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1. INTRODUCTION:

This paper is concerned mainly with deterministic automata. Most of this
symposium has been devoted to probabilistic automata, so a word of explanation
is in order.

It is perhaps true that deterministic theories are inadequate to account
fully for growth, learning, mutation, evolution, and the actual operation of
digital computers, and hence that a probabilistic theory is required for a full
explanation of all these phenomena. Nevertheless, a discussion of deterministic
automata is not out of place in a symposium on self-organizing systems. We can-
not fully understand probabilistic automata until we know the limits of deter-
ministic ones, for only then will we know what can be done by probabilistic
automata that cannot be done by deterministic machines. Moreover, a probabil-
istic automaton may be regarded as a deterministic automaton to which has been
added a probability measure governing the transitions between states. Just as
both deterministic and probabilistic theories have been important in physical
science, we may expect both kinds to be fruitful in the study of automata.

A complete theory of self-organizing systems must show exactly what role
determinism plays in these systems. I accept von Neumann's suggestion that
automata theory must include probabilistic as well as deterministic logics,
but I also believe with him that deterministic analyses of such phenomena as
self-reproduction are of interest (see Section 4 below).

Various species of deterministic automata have been studied. Turing ma-
chines have been intensively investigated, both directly and through the medium
of recursive functions.) Fixed (finite) automata have received much attention
of late, and von Neumann worked some with self-reproducing automata. Little has
been done, however, to relate these separate inquiries. 1In the present paper,

I will make some suggestions directed toward a unified theory of deterministic
automata.

1. This is a revised version of a paper presented May 6, 1959, at the Interdis-
ciplinary Conference on Self-Organizing Systems, Chicago, co-sponsored by
the Information Systems Branch of the Office of Naval Research and the Armour
Institute of the Illinois Institute of Technology. The writing of this re-
port was partly supported by the U. S. Signal Corps through Project MICHIGAN
(Contract No. DA-36-0%9-sc-5265k4).

John Holland and Jesse Wright have made many helpful suggestions.

2. John von Neumann, "Probabilistic Logics and the Synthesis of Reliable Organ-
isms from Unreliable Components," pp. 43-98 in Automata Studies (edited by
C. E. Shannon and J. McCarthy), Princeton, 1956.

3. See, for example, S. C. Kleene, Introduction to Metamathematics, New York,
1952, and Martin Davis, Computability and Unsolvability, New York, 1958.
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2. STRUCTURE, BEHAVIOR, AND COMPUTATION IN
FIXED AUTOMATA AND GENERALIZED TURING MACHINES

I will begin with fixed automata and Turing machines and discuss later self-
reproducing machines and automata generally. A fixed automaton4 consists of a
finite number of switch and delay elements interconnected so as to make a pattern
or structure which is the same at every moment of time.5’6 Figure 2.1 represents
a very simple fixed automaton which deletes every other pulse (1) that is fed in-
to the input. A digital computer with a finite tape is, of course, a fixed au-
tomaton. (A digital computer with an indefinitely expandable tape is a general-
ized Turing machine in the sense defined below.)

The structure of a fixed automaton is to be distinguished from its behavior.
The structure consists in the fixed pattern of interconnections of the elements.
The structures of two automata are the same if the nodes (i.e., the Jjunctions of
the wires of the elements) of these automata can be placed in one-one correspond-
ence so that corresponding nodes are nodes of identical elements. | Thus if we
change the conjunction of Fig. 2.1 into a disJjunction we obtain a different
structure.

The behavior of an automaton consists, roughly speaking, of the relation of
input stimuli to output responses. A more precise definition of behavior may be
given in terms of temporal sequences of states, where the relevant times are the
nonnegative integers 0,1,2,3.... Let us call an infinite temporal sequence of
input states to an automaton an input history and an infinite temporal sequence
of output states an output history. A behavior pair of ‘an automaton consists of
an input history paired with the output history which is produced when that in-
put history is impressed on the inputs of the automaton. A behavior pair for the
automaton of Fig. 2.1 is shown in the lower part of the figure. The behavior of
a fixed automaton is the set of all behavior pairs of that automaton.

4. Strictly speaking, these automata should be called finite fixed automata,
since there are also infinite fixed automata (fixed structures composed of
infinitely many switch and delay elements). But we will say little about
infinite fixed automata (though some use will be made of them in Section 5)
and hence for convenience we will use "fixed automaton" to mean finite fixed
automaton and use "infinite fixed automaton" for the infinite case.

5. A. W. Burks and Jesse Wright, "Theory of Logical Nets," Proceedings of the
Institute of Radio Engineers, L1, 1357-1365 (1953).

6. A. W. Burks and Hao Wang, "The Logic of Automata," Journal of the Associa-
tion for Computing Machinery, L4, 193-218, 279-297 (1957).

7. Elements are taken to include their input and output wires.
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We turn next to Turing machines. As Turing originally conceived them, each
is essentially a fixed automaton connected to a single infinite tape. The fixed
automaton scans one square of the tape at any one time, and can move the tape (or
move relatively to the tape) one square at a time. We will generalize Turing's
concept in a number of ways to obtain what we will call a generalized Turing ms-
chine. To relate Turing machines to the fixed automata previously discussed, we
will allow the fixed part of the machine to have inputs and outputs, as in Fig.
2.2; as a consequence, the earlier concept of behavior applies directly to Tur-
ing machines. DNext we will allow any finite number of tapes. Finally, we will
regard a tape at any given moment of time as a finite automaton and construe a
change in tape length as a change in this automaton; thus for us the tape is fi-
nite at each moment of time.® A tape "square" can be synthesized from switch
and delay elements in a number of ways, and squares can be added or subtracted
to represent the growing or shrinking of the tape.9 Hence the definition of
structural equivalence given above can be extended to take account of tapes.
While a generalized Turing machine has a given structure at any moment of time,
its structure changes through time in a very simple fashion and under the con-
trol of the computation going on in the machine. A digital computer together
with an operator who can indefinitely expand the magnetic tapes is a generalized
Turing machine.

Computation requires a problem and an answer, and the answer must be pre-
sented somewhere. Turing used alternate squares of the tape for this purpose.
We will stipulate that the answer of a generalized Turing machine is to appear
on the outputs. We will not, however, take the output history as the answer,
for a reason to be explained below. Instead, we will distinguish a control out-
put wire from the remainder of the output wires, which will be called answer
output wires. A "1" on the control output wire signifies that the state of the
answer output wires at that time is part of the answer, while a "O0" on the con-
trol output wire means that the state of the answer output wires at that time is
to be ignored. The subsequence of the states of the answer output wires so se-
lected is the computed output sequence. The sequence 3561 is the first part of
the computed output sequence of Fig. 2.2. A pair consisting of an input history
and the resultant computed output sequence is a computation pair. The computa-
tion of an automaton is the set of all computation pairs of that automaton.

8. There are other ways of treating Turing machines. For example, one can con-
sider an infinitely long tape with a fixed automaton moving along it. Note,
however, that though there are an infinite number of squares on this tape,
at each moment of time only a finite number of them have ever changed state;
it is for this reason that we can treat the tape as finite at each moment of
time.

9. The synthesis of a tape "square" storing one bit (a "O" or a "1") is described
in Section 4 below and also in Section 6 of "The Logic of Fixed and Growing
Automata," presented at the Harvard Symposium on the Theory of Switching,
1957, to be published in the Proceedings of the Symposium, edited by H. Aiken.
One can construct tape squares capable of storing any of n characters in a
similar way.
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There is a relational analogy between behavior and computation on the one
hand and "real time" simulation and "nonreal time" simulation on the other hand.
In real time simulation the answer is produced at a rate determined by the ac-
tual time taken by the process which the computer is simulating, while in a "non= .
real time" simulation, the answer is produced at a rate independent of actual
time. Similarly, the behavior of an automaton includes the outputs at every mo-
ment of time (including the control output), while the computation includes only
outputs selected by the computer itself, and in general these answer states do
not appear at a uniform rate.

A computed output sequence may be null, finite, or infinite. A computation
is said to be infinite if every computed output sequence (i.e., the second ele-
ment- of each computation pair) is infinite, finite if every computed output se-
quence is finite or null, and mixed otherwise.

We can apply the concept of computation (and the related concepts just de-
fined) to fixed automata by distinguishing a control output of a fixed automaton
from the other (or answer) outputs. Hence all three concepts—structure, behav-
ior, and computation—apply to both fixed automata and generalized Turing machines.
These three concepts will also apply to the growing automata defined later (sec-
tion 4).

It is easy to show that the class of infinite computations of generalized
Turing machines includes the class of behaviors of such machines as a proper
part; the same holds true for fixed automata. Consider the behavior of an au-
tomaton A; this is the computation of an automaton A' made by taking the outputs
of A as the answer outputs of A' and making the control output of A' always ac-
tive (always in state 1). But there are infinite computations which are not de-
terministic in character and hence which are not the behavior of any determin-
istic automaton. An example is the computation I(0), I(1), I(2), ...; I(1),
I(2), 1(3), ... [where I(t) is the input state at t], which is realized by a
very simple fixed automaton: the output state at t is the input state at t, and
the control output node C has the behavior C(0) = 0, C(t+l) = 1 for all t. Hence
(for either fixed automata or generalized Turing machines) the class of infinite
computations is broader than but inclusive of the class of behaviors. For this
reason we did not take the whole output history of a machine as the answer com-
puted by this machine—to do this would be to identify behavior and computation
and hence to restrict unduly the domain of the computable.



3. ANALYSIS AND SYNTHESIS OF AUTOMATA

Our discussions of automata in Sections 4 and 5 will presuppose some knowl-
edge of fixed automata and generalized Turing machines, and so we will mention
briefly some results about these special cases of automata and will note some
of the unsolved problems. Since the concepts of behavior, structure, and com-
putation apply to all automata (see Sections 4 and 5), many of the results and
problems concerning fixed automata and generalized Turing machines which we will
discuss in the present section may be extended to cover automata generally.

Much is known about the behavior of fixed automata. For example, each fixed
automaton has a finite number of delay output states, which fact has important
consequences for the behavior of these devices. In the case of a fixed automa-
ton without inputs it means that the behavior of the automaton is periodic.lo
In the case of an automaton with inputs, the finitude of states means that the
device can detect only "regular events,"ll that if the number of delay states
is known, then its behavior can be computed from the results of a finitely long
behavioral test, and that there is a decision procedure for behavioral equiva-
lence.@>15 Since the notion of computation is a new one for fixed automata,
little is known about this. The same argument that shows that the behavior of
a fixed automaton without inputs is periodic shows that the computation of such
an automaton is also periodic. There is an algorithm for deciding whether the
computation of a fixed automaton (with inputs) is infinite, finite, or mixed,l
but the problem of the existence of an algorithm for deciding whether two fixed
automata have the same computation is unsolved.

A great deal is known about Turing computability and the closely related
notions of algorithm, general recursiveness, and partial recursiveness. We do
not have space to explain these concepts here,15 but it is worth noting that
these results can be expressed in terms of our notion of a generalized Turing
machine, and they contain answers to most. questions about the computation of
such machines. As applied to generalized Turing machines, these results on re-
cursiveness, algorithms, and computability need interpretation, however, because

10. Burks and Wright, op. cit., Theorem I. Note that in this case the behav-
ior is a single output history.

11. I. M. Copi, C. C. Elgot, and J. B. Wright, "Realization of Events by Logi-
cal Nets," Journal of the Association for Computirg Machinery, 5, 181-196
(1958).

12. E. F. Moore, "Gedanken-Experiments on Sequential Machines," pp. 129-153 of
Automata Studies, op. cit.

15. Burks and Wang, op. cit., sec. 2.2.

14k. Unpublished results of the author and Jesse Wright.

15. See Kleene, op. cit., and Davis, op. cit.
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there are many ways of relating a generalized Turing machine to these notions.
Thus there are alternative methods of using a generalized Turing machine to com-
pute a recursive function. For example, for a given nonrelative recursive func-
tion, one can design a machine without inputs whose computation will be an enum-
eration of the values of that function. Alternatively, one can design a gener-
alized Turing machine with inputs so that whenever arguments (problems) are pre-
sented on the input, the computed functional values (answers) will appear as
part of the computation. The distinction between finite or mixed computation on
the one hand and infinite computation on the other (see Section 2) can be made
to correspond to the distinction between partial recursiveness and general re-
cursiveness.

We will relate a few of the things known about computability and recursive-
ness to our concept of a generalized Turing machine. Every computable number
(in Turing's sense) can be produced as the computed output sequence of a gener-
alized Turing machine with no inputs and one tape. The values of a function
which 1s general recursive relative to a given function can be produced as the
computation of a generalized Turing machine which receives the values of the
given function as inputs. There is no algorithm for deciding whether the com-
putation of an arbitrary generalized Turing machine is finite, mixed, or infinite,
but there is an algorithm for deciding whether the structure of a machine can
ever change. There 1s no algorithm for deciding whether two generalized Turing
machines produce the same computation.16

Since the notion of behavior as applied to a Turing machine is new, there
are many open questions in this area. For example: is the class of behaviors
of generalized Turing machines with n+l tapes larger than the class of behaviors
for machines with n tapes? Is there an algorithm for deciding whether two gen-
eralized Turing machines have the same behavior?

Later we will discuss von Neumann's universal constructing machine, so
Turing's universal computing machine is of particular interest here. Let us
call a generalized Turing machine with no inputs, one tape, one control output
node, and one answer output node a special purpose machine. Translated into our
terms, Turing's result is that there is a one tape generalized Turing machine
with inputs, called a universal Turing machine, with this property: for each
special purpose machine M there is a finitely long program or input sequence S
such that when S is supplied to the inputs of the universal Turing machine the
computed output sequence of M and the universal Turing machine are identical;
this is illustrated in Fig. 3.1. It should be noted that in general the univer-
sal Turing machine and the special purpose machine do not produce the same out-
put histories, so that the equivalence between them has to do with computation
and not behavior. It should be noted also that the finitely long input sequence
S can be supplied to the universal Turing machine by connecting a cycle free se-
quence of delays without inputs to each of the inputs of the universal machine;
the input to these delays is fed by a contradiction (an output that is always
false), and the program is stored in the initial states of the delays. After

16. Unpublished result of Jesse Wright.
8
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a period of time equal to the length of this sequence of delays, the input to
the universal machine is always zero.

It is very likely that a similar result holds when inputs are added to the
special purpose machine and more than one tape are allowed; that is, for each
set of generalized Turing machines with n inputs and m outputs, there is a uni-
versal Turing machine. Does an analogous result hold for fixed automata? Com-
puter engineers often speak of trading time for hardware and of the choice be-
tween constructing ("wiring in") an operation and instructing (programming)
that operation, and this might seem to imply the existence of a universal fixed
automaton. But in fact there are no universal fixed automata. We will prove
that there is no universal fixed automaton for the class of input-free fixed
automata with m binary outputs. To prove this we first show that any fixed au-
tomaton A (with inputs) when supplied by a finite input sequence S produces a
periodic output of period no greater than n, where n is the number of delay
states of A. To say that S is finite is to say that there will come a time
when the input states of A are always the same thereafter. The automaton A
will then behave as a noninput device with n delay states, and so the computed
output sequence of A is periodic with period n or less. Hence A cannot produce
a computed output sequence of, for example, period 2n, and so A is not a uni-
versal machine. Thus there is no fixed automaton which is universal for the
class of noninput fixed automata with m outputs, and consequently there is no
fixed automaton for the class of fixed automata with n inputs and m outputs.

We will next mention some reduction problems. Does adding more tapes in-
crease the class of computations produced by generalized Turing machines? A
generalized Turing machine can have only one multi-channel reading and writing
head per tape. In contrast, the growing automata introduced in the next section
can have tapes with more than one multi-channel read-write head attached to
them.1T What effect, if any, does this have on the class of behaviors or the
class of computations? In some cases one can use several single-headed tapes
alternately to do the work of one many-headed tape. This can be done in the
special case of an automaton which records information on two tapes and com-
pares these tapes, using one head for recording and another head on the same
tape for reading and comparing. To accomplish this result with one-head tapes,
we use two such tapes for each of the two-head tapes on the original machine.
At each moment one of these tapes is used to record the input information while
the other is used for the comparison; when the latter tape is emptied, it is
used for recording and the former tape is used for comparing. It is worth not-
ing that we have here an abstraet buffering and scheduling problem.

No discussion of automata at a symposium on self-organizing systems would
be complete without reference to machines which synthesize other machines. This
synthesis process can be conceived in many ways. One method which has been

17. This can be done by constructing an indefinite series of storage squares,
and moving the reading heads along them. Motion of a reading "head" is ac-
complished by "destroying" the head and constructing another head in the
place where 1t is wanted.

10



studied some of latelS'21 is illustrated in Fig. %.2. Suppose we have a formal
language L in which a human canconveriiently and precisely state some behavioral
conditions C which he would like an automaton to satisfy. We would like to know
if there is a synthesis machine S of which we can prove mathematically the fol-
lowing result: when S is given any behavioral condition C, it will always pro-
duce either the design of some automaton A which satisfies this condition, or

it will tell us that there is no such automaton.22 The condition given at the
top of Fig. 3.2 is that for all times other than zero the output of the desired
automaton is to be active (in state 1) if the input has been active at some pre-
vious time. (That is, B is active at time t+1 if and only if there is a time x
no larger than t at which A is active.) There are fixed automata satisfying
this condition, and so if a synthesis machine for a language containing this
condition exists, this machine would produce as output a representation of one
of these automata. o

These is a large area of research here because there are many problems of
the kind just described. The synthesis process represented in Fig. 3.2 starts
with a particular language L and results in the synthesis of a fixed automaton
satisfying a condition on its behavior. There are many different languages L
which should be investigated and it is of interest to synthesize generalized
Turing machines as well as fixed automata. In both cases we can allow the con-
dition to be_.a condition on the computation of the desired automaton as well as
a condition on its behavior. For each specification of the the language L, the
nature of the condition C, and the nature of the desired automaton A, the ques-
tion arises: 1s there a synthesis machine and if so, what is its structure? 1In
some cases there is a machine and in some cases there is not. It is important
to realize that, if there is no synthesis machine of this kind, there is no
méthod of using computers to design computers which is guaranteed to produce an
answer in all cases. Hence the broad problem is this: +to determine the the-
oretical limits of mechanizability of the synthesis process by deterministic
machines of this kind.

18. J. R. Blichi, C. C. Elgot, and J. B. Wright, "The Non-Existence of Certain
Algorithms of Finite Automata Theory," Abstract, Notices of the American
Mathematical Society, 5, 98 (February, 1958).

19. A.Church, "Application of Recursive Arithmetic in the Theory of Computers
and Automata,'" notes from summer session course in Advanced Theory of the
Logical Design of Digital Computers, The University of Michigan, 1958.

20. C. C. Elgot and J. R. Blichi, "Decision Problems of Weak Second Order Arith-
metics and Finite Automata, Part I," Abstract, Notices of the American Math-
ematical Society, 5, 834 (December, 1958).

21. C. C. Elgot, "Decision Problems of Weak Second Order Arithmetics and Finite
Automata, Part II," Abstract, Notices of the American Mathematical Society,
6, L8 (February, 1959).

22. Other problems in this area are formulated by Blichi, Elgot, and Wright, op.
cit. What we have called a synthesis problem they call a combined solva-
bility and synthesis problem.

11



B(1+I)E(3x)[(x.<.’r) & A(x)]

L

—==a —-===
77T 1 SYNTHESIS =
i\ MACHINE 74
T 1\
/Ill \\\
/y N
ANSWER CONTRQL

bev
A —Ta

Fig. 3.2. Synthesis machine.

12



L. GROWING AUTOMATA

John von Neumann has shown how to design universal constructing machines
and self-reproducing automata within the framework of a general definition of
automata.23-25 The details of von Neumann's definition are contained in an un-
published manuscript, and so I have worked out an alternative definition. Von
Neumann's model is much closer to biological phenomena than the definition pre-
sented here; for example, each of von Neumann's cells has a unit delay,26 while
many of our cells have no delays. Von Neumann's constructions are also based
on very weak primitives (his cells are capable of only 29 different states),27
while we have assumed very strong primitives (each cell may have any of about
28,000 structures and each structure is capable of several states). While the
definition presented here is much less realistic and economical than von Neu-
mann's, it does make it easy to construct and present various kinds of growing
automata.

A comment about our use of the word "automaton" is needed here. The con-
cept we will define is that of automaton, without qualification. The fixed
automata of Section 2 will be special cases of automata, namely, those automata
consisting of fixed structures of computing elements. Automata whose structure
changes in time are called growing automata. But although our definition and
some of our subsequent remarks apply to automata generally, we are particularly
interested in growing automata.

The basis of each automaton is an infinite two-dimensional array of discrete
cells.28 A particular automaton is defined by specifying the structure of a fi-
nite number of cells (i.e., stating what elements are in them) at time zero; the
rest of the cells are empty (structureless). The structure at time t+l is de-
termined by the structure at t and the complete state of the device at t, accord-
ing to rules to be explained. These rules do not allow more than a finite number
of cells to be structured at any particular time.

2%. J. von Neumann, "The General and Logical Theory of Automata," pp. 1-31 of
Cerebral Mechanisms in Behavior - The Hixon Symposium (edited by L. A. Jef-
fress), New York, 1951. This is reprinted in The World of Mathematics
(edited by James R. Newman), Vol. 4, pp. 2070-2098.

2L. John G. Kemeny, "Man Viewed as a Machine," Scientific American, 192, 58-67
(April, 1955).

25. C. E. Shannon, "Von Neumann's Contributions to Automata Theory,'" Bulletin
of the American Mathematical Society, é&, 123-129 (May, 1958).

26. Shannon, op. cit., p. 127.

27. Ibid.

28. Von Neumann considered the two-dimensional case, but his general procedure
applies to any number of dimensions.

13



There are four types of elements which may be created in a cell. Each
element is binary in the sense that each wire or node of an element is capable
of two states. (1) A computing element may be a switch, a delay, a combined
delay and switch, or just a plain wire. Each edge of a cell has at most one
computing wire (shown in solid in the figures) impinging on it from within the
cell. BSpecifically, the computing primitives are as follows; see Fig. L4.1.

(a) Any switch with three inputs and one output, e.g., cell Al of Fig. L4.1.
There are 2%° of these, taking into account the different orientations of their
outputs (north, south, east, and west), and allowing all 256 possible three-
variable truth functions. Note that some of these truth functions will be in-
dependent of some of the inputs, so that this category includes as special

cases two-input, one-input, and zero-input switches. This category also in-
cludes certain wires, such as the wires of cells Al, Bl, and Cl of Fig. 4.5.

(b) There are unit delay elements with one output and one, two, or three inputs.
These inputs come from one, two, or three edges through a disjunction. There
are 28 of these; see cell Bl of Fig. 4.1. (c) There are unit delays with two
outputs and one or two inputs (e.g., cell Cl of Fig. 4.1). There are 18 of
these. (d) There are unit delays with one input and three outputs (A2 of Fig.
L4.1); there are four of these since the input can come from one of four dif-
ferent cell edges. (e) There are arrangements of wires in cells not covered by
case (a), governed by the rule that incoming wires may not merge and at most one
wire contacts a side. There are 28 possibilities; see cells B2, C2, A3, B3, and
C3 of Fig. 4.1, and Bk of Fig. 4.5. Altogether there are 1102 different com-
puting elements.

(2) There are scaffolding elements, which have one input wire and either
one or two output wires. Scaffolding wires are shown dashed; see cells B1, C1,
B2, and C2 of Fig. 4.2. If we count primitives with different orientations as
different primitives there may be any of 24 different scaffolding structures in
a cell. The scaffolding primitives will conduct construction signals. A branched
scaffolding element (e.g., cell B2 of Fig. 4.2) has an implicit switch associated
with it. By convention this switch has an initial setting; the switch setting
may be changed by using switching sequences which will be introduced later.

(3) Any scaffolding element may coexist with any computing element in the
same cell. See, for example, cell A2 of Fig. 4.2 and cell A5 of Fig. L.k. There
are 24k x 1102 such primitives.

(k) The last element is the key to the construction process. It is called
a constructing element and is shown in cell Al of Fig. 4k.2. A constructing ele-
ment receives construction signals from a computing structure and routes these
into a scaffolding structure; the construction signals travel through the scaf-
folding and eventually cause a cell to be structured in a way to be explained.
A constructing element may receive its input from any cell edge and transmit its
output to any other edge of that cell; hence there are 12 different constructing
elements.

A cell may have an element of any of these four types or it may be struc-
tureless. Altogether there are 27,587 (which is less than 2'5) possibilities,
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each of which will be represented by a binary sequence called a constructing
sequence. These sequences will be formed or stored in a computer structure and
fed into the constructing element. There is no upper limit to the length of
computer wires or scaffold wires, and we will make the idealized assumption
that signals will travel down the wires instantaneously.

The mode of operation of the system and the formulation of further rules
can best be presented by means of an example. We will show how a tape may be
lengthened under the control of a machine, thereby relating growing automata to
generalized Turing machines. Figure 4.3 shows two "squares" of the tape, each
square storing a single bit. The switching functions (a), (b), and (c) are the
following. Let "N," "S," "W," and "E" stand for the north, south, west, and east
edges of a cell, respectively. The output of switch (a) is E and is given by
the equation

E(t) = [{S(t) and N(t)} v {S(t) and W(t)}]

The output of switch (b) is E and is given by the equation

E(t) = [(S(t) and W(t)} v {S(t) and N(t)}]

The output of switch (c) is N and is given by the equation

N(t) = [(E(t) and W(t)} v (E(t) and S(t))]

You are to imagine that a fixed computer which is associated with the tape is
connected to the inputs and outputs of Fig. 4.3. This computer may "write" on
the left-hand square and "read" what is stored on that square. It may cause the
information on the tape to be shifted to the right by stimulating the "right
shift" signal, and in a similar way it may cause the information to be shifted
to the left. By feeding signals into the constructing element, it can cause

the creation, destruction, or alteration of new tape squares to the right in a
way to be indicated. A similar arrangement exists for modifying the tape to

the left.

We will next describe the construction of a square of tape. Cell A6 of
Fig. 4.4 needs a scaffold with a branch. The construction sequence represent-
ing this element is produced by the fixed computer and fed into the construct-
ing element, which produces the desired element in the cell touched by its
output. The next constructing sequence will pass through the constructing ele-
ment into the scaffold, through the vertical output of the scaffold, and will
produce a new element in the cell (A5) which is touched by the output of the
scaffold. 1In this case the structure produced is a horizontal computing wire
and a vertical scaffolding wire. This process 1is repeated to give a structure
to the next two cells (A4 and A3); the scaffolding of these cells is not shown
because of pictorial difficulties.

After the rest of column A is structured, construction activities need to
be shifted to column B of Fig. 4.5. This rerouting is done by a binary switching

17
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sequence which goes through the constructing element into the scaffold and
changes the switch setting of the scaffold of cell A6 so that subsequent con-
structing sequences are routed into cell B6. After this we can structure col-
umn B by means of six constructing sequences. Another switching sequence re-
sets the switches in cells A6 and A5 and permits the structuring of column C.
This switching sequence works as follows. It would contain two switching sig-
nals in coded form. The first signal would be received by A6, and in this
case would leave the switch set as it was. The second switch signal would be
passed on to B6, and would cause its switch setting to be changed so that the
next constructing sequence would effect cell C6 (rather than traveling through
the B column). In general, a switching sequence will contain as many switching
signals as there are switches which must be passed through to get to the last
switch to be modified.

The central computer may want to contract the tape as well as to expand it,
and so it needs the capacity to wipe out the structure of a cell. This is pro-
vided for by binary destroying sequences. A destroying sequence passes through
the constructing element and down the scaffolding in the same way as a construct-
ing sequence. However, a destroying sequence affects the cell which contains
the terminus of this scaffolding channel rather than the next cell; it causes
the element of this cell to be destroyed. There is a sequence of 18 destroying
sequences and 2 switching sequences which will destroy the tape square Just
created.

We may also use a switching sequence followed by three destroying sequences
to erase the elements of the bottom row (6) and then use 3 constructing sequences
to create the scaffolding shown in Fig. 4.6. Thus with a master sequence of 21
constructing sequences, 3 switching sequences, and % destroying sequences we end
up with a new tape square and with the scaffold arranged so that each repetition
of this master sequence will produce a new square to the right. By iterating
this master sequence we can produce e tape of any length.

In this way we can construct a generalized Turing machine except for the
fact that the process of construction just described takes many units of time
per tape square and hence is not as fast as that stipulated for a generalized
Turing machine in Section 2. Thus the generalized Turing machine is almost but
not quite a special case of our definition of automaton. We could make it so
in either of two ways. First, we could use a growing automaton to simulate a
generalized Turing machine by associating one major cycle (i.e., the time re-
quired for the construction of a tape square) of the growing automaton just
described with one minor cycle (i.e., a single unit of time) of the generalized
Turing machine. Second, we could enrich our base of construction by adding ele-
ments and wires capable of more than two states. It would not be necessary to
introduce computing elements with more than two states. It would suffice, for
example, to let the scaffolding elements have many states and to have construct-
ing elements which convert binary signals into signals properly coded for the
scaffolding elements; note that this method would not involve any increase in
the number of computing primitives or the number of scaffolding primitives, and
not a very great increase in the number of constructing primitives.
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We have said enough about the definition of "automata" to make its main
features clear. Various details need to be specified before the definition is
complete. We will assume that a primitive element is active as soon as it is
created. This means that part of a computer which has been constructed may
start to operate before the computer is finished. This fact needs to be taken
into account in the design of the computer, as it often does in the design of
actual computers, since these computers may have to be cleared to a standard
initial state before they are ready to operate. Two constructing sequences,
coming from two different constructing elements, might arrive at a cell at the
same time; a priority rule is needed to determine which one governs the con-
struction. There are other minor details which need to be specified but we
will not bother with these here.2?

Let us consider next what automata can be specified as automata in the
sense of the present definition. Every fixed automaton can be put into a nor-
mal form,BO and this normal form can be constructed of computing elements in
cells; so each fixed automaton is an automaton in the sense defined here. We
have shown in some detail how an expanding and contracting tape may be con-
structed; hence, except for a matter of speed, every generalized Turing machine
is also an automaton.

One of the growing automata which can be constructed is von Neumann's uni-
versal constructor, of which a block diagram is shown in Fig. M.Y.Bl The uni-
versal constructor C is a finite structure to which may be attached a tape con-
taining the specifications of any number of automata which are to be synthesized.
In general, each specification consists of two parts. The first part of the
specification is a master sequence of constructing sequences, switching sequences,
and destroying sequences, which will cause a fixed part of the desired automata
to be constructed. This master sequence is the description D(). The second
part of the specification contains the contents T(x) of a tape which is to be
constructed and attached to automaton .

The universal constructor operates under the direction of its control as
follows. First, the tape reader reads D(x) and transmits it to the constructor;
concurrently the constructor constructs &. Next, the reader reads T(a); con-
currently the reproducer produces a tape, attaches 1t to @, and records T(x) on
it. This process is then repeated, so that at the end of the construction proc-
ess T(a) is recorded twice on the tape. (The reason for this duplication of

29. It is perhaps worth noting that the definition does not prevent the con-

. struction of automata which are not well-formed (e.g., have switch cycles),
nor is there an effective criterion for deciding whether a given growing au-
tomaton will ever '"develop" switch cycles. Restrictions could be added to

- guarantee that every automaton is well-formed. The simplest such restric-
tion would be to incorporate a delay in every switch, but this tremendously
complicates the automata and limits their behavior. A less severe restric-
tion is to require every switch or wire with an output on the south edge to
contain a delay. We will not take time here to investigate the various pos-
sibilities.

30. Burks and Wang, op. cit., Section 2.3.
31. Von Neumann, op. cit., pp. 2096-2097.
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tape information will become apparent in a moment.) In general, for each de-
seription D(@) of an automaton and each tape content T(Q), the universal con-
structor will construct & and record T(a), T(x) on the tape attached to Q.

As von Neumann showed, the universal constructor C together with the proper
tape will reproduce itself; see Fig. 4.8. Let D(C) be a sequence of construct-
ing sequences, switching sequences, and destroying sequences which completely
describe C (including its scaffolding). Let the universal constructor C con-
tain a tape storing D(C) twice when it begins action. The universal construc-
tor will first read D(C) and produce C. It will then read D(C) twice and produce
a tape recording D(C) each time. [This is the reason for the earlier require-
ment that T(x) be copied twice.] Thus the universal constructor C when supplied
with a tape containing D(C), D(C) produces a universal constructor plus a tape
containing D(C), D(C). Hence C with a tape storing D(C), D(C) reproduces it-
self. The new combination of C and the tape D(C), D(C) can then reproduce it-
self, and this process can be repeated ad infinitum.

If we combine a universal constructor and a universal computer (i.e., a
universal generalized Turing machine), and supply this composite machine with
a tape containing its description twice, this whole automaton will reproduce it-
self; see Fig. 4.9. Thus a universal constructor-computer can reproduce itself.32

32. Ibid., p. 2098.
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5. SOME PROBLEMS ABOUT GROWING AUTOMATA

In Section 3 we mentiorned some problems and results about fixed automata
and generalized Turing machines and remarked that these may be extended to cove:
automata in general (as defined in Section 4) and hence growing automata in par-
ticular. There is another type of problem, quite different from any of the
problems discussed before, which is applicable to automata of all kinds; this
concerns the relation of the cyclic complexity of .the structure of an automaton
to its behavior. Since our earlier discussion of a generalized Turing machine
did not make explicit whatever cycles are implicit in the tapes, this problem
had to be postponed to the present section.

Let us consider the problem first for the case of a fixed automaton. We
can urniquely decompose the structure of a fixed automaton into maximal cycles.
The degree of a maximal cycle is the number of unit delay elements in it, and
the degree of a fixed automaton is the maximum of the degrees of its maximal
cyclese35 Figure 5.1 consists of a single maximal cycle of degree 2; the out-
put nodes are marked by stars. Figure 5.2 contains six maximal cycles, each
of degree 1, so Fig. 5.2 is of degree 1; its output nodes are also marked by
stars.

How, now, is the degree of an automaton related to its behavior? Is there
some critical degree n, such that all fixed automata behaviors can be realized
by structures of that degree (or less)? It has been conjectured that there is
no such degree. The general problem remains open, but John Holland has shown
that no automaton of degree 1 can realize the behavior of Fig. 5.1, which is a
ternary counterjl-L

The same problem can be raised about the computation of a fixed automaton:
is there some critical degree m, such that all fixed automata computations can
be realized by structures of that degree or less? Both problems can be extendec
to generalized Turing machines and to growing automata. Of course the structure
of any growing automaton changes with time, and hence the degree of the struc-
ture changes with time as well. But we can define the degree of a growing au-
tomaton to be the maximum degree of any of its structures at any time for any
input history, if the maximum exists; otherwise the degree is infinite.

We can now ask these questions about automata generally: (1) Is there some
finite degree n such that all behaviors can be realized by automata of this de-

3%. These concepts are explained in detail in Sec. 4.1 of Burks and Wang, op. cii
34. John H. Holland, Cycles in Logical Nets, Univ. of Mich. Ph.D. dissertation,
1959. This thesis contains many other results in the same general area.

28



* (a83unoo Lrevasq) z ssal3ep JO uojemWOINY

‘TG 314

29



*T 99J39p JO uwojeWOLINy

*

R AT

1NdNI

30



gree or less? (2) Is there some finite degree m such that all computations
can be realized by automata of this degree or less? It might seem that the
answer to both these questions is "no," since clearly in both cases there is

no upper limit to the length of the tapes needed, and the tape designed in the
preceding section is of infinite degree. However, it is possible to design a
tape of finite degree by using isolated squares and moving the read-write head
along the tape instead of shifting the information along the tape. To store a
1 in a square the automaton builds a delay cycle in which a pulse circulates;
to store a 0 it builds a delay cycle whose successive states are 0. The fixed
part of the machine can send out a long wire to do this and by means of another
wire can sense the contents of the delay cycle. The contents of the square can
be changed by destroying the delay cycle in it and rebuilding the appropriate
one. When the fixed part of the automaton is neither reading from the square
nor writing in the square, it would have no connection to it. In this way a
generalized Turing machine may be designed which has a fixed degree.

There are other measures of feedback complexity which are of interest.
Consider a fixed automaton with n unit delays xi, Xz, Xaz, ---, X, . Let £(xg)
be the number of delays which directly and immediate affect the delay element
X;, 1.e., whose outputs drive the input of X5 through switch elements. [In
Fig. 5.1, f(x1) = f(x2) = 2 since each delay drives itself and the other de-
lay through a switch.] Define an average measure of feedback complexity F for
the automaton by n

£(x5)
i=1

1’12

There are "directly entirely connected" automata for which F = 1,35 Fig. 5.1
being an example. However, the amount of feedback complexity F in actual sys-
tems is usually much less than the maximum. F = 7/18 for Fig. 5.2 and F is small
in a typical modern digital computer. (Note that such a computer is pretty
nearly one maximal cycle, not counting the tapes.) This fact is relevant to our
ability to understand a large digital computer. Because the ratio of actual
feedback lines (from delays) to possible feedback lines is low the various parts
of the computer have a large amount of local autonomy and may be understood in
isolation from the rest of the computer. (Uniformities within these parts also
make it easier for us to understand them.) It is worth noting that if neurons
are represented by switches and delays, F is small for the human neural system.

Let us turn next to some problems which are unique to growing automata.
The first is one that von geumann considered: How complex does a self-reproduc-
ing automaton need to be?5 In his model von Neumann used cells which were cap-
able of twenty-nine states, and he estimated that about 200,000 cells would suf-

35. ©See Burks and Wang, op. cit., p. 291. Of course every automaton can be put
in a normal form which has this property, but we are here interested in nets
in "reduced form," in which all irrelevant (noneffective) switch input wires

are deleted.

36. Shannon, op. cit., p. 127.
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fice for self-reproduction.57 The cells of our models are much more complicated,
for a cell may contain any of about 215 different elements, and each element is
capable of several states. But counting states is not sufficient, because there
are many ways in which states may be used; for example, a primitive element cap-
able of transferring its structure to a neighboring cell on receipt of a single
pulse is in certain respects more powerful than any of the primitives we have
assumed.

One could compare growing automata constructed within the framework of dif-
ferent definitions of "automaton" by reducing both definitions to a common sys-
tem. We will show how to make this reduction for our definition. For this pur-
pose we will use a particular infinite fixed net of switch and delay elements to
model or simulate our definition of automaton.> This infinite fixed net cor-
responds to the infinite two-dimensional array of discrete cells constituting
the basis of each automaton in the sense of Section 4. You will recall that in
Section 4 a particular automaton is defined by specifying the initial structure
(i.e., the structure at time zero) of a finite number of cells; this structure
would be represented in the infinite fixed net by a particular initial state of
that net. In Section L4 the structure of an automaton at time t+l is determined
by the structure at time t and the complete state at t according to rules ex-
plained there; this succession of structures (and states) will be represented
in the infinite fixed net as a succession of states of that net.

The infinite fixed net is constructed in the following way. There is a
finite fixed net (located in a square) corresponding to each cell of our defi-
nition of automaton; these squares are repeated ad infinitum in the same two-
dimensional way as are the cells of Section 4. We thus get an infinite struc-
ture which is locally heterogeneous but is homogeneous in the large.

We cannot take time to describe the finite fixed automaton corresponding
to a cell, but we will indicate its main features. It will contain a register,
a master switch, and switches and delays which will perform the scaffolding
and computer functions of the original cell. Each fixed net of a square would
have two inputs to, and two outputs from, each of the four neighboring squares;
these inputs and outputs would be used for scaffolding wires and computer wires.
A constructing sequence which was to affect a given square would be routed to
the register of that square; the register would then determine the connections .
of the switches and delays by means of the master switch; in this way the fixed
automaton of the square would simulate the original cell. Flip-flops would be
used to store the switch settings of branched scaffolding elements; a switching

37. Kemeny, op. cit., p. 66.

38. DNote that this net is not itself an automaton in the sense of Section L.
Note also that though the net is infinite, at any finite time only a finite
number of nodes have ever changed from their initial state; cf. the remark
on infinite tapes in Section 2, note 8.

Little is known about infinite fixed automata, although special cases have
been considered by Church, op. cit., and John Holland, "A Universal Computer
Capable of Executing an Arbitrary Number of Programs,'" unpublished.
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sequence passing through a square would set the flip-flop correctly and then
pass on to set the flip-flops representing other scaffolding branches. A de-
stroying sequence would go into the register and restore the square to its or-
iginal state.

Each particular automaton is defined within the framework of our original
definition by stipulating the initial structure of a finite number of cells.
As we remarked before, this operation corresponds to setting the initial states
of the delay elements of a finite number of squares in the infinite fixed net.
Changes of automaton structure in the original definition will then appear as
changes of state in the infinite fixed net. Thus we are using some aspects of
the behavior of the infinite fixed net to simulate the structure of the origi-
nal automaton.

Von Neumann's definition of automaton could be simulated in a similar way.
Then the complexity of von Neumann's design of a self-reproducing automaton
could be compared with the complexity of the design we described by making a
weighted count of the number of switches and delays used in the initial struc-
ture of each. By precisely defining a common reference system in this way, we
can make the problem of minimal complexity of cell reproduction into a strictly
logical problem. Experience with minimality problems suggests that it would be
extremely difficult if not impossible to find the minimal solution and prove it
minimal. One might, however, obtain an estimate of minimal complexity by using
a computer to help work out many alternative constructions.

The idea of modeling a specific structure in an infinite uniform fixed net
may have practical applications in future computers. There are under development
radically new techniques for constructing solid-state computers. It is estimated
that by one of these methods '"the component density in a finished circuit could
be 50 million per square inch per layer. ... It is conceivable that more than
10,000 layers per inch could be formed, giving a volume density of 5 x 10*t com-
ponents per cubic inch."?9  Such computers might be built for the most part in
a uniform way similar to that described above for the infinite fixed net used
to simulate our definition of automaton. A particular problem could be solved
by converting this net into a "structure" appropriate to that problem, in the
way the infinite fixed net is structured to represent a particular growing au-
tomaton. For each new problem (or portion of a problem) the computer would sim-
ulate a different structure; in effect, it would in a sense become (during the
solution of this problem) a special purpose computer especially designed to solve
that problem. The common division of a computer into arithmetic units, controls,
and storage units would be used only if this organization was best for the prob-
lem at hand. All this simulated restructuring would be done automatically, of
course, by a programmed change of state of the uniform fixed net, and could be

39. Dudley Buck and Kenneth Shoulders, "An Approach to Microminiature Printed
Systems," Notes from Summer Session Course in Advanced Theory of the Logi-
cal Design of Digital Computers, The University of Michigan, 1959, p. 2.
This paper was presented to the Eastern Joint Computer Conference, Phila-
delphia, 1958.
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done more or less continuously during the solution of a problem.

There are many other concepts of growing automata worthy of investigation,
of which we will mention a few. It is not necessary to employ a fixed frame-
work of cells; one could allow new cells to spring up between old ones under
the control of the automaton. This concept might be of help in describing and
understanding a computation. Suppose a list of words is stored and at a later
date many words are to be lengthened and new entries are to be inserted. This
change could be conceived as an automatic process of lengthening the bins which
hold the word, and the inserting of new bins between the old ones; the change
of bins must of course be accompanied by an appropriate change of the switches
which connect these bins to the rest of the automaton. In general, storage and
computing facilities would be created wherever needed and in a form suited to
the problem being solved.

In one of his models von Neumann had girders, sensing organs, and joining
organs, as well as computing elements, floating freely in a lake. As Shannon
remarks, 1 because of the complexity of motion which is thereby possible it
would be exceedingly difficult to give a detailed design of a universal construc-
tor in this model. One might modify the definition of automaton we have given
(Section 4) in at least two ways to obtain some of the effects of von Neumann's
"lake" model without all of the complexity. In the first case the result is a
probabilistic automaton, while in the second case it is a deterministic automa-
ton.

(1) We can assume as primitives a few basic types of cells, each with a
number of internal states. These cells would be moving about on the surface of
a lake in a random fashion. The random motion would cause cells to make con-
tact with one another along the edges. Each cell would have the capacity to
accept or reject other cells under the control of its own internal state. A
particular automaton, such as a self-reproducing one, would begin life as a
two-dimensional finite structure floating on the surface. The cells on its
edges would contact other cells at random, and the automaton would accept or
reject these new cellé'éccording to its needs. Stimulated by von Neumann's
work, L. S. Penrose has investigated models of this sort, using cells with me-
chanical hooks and producing random motions by shaking the cells on a board.h2’45
His units are capable of only a few internal states, and the devices he begins
with consist of only a few units. Penrose did his work experimentally, that

4LO. Similarly, we can think of the program of a present-day general purpose
computer as determining a temporary structure, and hence as converting
the general purpose machine into a special purpose machine for the given
problem. But the computer described above would have much more flexibil-
ity of structure than any existing computer.

L1. Op. cit., pp. 126-127.

L2, "Automatic Mechanical Self-Reproduction,” pp. 92-117 of New Biology, No.
28, 1959, Penguin Books.

43. "Self-Reproducing Machines," Scientific American, 200, 105-114 (June, 1959).

LL. Most of his models were one-dimensional, although he did some work on a
two-dimensional model.
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is, by constructing the units from wood and shaking them mechanically. This
general type of model could be simulated on a digital computer.u5

It would be instructive to make such simulations, starting with cells,
rules for interconnections, and initially given automata, all of which are much
more complicated than the units, rules, and initial structures Penrose used.

(2) Von Neumann's "lake model" and the variations of it just discussed
are probabilistic automata. A second way of modifying our definition of au-
tomaton (Section 4) so as to obtain some of the power of von Neumann's lake
model without all the complexity yields a deterministic automaton. The modifi-
cation consists in adding a sensing element which would sense the structure and
contents (state) of a cell. The sensing element would send sensing channels
through the cells in a way similar to the way a scaffold is constructed by the
constructing element. These sensing channels would not disturb the structure
already in the cells, but would carry information about the cell being sensed
back to the sensing element. By a process analogous to the construction pro-
cedure described in the previous section, an automaton could sense what element
was contained in a cell and the state of that element at that time. This infor-
mation could be used in various ways, e.g., it might be used to detect a fault
which could later be repaired by the constructing element.

The question then arises: How much self-knowledge can an automaton acquire
and keep? This question is of interest to the theory of self-organizing systems
since a possible procedure in self-organization is for the system to have a pic-
ture of its structure and behavior and use this picture to guide itself. The
automaton might be given this picture initially or it might be programmed to
construct the picture by means of sensing elements and sensing channels. Clear-
ly there are limits to how much knowledge an automaton can acquire and keep
about itself. For example, a growing automaton might change faster than its
sensing elements could sense these changes. There are also logical limitations.
Thus if all the states of an automaton are used, a proper part of the system
cannot have a completely detailed picture of the whole, for the whole, being
larger than the proper part, would be capable of more states than this part.

The logical paradoxes of self-reference are relevant here. It is well
known that some referential statements lead to contradictions. Thus the sen-
tence, "This sentence is false," is fal=ze if true (because it says of itself
that it is false) and true if false (because if it's false that it's false,
then it is true))i and hence both true and false. To resolve such paradoxes

Russell proposed a formal language in which no self-referential statements

45. The digital computer is (when working properly) a deterministic automaton,
while the model simulated is probabilistic. The required randomness could
be achieved by using a table of random numbers. The simulation will still
be deterministic, but it will sufficiently approximate the probabilistic
model to be satisfactory.

46. See B. Russell and A. N. Whitehead, Principia Mathematica, Ch. II of the
Introduction ("The Theory of Logical Types").
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could be formulated. The proposal that no self-referential statements be al-
lowed in a formal system is much too strong, however, for there is clearly
nothing wrong with the self-referential statements: (1) "This sentence is in
English"; (2) "This sentence is written at least once." Indeed, both of these
sentences are true. These sentences illustrate the fact that a sentence can re-
fer to its physical properties without contradiction. There are also cases
where a sentence can refer to its structural or syntactical properties without
contradiction. The sentence, "This sentence is grammatical," is a case in
point. Another case of a formula consistently referring to its own structure ..
is the undecidable formula constructed by Godel in his proof of the incomplete-
ness of arithmetic. This is a formula F which says, in a certain sense, "F is
not proVable."u7 Provability is a purely syntactical concept so this formula
is referring to its own syntax, and it does so without contradiction.

Thus a sentence may contain a description of some of its own syntactical
or structural properties. Note the resemblance of this to what we found in the
preceding section, namely, that a self-reproducing automaton C contains within
itself a description D(C) of its own structure. It does not, however, contain
a description of its own state or contents (except for its initial state). This
suggests that an automaton with a sensing element might be able to sense its own
structure and construct and store a description of its structure. There is a
problem in designing an automaton to do this, however.

Prima facie it might seem that an automaton could not store a description
of its own structure because, however many cells it had, storage of the descrip-
tion would require more than that number of cells, in the manner of the Tristram

47, Kurt Godel, "Uber formal unentscheidbare Sdtze der Principia Mathematica
und verwandter Systeme," Monatshefte filir Mathematik und Physik, 38, 173-
198 (1931).

In his lectures at the Institute of Advanced Study in 1934 (as reported in
some mimeographed notes), Godel pointed out that his undecidable formula
showed that Russell's solution of the paradoxes was too extreme because the
undecidable formula (truly) says of itself that it is not provable. He
agreed with Russell that there must be some limitation on what a sentence
may say about itself and suggested that no sentence can properly talk about
its own truth and falsity.

One may say more generally that a symbol (whether a word, phrase, or sen-
tence) may properly refer to (or designate) itself as a physical object ar to
its physical properties and it may properly refer to its syntactical or
structural properties and relations to other symbols, but it cannot refer
to the relation between itself and what it refers to or designates. This
latter relation is sometimes called the name relation, and is construed
sufficiently broadly to include the relation between a sentence and its
truth value as well as the relation between a proper name and what it
names. See K. Reach, "The Name Relation and the Logical Antinomies," The
Journal of Symbolic Logic, 3, 97-111 (1938).
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Shandy paradox.u8 This objection is of course not sound, because we may use in-
dices, summation signs, and quantifiers in the description. You will recall
that a certain master sequence is used to describe one square of the tape. 1In
writing the description D(x) of the structure of automaton & one does not re-
peat this master sequence for each square of tape to be constructed, but rather
uses the same sequence repeatedly in a manner familiar to all programmers. This
can be done because the tape has a highly uniform structure.

It follows from these considerations that in order to produce a description
of its own structure which is sufficiently small to be stored in that structure
an automaton must detect some of the uniformities of its structure. It could,
for example, systematically sense the structure of each of its cells and then
analyze the results in order to find a more compact statement of them. Hence
the amount of information a growing automaton can acquire and store about its
own structure depends on what mechanical techniques there are for discovering
uniformities of structure.

4L8. Tristram Shandy took two years to write the story of the first two days of
his life. (Laurence Sterne, The Life and Opinions of Tristram Shandy,
Gentleman, Vol. 4, Ch. 13.)
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