minimizing property. Then there is at least
one junction f? which does not have a guasi balanced
configuration. Then c(f3) 2 m(/S), by Theorem II,

> n(d,b) Dby Theorem VI, For every other junction
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o< of N, ¢(X) Z m(d,b), by similar reasoning.
Hence, CQ) > pd@(g,g), If N lacks the second
minimizing property, then there is & junction /?
whose potential cost is not equal to gﬂ/ﬁ)a By
Theorem 1I c¢(/3) is greater than the potential
cost, which is = m(d,b) by Theorem VI. Again,

by Theorem I, C(N) > bm(d,b). Hence (3) follows.

LEMUMA 3, In an irreducible b-d net N (d = 3)
having both minimizing properties the following is
impossible: a junction /3 is driven by X and X!,
and Q8" by ' and ", where X, X', "
are input junctions of distinct bracketed sets, and

(3 eand B" are of level 2,

Proof: X, K', and X" together drive at least

one final output junction ¥ . /?and /(?" potentially
drive ¥ . Therefore, we can assume that /? and /7"
must each drive X/, since N has the second mini-
mizing property. But then the configuration of X/
wculd not be quasi balanced, which can be seen as
follows. There must be a junction & in the con-
figuration of Y which is driven by both /5 and BV,
such that there are no jﬁnctions driven by /5>and /f"
which drive & . ( § may be ¥ itself.) J§ is

directly driven by a junction 7 which is driven by,
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or identical to, /3 but not /4?" end a junction

’7 " driven by, or identical to, /3" but not

(3 . Now if there is &t least one other junction
directly driving S , then the configuration of Y
would not be quasi balanced (for no junction in a
quasi balanced configuration is driven by more than
two Junctions, unless it is a Jjunction of level 3
in & 2-d net driven by three junctions of level 1),
We can, therefore, assume that Y and 9" are the
only junctions directly driving § . TFor the con-
figuration of Y to be quasi balanced, the sum of
the levels ij? and D"nmst be equal to the level
of § . But this is impossible here, since !

drives both D and p ",

LEMMA 4, If an irreducible 2-3 net has both mini-

mizing properties, then it is & quasi balanced m.s.n.

Proof. 1un defining "2-3 quasi balanced m.s.n." we
characterized the net by enumerating the junctions

of level 2, and specifying how they were to be
driven., The manner in which the eight final output
Junctions were to be driven was completely determined

by the condition that a junction of level 2 drive every
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final output junction which it potentielly drives.
Cleérly a net can be determined in this manner if
and only if it has the second minimizing property.
For the purposes of this proof we can restrict our-
selves to such nets. Consider nets ﬂl and N,
such that N, contains all the junctions of level 2
that N; has and one more besides. If N; has the
first (es well as the second) minimizing property,
and if every such ﬁz lacks the first minimizing
property, we say that Nj is a meximal net having
both minimizing properties. It is not difficult

to see that if KZ has the first minimizing property
then so does Nj;. 4And, finally, if N, 1is a quasi
balanced m.s.n., then so is N,. 1t follows that if
there is a net which has both minimizing properties
whiéh is not quasi balanced then there is a maximal
such net.

Consider now any maximal net N having both
minimizing properties. 1t is not difficult to see
that the following three cases are exhaustive.
Casel: There are two bracketed sets I, and ;2
of N such that all junctions of level 2 represent

only these. The reader can check that the only

maximal such case is (1) of the definition of
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"2-3 quasi balanced m.s.n." Case II: All bracketed
sets are represented by junctions of level 2, but

there is an 1., which 1s represented by &all such

2
junctions. Making use of Lemma 3; the reader can
check that the only maximal such case is (2) of the
definition. Case I11: Every pair of bracketed sets
is represented by a junction of level 3. Again, by
Lemma 3, one can see that the only maximal such case
is (3) of the definition.

We say that two junctions o and 3 in a con-
junction net N are conjoined when there is a
junction Y such that X and (3 directly drive X/,

and no other Junction directly drives B/ .

LEMiA 5, For Db > 2, if an irreducible b-3 net
has both minimizing properties, then it is a quasi

balanced m.s.n.

Proof: For Db > 2, since every junction of level 3
must have a quasi balanced configuration, there must
be junctions of level 2. Either there are only two
bracketed sets which are represented by the junctions
of level 2 (Case 1) or all bracketed sets are so
represented (Case 1I).

Case I: Suppose thet ll and lz are the
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bracketed sets. It is easy to see in this case that
every p&ir X1 and X, of Jjunctions ll and L,,
respectively, are conjoined. For take any junction
X 3 of I3t X1, Xy, and (X3 must drive a
final output junction b/; since 2( has & quasi bal-
anced configuration, there must be & junction /J' of
level 2 in it; but ﬁ cannot be driven by 0(3, so it
must be driven by X4, eand 0(2. oince every such
pair drives a junction of level 2, and since there
are no other junctions of level 2, the net is a bal-
anced m.s.n. and a fortiori a guasi balanced m.s.n.
Case 11: There must be atleast one bracketed
set, say ;2, containing & junction 0(2 conjoined
with a junction O(l of 1 and containing a
Junction O(é conjoined with a junction o(é of
_1_3. It is then impossible that any junction (Xi
of ll be conjoined with a junction K3 of ;3,
For consider the junction 4 driven by ¢x/!, Ky
‘and o(éz o, end o} ( K, and o(é) (X 4
and 0(5) would be distinct by Lemma 3; neither
OQJ'_ and X,, nor O(i and o(é, nor ¢X, and

(xé could be conjoined, by Lemma 3; and, there-

fore, b/ would not have a quasi balanced configuration.
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Now let K be the set of &ll junctions of lz
which are conjoined with a junction of ll‘ Let
X, K, X4, and X5 be any four junctions
of L, K, 1,-K, end 1j, respectively. Let ¥ (Y1)
be the junction driven by oOCy, X, (C(é), and OC3-
The configuration of Z/( f‘) must have & junction
/3 (/8') of level 2 in order to be a quasi bal-
anced configuration. /6 must be driven by G(l and
X 03 the other possibilities are excluded by the
definition of "K", Lemma 3, and what was established
in the above paragraph. Likewise /?' must be
driven by 0(% and CKB. Since the OoOK's were
arbitrary junctions, it follows that there are m.s.,
one whose bracketed sets are I1; and K, the other

whose bracketed sets are ;3 eand 1.-K. It is easy

2
to see then that N fulfills (2) of the definition
of "b-3 quasi balanced m.s.n." (b 2 3). This com-

pletes the proof of Lemma 5.

LEMMA 6, An irreducible b-5 net N with both mini-

mizing properties is a quasi balanced m.s.n.

Proof: N must have junctions of level 3, in order

that its final output junctions have quasi balanced .
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configurations. Let /? be such a junction and sup-
pose it is driven by oy of 'll’ X 2 of 12, and
X 5 of 1;. Consider any o, of 1, and X5

of 1.. The final output junction d driven by all

5"
the OK's mentioned must be driven by the wires
driving /?, and thus by /3 itself, because of the
second minimizing property (by Theorem 1I). Since
the configuration of § is gquasi balenced, ﬁ must be
conjoined with & junction of level 2. Therefore,
X and X must Dbe conjoined. But ¢X

4 5 chosen 4
and X 5 were arbitrarilxé it follows that there
is an m.s. whose bracketed sets of inputs are _I_/+
and ;5, Now either all junctions of level 3 re-
present Iy, 1o, and 1 (Case I) or there is a
Junction of level 3 which represents either _L_[_4 or

I, (Case 1I).

5
Case I: For any (Xi, «.., (X5, the final
output junction § driven by &ll these must have a

junction ﬁ of level 3 in its quasi balanced con-
figuration, which is driven by O(l, Xy, and (X 3.
This means (since X1, Xy, and X3 are arbit-

rarily chosen) that the subnet Ny of N consisting

of all such junctions ﬂ end junctions which drive
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them is a b-3 decoding net. To show that N ful-
fills (1) of the definition of "b-5 quasi balanced
m.s.n." it suffices to prove that ﬂl is a b-3
quasi balanced m.s.n. But every configuration of a
Junction in a quasi balanced configuration is quasi
balanced; hence ﬂl has the first minimizing property
because N has it. But by Theorem 1I it is easy to
see that, because N has the second minimizing pro-
perty, ﬁl &lso has it. By Lemmas 4 and 5 then
N, must be a b-3 quasi balanced m.s.n.

Case 11: Let /f' be & jurction of level 3
representing,'say5 l4, By reasoning similar to
the first paragraph of the present proof there is an
m.S. whose bracketed sets of inputs are the two
bracketed sets not represented by /4?'. Neither of
these can be l5, by Lemma 3, since l4 and l5
are the bracketed sets of an m.s. So /6' represents
14, ;5 and, say, ls. And there is an m.s. whose
bracketed sets of inputs ere 1 and I,. Let the
set of outputs of this m.s. be Q07 and the set of
outputs of the m.s. of the first paragraph be 92,

Let K Dbe the set of &ll junctions of I3 which

are conjoined with a member of 0j. It is easy to
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see that no member of K 1is conjoined with & mem-
per /5, of 0,. This can be seen as follows.
Luppose 0i3 o.f K were. Then there would be an
X 1 and K, of 1; end 1, driving ﬁl
of 0; which together with ¢x 3 drives a/l
of level 3. And there would be an Xy and (X 5
of L, &nd Lg driving /3 , of 0, which to-
gether with 0(3 drives 52 of level 3. The final
output junction § driven by K1, Ky, K3, X 4
and Xy, by the second minimizing property, would
have to be driven by ﬁl and ﬁz; but then the
configuration-of 8 would not be quasi balanced.
Now in order that the configuretions of N
be quasi balenced every member of K must be con-
Jjoined with every member of 03, and every member of
;_[_3—_22 must be conjoined with every member of 0,.
(No member of 1, or I, can be conjoined with
any member of I, or L, by Lemma 3.) It is now
easy to see that N must fulfill (2) of the de-
finition of "b-5 guesi baleanced m.s.n." This com-

pletes the proof of Lemma 6.
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LEMMA 7, For all b and d (b,d =2), an irre-
ducible b-d net has both minimizing properties if

and only if it is a quasi balanced m.s.n.

Proof: By Lemma 1 it suffices to prove that any such
net having both minimizing properties is a quasi bal-
anced m.s.n. We prove this by induction on d. For
each b, there is only one irreducible b-2 decoding
net, within isomorphism. That net is obviously a
quasi balanced m.s.n. and has both minimizing pro-
perties. We assume, as an inductive hypothesis, that
any b-d decoding net, for d < s, having both mini-
mizing proper%ies is a quesi balanced m.s.n. We must
show from this that any b-s decoding net N having
both minimizing properties is a quasi balanced m.s.n.
We distinguish two cases according to whether s 1is
even (Case 1) or odd (Case 1I).

Case I: Put r = % . Take any final output
junction 7( of [N. ©Since the configuration of b/
is quasi balenced, 3/ must be directly driven by two
junctions /fl and /Afz each of level r. Let
= (§2) be the set of junctions conjoined with
/4?2 (/61). By the second minimizing property
51 (§2) has bY junctions, otherwise /4?2 g/?l)
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would not drive &all the junctions of level 2r which
it potentially drives. For, since there can be no
Junctions whose level is between r and 2r, in
order for /4f; (/?l) to drive & final output
Junction, it has to directly drive it. By the first
minimizing property and definition of "quasi balanced
configuration", all the junctions of §l (§2) are

of level r. Every junction of S (§2) must re-

1
present just those r Dbracketed sets of inputs of

N which /4?2 Qz?l) does not represent. It is easy
to see that every junction of §l is conjoined with
every junction of §2, otherwise some junctions would
not drive all the final output junctions they poten-
tially drive. Furthermore, such account for all the
EZr

final output junctions. The two subnets El

and ﬂz whose final output junctions are §l and
Sy, respectively, must account for all the junctions
of N, except N's final output junctions. By de-
finition of "balanced m.s.n." (Section 4) and "quasi
balanced m.s.n.", we can prove that N 1is a quasi
balanced m.s.n. if we can prove that ﬂl and No

are., But since N has both minimizing properties,

Ny and N, must have them (cf. Case I of Lemma 6).
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By inductive hypothesis ﬁl and ﬂz must therefore
be quasi balanced m.s.n.

Case 1I: Put r = §§l. For r=1 and r = 2,
Case II has already been proved in Lemmes 4, 5, and 6.
We can assume, therefore, that r = 3. Paralleling
Case I, tske any final output junction X/of N.
Since N has the first minimizing property, { must
be directly driven by /?l of level r and /&,
of level r+l, by definition of "quasi balenced con-
figuration." Let §; (§2) be the set of all junctions
conjoined with /6% (/fl). Neither /31 nor /6’2
can drive any.junctions except final output junctions,
otherwise some configuration would not be quasi bal-
anced. (Note that for r = 2 or 1, /fi could drive
a junction of level r+l; this is what makes b-3 nets
and b-5 nets exceptional.) Thus, by the second mini-
mizing property, S; (§2) nas pf (b)) junctions.
By the first minimizing property, &and by definition of
"quasi balanced configuration," all the junctions
of §; (8,) are of level (r+1). From here on, the
proof is similar to the proof of Case 1. This completes

the proof of Lemma 7.

Arthur W. Burks
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Footnotes

1. he writing of this paper wand the research which
it reports were done under the sponsorship of the
Burroughs Corporation.

The authors wish to thank Dr. J. Richard Buchi
for many helpful suggestions.
2. Burks, Arthur W., and Jesse B, Wright, "Theory of

Logical Nets," Proceedings l.x.E., Vol. 41 (1953),

pp. 1357-1365.

3. The reader unfamiliar with the notation of sym-
bolic logic may find it helpful to read part of the
section, "The"Equation Language," at this point.

4. Burks and Wright, op. cit., pp. 1361-1365.

5. Burks and Wright, op. cit., p. 1362.

6. Note that, according to this definition, there are
complete decoding nets which have bracketed sets of
only one junction. Although this is contrary to ordi-
nary usage, the inclusion of these nets fecilitates the
development of the theory. Note that the decoding
Junctions need not be final output junctions. Note also
that there mey be, for a net stete N', more than one
decoding Jjunction labsled 1 in N',

7. The word "multiplicative" derives from the set-

theoretic definition of multiplication in which the
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cardinelity of the Cartesian Product (here the col-
lection of representative sets) of & number of given

sets is the product (i, « «.. * ld) of the cardinali-

1
ties of the given sets.
8. Shannon, C. E., "The Synthesis of Two-Terminal

Switching Circuits," Bell System Technical Journal,

Vol. 28 (No. 1, January, 1949), pp. 59-98.
9. Brown, D. R., and N. Rochester, "Rectifier HNet-

works for Multiposition Switching," Proceedings I1.R.E.,

Vol. 37 (1949), pp. 139-147, give definitions of 2-

e

m,s.n., and 2-d balanced m.s.n.; their definitions are
in terms of crystal rectifiers and are more compli-
cated than the ones we give.

oynthesis of Electronic Computing end Control

Circuits, by the staff of the Computation Laboratory
(Harvard University), p. 137, gives some informal
rules of construction for the realization of a 2-d
balanced m.s.n. by vacuum tubes or crystal rectifiers
that are similar to the above definition.

10, Brown and Rochester, op. cit.

11, Synthesis of Electronic Computing and Control

Circuits gives (11) and (12) for the case b = 2.
12, Brown and Rochester, op. cit., stete and prove
the theorem that a 2-d balanced m.s.n. is minimal in

the class of 2-d m.s.n.
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13. One possible use of & linear language is in com-
puting minimality on a digital computer, end ror this
purpose & linear language would be much more con-
venient than the net language. <The process by which
this could be accomplished is roughly as follows.

The machine is instructed to construct all sets of
equations (or sets of formulas -- see below) of a
given type, and then to determine for each such set
the element-input count of the circuit it repre-
sents and whether the circuit it represents realizes
the desired transformatiohs.

14. The elenents of a set of equations are equation-
tokens rather than equation-types, in the sense of
Peirce (The Collected Papers of Charles Sanders
Peirce, edited by Charles Hartshorne and Paul Weiss,
Vol. 4 (1933), paragraph 537). Thus, a network com-
posed of two two-input conjunctions connected in paral-
lel from junctions with associated variables "p" and
"g" to junction with associated variable "r!" trans-
lates into "r = Kpg, r = Kpg."

15, In some unimportant cases two or more junctions
of a w.f.n. may have the same formula associated with
them; in what follows we assume thaf these formulas
are distinguished by appfopriate uses of superscripts

on the function symbols in them.
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16, It should be noted that a net does not trans-
late into a unique set of equations inasmuch as
difrerent variables may be associated with the
junctions of the net. For a similar reason, a given
set of formulas in general abbreviates many sets of

equations.
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APPENDIX 1

Proof of (g) of Theorem V. By (a), (b), (e),
and (f), (g) holds for j ¢ 6. By induction we
prove it for all j. Assume that, for any J Z 6,
(g) holds for all numbers less than j. Case I:

1l =2i. Here, 1 3. By (¢c) u(i,b =

2 4 2n(i,b) =5, iéé < 3. Case II: J =2i + 1.

bl
i , - m(i,b) , m(i+l,b) o
Again, 1 8 3. By (d), n(i,b) =2 + vyl <
2 43— 4+ 2 <3, (Note that the equality of (g) holds

3
only for b=2 and J = 3, 4, or 5.)
Proof ofu(i) of Theorem V. Case I: j = 2, 3, or
4. Here (i) can be established directly using (a),
(b), (e), and (f) of Theorem V. Case II: J = 2i,
i23. By (c) and (d), m(2i,b) - m(2i+l,b) =

2bm(i,b) - m(i,b) - bm(i+l,b) , 4b-2 . i
i+ < i+l » @pplying

(g) eand (h) of Theorem V, The latter is easily shown

to be less than 1/2. Case IIl: J =12i + 1, i= 2.

By (c¢) and (d), m(2i+l,b) - m(2i+2,b) =

n(i,b) + (b-2)m(i+l,b) < 3b-3
bi+l - bi+l

, by applying (g)

of Theorem V. The latter is easily shown to be less

than 1/2.
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APPEND1X 2

Proof of Theorem VI. The proof is by induction
on J. We prove Theorem VI first for Jj = 2 and
i = 3. Then we show that the inductive hypothesis
that (for J Z 4) Theorem VI nolds for all j' < j
implies that it holds for j.

Proof for j = 2. Here Theorem VI holds be-
cause a junction of level 2 in an irreducible net
cannot have & configuration which is not quasi
balanced.

Proof for j = 3. OSuppose first that b = 2.
By (b) of Theorem V, m(3,2) = 3. With reference to
the deiinition of "quasi balanced configuration', we
know that /@ is not directly driven by exactly one
Junction of level 2 and exactly one junction of
level 1; nor is it directly driven by exactly three
Junctions of level 1. The following possibilities
remain, since /6 is of level 3: (l)//ﬁ is directly
driven by exactly one junction of level 2 and more
than one junction of level 1; (2) /6’15 directly
driven by more than one junction of level 2 (and
possibly junctions of level one)., In either of these

cases, it is easy to see, m(/?):> 3.
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We now consider the case in which b > 2.
By (b) of Theorem V, m(3,b) = 2 + % . For /9 there
are the two possibilities of the preceding para-
graph and another, namely, (3) /f is directly driven
by exactly three junctions of level 1. In any of
the three cases, it is easy to see that g@@ )> 2+ %.
Inductive proof. Case I: j =2n (a2 2).
We divide this into four subcases, according to whether
(Ia) there are exactly two junctions Y and &
directly driving /é’each of level n, (Ib) the same
but ¥ is of level n+l and S is of level n-i+k

>

(n>i>0 and n+i-1 2 k 2 0), the configurations

‘of ¥ and § not overlapping, (Ic) the same as Ib
except that the configurations do overlap (k> 0),
or (Id) there are three or more junctions directly
driving /3 . That the first three cases are exhaustive
when there are exactly two junctions is implied by
the fact that, in order that 2n bracketed sets be
represénted by /3 , the sum of the levels of the tWo
Junctions must be at least 2n; apart from this, the
two Jjunctions may be of any two levels, each less than
AN .

Subcase Ia: Since X/and S are each of level

n, and /3 is of level 2n, the configurations of Y
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and o do not overlap, If the configurations of

3/ and 9 were both quasi balanced thenl/? would
have a quasi belanced configuration. Iherefore,
either 3/<3r d does not have a quasi balanced con-
figuration. By inductive hypothesis either
n(¥) > n(@,b) or m(§)> m(n,b), and inequality

in the reverse direction holds for neither. But

m(2n,b) = 2 + ;Qi%;bl , by (c) of Theorem V. Hence,
b

by Theorem 1V, ;39@) =2 4 m(gg) +1ngf) > m(2n,Db) .
b b

Subcase Ib: Here, by inductive hypothesis,

m('{) = n(2n+i,b) eand m(d) 2 m(n-itk,b). Now,

by (a) of Theorem V and Theorem 1V, m(2n,b) =

z+.2_m%.bl,and n(/) =5 u(d) , n(S)

b -1 bn+i—k °

Therefore, in order to prove that m@/?);» m(2n,Db),
it will be sufficient to prove that

om(n,b) , m(n+i,b) , m(n-itk,b)
n < n-i n+i-k
b b b

. 1t suffices,

therefore, to prove that 2m(n,b) - btm(n+i,b) < & n{if;k b,
‘ﬁ—"“““)‘b -

For i 2 2, the left side must be negative since

I

22, n(o,b) £3 (by (g) of Theorem V) and

n(n+i,b) > 2 (by (h) of Theorem V). The inequality
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in that case holds because the right side is positive.
For i =1 and Db Z 3, the left side for similar

reasons is at most O. For i =1, b=2, n=2,

the left side is negative by (a) and (b) of Theorem V.
It remains to consider the case where 1 =1, b= 2, and

n 2 3; here the inequality becomes 2(m(n,2) - m(n+l,2)) <

3119—1—%;@1 . By (i) of Theorem V, the left side must be
2

less than 1, and, by (h), the right side must be

greater than 1, since n-1 2 2, and k= 0.

Subcase Ic: This subcase is disposed of by
showing that it can be transformed into Subcase Ia,
Subcase 1b, o£ & gquasi balanced configuration; and
in all of these possibilities/ﬁ? will have & smaller
potential cost as & result of the transformation.
The transformation will proceed in several steps.
oince the configurations of Z/eﬂmi ) overlap, there
is a wire ¥V which drives both B/ and § ;5 V must
directly drive a junction OX of ievel 2 or more.

Take any wire W which does not drive 3/ but which
is on X . Delete W. I1If W is part of a 3-input
(or more) element, then this element is changed into

a 2-input (or more, correspondingly) element. If it

is part of =& 2¥input element, then delete the element
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and the output junction X' of this element, re-
connecting the wires originally on &X' to the
Junction X" other than X which, originally,
directly drove the element. It is not difficult
to see that under this first step of the trans-
formation the configuration is still well-formed,
each junction drives /4?, and no input junctions
are deleted. Furthermore, wires are either deleted
or drive junctions of lower level, so that the esti-
mated cost will decrease. This step is repeated for
each junction A of level 2 or more in the configu-
rations of both X/and 3.

Subcase Id: Since there are three wires di-
rectly driving ﬂ, g:_l(ﬁ) > 3. Thus, n(45)> n(2n,d),
by (g) of Theorem V.

Case II: J =2n+1 (n=2). A4gain there are
four subcases, according to whether (IIa) there are
exactly two junctions ¥ and J§ directly driving a3
such that & is of level ntl and § is of level n,
(IIb) the same, but Y is of level n+l+i and §
is n-i+k (@ > 1 >0 and n+i 2 k 2 0), the con-
figurations of 3/ and o not overiapping, (IIc) the

same as 1Ib except that the configurations do overlap
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(k > 0) and (IId) there are three or more junctions
directly driving ﬁ .

Subcase IIa: Reasoning as in Subcase Ia, either
n(Y¥) > n(atl,b) or m(S)> m(n,b), and inequality

in the reverse direction holds for neither. Since

m(20+1,b) = 2 + m(ir*ll'b) +méﬁﬁ), n(f) =

n(3) | m(S)
2 + v + bn+l> n(2n+l,Db).

Subcase 1Ib: Here mn( 2{) 2 m(n+l+i,b), end

~ . \ = o Vo=~ m(n+l,b) , mln,b)
n(d) 2 n(a-i+k,b). But, m(Rn4l,b) = 2+ n ot

2

and x_n_(ﬂ) =2 3 m(X.) + ol é)_ . Therefore, in order
bn—l bn+l+1—k

to prove m(ﬂ) > m(2n+l,b), it will be sufficient to

" m(n+l,b) 4 m(n,b) <m(n+l+i,b) ; n(n-it+k,b)
n

prove tha X Jo+L ph-i bn+l+i-¥k

It suffices, therefore,to prove that bm(n+l,b) +

n(n,0) - BM*ln(neleg,n) ¢ BRLEGD) gy (o) ana (n)
‘b"’x

of Theorem V, the left side is negative if b 2 3 and
it is negative if i 2 2. In these cases the inequality
holds beczuse the right side is positive. Also, if

n=2,1<1, b =2, the left side is negative. 1t

remains to consider the case where 1 =1, b = 2, and
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n Z 3; here the inequality becomes 2m(n+l,2) +

m(n,2) - 4m(n+2,2) & mﬁﬂ:%i§¢§l . Here the left side
-

is less than 1, by (g) and (h) of Theorem V. The
right side is greater than 1, by (h) of Theorem V,
since k 2 0.

Subcase Ilc and 1Id: The proofs here are exactly
the same &s in Subcases Ic and Id, respectively.

This completes the proof of Theorem VI.



