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- INTRODUCTION

Research under Contract No. Da-20-018-ORD-16971 began in the spring of
1958 and continued into June, 1960.

The details of the principal research are indicated in items 3 through 9
of this report. 1In particular, attention is directed to the two technical re-
ports,. Decision Problems of Finite Automata Design and Related Arithmetics, by
Calvin Elgot, and Weak Second-Order Arithmetic and Finite Automata, by J. R.
Buchi, which have already been distributed to the Office of Ordnance Research,

and to On a Problem of Tarski by J. R. Buchi, which is a part of this final
report.

Research has also been conducted in additional areas ancillary to this
principal research area. In the technical report Lectures on Switching and
Autometa Theory by Calvin Elgot (distributed to the Office of Ordnance Research)
the automata theory field is reviewed from simple switching theory up through
the sequential machine theory of Kleene and Moore. In Sequence Generators and
Digital Computers by A. W. Burks and J. B. Wright (included as item 10 of this
final report), the theory of a broad class 6f finite automata is investigated,
and numerous algorithms for the analysis and synthesis of these automata are
indicated.







SUMMARY

The principal goal of our research has been to obtain algorithms which
would permit the mechanizability of the processes of computer design. Atten-
tion was focused on the following design algorithms.

1. Solution algorithm: Given an automaton and given a behavior condi-
tion, to determine whether or not the automaton satisfies the condi-
tion.

2. Solvaebility algorithm: Given a behavior condition, to determine
whether or not an autometon exists satisfying the condition.

3. Synthesis algorithm: Given a behavior condition, to produce the
specifications for an sutomaton satisfying the condition (providing
such an automaton exists).

The first goal of research was to ascertain the characteristics of a for-
mal language suitable for setting down of automata structure descriptions, and
automata behavior condition descriptions.

(The difference between an automaton and a condition is as follows: An
automaton expression gives all the releationships existing between every switch-
ing and every delay element throughout the machine. A condition expression gives
only the input to output relationship, i.e., only the conditions the designer
wishes to have satisfied, with no reference to the relationships between the
internal junctions by means of which the action is effected.)

In the case of the automata structure descriptions, it was apparent that
the language to be employed should be & monadic predicate calculus where the
predicates would denote junctions of switching or delay elements, and the in-
dividuals would denote instants of time. This same language could also be em-
ployed to express behavior conditions. For example,

A(0) v/ B(0) D D(1)

is a condition that possibly is satisfied by one or more sutomatas. If we ar-
rive at an expression for an automaton which might satisfy this condition,
then the Solution algorithm could be applied to the automaton and to the condi-
tion to see if this is in fact the case.



Suppose it is suggested that the automaton pictured (below) satisfies the
given behavior conditions: A(O) Vv B(0) D D(1)

O =

This automaton expressed in our formal language is: [A(0) V B(0) = ¢(0) ]
and [C(0) = D(1)]. (it should be noted that the condition expression omits
mention of internal junction C, while the automaton expression mekes explicit
the presence and function of internal junction C.)

The Solution algorithm will judge the truth or falsity of the assertion
that the given automaton implies the given behavior, i.e., the truth of falsity
of the following expression:

([a(0) vB(O) = c¢(0)] /\ [c(0) = D(1)]1)} D ([A(0) V B(0) CD(1)1}

Now if there is a decision prodecure for the class of sentences of the
formel language in which this expression is couched (a decision procedure is
a method of mechanically determining, for any expression of a formal language,
whether the expression is true or false), it then follows that we can mechan-
ically determine whether the automaton satisfies the condition by merely as-
certaining the truth or falsehood of this particular assertion by means of the
general decision procedure for the language.

Thus it is evident that there may be a close connection between the decid-
ability of the formal language chosen to express automata and conditions, and
the existence or lack of it of our three automata design algorithms. We have
seen that the existence of a Solution algorithm follows directly from the ex-
istence of a general decision procedure for the language employed. The Synthesis
algorithm is also readily obtained. It is closely related to the Solution al-
gorithm. In the Synthesis algorithm we are given a condition and asked to find
an automaton satisfying the condition, providing such an automaton exists. There
are various methods available for generating systematically the expressions for
all automata. Automata expressions are then substituted, one by one, into the
Solution algorithm and tested to see whether the sutomston satisfies the be-
havior. This process of generating automaton descriptions, substituting them
in the Solution algorithm, and testing whether the conditions are satisfied
continues until a suitable automaton satisfying the conditions is obtained.



Since many automata may satisfy the same conditions, additional criteria for
choosing the "best" automaton can be brought in (including, of course, minmum
number of states, or minimum number of certain elements). For instance, the
two automata pictured below both satisfy the condition (A(0) \/ B(0) D@ D(1) of
our earlier example, as does the automaton used in the example.
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In setting down conditions for automata, it is advantageous to have a
large vocabulary at one's disposal. In the examples so far, the vocabulary
has been restricted to monadic predicates and their individuals, and to the
connectives of propositional calculus. It would make the application of the
design algorithms considerably easier if the designer, in setting down his
conditions, could employ such expressions as "all," "equals," "less than, "
"some,""successor of," etec.

As we have noted, however, the existence or nonexistence of our design
algorithms is closely related to the question of the decidability of the
language as & whole, and it seems generally to be the case that the stronger
& language is (the larger the number of its primitive operations, etec.), the
more likely it is that the language is undecidable. We therefore find our
objectives conflicting: the easier it is for a designer to set down his
conditions, the more likely it is that there can never be a mechanical method
of generating the desired automaton.



The second major goal of our research then became: to test large numbers
of formal languages to determine whether the desired automata design algorithms
existed in them, seeking to find the strongest useful language for which the
algorithms existed. Since the question of the existence or lack of it of the
algorithms seemed to be closely related to the question of the existence or lack
of it of a general decision procedure for expressions in the language, the large
body of research results in formal decidability was thoroughly reviewed. Often
it was found that the problem of decidability for a formal language was still
open, and a program of examining such languages, and perhaps solving the decision
problem for them was undertaken, Both positive and negative solutions of deci-
sion problems were cbtained for many languages.

In April of 1960, Dr. J. Richard Eﬁchi, Research Mathematician with the
Logic of Computers Group, obtained a positive solution to the decision problem
for an extremely useful language. The existence of the Solution and Synthesis
algorithms follows immediately in the menner indicated earlier. The question
of the existence or not of a Solvability alborithm in this language is still
open. (It had been answered in the affirmative for several useful, though weak-
er, languages.)

The language for which Dr. Blchi obtained a decision procedure we shall
call the "sequential calculus." It has the following characteristics: it allows
all expressions compounded from individusl variables ranging over natural num-
bers, predicate variables ranging over arbitrary sets of natural numbers, quen-
tification (all, some, etc.,) over both individual and predicate variables, the
connectives (or, and, not, etc.,) of propositional calculus, equality, less than,
and successor,

An example of a condition expression in the sequential calculus is given
below.

(Ar) (Vt) Es(t) = [I(t) &~ J(t) &~R(t)] v [~I(t) &~ J(t) & R(t)] \/

i

IO & (8 &~ RO T & (R = [(8) &~ a(t) &~ RED Ty
[~I(t') & J(t°) &AR(t') 1\ [MI(t') &~ I{t') & R(t') ]\ [I(t) & J(t) & R(t) ]ﬂ &
4@ (79) {16 2~ D] & () (@) [>x & oft)]]

This is a behavicr condition for the addition of real numbers less than
one, where the sum is also less than one, This condition cannot be realized by

a finite automaton.,

A description of a realizable finite automaton behavior is given on follow-
ing page.



@8) {Ro) = J[x(0)] &
(vt) [R(t') = HII(t), ('), R(t)] &
(ve) [o(t) = LIR(Y), 1(t)]§
This is a finite automaton transformation from infinite input sequences
to infinite output sequences. The transformation, successfully expressed here

in the sequential calculus, cannot be expressed in many of the formal languages
which have been proposed as useful in automata design.






Lectures on Switching and Automata Theory

(2755-2-T, January, 1959)

Calvin C. Elgot

ABSTRACT

These lectures include a study of two-terminal series-parallel relay con-
tact networks, multi-terminal relay contact networks, and sequential networks.
General, systematic techniques for the study of series-parallel networks have
employed Boolean algebra or propositional calculus. A basic paper on multi-
terminal relay contact nets makes use of matrices whose entries are elements
of & Boolean algebra. More recent work makes use of the algebraic concepts:
lattice, semi-group, group. The concept of ring when suitably specialized is
intimately connected with Boolean algebras. This indicates the extent to which
algebra is invading the mathematical theory of switching. Much recent work has
employed more advanced aspects of logic than the propositional calculus. In-
deed, the use of logic and its techniques has already produced significant re-
sults and promises still more fruitful ones.

We begin with some preliminary, simple, algebraic and logical concepts
which will lead to a discussion of finite Boolean algebras, propositional cal-
culus, and their application to switching theory.

The work of Lunts (which lists results only) is discussed in Section 6.
The arguments meke use of an important correlation between matrices of zeros
and ones and finite binary relations. This correlation is useful in other work
on switching.

MAitomata and sequential circuits are introduced in Section 7 and the con-
nection with Burks-Wright logical nets is pointed out. Moore's theory and
related work of Mealy and Ginsburg is expounded. The equivalence, in & certain
reasonable sense, of finite automaton, as defined here and as defined in Moore,
is indicated. Finite semi-groups are associated with automata in Section 7,9.
In the case of permutation automaton (backwards deterministic), the associated
seni-group is a group. An application is made of this association. Kleene's
theory of regularity is explained. An alternative notion of regularity is de-
fined and its relation to the primary concept is established. The discussion
terminates with an example illustrating several of the main results of the sec-
tions on automata theory.

[These lectures were prepared as Technical Report 2755-2-T, January, 1959,
and were distributed to the addresses of the official OOR distribution list.]
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Decision Problems of Weask Second-Order Arithmetics and Finite Automata

(Preliminary Report, Part I)

J. Richard Blichi and Calvin C, Elgot

ABSTRACT

1. Tet I be the class of formulas constructed out of atomic formulas
xje Fy, yx = x5 + 1, x4< Y3, by meens of prepositional connectives and quanti-
fiers, @x;, @F;. The individual variables range over the natural numbers, N.
The second-order variables range over finite sets of natural numbers. Each
formula A[Fy, Fo, ..., Fp.] in L; may be interpreted as representing a set (u-
sually infinite) of finite sequences of r-typles of zeros and ones as well as
sets "lsomorphic" to that set. Theorem, A set of finite sequences of objects
drawn from & finite set is representable by a formuls in I, if and only if it
1s representable by a finite automaton (cf. Kleene, Automata Studies, or Copi,
Elgot, and Wright, J.A.C.M, April, 1958).

2. Corollary. The set of true sentences of L; i1s recursive. The cor-
ollery has been obtained by A. Ehrenfeucht and R. L. Vaught via Ehrenfeucht's
theorem (unpublished), stating that the elementary theory of addition of or-
dinals is decidable.

3. Corollary. There are solution and synthesis algorithms relastive to
the class of all automata and L;. (Cf. Bﬁchi, Elgot, and Wright, these Notices,
February, 1958, for definitions,)

0 4. Each formula A[F, Fs, ..., F.] in I; defines R N via: F—> YneF
2", (Corollary. The elementary theory of R, e.g., X +y = z (Presburger), is
decidable.

[This paper was presented at the 20-23 January 1959 meeting of the Amer-
ican Mathematical Society, in Philadelphia. The abstract was published in
Notices of the American Mathematical Society, Vol 5, No. 7, Dec., 1958, p.83k.]







Decision Problems of Weak Second-Order Arithmetics and Finite Automata

(Preliminary Report, Part II)

Calvin C. Elgot

ABSTRACT

1. Let Io be the class of formulas constructed out of atomic formulas
X4€ Fj, Tk = Xp + 1, 2 = x5 + NET) by means of propositional connectives and
individual quantification (Ex;) only. The variables are interpreted as in I,.
Theorem. The set of setisfiable formulas of I, is recursively enumerable but
not recursive.

2. If the set variables are interpreted as ranging over periodic sets
(sets whose characteristic function is ultimately periodic), the theorem still
holds.

3. Corollary. While there are solution and synthesis algorithms rela-
tive to the class of input-free automats and Lo, there is no solvebility al-
gorithm.

k, If the formulas of I, are interpreted over the integers rather than
the natural numbers, the theorem still holds.

Let Ep(a,b) be the set of finite sequences uebv where a ¢ A, b.e A, u and
v are finite sequences (possibly mull) of elements of A, and A is finite. The
class of automaton representable sets is the smallest class of sets containing
the sets Ep(a,b), a unit set consisting of a sequence of length one, and closed
under symmetric difference, intersection, and projection. (The mepping induced
on sets of finite sequences of elements of A giving a set of finite sequences
of elements of B, by an arbitrary mapping from A into B, is called a projection.)
This strengthens a result of Medvedev.

[This paper was prepared for the American Mathematical Society Meeting in
Philadelphia, 20-23 January, 1959. The abstract was published in the Notices
of the American Mathematical Society, Vol. 6, No 1, February 1959, p.k48.]
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Decision Problems of Finite Automats Design and Related Arithmetics

{Technical Report 2755-6-T, June 1959)

Calvin C. Elgot

ABSTRACT

Certain formal arithmetics may be employed as design languages for finite
sutomats design conditions, the notion of sutomaton, and the notion of an au-
tometon satisfying a condition are expressible in these arithmetics. An au-
tomaton saisfies a condition if a certain formula of the arithmetic is valid.

For certain arithmetics, algoritlms are produced which enable one to de-
cide

(1) whether a given automaton satisfies a given condition,

(2) whether an automaton exists satisfying a given condition (and if
there 1g one, producing one),

(3) whether at most one sutomaton exists satisfying a given condition,
(4) whether a given sentence is true.

These results make use of a theorem (5.3) which characterizes finite automata
behavior by means of formulas of an arithmetic. The following corollary is
typical of the side results obtained. If a natural number is identified with
the set of natural numbers less than it, then the first-order theory of quasi-
finite (finite or finite complement) sets of natural numbers based upon the
Boolean set operations and the property of being a natural number is decidable.

For certain other arithmetics, it is shown that algorithms of the type
indicated above fall to exist.

[This paper was printed and distributed as Technical Report 2755-6-T,
June, 1959. It has been submitted for journal publication., ]
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Weak Second—Ordex_' Arithmetic and Finite Automata

(Technical Report 2794-6-T, Sept. 1959)

J. Richard Buchi

ABSTRACT

In essence, this paper states that a certain formal languasge, a weak second-
order arithmetic (designated throughout this paper as W.2.A., and in Elgot Deci-
sion Problems of Finite Automsta Design and Related Arithmetics, as Ll) can be
used’ in place of the formalism of regular expressions (developed by S. C. Kleene
in his paper "Representation of Events in Nerve Nets and Finite Automata,” in
Automata Studies, Princeton University Press, 1956) in denoting the behavior of
finite automata. The important Kleene Synthesis and Analysis theorems can also
.be obtained in this new formulation. (Synthesis: For every formula of W.2.A.
one can construct an automaton with special output, such that the behavior of
the automaton is just the set of predicates which satisfy the given formulas.
Analysis: TFor every automaton with special output one can obtain a formulas of
W.2.A. such that the formula denotes the behavior of the automaton). This re-
sult is of particular value because formulas of W.2.A. seem to be more convenient
than regular expressions for formelizing conditions on the behavior of automata.
Important additional results in pure logic are also obtained: the synthesis and
anelysis theorems yield valuable informatiom on the strength of W.2.A. and related
formelisms. [For expositions of Kleene's theory of regularity see Copi, Elgot,
and Wright, "Realization of Events by Logical Nets," JACM, 5, 181-196 (1958; Rabin
and Scott, "Finite Automate and Their Decision Problems," IBM Journal, 1l4-125
(April, 1959); and Myhill, "Finite Automata and Representation of Events," WADC
Report TR 57-624, Fundamental Concepts in the Theory of Systems, October, 1957,
pp. 112-137.]

[This paper was printed and distributed as Technical Report 279L4-6-T,
September 1959. It is to be published in 1960 in the Zeitschrift fiir Math-
ematische Logik and Grundlagen der Mathematik, ]
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On a Hierarchy of Monadic Predicate Quantifiers

J. Richard Buchi

ABSTRACT

Let x, X3, X2,... be variables ranging over natural numbers, and let i,,
is, i3y.0.. be variables ranging over monadic predicate (sets) of natural
numbers, let i, J denote k-tuples of i's. The hierarchy [ZmJTm] of predicates
P(i)on predicates is defined tus: Jo = all predicates P(1) definable by for-
milaes K[i(o) ] v (¥x) H[i(x), i(s+1)] v (¥x) U[i(x)], whereby X,H,U are truth
functions in the indicated constituents,?Tm = {~P|Pezm], Ym+ 1= {(£J) PIPeTEl]
A k-tuple i of monadic predicates may be considered to be an infinite sequence
i(o 1(1 i(2) yoss Whose elements are drawn from the finite alphabet consisting
of all k-tuples of truth-values. ILet {‘ V,... denote finite words on this al-
phabet, let u v denote concatenation, “Def: P( i) is of finite rank if there
is a -congruence relation uwv on Words y with finite partitlon, and such that
uyyg implies PUTUS...) = P(vl V5 ...). Theorem: The following are equiv-
alent conditions on P(i): (1) Pe Yo, (2) P is of Finite rank, (3) P = Pi....Pg
whereby each P, is of the form fs"s"s +.+y, R and S being regular sets of finite
words. This is established by using basic facts from automata-theory (regularity) s
the fan theorem (K¥nig's infinity lemma), and Remsey's theorem [Proc. London
Math. Soc., (2), 30, 264-286 (1930) ]. Clearly P is of finite rank if and only
if ~ P is; therefore Corollary: o =/l» and therefore 2, = 771; =)o for n > 2.

[This paper was prepared for the Missoula, Montana, meeting of the American
Methematical Society in June, 1960. The abstract was published in the Notices
of the American Mathematical Society, Vol. 7, No. 3, issue L6, June, 1960,

p.381. ]
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On & Problem of Tarski

J. Richard Buchi

ABSTRACT

Let SC be the interpreted system containing variables x ranging over natural
nunbers, variables i ranging over monadic predicates on natural numbers, the
successor function, propositional connectives, and quantifiers for both types
of variables. Using the theorem and definition of the preceeding abstract one
obtains: Theorem l: The predicates E(il""':ik) definable in SC are exactly
those belonging to 2p. For example: exactly the ultimately periodic sets of
natural numbers are definable in SC. Theorem 2: Truth of sentences in SC is
decidable. This answers a question of Tarski [see R. M. Robinson, Proc. Am.
Math. Soc., 9, 238-242 (1958) ], and seems to be a rather strong result ‘since es-
sential assertions about infinity can be stated in SC(parts of the fan-theorem
and Ramsey's theorem). By interpreting predicates i as binary ekxpansions of
real numbers, theorem 2 may be stated thus: Theorem 2': The fiirst-order theory
of [Re, +, Nn, Pw] is decidable. Here Re is the set of real numbers > O, Nn is
the set of natural numbers and Pw is the set of integral powers of 2, (Ccmp&re
this result with Tarski's decidability of >Re, +, .1). Let SCper be like SC,
except that the variables i range over ultimately periodic predicates. Theorem
3: A sentence is true in Scper if and only if it is true in SC. i.e., [Re, +,
Nn, Pw] and [R, +, Nn, Pw] are arithmetically equivalent. Here R stands for
the set of rational numbers,

[This paper was prepared for the Missoula, Montanea, meeting of the Amer-
ican Mathematicel Society in June, 1960. The abstract was published in the
Notices of the American Mathematical Society, Vol. 17, No. 3, June, 1960,

p. 382.1

21






On a problem of Tarskil

by J. Richard Bichi

Let SC (sequential calculus) be the interpreted formalism which makes use
of individual variables t, x, y, z, ... ranging over natural numbers, monadic
predicate variables q( ), r( ), s( ), i( ), j( ), ... ranging over arbitrary
sets of natural numbers, the individual symbol o for zero, the function sym-
bol » denoting the successor function, propositional connectives, and quanti-
fiers for both types of variables.

The purpose of this note is to outline an effective method for deciding
truth of sentences in SC. This, according to R. M. Robinson [10], answers a
question of Tarski's. In addition, a rather complete understanding of defin-
ability in SC will be obtained.

1. DNotations. i denotes a n-tuple of predicate variables. Expressions like
Afi(o) 1, BLE(t)’ s(t’)] denote propositional formulas in the indicated constit-
uents. Zn: nn, denote the classes of formulas of SC of the following type,

2y o+ (@r) -+ Alz(o)] A (vt) B[L(t), z(t), x(t”)] A (mt) C[x(t)]
a1 i (vg) - Alx(o)] v (@) BLL(t), r(t), r(t’)] v (vt) Clz(t)]
Zng ¢ (35) - B(L,z) , whereby F £ 1y
tpe1 ¢ (Vr) © E(i,z) , whereby F € 2,
The quantlflers (2t)Y A(t) for (Ft) [x =t <y A A(t) 1, (vt)Y A(t) for
(Vt)[x st <y DA(J (%) A(t) for (vx)(Tt) [x <t A A(t) x , (Vt) A(t) for

(Zx)(Vt) [x < t] A(t) , (FJ) A(j) for (T3) [(E%)3(t) A A(J can be defined
in SC. The classes Z$ and n; of formulas are defined as follows,

T ¢ (Er) - Alz(o)] A (VE)B[A(), 2(6), £(8)1A (F%) clx(t)]

1 1 (Vr) - Alz()] v(E) B[i(t), z(t), z(t2)] v (Vt) Clx(t)]

'~

1. The author is much indebted to Dr. J. B. Wright. The work was done under
a grant from the National Science Foundation to the Logic of Computers
Group, and with additional assistance through contracts with the Office
of Naval Research, Office of Ordnance Research, and the Army Signal Corps.



Let i, be a k-tuple of predicates. The 2k states of 1 are the k-tuples of
truth-values. i may be viewed as an infinite sequence ;(o) ;(l) EXE) ... of
states. The variables u, v, W, ... will be used for words (i.e., finite se-
quences) of states. gfz denotes the result of juxtaposing u and v. A congru-
ence-relation is an equivalence relation u « v on words such that u v v implies
YW VvV Wand ¥ U W V. An equivalence relation is of finite rank if it par-
titions the words into finitely many classes.

Also the following classes of formulas will play an essential role,
Treg * (8x) + Alx(x)] A (v8% BIL(t), z(t), x(t?)] A Clx(y)]
tpeg ¢ (Vr) * Alz(x)] v (Et} BLi(t), r(t), z(t’)] v Clz(¥)].
These may be called regular formulas. Note that for a regular formula, 5(£,x,y)
depends only on the word i(x) i(x+l) ... i(y-1). If R is the set of all words

i(o) i(1) ... i(h) such that R(i,0,h+l), then the formula R(i,x,y) is said to
determine the set of words R.

2. A fundamental lemma on infinite sequences. The working of the decision-
method for SC is based on induction and a rather more sophisticated property
of infinity, namely Theorem A of Ramsey [9].2 Essential parts of this theorem
can actually be formulated in SC, in the form of a surprising assertion about
the division of infinite sequences into consecutive finite parts.

Lemma 1. Let ; be ary k-tuple of predicates, and let Eg, ..., En be a partition
of all words on states of i into finitely many classes. Then there exists a
division i(o) (1) ... i(x2-1), i(x1) i(xa#l) ... i(xe-1), i(xe) i(xe+l) ...
i(x3-1), ... of i such that all wordsli(xp)_i(xp+l) .+« i(xg-1) Dbelong to one
and the same of the classes Ep, ..., Ep.

Proof: Assume i, E,, ..., Ey are as supposed in lemma 1. For o =c sn let
P. consist of all {yi,yz)} such that y1<yz and i(y1) i(ya+l) ... i(ye=l) € E.
Then Py, ..., Pn clearly is a partition of all 2-element sets of natural num-
bers. By Ramsey's theorem A it follows that there is an infinite sequence

x; <% <%x3<...and a o Sc =n, such that {xp,xq} € Pe for all xp < Xg.
By definition of P, this yields the conclusion of lemma 1.

3. Automata-theory. The following concepts and results are borrowed from the
theory of finite automata, and play a very essential role in the study of SC.

2. The usefulness of the "Unendlichkeitslemma" of Konig [5] (also known as
"fan-theorem" in its intuitionistic version) in related problems of automata-
theory was first observed by Dr. J. B. Wright. Because of its affinity to
Konig's lemma the present application of Ramsey's theorem was suggested.



The reader is referred to Blichi [1], where some of the details are carried out
in similar form, and where further references to the mathematical literature
on automata are given

Lemma 2. The following are equivalent conditions on a set R of words:

1) R is regular.

N
11

=E U---U Epg whereby Ei, ..., Ep are some of the congruence classes
modulo a congruence relation of finite rank on words.

W
1=

is the set of words determined by a formula E(L,x,y) belonging to zreg'
L) R is the set of words determined by a formula G(i,%,y) belonging to Treg:

5) There is an "automata-recursion" s(o) = I:,E(t’ = (t r(t)] and an
"output" U[r(t)] such that a word i(o) i(1) ... i(x—l belongs to R just
in case the recursion produces an r(x) such that U[r(x)] holds.

The reader who is not familiar with the concept of regularity of Kleene
(4] may take 1492 of the lemma as its definition (note the analogy to ultimate-
ly periodic sets of natural numbers). 3€—5 is shown in essence by Myhill's
"subset-construction" [6]; nearly in the present form the details are carried
out in Biichi [1], lemma 7. By dualization one gets 4 —5. The assertions 5 — 3.
and 5 =4 are trivial. A proof of 2¢3 is contained essentially in Rabin and
Scott [8].

Lemma 3. If the formulas R(i,x,y), S(i,x,y) determine regular sets of words,
then so do the formulas (3t)Y Y R(i,t,¥), (v6) R(L,t,¥), R(i,%x,y) 8(i,%x,¥),
R(i,%,y) v 8(1,%,y), and ~B(£ X,¥) -

This follows by lemma 2 and Skolem's method of replacing bounded quanti-
fiers by recursions.

Lemms 4. If the formula R(i,x,y) determines a regular set, then one can find
formulas D(i) and E(1) 1nfz: (in x1) such that D(1) = (Vt) R(i,0,t) and E(i) =
(dt) R(i,0 t) ~

This follows by 1625 of lemma 2. The following lemma will provide the
basis for the decision method of SC. It was suggested by, and its proof is
typical for, automata theory.

Lemma 5. There is an effective method for deciding truth of sentences A in Zf.

Proof: Let C(r) be a formula of form K[r(o)] A (Vt) Hlr(t), r(t’)] A (T%%)
L(r(t)]. Suppose r is a k-tuple of predicates such that C(r) holds. Then there
are x; < X < ... such that L[r(x,)], L[r(xz ... Because r has but a finite
number of states, there must be a repetition r(x ) = g(xq) of some state U.



Therefore, (&) C(z) implies the assertion,

(1) There are words X =XX; ... Xg and y = Ya¥2 ... Yy of states and a state
U such that L[U], and K[X,] A H[Xg,X1] A «c0 A H[Xg-1,%a] A H[Xg,U], and
H{U,Y1] AH[Y1,Y2] A e A H(Y-b_l,Yb] A H[Yy,U].

Conversely (1) implies (Hr) C(r), because one has but to let r = XUyUyUy ....
Thus, a method I which decides, for given propositional formulas K,H,L and given
state U, whether or not (1) holds, will also be a method for deciding truth of
YP-sentences (dr) C(r). Clearly such a method I can be composed from a method
II which, for given propositional formula H[X,y] and given states V and W, de-
cides whether or not,

(2) There is a word x = X3Xo ... Xg such that H[V,Xy] AH[X1,X2] ALt A
H(Xg.1,X5] A H[Xg,W].

2k

let n = be the number of states, and note that in a word x = X3Xo ... X
of length a > n there must occur a repetition XP=Xq, p<gq<a. Clearly if x
satisfies (2), then so does the shorter word y=XX ... prq+lxq+2 cee Xg

Therefore, to establish whether or not (2) holds it suffices to check among
the finitely many words X of length =n. This remark clearly yields a method
II for (2), vhereby lemms 5 is established.

4. Reduction of formulas of SC. The following lemma is obtained by methods
similar to those in Biichi [1], lemma 1.

Lemms 6. To every formula A(i) of SC one can obtain an equivalent formula B(i)
belonging to some 2, (to some mp)-

Based on lemmas 1 to 4 one now can prove the fundamental fact on reduction
of formulas in SC.

w
Lemma 7. To every formula A(i) in fo (in 1) one can obtain an equivalent for-
mila B(1) in 2§ (in Z7).

Proof: Suppose A(i) is in 2, say

(1) A(L) : (&) - Klg(o)] A (V) HIL(E), x(t), £(t’)] A () Llz(t)].
If V,W are states of r and X = XXy ... Xy is a word of states of i then define,
[V,x,W]y : U \/ g H[Xy,V,U1] A H[X1,U1,U2] A H[X2,U2,Uz] A« A H[Xp,Up,W]
l o e 0 h
[V,x,W]o : U \/ U, * H[X,,V,U] N oo N H[Xn,Up,WI A [L[UL] V ..o V L[Uh]].
l LI



(Read [ ]'1 as "there is an H-transition through L vrom V by x to W.") DNext de-
fine the binary relation v on words of states of 1i:

xoy ¢ NI = Wpil N (sl

]

[V:X_:W]Z)

2 2
If m is the number of states of r, then clearly ¢»is the intersection of m + m
dichotoxélies. Therefore, (2) 7 is an equivalence relation of finite rank
a s 221", Furthermore, using the definitions of [ ], and [ ]o one obtains,

(3) v is a congruence relation on words. By (2), (3), and lemma 2 it follows
that one can find formulas E;(i,x,y), ..., Ea(i,%,y) such that

(4) Ei, ..., Ey are regular formulas (i.e., belong to zreg)°
(5) Ei, ..., Eg determine the congruence classes of .

Next one applies lemma 1 to the partition Ej, ..., E If follows that for

any i, -
(6) (8s)y,(Vy) (Vx)7 [s(x)s(6)3Ba (1,%,7) IV - v (Hs)w(Vy)(VX)Z[S(X)s(y)DEa(g,x,y) I.
If one defines for 1 s c,d S a,

Fe,a(i) :+ (Bs)y * (Ex)[s(x)AEc(d,0,%) A (Vy) (V)Y [s(x)s(y) DB (1,%,¥) ]

then clearly each disjunct of (6) is equivalent to a disjunction of F_‘c d's.
Therefore, ’

(7) l § \é 5 Ec,d(i) , holds for all i.
sc,d =a

Suppose now that Ec,d(i) and Ec,d(;i,)' Then, by definition of F, g and by (5)

there are x; < X2 < x3 < ... and y; < yo < yg < ... such that
,J.J(O) o ‘%(Xl-l)\/' QJ(O) c e ,%(Yl-l)
,JQ(XP) oo 5(%+1"l)‘/';];(yp s g,,(ypi‘l-l) » P =1,2,3,...

Because of the definition of ¢ and (1) it therefore follows that A(i) = A(J).
Thus, if Fe,d(L) A Ec;d(;j,) then A(i) = é(;l) Or restating this result,
(8) (VL)[F, (1) DAL v (VL) [Fe,a(L) D~A(L)], for any 1 s c,d < a.

o~ R

If one now defines the set ¢ of pairs 1 = c,d = a by,

A

(9) o(c,d) = ~ (&)[A(J) NE q(3)], for 1

~

c,d = a

it follows by (7) and (&) that



(10) ~A(1) = Q(}’/d) Fe a(1).

By (4), lemma 3, and lemma 4 it follows that there are formulas Qc(i,s) and
Gg(i,s) in Y, which are equivalent respectively to (&x)[s(x)A E,(i,0,%)] and
(¥y)(vx)Y[s(x)s(y) D Eq(4,%,y)]. Referring to the definition of F, 4 this yields,

o .
F, o(1) = ()« (2%) s(t) A Do(1,8) A Galise)
Because D, and Gy are in 21 it follows,

(11) Fe,a(i) = (spa). I(o)A(Ve) J(6)A(EE) M(t) A (@) N(£)A (T %) 5(¢),

for some matrices Ip(o),q(0)], J[i(t), s(t), a(t), p(t), a(t’), p(t’)], Mlg(t)],
N[p(t)]. the that~(ﬂt) () A (ZE)N(t) A (Egbﬁs(t) may be repladed by

)[(E)* M(t) A (F6)F o N(t) A s(x)], and this in turn may be replaced by
(Hjh) [~3(0) A ~h(o) A (FE)[3(t2) = 3(t) v M(t)] A (vt) [a(t?) = b(t) v N(t)] A
(8% ) [5(t) A h(t) A s(t)]]. The corresponding substitution in (11) then shows
that, for any 1 = c¢,d = a, the formula F, d(l) is equivalent to a formula Jc d( )
in 27. By (10) it follows that ~A(1) is dquivalent to a formula in LY, and
therefore A(i) is equivalent to a formula B(i) in %3. This ends the proof of
lemma 7.

Theorem 1. The hierarchy of relations on predicates definable by formulas of
Z;, T collapses at n=2. To every formula A( ) of SC one can find a formula
B(i) of £ Y9 (of 7%, Yo, w2) which is equivalent to A(L)-

Proof: Let C(i) : (3r) [K(o) A (Vt) H(t) A (%) L(t)] be any formula of

Ya. Then C(1) = (Fr)[K(o) A (Vt) H(t) A (E%%)(Et)3 L(t)]. If the term

(2t ) L(t) is dealt with as shown at the end of the proof of lemms T, this
ylelds a formula D(Z) ) in 23 which is equivalent to C(l) Using this remark
part one of theorem 1 easily follows by an induction of n and the use of lemms
7. By lemma 6 the other part of theorem 1 follows.

Remarks: 1. The set U con31st1ng of all infinite i can be defined by a 29
“(a Yp) formula, but not by a x5 (a 7o) formula. This shows that theorem 1 can-
not be much improved.

2. Using theorem 1 one easily shows that also formulas é(;,xl, ey xn) of
SC, containing individual variables can be put into a normal form, namely

/

(@) - K[zx(o)] A (V&) B[L(t), r(t), z(t”)]1 A (F%) LIZ(t) 1A Ulr(xa) IA -+« AU[z(x,)]
This yields rather complete information on definability in SC. For example,

3. A conjecture of Robinson [10]: A relation R(Xy, ..., X;) on natural num-
bers is definable in SC if and only if it is definable in SCpip, which is like
SC except that the variables i, j, r, ... range over finite sets of natural
numbers. This follows from remark 2 by methods similar to those in the proof
of lemma 5. For complete discussion of definability in SCgy, see Bichi [1].

6



L. A relation R(ii, ..., ip) on finite sets of natural numbers is definable in
SC if and only if it is definable in SCeyy.

5. Analyzing the proof of lemma 7 one obtains: A set R of n-tuples i of preda-
cates is deflnable in SC if and only if R =5; U ... U §k whereby each S, is of
the form é § g g -.o, A and B being regular sets of words .

Lemmas 2, 3, 4, 6 can be stated and proved in a strong constructive version.
To see that this also holds for lemma 7, it remains to ascertain that the finite
set ® of pairs, defined by (9) in the proof of T, may be obtained effectively
for a given A(1). This follows by lemma 5, if one observes that A(i), F Fe, ali)
and therefore (Ij)[A(J)A F, d(J)] are equivalent to 2% formulas. It now fol-
lows that theorem 1 can also "be proved in an effective version. In particular,
to every sentence A of SC ore can effectively construct an equivalent one be-
longing to Z@ Applylng lemma 5 again this yields,

Theorem 2. There is an effective method for deciding truth of sentences in SC.

The strength of these results is best seen by noting some very special
cases which occur in the literature and have been obtained by rather divergent
methods:

1. The decidability of Zg-sentences of SC contains the result of Friedman [3],
and implies the existence of various other algorithms of finite automata theory
as programmed by Church [2]. It also implies some of the results of Wang [11].

2. In SC one can define x =y, x <y, x =y (mod k) (for k=1,2,...). The de-
cidability of SC therefore considerably improves a result of Putnam [T7].

3. In SC one can define "i is finite." Theorem 2 therefore implies the decid-
ability of SCpips which was also proved in Biichi [1], and according to Robinson
[10] is due to A. Ehrenfeucht.

L. The decidability of the first order theory of [Nn, +, Pw] follows from the-
orem 4 and improves the classical result of Presburger.

5. Theorem 2 is closely related to another classical result, namely the decid-
ability of the monadic predicate calculus of second order, proved first by Th.
Skolem and later by H. Behmann. A modified form of lemma 6 yields a rather
simple solution to this problem.
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INTRODUCTION

1.1 Sequence ‘enerators

The basic concept of this papery that of sequence generator,
is & generalization of the concepts of digital computer, finite auto-
maton,, logical net, and other information processing systems. In this
subsection, we will define sequence generator and some related concepts
and will illustrate them immediately thereafter.

Definitions: A sequence generator I = (s, G, R, Pl,.uo, Pn) consists of
a set S (whose elements are called complete states), 8 set G (whose elements
are called generators), & binary relation R (called the direct transition
relation), and functions P~y ..., P (called projections), for some

n=0, 1, 2, 3,..., satisfying the conditions: (1) S is finite, (2) G

is a subset of S, (3) R is defined on Sy, and each P~ (for i = 1, 2,..., n)
is also defined on S. The values of the function Ply which may be entities
of any kind, are called Pr-states.

A sequence generator may be represented by & finite-directed graph
whose vertices denote complete states and whose arrows indicate when the
direct transition relation holds between two states. [In ouridiagram,’we
will use rectangles. at!:those vertices which represent ‘generatar states :and
circles atoverticéstirepresenting complete states which are not also gener-
ators; the names of complete states and of P-states are written in the
circles and rectangles, see Figures 1.2-1b, 1.2-2b, 1l.3-1, etc. Though
our diagrams are closely related to the usual state diagrams (transition
diagrams) employed to represent automata (see, for example, Moore, 1956,

p. 134) there are very significant differences. The vertices (nodes) of

our diagrams represent complete states, while in the usual state diagrams

the nodes represent internal states. This difference results from the fact
that in sequence generators complete states are basic and input and output
states are derived from complete states by means of projections, while in
the usual approach complete states are derived by compounding internal states
and input states. (The latter process is explained in Section 1.2; we will
discuss the relation of the two approaches further in Section 2.1.)

Some egmments and explanations concerning the definition of
sequence generator may be helpful. If n=0 then I' = (S, G R) is a
sequence generator with no projections. Though our definiton of sequence
generator permits any number of projections, in this paper we will be
mainly interested in sequence generators with zero, one or two projections.

-1~
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Furthermore, the set of complete states S of a sequence generator may be a
null set; in this case the domain of definition of each function P! will be
empty. It is worth noting that essentially (but not quite) the same concept
of sequence generator can be obtained without using the set S of complete
states in the definition and then defining S to be the union of G and the
field of R.

We will use [a](j,k) (where j is a non-negative integer, k is a
non-negative integer or k = w; j = k) to denote the sequence
<a(§), alg+1),...,a(k)> when k is finite and the sequence
<(3), ali+i), a(j+2);...> when k = w. If P is a projection, P([a](j,k))
abbreviates the sequence <P(a(j)), P(a(j+1)),...,P(a(k))> when k is finite
and the sequence<P(a(j)), P(a(j+1)), P(a(j+2)),...> when k = .
Definitions: ILet I' = (S,G,R,Pl,...,Pn) be a sequence generator and let
k be a non-negative integer or w. [s](0,k) is I-sequence if (1) s(0)eG
and (2) for each j, j<k, R(s(j), s(j+1)). A complete state s is
{ I'-accessible [[-admissible] if s occurs in some { ----- } [infinite]
I'-sequence.

These concepts may be illustrated by reference to the direct
transition diagram of Figure 1.3-la. The sequence <s7,s8> is a I'-sequence,
while the sequence <S5’SM’SS’S6’Su’S6’SH’S6’SA’S6’°'”> is an infinite
I'-sequence. Complete states S7,88s and s9 are [-accessible but not
I'-admissible; complete states 83,5),85, and sg are ['-accessible and

I-admissible, while states 807817805 and 8§10 are inaccessible (and hence
inadmissible).

Definitions: Let p be a binary relation and & a set; we define

o@) =1 vy | (2x)o(x,y) & xeo}

A complete state s of I' = (S, G, R, Pl,..., P") is a terminal state of

rif R({s}) is null

A terminal state of I' is a complete state for which there is
no successor by the direct transition relation R. Complete states sg

In Burks and Wright, 1953, p. 1364 we defined the concept of an admissible
state of a net. When a net is converted into a sequence generator (see Sec.
1.2 below) these states will be accessible rather than admissible in the
senses of these terms defined above.



and s,y are the terminal states of Figure 1.3-la.. Note that if I has no
terminal states, every Faccessible state is I'-admissible and vice-versa.

We will sometimes need to combine several projections to make a
composite projection of them. For this we will use the notation

2
PPxP x ... x?P"
which 1s defined by
1 2 n 1 2 .
(P xP x ... xPl(s) = <P(s), PF(s),..., PP(s)>

1.2 Special cases of sequence generators

Many concepts in the theory of information processing turn out
to be special cases of the concept of sequence generator or are closely
related to this concept. We will discuss a number of these in the present
subsection. Since digital computers (automata) and logical nets are of
special interest to us we will show in detail how the concept of sequence
generator applies to them. In later sections we will derive both new and
old results about automata and nets from our new theory of sequence
generators.

We will begin with well-formed nets, review the method of deriving
a finite automaton from a well-formed net, and then show how to derive a
sequence generator from a finite automaton. We will use the definition of
well-formed net of Burks and Wright, 1953, p. 1361, modified to allow
arbitrary switching elements and delay elements whose initial output states
are one as well as delays whose initial output states are zero. In net
diagrams certain nodes (junctions) are designated as net outputs and are
distinguished by stars. See Figure 1l.2-la.

A well-formed net (w.f.n.) may be analyzed in terms of its input
states, delay output states, and net—output states. A digital computer
represented by w.f.n. operates as follows. The "state" of a net at a
given time is determined by its input state i and its delay-output state
d at that time; these pairé <i,d> are called the complete states of the
net. For each time t (t = 0,1,2,...) the complete state <i,d> determines
the net output state © at the same time (t) in accordance with an output

Sequence generators may also be derived from automata containing delays
whose initial output states are unspecified; these are called "abstract
delays" in Burks and Wang, 1953, p.20l1 and Burks, 1957, sec. 3. But we
will not complicate the present discussion by considering automata with
such delay elements.
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function A, i.e., o = A(i,d). At time O the delay-output state dg is
uniquely determined by the initial delay-output states of the delay
elements. For each time t the complete state <i,d> determines the de-
lay-output state dl at the next moment of time (t+l) in accordance with
a direct transition function 7, i.e., dl = 7(i,d). The net of Figure
l.2-1a is a well-formed net which represents a binary counter. A is the
input node, the starred node C is its net output node, and B its delay
output node (the initial state of B is zero). The state of C at t indicates
the binary count, i.e., the number modulo 2 of 1's which have appeared
(during the interval of time 0,...,t) on the input node A. The state
analysis is given by the following table, where O is the initial delay=
output state.

i(t) a(t) a(t+1) o(t)
= 7(i,d) = a(i,ad)
A B B C
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

Definition: A finite automaton is a sextuple <{i}, {d}, {e}, doy Ty A
where {i}: {d}, {Q} are finite non-empty sets (whose elements are called
input states, internal states, and output states respectively), do € {d}
(do is called the initial internal state), T is a function from the
Cartesian product {i} X {d} into {d} (called the direct transition func-
tion), and A is a function from the Cartesian product {i} X {d} onto {e}
(called the output function). (This is essentially the definition of
Burks and Wang, 1956, p. 203; see also Moore, 1956, p. 133.) The procedure
for analyzing a well-formed net which is described in the preceding para-
graph clearly converts a well-formed net into a finite automaton. This
procedure is reversible; that is, given a finite automaton, one can con-
struct a well-formed net which realizes it. Thus the concepts of well-
formed net and finite automaton are basically equivalent and either can
be taken as a formal definition of the concept "finite digital computer".
(See Church, 1955, Kleene, 1956, p. 5, and Burks, 1957, Sec. 3 for other
definitions of these concepts.)

A three-projection sequence generator I' = (S, G, R, I, §, D)
may be associlated with a finite automaton as follows. The elements of
S are the complete states <i,d> and the elements of G are the complete
states <i,dy>. The direct transition relation is defined by
R(<iq,d,> <ip,dy>) = [d2'= T(i ’dl)] and the input, output, and in-
ternal state projections by I(<1,d>) = i, o(<i,a>) = A(i,d), and D(<i,d>) = d
respectively. The sequence generator associated with the binary counter



of Figure 1l.2-la is represented by Figure 1.2-1b. As before, the rectangles
represent elements of G. The subscripts on the complete states correspond
to the nodes of the counter in the order A, B. <80025107511550025107501"
1s an example of a finite I-sequence; in it the input sequence
1ps1i1511510511510 produces the output sequence ep,e71,60;©0,©150] (and thus
three "ones" on the input leave the counter recording "one"). Note that
though the internal states dg,d; are represented on Figure 1.2-1b, the nodes
of the graph correspond to complete states and not to internal states as in
the case with the usual state dlagrams used to represent automata.

We have shown how to transform a well-formed net into a finite
automaton and vice-versa. We have also shown how to derive a sequence
generator from a finite autometon. The latter process is not in general
reversible. Only certain sequence generators (those which are deter-
ministic) may be realized by finite sutomata (see Section 2.1).

Our next application of sequence generators is to arbitrary "nets",
including nets that are not well-formed. We will use the concept of Burks
and Wright, 1953, p. 1353, modified to allow arbitrary switching elements

and both kinds of concrete delays. Each switch element translates into a
switch equivalence which gives the state of the switch output as a truth
function of the switch input, and each delay element translates into two delay
equivalences, called the "initial delay equivalence" and the "recursive de-
lay equivalence". The initial-delay equivalence gives the initial state

of the delay output and the recursive-delay equivalence equates the delay
output at any time other than O to the delay input at the previcus time.
Hence, each net translates into a conjunction of equivalences. If the

net is not well-formed this conjunction will not directly correspond to

(will not give the structure of) a digital computer, but it may specify

a computation or behavior condition on a digital computer, (see Section k4)

and on this account is of interest. In a sequel to this paper we will

show how formulas of a much more general kind can be reduced to conjunctions
of net equivalences (see Section 4). Figure 1.2-2a shows a net with input
node E and output node F. The non-input switch element driving node A rep-
resents the contradictory or "always false" truth function. The initial

state of the delay AB is "true", which for coding reasons we represent by

"1"; the initial state of the delay FC is 0. The switch equivalences for this
net are A(t) = 0, F(t) = F(t), and C(t) = [E(t) &B(t)]. B(0) =1 and C(0) =0
are the initial delay equivalences, while B(t+1) = A(t) and C(t+l) = F(t) are
the recursive delay equivalences.

The procedure about to be described will, of course, associate a well-formed
net with a sequence generator; in fact, this sequence generator will generally
be different from either of two sequence generators associated with the well-
formed net by the processes described above,



A two-projection sequence generator I = (S, G, R, I, @) may be
associated with an arbitrary net in the following way: A complete state
s is an assigmment of a truth value to each node of the net which makes
the switch equivalences of the net true. An element s of S is a generator
(element of G) if s assigns to the delay output nodes truth values which
meke the initial delay equivalences true. R(sy,sp), where si,s,, €8, if
and only if the truth values which S assigns to the delay-input nodes and
the truth values which S5 assigns to the delay output nodes satisfy the
recursive delay equivalences. For each complete state s {I(s)} [0(s)]
is s cut down to the {input} [output] nodes (i.e., {I(s)} [0(s)] is the
net {input} [output] state contained in s); the input projection will
not exist if there are no input nodes.

The sequence generator I' = (S, G, R, I, ) associated with Figure
1.2-2a 1s represented by Figure 1.2-2b. Though there are six nodes in the
net there are only eight complete states. The subscripts on the state
symbols 815537, etc. are the decimal codings of the binary representations
of the states of the nodes taken in the order E, A, By, C, F, G; e.g., the
subscript on s, decodes into 001001 showing that in this state nodes B and
G are active while the remaining nodes are inactive. The subscript of the
input state i1 is the state of node E and the subscript on the output state e
is the state of node F. <le’557’S2’358’S > 1s a I'-sequence which has a
derived.input sequence <io,il,io,1 ;1> and a derived output sequence
<e(,97,63s8;;©1>. It can be proved that F(t) = ~E(t+1); such behavior would
not, of course; be possible in a well-formed net.

Our process for associating a sequence generator with an arbitrary
net 1s different from our process for associating a sequence generator with
a well-formed net in the following basic respect. In the latter case we
first defined input states; delay-output states (internal states), and
output states for the net, and then compounded complete states from input
states and internal states. On the other hand, in associating a sequence generator
with an arbitrary net we first defined states (complete states) over every
node, and then derived input and output states by means of projections.

It turns out that in general not every assignment of truth values to the
input nodes of an arbitrary net is an input state. In fact, we know of no
way of defining states for parts of a net(input, internal, and output states)
without pre-supposing states for the whole net (complete states). Indeed,

1t was our work with arbitrary nets which led us to consider sequence
generators (in which complete states are basic, input, internal, and output
states derivative).



We will now mention other entities Yesides nets and well-formed
nets (digital computers) which are either sequence generators or are
closely related to sequence generators. The concept of a non-deterministic
automaton of Rabin and Scott (1959, Definition 9) is quite similar to our
concept of a sequence generator. Sequence generators are in a certain sense
equivalent to formulas constructed from truth functional connectives,
monadic predicates, one individual variable "t" (which ranges over discrete
times), ‘the successor function, and zero; we plan to develop this connection
in & sequel to the present paper (see Section 4). The following are special
cases of sequence generators: a finite state grammer (Chomsky and Miller,
1958, p. 95); sequential circuits representable in combinatory logic (Fitch,
1958, p. 263); incompletely specified automata, i.e., automata in which
certain sequences of input states are proscribed (Aufenkamp and Hohn, 1957,
Section IV); automata with terminal states (ibid., Section VII); and the
flow diagrams used in programming a digital computer. A state dlagram may
be used to characterize a class of finite sequences defined by a regular
expression (Myhill, 1957). Finite graphs may be used to analyze certain
games (K8nig, 1936; and McKinsey, 1952, Chapter 6). There is an obvious
relation between finite graphs and sequence generators, and hence some
problems concerning games may be studied by means of sequence generators;
we will give an example in the next subsection. We remark finally that
Harary and Paper (1957) in applying relational legic to linguistics use
ideas closely related to the concept of sequence generator.

Though we have noted a number of applications of the concept of
sequence generator, we wish to make it clear that we are not attempting
in the present paper to solve all the problems that have been considered
for these applications. In the next subsection we will establish some
results concerning infinite I'-sequences for sequence generators without
projections. In Section 2 we will treat some concepts in which a single
projection plays an essential role, and in Section 3 we will work with
concepts in which two projections play a special role.

1.3 Reduced form algorithm

Algorithm plays a fundamental role in this paper, so we will
make a few informal comments about them. An algorithm presupposes a
well-defined set of entities, called "the domain of the algorithm".
An algorithm is a finite system of rules which may be mechanically applied
to any entity of its domain. An algorithm which terminates in a finite
number of steps when applied to any entity of its domain is called a
"terminating algorithm". The Reduced Form Algorithm to be described soon
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is a terminating algorithm, since when it is applied to any sequence
generator it will eventually terminate in a sequence generator. An
algorithm with a domain D is called a decision procedure for a class

A which is a subset of D if for every element of D which belongs to A
the algorithm terminates in "yes" and for every element of D which

does not belong to A the algorithm terminates in "no". The truth table
procedure is a decision procedure for the class of tautologies of the
propositional calculus.

Before formulating the Reduced Form Algorithm we will describe

informally what it does. Let us call a state s of a sequence generator
r=(s, G, R, Pl,...,Pn) "extendable" if there is an infinite sequence of
complete states <s(0), s(1), s(2),...> such that s (0) is s and
R [s(i), s (i+1)] for 1 = 0, 1, 2,... . (Note that s is not necessarily
a generator, and so the infinite sequence of complete states is not
necessarily a I'-sequence.) In Figure 1.3-1 states 50 and 5, are ex-
tendable, while states s7 and 8,0 are not. The Reduced Form Algorithm
may be applied to any sequence generator I'. In part 1 of the algorithm
the operation of deleting terminal states is iterated until we arrive
at a sequence generator I' with no terminal states. Since a sequence
generator has non-extendable states if and only if it has terminal states,
T is essentially the result of deleting all nonextendable states from T.
In part 2 of the algorithm one begins with the generators of T (and hence
of T'), and by a succession of steps obtains the accessible states of T.
A new sequence generator I't, called the reduced form of I', is defined on
the basis of the states so obtained. Since a state is admissible if and
only if it is both extendable and accessible I'" is just I cut down to its
admissible states (see Theorem 1,3-1).

Algorithm (Reduced Form Algorithm): Consider any sequence generator

r =(s, @& R, P-,...,PR).

(1) Form a new sequence generator by deleting all the terminal states

of T'» TIterate this process until you arrive at a sequence generator with

no terminal states. Call this final sequence generator ! = (§, éj ﬁ, ?l,.

(2) Define A, inductively by
[}
Ay =8
Aiy1 = R(Ap)

Form the sequence Ao’Al’AQ" .» stopping when Am 1'C.Ll -0 Ai' (Note:

acB means that a i1s either included in B or equals B. Let
S = UT - Al, &= G, and let {R} l be the {relatlon Rf [projection P!)

cut down to S. Define I'" = I' = (S G, l,..o,Pn).

LB



We will illustrate the Reduced Form Algorithm. Let I = (S,G,R)
be the sequence generator represented by Figure 1l.3-la, with those complete
states which belong to G being designated by rectangles. In part 1 of
the algorlthm we delete states sg and sip, then state 875 and then state
59 | S consists of the remalnlng complete states; G contains sx and Sgs

and R is R cut down to S. We have at the end of part 1 the sequence

generator T represented by the result of deleting everything to the right

of state 5 in Figure 1.3-la. In part 2 of the algorithm we form the sequence
{s5,s6} —AO {Sh} nA {s ,s6f =A, ] {ﬂh336} [= 5]0 Simultaneously we

form the sequence s5,s [~U§=OA P 55,34, [= =U7 OAl] {55,84, 5’86} égUz“O 15

stopping at this point since shySel € 8258)5555565( 5 i.e.
Hence S = 28)58 S,S and rt , the reduced form of I, is representeg by
Figure 1.3- Ig

Theorem 1.,3-1: The Reduced Form Algorithm, when applied to any sequence
generator [, always terminates in a sequence generator rt. The set of
complete states of I'" equals the set of I'-admissible complete states.

As a step toward proving this thecrem we first establish Lemma
1.3-2: let p be a binary relation and 8p % set. Define &; for 1 = 1,2...
inductively by 8j41 = p(8;) and let ap = Uj_qg 8; for £ = 0,1,2,... . If,

for some j, Q. = 5+l then for all ﬂ,az C ajo

J
Proof: We note first that since the operator p may be distributed over
the ?nionf Qg =.azup(q£). We now assume-gj =0y, and prove Fhét LA,
proving first by induction that for all £ = j, Q) = aj. The initial step
is covered by the hypothesis that Qy41 = 0.. For the general step assume
Qe = aJ, where k>j. By the fact noted above Oy41 = OxUs (%) and

O34 = p(a ). Combining the four preceding equalities we get O,y = Qj.
To conclude the proof we note that it follows directly from the definition
of az that for £<Jyazycaj.

We turn now to the proof of Theorem 1.3-1. We will use freely
the notation of the algorithm. (I) We prove first that the Reduced Form
Algorithm, when applied to any sequence generator I', always terminates in
a sequence generator r". Since S is a finite.set, the first part of the
algorithm terminates in a sequence generator [. The criterion for stopping
in part 2 of the“algorithm is based on a monotonically increasing sequenée
of subjects, of S, which is a finite set, so the second part of the algorithm
will always terminate. Finally, it is clear that a sequence generator rtis
defined in part 2 of the algorithm. (II) We prove next that the set of
complete states of I'" equals the set of I-admissible complete states: (IIA)
We consider a I'-admissible complete state s, and show that 5q€ é. Since
S, is I-admissible there is an infinite sequence [s](0,w) of I-admissible

states such that for some k, [s](k) = s,. A complete state of I is deleted
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by part 1 of the algorithm only if it cannot belong to an infinite
I-sequence, and so [s](0,k) is a T-sequence. Hence by the definition

of Ay in the algorithm, s| € A and sy € Ui o A;. We now apply Lemma
1.3-2, letting p = R and 8y = G- By (I) above, part 2 of the algorithm
terminates; in the notatlon of the algorithm Ap ., C U -0 A, . The result
of Lemma 1.3-2, put in this notation, is that for all 2 U? A. c Ut 1=0 A

We have already shown that s; € 1 =0 Al, and so s € U But in the
algorithm S is defined to be U A and so 5] € S Ig We next consider
a complete state 81 € S and show that 84 1s F-adm1ss1ble. In the notation
of the algorithm S = UT -0 A and so s_ € Ul -0 A . Hence 81 is T'-accessible.

Part 1 of the algorithm termlnates in"a sequence generator I’ with no terminal
states. As remarked in Sec. 1.1 every accessible state of a sequence generator
with no terminal states i1s an admissible state. Consequently there exists an
infinite [-sequence [s](0,w) such that for some k, 51 = [s](k). By the

nature of part 1 of the algorithm [s] (0,w) is also an infinite I'-sequence,

and so sy is I'-admissible.

Corollary 1.3-3: (a) Every complete state of I'" is I'*-admissible. (b)
The set of infinite I'-sequences equals the set of infinite I"-sequences.

c) Every finitie [T-sequence is an initial segment of an infinite
I'-sequence.

We will next discuss the Reduced Form Algorithm and some alter-
natives to it. Applied to an arbitrary sequence generator T part 1 of the
Reduced Form Algorithm produces the set of extendable states of I'. Applied
to an arbitrary sequence generator I part 2 of the algorithm produces the
set of I'-accessible states. Since a complete state is admissible if and
only if it is both extendable and accessible the two parts of the Reduced
Form Algorithm applied to a sequence generator I' in either order produce
the same sequence generator F+. A sequence generator T derived from a
well-formed net in the way indicated in Section 1.2 has no terminal states;
consequently when part 2 of the Reduced Form Algorithm is applied to I it
produces rt

There is an alternative procedure for finding the I-admissible
complete states of a sequence generator. Let x be the number of complete
states of T'. Form all I-sequences of length x+1; it can be proved that a
state is I'-accessible if and only if it occurs in one of these sequences.
To find the I'-admissible states we operate on each sequence as follows:
proceeding through the sequence <s(0), s(1),...,s(x)> check an occurrence
of a state whenever that state has occurred earlier in the same sequence;
then delete all states which follow the last checked state. It can be
shown that a state is I'-admissible if and only if it occurs in one of the
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resultant sequences. This method of finding the I'-admissible states can
be made the essence of an alternative reduced form algorithm which is
simpler to formulate and easier to prove adequete than our Reduced Form
Algorithm. It is less efficient however: 1in the example given earlier
m = 2 while x = 11. These differences seem to result from the following
fundamental difference between these two algorithms. In the Reduced Form
Algorithm the length of the computation is not specified in advance;
rather, parts 1 and 2 each contain an internal "stop criterion": one
proceeds until he is stopped by these criteria. In contrast, the alter-
native algorithm first establishes the length of the computation on the
basis of a general property of the sequence generator (the number of
complete states); since this length is established a priori it is of
course determined by the worst case, even though in most cases far fewer
steps would have sufficed. This is analogous to the contrast between
asynchronous circuits, in which completion of an operation is sensed

and the next operation begun immediately, and synchronous circuits, in
which the same amount of time is allowed for a given operation in every
case, and this is, of course the time required for the worst case (plus

a "safety factor"!). We have presented the more efficient of these two
algorithms, despite the fact that it is more difficult to formulate and
prove adequate. We did this because finding the reduced form is basic

to so many automata algorithms; see, for example, Section 2.3 and Section
3.4L. But though in many later cases we know of more efficientalgorithms
(see for example, the alternative to the h-univalence Decision Procedure
in Section 3.4), we will not present them because we feel that perspicuity
of theory and simplicity of exposition is more important there.

We mentioned in Section 1.2 that certain puzzles give rise to
sequence generators. The so-called "15 puzzle" is a good example since
it may be solved by means of our Reduced Form Algorithm. The puzzle
consists of a 4 x 4 array of 15 movable blocks (number 1 through 15)
and one empty position. A "move" consists in changing a pattern into
any one of the (at most) four patterns obtained by shifting a block
into the (neighboring) empty space. The problem is to achieve a
stipulated pattern by a succession of moves starting from a given
pattern. A sequence generator I' = (S,G,R,P) corresponding to the
puzzle may be defined as follows. The 4 x 4 matrices whose entries are
the numbers O through 15 are the complete states of I'; there are 16!
of these. The starting pattern is the sole generator of I'. Two states
81 and 85 stand in the direct transition relation R if there is a move
taking the pattern corresponding to s_ into the pattern corresponding
to sp. The projection P has the value 1 on the single pattern stipulated
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to be the goal and O otherwise. The problem is solved by constructing

a finite I'-sequence <s(0), s(1), s(2),...,s(t)> such that P[s(t)]}= 1 and
Pls(i)] = 0 for i<t, if such a sequence exists. Clearly this sequence
exists if and only if the complete state with a projection of 1 is
I'-accessible. Whether or not this is the case can be determined by
applying part 2 of the Reduced Form Algorithm to I': if such a sequence
exists, it will be found in the course of carrying out the algorithm.

It turns out that exactly half of the complete states of I' are I-accessible
and that each of these I'-accessible states is also I'-admissible.

There is a much simpler algorithm for finding the I'-accessible states of
this particular sequence generator. See W. W. R. Ball, Mathematical
Recreations and Essays, MacMillan, 1940, pp. 299-303,
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(a) Binary Counter

500 S01
1y 9 1y #
dy dy

. 4
510 511
dg ¢ d;

(b) Three-projection sequence generator I' = (S, G, R, I, 6,D)
associated with the binary counter (a).

Figure 1.2-1
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(a) Sequence generator I' = (S, G, R)

(O

¢

(b) TI*, the reduced form of T

Figure 1.3-1



2. Sequence Generators with One Projection

2.1 Definitions

In the last sub-section we made no partieular use of the pro-
Jections of a sequence generator. In this section we shall define some
concepts which apply primarily to sequence generators with one projection
and will prove some theorems about these concepts. In most applications
this single projection is an input projection, an output projection, or
a combined input-output projection. In the next section we will work with
sequence generators having two projections. These two projections will
usually be an input and an output projection.

Definition: The behavior of T = (S, G, R, Pl,fﬁ,. .y Pn), where n>0, is

the set P ([s](0,k)), where P = Plx P°x . . . P* and [s](0,k) is a
" L-sequence (finite or infinite). "B(T)" denotes the behavior of I'. The

infinite behavior of I, denoted by "B®(I')", is the set of infinite sequences
in B(F), Corollary 1.3-3b can now be reformulated as follows.

Corollary 2.1-1: BT ) = BO(rH)

It is worth noting that in general it is not true that for a
sequence generator I' = (S,G,R,P) there exists a sequence generator I' such
that the set of f-sequence equals the behavior of I'. This may be shown
by a simple example. Iet S = {SO,Sl,Sg,}, G = {so}, R = {<so,sl>, <s1,85>,
<32,so>}, and P(sq) = P(sq) = 0 P(se) = p;. There is one infinite [-sequence
<SO’51’52’50’31’82’30’51’52‘°'> and the behavior of I' consists of the
sequence <po,po,pl,po,po,pl,...> and all its initial segments, and does
not include the infinite sequence <p.,p~,P~,...>. Consider a sequence
generator I' = (S, G, R) such that {po,p1 ¢ S and such that
<po,po,pl,po,po,pl,...> is an infirite f-sequence.. It follows from the
existence of this sequence tha? R(po,po) and Py € G, and hence that
<po,po,po,“,.> is_an infinite I'-sequence.

We will now meke some remarks about the application of the
concept of behavior to nets. By the methods of Section 1.2 we can
associate with every net (well-formed or not) a sequence generator
r = (s, a, R, I, ©), where I is the input projection and e is the out-
put projection. The behavior of a digital computer (wof,nc) consists
of the relationship between its inputs and its outputs, and similarly
for an arbitrary net. The behavior of a net may be regarded as the set
of sequences (finite and infinite) of pairs <i (0), e(0)>, <i (1), o(1)>,
<i (2), e(2)>,... for which there is a I-sequence [s](0,k) such that

-16-
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i(t) =1 {s(t)} and o(t) = @{s(t) } for every t. This is clearly

B(I'), the behavior of the sequence generator I' = (S, G, R, I, ©). In
Section 2. 5 we present a Behavior Inclusion Procedure to be applied to a

pair <[, F> to decide whether the behav1or of T is included in the be-

hav1or of F when applied to the pair <F, I'> as well as to the pair

<T, > this tells us whether the behaviors of I and I are equal. By the
remarks Jjust made the Behavior Inclusion Procedure can be used to decide
whether the behavior of an arbitrary net N is included in or equal to the
behavior of a net No In the case of well-formed nets, however, a much more
efficient algorithm for deciding equality of behaviors is known (Burks,

Wang, 1956, Section 2.2); a basic part of this algorithm consists essentially
of finding the reduced form (Section 1.3) of a sequence generator associated
with the combined nets. Actually this algorithm applies to any deterministic
sequence generator (this concept is defined below); moreover, if I' and f are
both deterministic and B(T) ¢ B(I'), then B(f) ¢ B(T'), so this algorithm also
answers the question as to whether B(I') C B(I') for the case of deterministic
sequence generators.

The following lemma will be needed in subsequent proofs. It is
a classical interpretation of Brouwer's Fan theorem (Heyting, 1956, pp.
42-43) and is closely related to Kdnig's Infinity Lemma concerning infinite
graphs (K®nig, 1936, p. 81). Our lemma, hoWwever, is stronger than Kdnig's
Infinity Lemma in that it does not require that the O's be pairwise disjoint;
because of this difference we present here a proof of it.

Lemma 2.1-2: Let <ao,al,a2,..o> be an w-sequence of finite non-empty sets
and let "p be a binary relation. If for every x € o +] there is a y € Q4
such that p(y,x), then there is an infinite sequence <ZO’Zl’ZE"° > such
that for each i, z; € a; and p(z,25,.7)-

Proof: ILet Bl consist of all flnlte sequences <Xj,Xji],...,X;4 > Where

k =0,1,2,...,x5e05 for 1 J S i+k and p(x., XJ+1) for i g J < i+k.

It follows from the requirement on p in the hypothesis of the lemma that
for each i;k, and element Yik of O, 14k there is an element of B;

Fis Vi4ls- cos Y {4k Since this is so for any k, each B; is infinite.
We will now define by induction the desired sequence <ZOy Zly 22,.”>°
Initial step: Since 60 is infinite while o, is finite there will be
some element Zq of &, such that an infinite number of elements of Bo
begin with z5. Iet 80 be the subset of Bo all of whose elements begin
with zqg.
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General step: Assume given a sequence <zo,zl,o,uyzi> (where i = 0,1,2,...)
which belongs to By and satisfies the condition that the set Si of elements
of B4 which begin with z; is infinite. The result 61+l of deleting the
first element of each member of B; is an infinite subset of B;j,y. Since
Q341 1is finite there will be some element zj,q of (47 such that p(zi,zi+l)
and an infinite number of elements of 5¥i+l begin with z. Let 8'+l

i+l. 1
be the subset of &';,) all of whose elements begin with z;,.4;8';47 is a sub-
set of B;,1 and hence 8;4+1 1s also. Hence <ZO’Zl’°°°’Zi’Zi+l> belongs to BO
and satisfies the condition that the set Si+l of elements of ﬁi+l which be=-
gin with z;,, is infinite. Thus the inductive hypothesis has been established

for the sequence <zo,zlg,,.,zi,zi+l>. This completes the proof of Lemma 2.1-2.

Theorem 2.1=3 (Infinity Theorem): Iet I = (S, G, Ry P) be a sequence generator
with behavior B(T') and let [p](0,w) be an infinite sequence of P-states.
[p](0,w) € B(I') if and only if for every finite k, [p](0,k) € B(T).

Proof: (I) It is obvious that [p](0,w) € B(I') implies that for every
finite k, [p](0,k) ¢ B(I'). (II) Suppose that for every k, [p](0,k) e B(I).
We will prove that [p](0,w) ¢ B(I') by means of Lemma 2.12. We define 0y
by sy € a, if there exists a I-sequence [s](0,i) such that [p](0,i) =
[s](O,iﬁ} and s; = s(i). It is clear that each @; is finite and non-
empty. We let p = R and show that the hypothesis of Lemma 2.12 is
satisfied. Suppose s, € Oj,.1- By definition of O;4) there exists a
I'-sequence [sz](0,i+1) such that [p](0,i+1) = E{[s;] 0, i+1)} and
sp = [55](i+l§° Iet s), = s{i). By the definition of 0,8), € Q; and by
the definition of TI-sequence, R(sy,s,). By Lemma 2.1.2 there is an infinite
I-sequence [s.](0;®) and by the definition of oy we have P{[ss](o,aﬁ} =
[p](0,w). Henhce [p](0,w) e B(T).

The following is a corollary of the Infinity Theorem. ILet
I'=(S, G, R, P)and ' = (S, G, R, P) be two sequence generators and suppose
that for every finite k, if [p](0,x )eB(T) then [p](0,k)eB(I); then B(I)eB(I).
For consider any infinite sequence [p](0,®)eB(I'). By the Infinity Theorem,
for each k [p](0,k)eB(I'). Then by hypothesis, for each k [p](O,k)eB(f‘)°
Finally, by the Infinity Theorem [p](0,w)eB(I'). This result holds for I and
[ interchanged, of course, so we have: if for every finite k [p) (0,k)eB(I) =
[p](0,k)eB(I) then p(T) = g(T). Thus the Infinity Theorem shows that the
"finite" behavior of a sequence generator determines its (complete) behavior.

Definitions: Iet I' = (S, G, R, P) be a sequence generator. [ is solvable
if every infinite sequence of P-states belongs to its behavior. T is
{semi-deterministic} [deterministic] if it satisfies the conditions: (1)
For any P-state p, there is {at most one} [exactly one] complete state s

of T such that seG and P(s) = p. (2) For any complete state s, and any
P-state p of I', there is {at most one} [exactly one] complete state s, such
that R(sy,s,) and P(sg) = p.
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It is obvious from the definition of {semi=determinism} (determinism]
that there is a decision procedure for the class of {semisdeterministiCj
[deterministic] sequence generators. The problem of solvability is not so
simple, but we will later developa decision procedure for solvability (see
Theorem 2.3-2).

Let us illustrate these concepts. The sequence generator of Figure
1l.2-1b, less its last two projections, i1s clearly deterministic. The sequence
generator of Figure 2.1-1la is semi-deterministic but not solvable, while the
sequence generator of Figure 2.1-1b is neither semi-deterministic nor solvable.
By simple inspection it can be ascertained that the sequence generator (S,G,R,P)
of Figure 3.2-2a is neither semi-deterministic nor deterministic. It is,
however,csolvable;, as the following considerations show. Given any sequence
of P-states divide it into a sequence (finite or infinite) of subsequences
(finite or infinite), where each subsequence is either an iteration of p. or
an iteration of Py and the two types of subsequences alternate. Now a I
Sequence S,;80; ¢ 0 ¢584587 produces a P-state sequence Pgs Pgse«-3PqPg follow-
ed by at least one occurrence of Pys while a I'-sequence s ,555000,55,52
produces a P-state sequence P15Pls0esPy 5Py followed by at least one occur=-
rence of p,. Hence for any sequence of P-states [p](0,k) one can construct
a I-sequence [s](0,k) such that [p](0,k) = p([s](0,k)), and so (S,G,R,P)
is solvable. Consider next (S,G,;R,I) of Figure 1.2-2b. (S,G,R,I) is not
semi-deterministic, since the input sequence <i ,io,io> is the projection of
both <s ’Sl’sl> and <s9,slysg>° But (S,G,R,I) Is solvable, as may be shown
by an analysis like that just given for Figure 3.2-2a; indeed, except for
labeling; the behavior of Figure 1.2-2b is the same as the behavior of
Figure 3.2-2a.

- The following lemma mey be established by simple mathematical
inductions with reference to the appropriate definitions.

Ierma 2.1-4: Iet I' = (S, G, R, P). (a) If I is {semi-deterministic}
[deterministic] (solvable) then I'' is {semimdeterministic} [deterministic)
ésolvable)a (b) If every complete state of I' is [-accessible, then I' is
semi;deterministic} [deterministic] if and only if for every finite
sequence of P-states [p](0,t) there exists {at most one} [exactly one)
I'-sequence [s](Qyt) such that P{[s](O,t)} = [pl(0,t). (e) If T is deter-
ministic, then I' is solvable.

Other senses of semi-determinism and of determinism may be ob-
tained by replacing every occurrence of "complete state" in the above
defintion of semi-determinism and determinism either by "admissible
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complete state" or by "accessible complete state". We will call the
concepts obtained by making the latter substitution ”semi-determinisml"
and "determinism.". It may be shown that these two concepts are

equivalent to the conditions stated in the consequent of part (b) of
Lemma 2.1-4. In the case of arbitrary nets determinism. becomes the
determinism of Burks and Wright, 1953, p. 1359.

The process described in Section 1.2 associates with a finite

automaton a sequence generator I = (S, G, R, I, @ D) such that (S, G, R, I)
is deterministic. Conversely, given a sequence generator I' = (s, G, R, I, @),
where (S, G, R, I) is deterministic, we can define a corresponding finite
automaton. Let the set of input states {1} and the set of output states{e}
be the ranges of the projections I and © respectively. The set of internal
states {d} of the sutomaton is a set of sets of complete states of T defined
as follows: a €14} .=. a =G v, (3s) (@ = R(s)), where o ranges over
non-null subsets of S. Let the initial internal state d.=G. The direct
transition function T is given by 7(i,d) = R(1s l sed &I(s)=1),
where "9s| ..." means "the complete state s satisfying the condition"...
Finally, the output function A of the net is defined by

AMi,d) =6(1s| s €d & I(s) =1). We will give an example. Figure 2.1-2a
is a deterministic sequence generator. The set of input states for the
assoc1ated automaton is {10,11} and the set of output states is

The set of internal states consists of the sets {s ’SI}

SQ,SBj g {s ’Sh} which we will call d 547, and d2 respectively. do
is the initial 1nternal state since SO’SL? = G. The direct transition
and output functions are given by the table

"
.

i(t) a(t) a(t+1) 6(t)
=1(i,d) =x(i,d)

iy do 4y 6

iy dg ds 6,

i dl do 62

i d2 do 95

In Section 1.2 we gave a process for converting a finite automaton into a
three projection sequence generator. When this process is applied to the
flnlte automaton ust described the result is the sequence generator

f= (3, G, R, I, ®, D) of Figure 2.1-2b. It should be noted that

B(r) = B(S, G, R, I, ©®). Hence when the two procedures just described
are applied successively to a sequence generator I' = (S, G, R, I, ©),
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where (S, G, R, I) is deterministic, the result is a seguence generator
I' = (S G, R, i, 8, D) w1th an internal state projection D and such that
the behavior of (S, G, R, I, @) is the same as the behavior of T.

Any property of a one-projection sequence generator and any
operation applicable to a one-projection sequence generator can be extended
to a sequence generator I' = (S, G, R) without projections by adjoining to
it a constant projection P (i.e., a projectien with only one P-state); T
is solvable, deterministic, etc. if (s, G, R, P) is solvable, deterministic,
etc. For example, a well-formed net without input nodes has associated with
it (by either of the techniques of Section 1.2) a sequence generator (S, G, R)
with one infinite (periodic) I-sequence. For constant P, (S, G, R, P) is
solvable and semi-deterministic, and hence deterministic, and so is (s, G, R);
see, for example, Figure 2.2-la.

2.2 Subset sequence generator operation

We will next define an operation, denoted by "*¥", called "the
subset sequence generator operation'"., This operation may be applied to
any sequence generator ' to obtain its subset sequence generator I'*. The
complete states of I'* are sets of complete states of I'. The generators,
the direct transition relation, &nd the projections of I'* are defined in
terms of I' in such a way that I'* has the same behavior as T (Theorem 2.2-3
below) and I'* is always semi-deterministic, even though I may not be (Lemme
2.2-1 below).

Definition: The subset sequence generator operation, denoted by "*',

applies to any sequence generator I' = ( 5, G, R, Pl, P2,...,Pn), where n>o,

and produces & sequence generator I'¥ = (S, G, R, P s ; ,...,?n). Let
=Pl x P x ... x P% (1) A subset x of S is an element of S if and

only if x is non-null and P has the same value for all elements of x.

This definition can be expressed symbolically as follows, where A is the

null set, and the variable x ranges over subsets of S:

xe § =4 A & (s1,85){[(s) €8) & (s, €5) & (5, €x) & (s, €x) D

(s
(2(s,) = (s,)1}

(2) The elements of G are maximal subsets of G-Whlch are elements of S°
Formally, s € G :=: 8 €S &5 CC & (& 57) {[é ceS&(5c sl c G)1a(s = l)}

. . ¢
(3) Two complete states 5, and s, of S stand in the direct transition
relation B'if and only if 4, is a maximal set of direct successors (by R)
of elements of él. Formally,

R(s1,85) = 8] € S & s, CR (87) & (s5) {[55 €S & (8,C85CR(51))] D(sf2 = é5)}
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(M) A1l the elements of a state s of é have the same P' state (for
i=1,2,...,n), and we take this common-value to be the P'-state of &.
Formally, pL(5) = Pl(s) where s e &, & € 8.

(I'* is called "the subset sequence generator" of I'. Our concept of a
subset sequence generator is similar to concepts used by Myhill, 1957,

p. 122, Medvedev, 1958, p. 13, and Rabin and Scott, 1959, Definition 11.)

It should be noted that the concepts of behavior (Section 2.1)
and subset sequence generator are essentially one-projection concepts in
the sense that when many projections Pl,Pg,...Pn are given the composite
projection PlxP°x...P® is used in the definitions of the concepts. In
subsequent theorems and algorithms we will, for the sake of simplicity,
usually state our results for sequence generators with one projection,
since it is obvious how to extend them to the many-projection case.

The construction of subset sequence generators is illustrated in
Figures 2.2-1, 2.2-2. Note that the generators and complete states of the
subset sequence generator I'* are determined without reference to the direct
transition relation of I'. Figure 2.2-1 shows that even though I' is in re-
duced form, I'* may not be. Though in fact, if T is in reduced form then
['* has no terminal states and so B(T'*) = B(I'*'). In Figure 2.2-2 we begin
with a semi-deterministic sequence generator, add to it in various ways to
obtain three sequence generators, F, P, [' which are not semi- deterministic,
and then derive the subset sequence generator of each of these. All the
subset gsequence generator I'¥, f*‘ f*, I are seml—determlnlstlo, as they
must be by the next lemma. None of the sequence generators I, P, Ts I' is
solvable; I'¥, F* F* and. T* are not solvable either (cf. corollary 2.2-4).

Lemma 2.2-1: For any sequence generator I' = (S, G, R, P), I'* is semi-
deterministic.

] . . [y
Proof: Let '* =T = (S, G, R, P), It follows from the construction of G
that for any sq, 8p, if sje G, $,¢ G, and P(sl) = P(sg), then Sl = 52’ and it
follows from the definition of R that for any §, $1 sg; if R(S,$ ), R(s,s ),
and P(sl) = P(s2) then s, = 8.

Given a sequence generator I = (s, G, R, P), by the above lemma
its subset sequence generator I'* = (S, G, R P) is semi-deterministic.
Hence for any given finite sequence of P-states [p](0,t) there is at most
one complete state sl satlsfylng the condltlon that there exists a F-sequence
[§]1(0,t-1), sl such that P{[5](0,t-1), sl} p](0,t). Moreover, this state
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8, is a set of states of ', We will use the location "the state §1 € S
corresponding to [p](0,t)" to refer to this set of states §; if itsexists,
otherwise to the null set.

Lemma 2,2-2: Let [* =T = (é, é, ﬁ, ﬁ) be the subset sequence generstor of
r=(s, G, R, P), let [p](0,t) be any finite sequence of P-states, and let
a be the set of states s, for which there exists a ['-sequence Ls](o,t-l), 51
such that P {[s](0,t-1), Sl} = [p](0,;t). Then o is the state sje § corres-
ponding to [p](0,t).

Proof: (I) We first prove by an induction on t that for any finite I'-sequence
[(s](0,t) there is a P-sequence [8](0,t) satisfying the conditions

(a) P {[s1(0,t)} =P {[51(0,t)}
(b) s(t) € &(t).

Initial step: given the I'-sequence s(0), it follows by the definition ofoé
that there exists a complete state &(0) such that s(0) € §(0) and 8(0) € G.
General step: The inductive hypothesis is that for every I'-sequence [&}(O,k)
there is a I-sequence [s](0,k) satisfying the conditions (a) and (b). Consider
any P-sequence [s](0,k+l). By the inductive hypothesis there exists a
P-sequence [§](0,k) such that [s](0,k) and [s](0,k) sayisfy (a) and (b).
- Bince R(s(k), s(k+l)) it follows by the definition of R that there exists a
complété state S such that s(k+l) e s and R(s(k), s;). Hence P {s(k+1} =
P(sy) and [s](8,k), s; is a I'-sequence, and so [s](0,k+l) and [2](0,k), 5,
satisfy conditions (a} and (b). (II) We next prove by an induction on t
that for any finite f-sequence [§](0,t) and complete state sy € § (t) there
is a I'-sequence [s](O,t) satisfying the conditions

(¢) P{ls](0,t)} =P {[s1(0,t)}
(d) S(t) = SJ_

Initial step: given a I'-sequence s(0) and a state s; € s (0), it follows by
the definition of G that s, is the desired'Fsequence, General step: the
inductive hypothesis is that for every I-sequence [8](0,k) and state s; €
8(k) there is a I-seguence [s](0,k) satisfying conditions (c) and (d).
Consider any I'-sequence [s](0,k+l) and a state s, € S(k+l). By the defini-
tion of R there exists a state sq satisfying the conditions sy € é(k) and
R(sl,s . By the inductive Hypothesis there is a I'-sequence %s](o,k) such
that P {[s](0,k)} =P {[s](o,k)} and s(k) =sy. [s](0,k), s, is the desired
I'-sequence., This completes the proof of Lemma 2.2-2,
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Theorem 2.2-3: For any sequence generator I' = (S, G, R, P) with behavior
B(I'), B(I') = B(I)*.

Proof: By the preceding Lemma 2.2-2, for every finite t [p](0,t) € B(T)
if and only if [p](0,t) € B(I'*). The theorem to be proved now follows by
the Infinity Theorem (2.1-3). It should be noted in this connection that
the proof of the Infinity Theorem makes implicit use of I'¥, the subset
sequence generator of I'. In fact, the sequence <Q;0Aq,00, .. .> employed
in the proof is an infinite I'*-sequence.

Lemma 2.2-4: TFor any sequence generator I' = (s, G, R, P), I' is solvable
if and only if I* is solvable. (This follows easily from part 2 of Lemma
2.1-4, Lemma 2.2-1, and Theorem 2.2-3.)

2.3 Decision Procedures

Behavior Inclusion Procedure: Consider two sequence generators
r=(s, a R P) and T = (S, G, R, B), and let {a} %] be the number of .
states in {S (8]. Form all {P-sequences} [F-sequences] of length 1 + a2%
or less and form the set {af [] of their {P-progectlons [?—projections].
Write "yes" or "no" as 0e( or not.

Theorem 2.3-1: Let A be the class of pairs of one-projection sequence
generators <I',I> such that B(I) ¢ B(T), i.e. .y such that the behavior of
I is included in that of I'. The Behavior Inclusion Procedure is a
decision procedure for A.

Proof: (I) It is obvious that if B(T') ¢ B(I') then ocl, i.e., that the
algorithm yields "yes". (II) We assume that atdy i.e., that the algorithm
yields 'ves", and prove that B(I) ¢ B(I). ILet I = (8, G, R, P) I* and let
O be the set of P—prOJectlons of Fusequences of length 1 + aQa or less. By
Theorem 2.2-3 & =& and B(T') = B(T'), so we will assume that océ and prove
that B(T') e B(T). (IIA) Iet {a%}[a% ] be the subset of sequences of {B(I')}
[B(I')] of length t+1 or less. We will now establish by induction that for
every t, o a%e

Initial Step: Slnce by assumption a:a and by deflnltlon a=Q, 2é and

a = a a4 so akcak for k = a.2%, General step: we assume that akcak for

k >a. 2 and prove that ak+lc‘3k+l Consider an arbitrary I'-sequence
s](o,k+1) for k 2 a.28, Let [p 1(0,k+1) = P{[ 10, k+1) ]} By the 1nductive

hypothesis there exists a F—sequence (s (O k) such that ﬁ{ s](o k)} (O,k)u
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We will show that there exists a complete state éo satisfying the conditions
(1) K {sx), 5ot
A e
(2) P(sp) = p(kt1),

1 e. , that there ex1sts a T-sequence <[5 '1(0,k), 50> such that ,
1(0,k ,so} 1(0,k+1). It follows from the nature of the subset
sequence generator construction that ? has no more than 2& complete states,
and hence the number of pairs of complete states <s,s> is no more than a.2®
Since k 2 .28 there exist t1,tpi such that O € 1< t, & a2® Sk, s(tq) = S(tg)

and s(tl) = 8(ty). Let
(3) [Sl](0,£+l) = {[S](O:tl): [S](tg"'l:k"'l)}
(4) [s11(0,8) = {[81(0,%1), [8](to+1,k)}
(5) [pl](O,ﬁ+l) = {[P](O)tl): [P](tg‘*'l: k+l)}

where [ =k - (t2 - tl). Note that
(6) P{ls11(0,£+1)} = [py1(0,£+1)
PLL8,1(0,0)} = [p,1(0,4)
Because {s(t;) = s(tz)} [8(t1) = 8(tp)] _we have that {[ sl](o,z+1)

is a F-sequence} [sl (O, ) is a P-sequence . And since £ + 1 S k there exists
by the inductive hypothe51s a P-sequence [52](O,£+l) such that

(8) PFlls51(0,£41)} = [p1(0, £+1).
It follows from (7) and (8) that
) P{I521(0, 00} = B{[511(0,2)} = [p11(0,2)
and since T is semi-deterministic (Lemmas 2.1-% and 2.2-1) we have that
(10) [851(0,£) = [511(0, ).
It follows from (4) that

(11) 59(%) = 8(x)



=26

and hence by (10)

Since [§2](0,3+1)1s a f-sequence we have that ﬁ{ge(ﬂ), gé(ﬂ+l)} and hence
by (12) that

19 [or

(13) R{8(x), & (e+1)}.
Now by (8) and (5)
(1) B{E,(er1)} = plrsn).

Conditions 135 and 14 show that 32(£+l) satlsfles conditions (1) and (2)

and hence that s (£+l) is the desired state sO (IIB) We have shown that
if ocd then for every t, O%CO% It follows by the Infinity Theorem

(Theorem 2.1-3) that if ac® then B(F) eB(I'). As remarked earlier this is
equivalent to: if acd then B(T') <B(I'). This completes the proof of Theorem
2.%5=1.

In formulating the Behavior Inclusion Procedure we have not
attempted to minimize the computation required. Many simplifications
will occur to anyone who uses this algorithm. For example, since any
two elements of a complete state s € § must have the same projection
the bound 1 + a.2® may be greatly reduced. Note also that if f is
already semi-deterministic, it 12 not necessary to make use of F* in
the proof, and the bound 1 + a.2” may be replaced by 1 + ad.

The Behavior Inclusion Procedure may be used as the basis of
a decision procedure for solvability. Iet I = (S, G, R, P) be given.
By definition I' is solvable if every 1nf1n1te sequence of Pmstates be-
longs to its behavior (Section 2.1). I = (8, §, R P), where R(sl,sg)
for all sy;s, € S, has as its behav1or the set of all sequences of P-
states. Hence the behavior of T includes all infinite sequences of P-
states, so I' is solvable if and only if B(T) < B(I'). By Theorem 2.3-1
the Behavior Inclusion Procedure is a dec151on procedure for behavior
inclusion, so we have proved the following theorem.

Theorem 2.3-2: ILet I' = (8, G, R, P) be a sequence generator and let
(Sl,Se) for all 81582 € 5. The Behavior Inclusion Procedure applied

to the pair <(8, S, R, P), I is a decision procedure for the solvability
of T.
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When the Behavior Inclusion Procedure is applied first to the
pair <T, > and then to the pair <I'; I> the result is "yes" in both cases
if and only if B(I') = B(I'). This "behavior equivalence procedure" may be
used to reduce the number of complete states of a sequence generator so as
to obtain a behaviorally equivalent sequence generator with fewer states.
Consider I' = (S, G, R, P). We will say that two complete states s, and s
are "behaviorally equivalent" if B[ [(s,{s }, R, BR)] =.B[( (s,{s } R, P)].
Iet I be the result of identifying all behav1orally equivalent states of I.

I will in general have fewer states than T and yet B(P) = B(r). Moore's
concept of two sequential machines being indistinguishable by any experiment
i1s a special case of our concept of behavioral equivalence, and the above
process of identifying behaviorally equivalent states is analogous to the
"reduction procedure" of Moore, 1956 and Mealy, 1955. We have examples to
show that the procedure we described does not always lead to a behaviorally
equivalent sequence generator with a minimal number of complete states and
that the procedure of Moore and Mealy does not always lead to a behaviorally
equivalent sequential machine with a minimum number of internal states.

2
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(a) Semi-deterministic non-solvable
sequence generator

(b) Sequence generator neither solvable
nor semi-deterministic

Figure 2.1-1
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/
(a) Deterministic sequence generator I' = (S, G, R, I, 9)

Figure 2.1-2 (part)
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(b) Internal state sequence generator
I'= (S, G, R, I, ©, D) corresponding to (a)

Figure 2.1-2 (part)
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50 {So}

(a) = (S) G, R, P) ’

(b) TI*, the subset sequence
generator of I

Figure 2.2-1

The construction of a subset sequence generator
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(c) I = (é) é:; ﬁ: P)

I' is not semi-deterministic noo=
() TI*, the subset sequence

generator of T.
I'* is semi-deterministic

(@) ¥=(5, G &, P)

oo (] Iy

I' is not semi-deterministic (d) T*, the subse? sequence
generator of T.
I'* is semi-deterministic

Figure 2.2-2 (continued)
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3. Sequence Generators with Two Projections

3.1 Definitions

The results of the last section concern primerily one projection
of a sequence generator. In the present section we will work meinly with
two-projection sequence generators.

Definition: I = (S, G, R, P, Q) is h-univalent (h = 0, 1, 2, ...;®) if
for every two infinite I-sequences [s,](0,w), 2](O ®) and any time t,
= Q(sp(t)). (By defini-

[s
if P([s1](0,t+n)) = P([s5](0,t+h)) then Q(sy(t))
tion, t+w = w.)

Note that h-univalence is essentially a property of a set of
infinite sequences of pairs <p;q>, and hence & property of Bw(P), the in-
finite behavior of I'. As a consequence the following lemma holds.

lemma 3.1-1: Let I' = (S, G, R, P, Q) and T = (s G, R, P, Q). If

BY(r) = Bm(P) then I' is h-univalent if and only if I' is h-univalent.

This lemma, together with Corollary 2.1-1 and Theorem 2.2- 5, immediately
yields Lemma 3.1-2: Iet I' = (S, G, R, P, Q). The following three con-
ditions are equivalent: (1) I is h-univalent, (2) I'* is h-univalent,
(3) r't is h-univalent. '

There is a close connection between zero-univalence and semi-
determinism which is brought out by the following lemma.

Lemma 3.1-3: (a) Let I'= (8, Gy R, P, Q) and ' = I'". T is O-univalent
if and only if for any two finite I-sequences [s,](0,t) and [s,](0,t), if
P([s11(0,t)) = P([s51(0,t)) then Q([s11(0,t)) = Q([sp](0,t)). (b) Let
I''= (S, G Ry P) and I' = I'*. T is semi-deterministic if and only if for

any two finite I-sequences, [s1](0,t) and [sp](0,t), if P([s7]1(0,t)=P{[s0](0,t

then [sl](O,t) = [sg](O,t)c

Note that the sequence generator of part (a) of the lemma has
two projections, while that of part (b) has one projection. Part (a) may
be established by using Corollary 1.3-3 and the definition of univalence;
part (b) follows from Corollary 1.3-3 and Lemma 2.1-4b. It follows from
Lemma 3.1-3 that for any projection Q, if (S, G, R, P) is semi-deter-
ministic then (S, G, R, P, Q) is O-univalent. The converse is not in
general true; but the following lemma asserts a connection between the O-
univalence of a sequence generator and the semi-determinism of a related
sequence generator.

))
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lemna 3.1-h: Iet T = (S, G, R, P, Q) and let I*¥" = I = s, G, B, B, Q).

I' is zero-univalent if and only if (S, G, R P) is semi-deterministic.

It might seem that since I is the reduced form of the subset sequence
generator of I, it would, follow immediately by Lemma 2,2-1 that if T

is O-univalent then (S, G, R P) is semi~deterministic. This is by no

means the case. It can be shown from Lemma 2.2-1 by means of the de-
finition of the subset sequence generator operation that (S, G, R, PxQ) s,
semi-deterministic, while the conclusion of Lemma 3.1-4 is that (S, G, R, P),
which is a different sequence generator, is semi-deterministic. For any
progectlon QZ 1f a sequence generator, (S, G, R, P) is semi-deterministic

then (S, G, R, PXQ) is semi-deterministic, but the converse is not in general
true.,

Proof of Lemma 3.1-4: ("Only if" part) We assume that I is O-univalent and
prove that (3, G, R, P) is semi-deterministic. (I) We will use three

sequence generators in the proof besides . These are: f=(5 G R, P, Q);
F=(5 G & PxQ); and T = (3, G, R, P). We will first establish some re-
sults that will enable us to use Lemma %.1-3%a on P and Lemma 3%.1-3h on F

and T. (A) By construction P =" and by Lemma, 3.1-2 ' is semi-deterministic.
(B) By construction I = ™ and by Lemma 2.1-1 T is semi-deterministic.

(c) By construction F = T+, Our task is to prove that T is semi-deterministic.
(II) since F, P and T have S G, R, in common, the sets of P-sequences,
f—sequences, and flsequences are identical with one another. Consider now

any two finite I-sequences [§11(0,t) and [50](0,t); these are also arbitrary
f»sequences and arbitrary 'l;.-sequences° Using (TA) and applying Lemma 3.1-3a

to T we obtain

(1) 1f B([511(0,t)) = B([521(0,t)) then Q([811(0,t)) = Q([821(0,1)).
Using (IB) and applying Lemma 3.1-3%b to I we obtain
(2) 1£ B([31)(0,%)) = B([52](0,¢)) ana Q([511(0,¢)) = &([521(0,8))
then [§1](0,t) = [§51(0,t).

Combining (1) and (2) and noting that [él](o,t) and [52](O,t) are arbitrary
['-sequences, we get

(3) For any two finite I-sequences [él](oyt) and [é2](0,t), if

P([311(0,t)) = B([52](0,t)) then [£11(0,) = [351(0,t).
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Using (3) and (IC) and applying Lemma 3.1-3b to T we obtain

o

(4) T is semi-deterministic,

which completes the proof of the "only if" part of the Lemma.

("If" part): We assume that (S, G, ﬁ, i) is semi-deterministic
and prove that T is O-univalent. Since every complete state of I is I-
accessible, by Lemma 2.1-4b we have that for every finite sequence of P-
states [p](0,t) there exists at most one F—sequence [81(0,t) such that
M151(0,t)} = [p ](O t). Hence for any two [-sequences [§,1(0,w), [$51(0,w)
and any time t, if P([3 11(0,£)) = P([551(0,t)) then §7(t) = 65(t). Since
a projection is a (s1ngle-valued) function we have that if |
B([811(0,£+0)) = P([55](0,£+0)) then Q(3;(¢)) = Al3(¢)), so I is O-univalent.
I' = I'*Y, and by Lemma 3.1-2 I is O-univalent. This completes the proof of
Lemma 3.1-L4,

We next apply this lemma to an example. Consider I'= (S, G, R, P, Q)
of Figure 3.1l-la. Note that the complete states s, and sy have the same pro-
Jections (po and qo) and stand in the same relation to state s Thus the
two I’=sequences

0°

8p» Sk Sg
S0s 825 80

have the same sequence of P-projections
Dos Pos PO

and hence (S, G, R, P) is not semi-deterministic. These two I-sequences do
have the same sequence of Q-Projections

dps Q25 Qo

and in fact I' is O-univalent. By Lemma 3.1-4 (S, G, R, P) of Figure 3,1-1b
must be semi-deterministic. An examination of the states of (S, é, ﬁ, %)
shows that it is determlnlstlc, so a fortiori it is semi-deterministic.

(The determinism of (S, G, R, P) will be discussed after Lemma 3.2- 3 below.)
Note that the main difference between I and I'*t in Figure 3.1-1 is that the
two states sp, s), of I' have become a single state {82) Sh} of T'¥t,
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Definition: I = (S, G, R, P, Q) is uniquely solvable if (1) (S, G, R, P)
is solvable and (2) (S, G, R, P, Q) is w-univalent. We remarked earlier
that h-univalence is essentially a property of the infinite behavior of a
sequence generator, and this remark applies to unique solvability as well.
Thus I' is uniquely solvable if and only if for any infinite sequence of P-
states [p](0,w) there is exactly one sequence of Q-states [q](0,w) such
that the sequence <p(0), q(0)>, <p(1), q(1)>,... belongs to B(I'). Té put
the point in another way: a sequence generator I' = (S, G, R, P, Q) is
uniquely solvable if and only if its behavior defines a single-valued
function (transformation) from the set of all infinite sequences of P-
states into the set of all infinite sequences of Q-states. Various con-
sequences follow from this fact. The result of replacing "h-univalence"
by "uniquely solvable" in Lemma 3.1-1 is also a Lemma. A similar remark
holds for Lemma 3.1-2 except that rt may have fewer P-states (values of
p) than T.

It was shown in Section 2.1 that well-formed nets and deter-
ministic sequence generators are equivalent ina certain sense:; for every
w.f.n. there 1s a corresponding deterministic sequence generator and vice-
versa. The w.f.n. gives the structure of an automaton while the associated
deterministic sequence generator gives the corresponding complete state
diagram. An analogous relation holds between the well-behaved nets of
Burks and Wright, 1953, p. 1358 and uniquely solvable sequence generators.
Consider any net and label all its non-input nodes as output nodes. The
procedure of Section 1.2 will associate with this net a sequence generator
which is uniquely solvable if and only if the original net is well-behaved.

3.2 The Displacement Operator and the £-Shift Operation

We will first define a displacement operation DX which applies to
sets composed of finite sequences of pairs and/or w-sequences of pairs.
Roughly speaking DK has the effect of leaving the first element of each pair
where it is and displacing the second element of each pair k places to the
right. Displacing the second element of the first pair k places to the
right will leave k gaps, since the first pair is not preceded by any pair.
It will be convenient always to fill these gaps with the same element; we
will use the fixed state qp for this purpose.

Definition: ILet the universe of discourse V consist of all finite sequences
of pairs and all w~sequences of pairs and let A be the null set. The
operator D (without superscript) is defined to apply to any sequence of V as
follows:
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D(<xg, o> X1, ¥y1> <X, y2>, <3, ¥3>,...) =

(<xgy, A>, <x1, o> Xps Y125 X3, ¥2>...)

D(<xg, Y0 X1y Y125« 2Hpels Yp-17 Knp ¥n>) =

(<0, A>y <X15 Y0Py +-05 Xn-ls ¥n-2> <Xn, ¥n-1)-
The operator D is extended to apply to an arbitrary set o of V by

D(@) = {v|[Qu) [wea &v=D()l},

where v and u range over elements of V. Finally, we define Dk, k=0,1,2,.

to apply to an arbitrary set & of V by.the induction
D° (a) =«
p**H(a) = (0t (a))

DE is called the displacement operator.

We next define a shifting operation which may be applied to an
arbitrary sequence generator I' = (S, G, Ry, P, Q) to produce the f-shifted
sequence generatorvfz =0 = (é, é, ﬁ, ﬁ, é). The effect of this operation
is to displace the behavior of I, so that the behavior of Pz, i.e., B(Fz),
equals the displaced behavior of I, i.e., Dz[B(F)], as is shown in Lemma
3.2=1 below, To help make clear the definition of Fz, we will make some

remarks about I'l. Extend Q to apply to A, so that Q(A) = A. The generators

of I are the pairs <A, s>, where s belongs to G. Suppose
SQs S1s Sp, 83, Sl
is a I'-sequence with the resulting behavior element
<pgs 40> <P1s 41> <Pp, do> <p5, q5>, <pys; 44~
Then
<Ay sg” <8, 81>, <87, S5 <o, 55>3 <53, 8),>
is the corresponding Fl-sequence with the resulting behavior element
<po, A > <p1, 40 <P2, 91> <P3, 4z>, <py, 93>

rt may be obtained by shifting I' £ times in this way.

soy



=39-

Definition: The unit-shift operation, denoted by "<", applies to any
sequence generator I' = (?, G, R, Py Q) and produces a sequence generator
- t=(3, & R, P, Q) defined as follows.

[
(1) The elements of G are all the pairs <A, s> where s belongs to G
[ )
<A, 8> € G = s5€G

[}
(2) The elements of S are all the pairs <sj, sp> which either belong to G
or are connected by the direct transition relation R:

. . »
S = {<sl, sp> | <sq, sp> € GV R(sl,se)}

(5) Two complgte states <sl, s2> and <s5y su> of é stand in the direct transi-
tion relation R if and only if sp = sx3:

I

11

[ ] [
R (<sq, sp> <sz, s)>) T [<s1, sp> <63, sy> € 8 & sp = s3].

(4) The improjection of a complete state <sl, s2> of S is the P-projection
of its second element s,

§(<sl, sp>) = P(sp), where <sj, s> € s.

[
(5) Extend Q to apply to A, stipulating that Q(A) = A. The Q-projection
of the complete state <sj, sp> of S is the Q-projection of it, first element:

’
Q<<Sl’ 52>) = Q(Sl), where <Sl, 52> €S,

The £-shift operation, denoted by "4", applies to any sequence generator
I = (8, G, R, P, Q) and produces a sequence generator I'”’; it 1s defined in
terms of the unit-shift operation by means of an induction:

=r

4+l - (P£)<>

The 4-shift construction is illustrated in Figure 3.2-1. Part

(%) shows a sequence generator I' with two projections, while part (b) shows
I't, the result of shifting I one unit of time. It should be noted that

the generator <A, so> can only occur as the first state of a f-sequence;
an examination of t%e definition of the £-shift operation shows that the
generators of any I'” can only occur as the first states of Fz-sequences.
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(We are assuming throughout that A is not an element of S; if it is, S
should be redefined so it is not.) Note also that both I' and rl are in
reduced form; this is a special case of the general fact that if T is

in reduced form then I'! is in reduced form. We will discuss next the be-
haviors of T and I'l. The behavior element [ and the element of B(I)]

(l) <pps; 40> <POs 20~ <P1» 41> <PQs; 40~

is derived from the I-sequence

Sps Sps 812 815 S0

The corresponding Pl-sequence is

D,y sp> <8y Sp75 Sy 517 <sl, 8.5 <Sl’ s>

1 0

which gives rise to the behavior element [an element of B(Fl)]
(2) <pgs A> <Pgs Aoy <Py Aoy <Py 977 <Py A7

Note that this last sequence (2) is the result of displacing sequence (1)
by one unit. This is an example of the general fact that B(It) = DL[B(T)],
which is a special case of the following lemma.

Lemma 3.2-1: Iet I' = (S, G, R} P, Q). Then
)
(a) D[B(r)] = B(I)

Y/ £
(b) D[BX(r)] = BH(r7)
Proof: (IA) We prove first that D[BY(T)] = B(IY). Iet =71 = (S,é,R,f,Q).
It follows from the definition of the unit shift operation that there is a
one-one corrqspondence between the set of infinite I['-sequences and the set
of infinite I-sequences with corresponding sequences being of the form

(1) sgs s15 25 835 ...

(2) <, 50> <8gy 817 <8y, 8, <8y, 8> ...

2 5

When P x Q is applied to (1) we get

(3) <pps ap™ <P1,91” <Ppy 75 P3y Az .-
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as an element of B®(T') and when P x Q is applied to (2) we get
(L) <pgs A= <p1s 90” <Pos R <P5: o>y eos
as an element of BX(T'). By definition of D,

D[(3)] = (4).

Hence D[B®(r)] = Bw(F<>)u

(IB) Applying mathematical induction to result (IA) we get
p/[B°(r)] = B(rh)).

(IIA) An argument similar to that of (IA) may be given for finite I'-sequences
and finite I “-sequences. When the result is combined with result (1IA) we
get

D[B(T)] = B(I<).
(IIB) Applying mathematical induction to (IIA) we get

£ £
D7[B(r)] = B(I™)
) ° . . ] .
Corollary 3.2-2: Iet I' = (S, G, R, P, Q) and I¥ =T = (S, G, R, P, Q).
T is (£ + h)-univalent] {(S, G, R, P) is solvable} (T is uniquely solvable)
if and only if [Fz is h-univalent] {(S, G, R, P) is solvable} (I'* is uniquely
solvable).

This corollary is illustrated by Figure 3.2-2. Consider I' of this
figure. It was shown in Section 2.1 (in the paragraph preceding Lemma 2.1-4)
that (S, G, R, P) is solvable. Also, I' is unit-univalent. To see this
observe that every immediate successor (by the direct transition relation R)
of a given complete state s has the same P-projection; e.g., R(sq) = {SO’ 5y
and P(so) = P(sl) = Py. Since (S, G, R, P) is solvable and T is unit-
univalent, ' is uniquely solvable. Turn now to Fl, the unit-shifted sequence
generator of I'. Since (S, G, R, P) is solvable and I' is unit-univalent and
uniquely solvable, by Corollary 3.2-2, ' (less its last projection) must
be solvable, and Il must be zero-univalent and also uniquely solvable.

Lemma 3%.2-3: Iet = (s, G,R,P,Q) satisfy the conditions (1) F. s h-univalent
for some finite ) (s,G,R,P) is solvable. ILet M't* = { = (§,G,R,P,Q).

5 ‘ h e
Then (a) (S, G, R, P) is deterministic (b) DR[BO(I)] = B¥(T).



Proof: (IA) We will prove first that (S, é, é, P) is solvable. It is

given that (S, G, R, P) is solvable. By Corollary 3.2-2, Lemma 2.2-4, and \
Lemma 2.1-Y4a, (S, G, R, P) is solvable. (IB) We prove next that (5, &, R, P)
is semi-deterministic. It is given that I' is h-univalent. By Corollary
3.2-2, I'® is O-univalent. By Lemma 3.1-L, (S, G, R, P) is semi-deterministic.
(IC) It follows from Lemma 2.1-4b and the definition of solvable that if
every complete state of any sequence generator I' = (S, G, R, P) is I-
accessible, than I' is deterministic if and only if T is both semi-deter-
ministic and solvable. Applying this principle to (§, G, R, P) and using

(IA) and (IB) we conclude that (é, é, R, %) is deterministic. This proves
part (a) of the lemma.

(II) By Lemma 3.2-1b

(1) D[(EO(r)] = B°(M).
By Theorem 2.2-3 B(M) = B(r™") and hence
(2) (") = B® (i),

But by Corollary 2.1-1
w, _h* W, _h*+
(3) B(r ) =3(r ).

Combining (1), (2), and (3) gives part (b) of Lemma 3.2-3 and completes the
proof of the present lemma.

We may apply this lemma to Figure %.1-1. As noted in Section
3.1 (S,G,R,P) is not semi-deterministic but (S, G, R, P,Q) is O-univalent.
It is easy to see that (S, G, R, P) is solvable. Applying Lemma 3.2-3
with h = O we conclude that (§,G,R,P) is deterministic and that B (I') = B ().
These two facts may be confirmed by inspection of Figure 3.1-b.

, Actually B(I) = B(f) in Figure 3.1-1, i.e., the finite behaviors
of I' and T are equal as well as the infinite behaviors. There is a variant
of Lemma 3.2-3% which covers this point. Since our main interest in the
present section is in infinite behavior we will merely state this result
without proof. ILet I' = (S,G,R,P,Q) be h-univalent and (S,G,R,P) solvable;
Then Fh* less its Q-projection is deterministic, Dh[B(F)] = B(Fh*), and if
I is in reduced form then B(I™¥) = B(Ph*+)u
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Figure 3.2-% also illustrates Lemma 3.2-3. We begin with
r=(S, G R, P, Q), where I' is unit-univalent and (S, G, R, P) is solvable.
Lemma 3.2-3% tells us that 1¥ (less its last projection) is deterministic,
and also that DL[BW(T)] = BO(rex+), (rl is shown in Figure 3.2-2b; it has
12 complete states. r1* nas 28 states, but only 6 of these are Pl*-admissible,
so I''* has only 6 states.)

3.3 Time-Shift Theorem

We will prove now a lemma which is used in proving one of our
main theorems (the Time-shift theorem) and in validating a procedure for
h-univalence.

Lemma %.%-1 (Fixed Bound Lemma): Iet I' = (S,G,R,P,Q) be a sequence gen-
erator with k I'-admissible complete states. Then I' is w-univalent if and
only if it is k2-univalent.

Proof: The proof is one direction is obvious. To prove that if T is w-
univalent it is kg-univalent we consider any two I'-sequences [sl](O,m),
[s5]1(0,w) and any time t such that P([sl](O,t+k2)) = P([s2](0,t+k2)).
Since there are k° distinct<pairs of complete states, there are two times
t1, tp such that t S t1< to= t + k2, s7(ty) = s1(tp), and sy(t;) = spltp).

Form the sequences

[55](05(1))- [Sl](O,tE-l), [Sl](tl)tg“l); [Sl](tl’ tg"‘l))---

[s,1(0,@) = [8p1(0,tp-1), [sp](ty,t0-1), [spl(ty,tp-1)...

These are both I'-sequences since they are composed of segments of I'-sequences
linked by the direct transition relation. Since P([sl](o,t+k2)) = P)[sg](o,t+k2))
we have by construction P([sz](0,w)) = P([sy)(0,w)). Because I is a-

univalent, Q([SB](O,w)) = Q ([sy](0,w)). Then by construction Q(sy(t)) =
Q(s5(t)) and Q(sp(t)) = Q(sy(t)), and so Q(s1(t)) = Q(sp(t)). Hence T is
k2-univalent. '

Consider a sequence generator I'=(S,G,R,P,Q). If (S,G,R,P) is
deterministic then (S,G,R,P,Q) is uniquely solvable, but the converse does
not in general hold (see Figure §.l—la). We noted earlier (Section 3.1)
that unique solvability is essentially a property of the infinite behavior
of a sequence generator. This suggests the question: What is the relation
of the behaviors of uniquely solvable sequence generators to the behaviors
of deterministic ones? This question is answered by the following theorem,
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which shows that for every uniquely solvable sequence generator there is a
deterministic sequence generator whose infinite behavior is a displacement

of the infinite behavior of the given sequence generator. In Section 4 we
will introduce a concept of "computation". Using this concept the result
may be expressed: the behavior of every uniquely solvable sequence generator
can be computed by a finite automaton.

Theorem 3.3-2 (Time-shift Theorem): Iet I' = (S,G,R,P,Q) be a uniquely sqlvable
sequence generator with k I'-admissible complete states and let K% =T =
(S,G,R,P,Q). Then

(a) (é,é,ﬁ,%) is deterministic
(b) DBAT)] = BYT).

Proof: This follows immediately from the definition of uniquely solvable
(Section 3.1), Lemma 3.2-3, and the Fixed Bound Lemma (3.3-1).

Consider the Time-shift theorem in relation to I' of Figure 3.2-2a
and the derived I''** of Figure 3.2-3. T is uniquely solvable and has 4 I-
admissible complete states. Then the time-shift theorem tells us that Fl6*+,
less its last projection, is deterministic. This is clearly so, for Fl*+,
less its last projection, is deterministic, and further applications of the
£-shift operation will obviously not destroy this property.

We pause to note an analogue of the Time-shift Theorem in which
the shifting takes place in the opposite direction. The displacement
operator Dz was defined to produce a right-shift of the Q-projections of a
I'-sequence; that is, it shifts the Q-projections £ steps later in time,
leaving the P-projections as they were. One could easily extend this
operator to cover shifts in the opposite direction (i.e., with the Q-pro-
Jections moved earlier in time); this could be symbolized by using the
same operator DZ, allowing negative as well as positive integer values for
£. Similarly the £-shift operator can be extended to produce shifts of the
Q-projections to the left; again, we can use the same symbolism P£ and
signify left-shifts by negative values of £. We then get the following
partial analogue to the time-shift theorem. Iet I' = (S,G,R,P,Q) be a
sequence generator, with (S;,G,R,P) deterministic, Iet P =T s Where £ is
negative. Then I' is uniquely solvable, and DY[B®(T)] = BY(T). Combining
this with the Time-shift Theorem we obtain the following result: the set
of infinite behaviors of uniquely solvable sequence generators is exactly
the set of displaced infinite behaviors of deterministic sequence generators.
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It is not obvious from the definition that the class of h-
univalent sequence generators is decidable. However, this is in fact
the case;, as we will now show.

h-univalence Procedure (where h is any non-negative integer or w): Iet
r = (5,G,R,P,Q) be the given sequence generator. Find k, the number of
admissible complete states, by the Reduced Form Algorithm. ILet £ = min
(h,k°). Form A (8,G,R,P,Q). Answer "yes" or "no" as (S,G,R,P)
is semi-~deterministic or not.

Theorem 5.3-3%: The h-univalence procedure 1s a decision procedure for
the class of h-univalent sequence generators.

Proof: We will use the notation of the algorithm. By the Fixed Bound Lemma
I' is h-univalent if and only if T is 4-univalent. By Corollary 3.2-2 [ is
f-univalent if and only if Fﬂis’o_univalent« By Lemma 5,1-h'P£ is O-
univalent if and only if (é,é,é,f) is semi-deterministic. As noted in Sec-
tion 2.1, it is obvious from the definition of semi-determinism that there
is a decision procedure for the class of semi-deterministic sequence
generators. This completes the proof of the theorem.

It can be shown that the following is a characterization of h-
univalence. let I' = (S,G,R,P,Q), k the number of I-admissible complete
states, and £ = win (h,k°). Then T is h-univalent, if and only if, for
any two I-sequences [s7](0,w) and [sp](0,w) and any time t < k°, if
P([sl](O,t+£)) = P([sg](o,t+£)) then Q(sl(t)) = Q(sp(t)). This
characterization can be made the basis of a decision procedure for h-

‘univalence which is more efficient than the one we have given.

Since unique solvability is defined in terms of solvability and
w-univalence (Section 3.1), by combining the w-univalence procedure with
the decision procedure for solvability of Theorem 2.3-2, we obtain a
decision procedure for unique solvability.
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Sh
DPpsdo

51

ISR

(&) r=(s, G, R, P, Q).

I' is zero-univalent and uniquely solvable, but (S,G,R,P) is not semi-

deterministic.
{sot |<
Po,d0

{Sl} e

Py ql

(b) =P = (8 G R, B, Q).
(5, &, R, P) is deterministic, and a fortiori semi-deterministic

Figure 3.1-1

Illugtrgtign of Lemme 3.1-4: T is zero-univalent if and only if
(8, G, R, P) is semi-deterministic.
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So ‘7 sl
Pos qO ISELS]

(&) r=(s, G R P, Q)

<Q,s0”

(v) rt (1 unit-shifted sequence
generator of T)

Figure 3.2-1

Illustration of the f-shift construction, for £ = 1. In
accordance with Lemma 3.2-1, D'[B(r)] = B(r').
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<sp,sp> <s3,85p>
Ppr ) ISERT
<A, S5>
DPq,A
<A,sp> v
py,A
<sQ,s0” <s1,s2> <sp,s1”> <s3,53>
Pprqy ISERT) Pprqy P1s99
<A,sl>
<U,s0”> pO’A
PO;A
<SO’Sl>' <Sl’55>
Porqy P1s99

(v) Pl, the unit-shifted sequence generator of T.
I'", less its last projection, is solvable,
but not deterministic.
I'", is zero-univalent and uniquely solvable.
Figure 3.2-2
Illustration of Corollary 3.2-2
[T is l-univalent] {F, less its last projection, is solvable} (r is uniquely solvable)
if and only if

[rlis 0-univalent] {Fl, less its last proJjection, is solvable} (Pl is uniquely solvable)
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Posdy P19y

Pos9p ’r Pl) qO

(6) r=(s, & & P Q)
(s, G, R, P) is solvable but not deterministic.
I' is unit-univalent and uniquely solvable.

Figure 3.2-2a
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<A-, 32>}
<[\,, 555.
P1,A
{<s2’30>} <53,sg>\JL
<sp,s1>. -<s5,35>4
Po,d1 P1-99
{ <SO’SO> } S1.» 829
<So,Sl> . <Sl,55>}
Pp»Q3 - P59

<A’SO>}
<A,s1> -

Pg,A

Figure 3.2-3

™ where T is Figure 3.2-2a

I and It (less their last projectiom) are not deterministic, but
Fl*+ (less its last proJection) is deterministic

DHE(r)] = B°(rt™)

This illustrates Lemma 3.2-3.
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