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PREFACE

This report is, in part, a result of rewriting material
contained in our two previous reports in the series having the
general title, Language Conversion for Digital Computers. Those
two reports are (1) General Introduction and Volume I, The Logical
Realization of Transliterative Functions, by Arthur W. Burks, Carl
H. Pollmar, Don W. Warren, and Jesse B. Wright; and (2) Volume III,
Minimal Switch Theory and the Folded Tree, by Arthur W. Burks,

Carl H. Pollmar, Don W, Warren, and Jesse B. Wright.

The old material is presented in a new and improved form
(Sections1 through 5) and is augmented by novel results (Sections
6 and 7). The two earlier volumes contained discussions of both
folded trees and minimslity; the minimality results have been ex-
tended and presented anew in a report, Complete Decoding Netss Gen-
eral Theory and Minimality, and it seemed worthwhile to perform a
similar task for the results concerning folded trq?sg
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THE FOLDED TREE¥*

1. INTRODUCTION

—-—

The problem of constructing circuits which perform a certain func-
tion and have some formal properties contributing to engineering efficiency
was considered by Shannon in [I]. (Roman numerals in brackets refer to the
bibliography at the end of this paper.) Part of Shannon's problem (Part II
of .[I], pp, 81-89) was to formulate an arithmetic condition such that for any
sequence of positive integers satisfying that condition a tree circuit can
be constructed whose load distribution is given by that sequence. That con-
dition is identical with our notion of "admissibility," defined in Section
%3 of this paper. '

The present paper takes up this same problem, but is entirely self-
contained. No reference to Shannon's paper is necessary either for defini-
tions of concepts or for proofs of theorems. Our results go beyond those of
Shannon, both in that we prove the necessity of the admissibility condition
and also in that we give a constructive technique, helpful to a practical
engineer, for constructing a folded tree with any given load distribution
satisfying the condition of admissibility. To obtain these results we must
formulate a precise definition of the term "folded tree." Although Shannon
does not give a precise definition of any corresponding concept, it is clear
that our precisely defined concept applies to the circuits which he considers.

We shall use some of the concepts of our previous paper [II], but
we define them anew here, so no acquaintance with that paper is presupposed.
Our method, here as in [II], is to discuss diagrams rather than circuits
directly. The diagrams may be realized by circuits of various different
kinds, e.g., relay transfer contact nets discussed in [I], and electronic
digital computing circuits. The advantages of this approach are (1) that
the range of application of results is wider, and (2) that the problems,
being abstract, can be solved within pure mathematics. Our methods and

* The writing of this paper and the research which it reports were done
under the sponsorship of the Burroughs Corporation, Research Center,
Paoli, Pennsylvania,

The authors wish to thank Dr., Irving M. Copi for many helpful
suggestions and also Dr. Frank Harary for his suggestions,



results are intimately connected with the field of mathematics known as the
theory of linear graphs; but they are not an application of any previously
known materials of that field, and consequently we presuppose no knowledge
of it. Although our definitions and theorems concern diagrams, we shall
frequently comment on their significance for physical circuits.

2, DEFINTTION OF FOLDED TREE

In this section we formulate a precise definition of the term
"folded tree" and show that the diagrams covered by this term are suitable
for representing some familiar circuits constructed out of standard devices.

We shall be concerned with vertex diagrams which are arrangements
of small circles and straight lines, such that (1) each circle has just three
lines touching its circumference, one on its left and two on its right, (2)
each end of each line may touch either a circle (as in Fig, 1) or the ends
of any number of other lines (as in Fig. 10) or it may touch nothing (as in
Fig. 1), and (3) no circles touch each other. (In this paper if a word is
italicized in a sentence, then the word is defined in that sentence.) The
circles are called vertices and the lines wires; the left-hand wire is
called the vertex-input, the upper right-hand wire is called the upper ver-
tex-output, and the lower right-hand wire, the lower vertex-output. The
usage here of "output" and "input" is nearer to that of [I] than to [II].

. The first vertex diagram we introduce is an n-bay tree, for which
the following recursive definition is provided:

1. A l-bay tree consists of just one vertex with its input
and output wires; this vertex is the first (and only).ggz,of the
l-bay tree;

2, An (i.+ 1)-bay tree results from an i-bay tree when, to
each vertex-output u of a vertex in the ith bay, a new vertex
is joined so that u 1is the vertex-input of the new vertex; the
new vertices constitute the (i + 1)th bay;

3. An n-bay tree has only the vertices and wires provided
for in 1 and 2; no diagrams other than those so provided for are
trees,

The input of an n-bay tree is the vertex-input of the vertex of
the first bay. An output of an n-bay tree is a vertex-output of a vertex
in the nth bay. DNote that the tree input is the only wire in the tree
which is not a vertex-output, and that the tree outputs are the only wires



which are not vertex-inputs. Note also that there are ot outputs of an

n-bay tree, The result of deleting the crosses (but no lines or circles)

from Fig. 1 is a L-bay tree. (Note that each bay in this figure is simply
a vertical column of vertices. This will be true of all figures of trees

in this paper, although the definition of "tree" does not require this.,)

Fig, 1

A wire is to be understood as being at any one moment in either
of two states, state 1 or state O, and a vertex as being in just one of
two settings, an upper setting or a lower setting. The state of a vertex-
output is determined by the setting of the vertex and the state of the
vertex-input: if the vertex-input is in state 1 and if the vertex is in
the upper setting, then the upper vertex-output is in state 1 and the
lower vertex-output in state 0; if the vertex-input is in state 1 and the
vertex in the lower setting, then the upper vertex-output is in state O
and the lower vertex-output in state 1; if the vertex-input is in state
0, then regardless of the setting of the vertex the state of both vertex-
outputs is 0,

Before proceeding we will relate trees to the net diagrams of
[II] and described two physical realizations of trees, In the net diagram
of Fig., 2 each square is a conjunction ("and") element whose output is in -
state 1 if and only if both its inputs are in state 1. A vertex, together
with its vertex-input and vertex-outputs, and the net of Fig. 2 represent
the same type of circuit if exactly one of the input pair b,b" is in
state 1 at any one time. (The use of the word"input" in this connection
is similar to the use in [II]; it differs significantly from the use of
the word in the major part of this paper.)
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Fig. 2

Wire a of Fig. 2 is the vertex-input, and wires ¢ and d are the
vertex-outputs, and the vertex is in the upper setting Just in case b
is in state 1. Nets like the one of Fig. 2 may clearly be combined to
form trees.

A conjunction element may be realized by a crystal diode or
vacuum tube circuit whose output voltage is high (state 1) whenever both
circuit inputs are at high voltage, otherwise the circuit output voltage
is low (state 0). Two such circuits, interconnected as in Fig. 2, con-
stitute a physical interpretation of a vertex with its vertex input and
two vertex-outputs. Wire c is in state 1 whenever a and b are both
in state 1, and 4 1is in state 1 whenever a and b' are both in state
1.

A vertex may also be realized by a relay transfer element. A
relay transfer element is a (mechanical) single-pole double-throw switch
with the wire of the pole realizing the vertex-input and the wires from
the output contacts realizing the vertex-outputs. The transfer element
is controlled by a magnet and spring working in opposition, the two po-
gsitions being represented by the two vertex settings. Thus, if current
is flowing (state 1) in the vertex-input, it flows in the upper vertex-
output whenever the relay is not activated and in the lower vertex-out-
put whenever the relay is activated.

Tt should be noted that our vertex diagrams (trees and the dia-
grams of Section 6) are particularly suited to represent relay contact
nets composed of transfer elements, namely, single-pole double-throw
switches, electro-magnetically controlled. In such electrical nets the
wires to the device (magnet) which controls the settingsof the transfer
contacts are not connected into the contact net itself, That our vertex
diagrams do not show the wires which determine the vertex settings is
intended to represent that feature. In contrast the wires EJQ° of an
electronic circuit of the sort represented by Fig. 2 are, in general,
like a, c, and d, connected to other components of the circuit. Elec-
tronic circuits can thereby realize nets which are more complex than ver-
tex diagrams. Hence, the class of circuits repréesented by vertex diagrams



(in the broad sense of Section 6) is narrower than the class of circuits
represented by diagrams constructed from conjunction elements. It turns
out, for example, that in a certain sense of "cost" the tree is probably

a minimal diagram in the first class, while it is not at all minimal in
the second class (see Section 6). To put the point alternatively, a gen-
erally efficient way to do complete decoding with relays is by means of

a tree, but that is not generally an efficient way to do complete decoding
with vacuum tubes or crystal diodes.

A chain of an n-bay tree is a sequence X,,...,Xspn 4 1, Where
X, 1is the tree input and where, for 1 = 2n, if Xi 1is a vertex-input
of some vertex, then X; ;, 1s that vertex and, if Xi 1is a vertex, then
Xi + 1 1is one of its vertex-outputs. It follows that Xop + 1 is a tree
Eﬁtput. In Fig. 1 the vertices and wires marked with crosses constitute a
chain, It is obvious that each tree output is a member of one and only one
chain.

In an n-bay tree the settings of the vertices and the state of
the tree input vary independently of each other, but once these are deter-
mined the state of each wire is determined., If the tree input is in state
0, then every wire is in state O, regardless of the settings of the vertices.
If the tree input is in state 1, then there will be a chain whose every wire
is in state 1 and such that every wire not on the chain is in state 0. What
chain it is will depend. on the settings'of the vertices, since the state of
each vertex-output is determined by the setting of the vertex and the state
of its vertex-input.

We are interested in trees in which the settings of the vertices
do not vary completely independently of each other, but whose vertices are
partioned. into anumber of classes, all the vertices of each class being in
the same setting at any one time. In such trees we indicate the class to
which each vertex belongs by affixing the same label to every vertex of a
given class, vertices which belong to different classes being given differ-
ent labels. We call such a tree a "labeled-tree," and define it as follows.
An n-bay labeled-tree is formed from an n-bay tree by marking each vertex
with exactly one label from a set of m labels, and using each of the m
labels to mark at least one vertex; m can be less than, equal to, or greater
than n. We require, of course, that all vertices having the same label be
in the same setting. Fig. 3 is a 3-bay labeled-tree in which m = n,

An n-bay folded tree is an n-bay labeled-tree in which there are
exactly n labels (i.e., m = n) and, for every chain and for each label,
there is at least one vertex with that label in the chain. It follows that
there 1s exactly one vertex in each chain with a given label, since there
are n labels and n vertices in a chain. A remark on the appropriateness
of the term "folded" in this connection will be made in the Appendix. Note
that Fig. L4 is a folded tree, but Fig. 3 is not.




Fig, 3

Fig, k4

Folded trees are important among labeled-trees because they can
function as "complete decoding nets" in the sense giver'in [I1]. We must
explain what this means and why it is‘so. A eircuit represented by a
lebeled-tree performs its function when the treel input is in state 1
(e.g., after all the transfer contactsof a relay contact net are set, an
electrical signal introduced at the tree input will emerge at the desired
output). We define a Iree state of a labeled-tree to be a definite assign-
ment of its vertex settings such that all veftices'Wifh the same label are
set the same, and such that the tree input is in state 1. It is clear
that there are Em different tree states for a labeled-tree having m
distinet labels. -

We say that an n-bay labeled-tree is complete decoding if and
only if the number of labels m is equal to n, and for each tree state
there is at least one tree output which is in state 1 in that tree state
and state O in every other tree state. It follows that there is only one
tree output in state 1 in any tree state of a complete decoding n-bay .
labeled-tree, since it has exactly 2% tree states and 2% tree outputs.
Q nearly identical concept of complete decoding is discussed in Section 3
of [II].)

Theorem 1: ° A necessary and sufficient condition for a labeled-tree to be
complete decoding is that it be a folded tree,

Propf of necessityz Consider an n-bay labeled-tree which is complete de-
coding. Consider any tree state S and the tree output Q which is in
state 1 only in S. There is only one chain C which includes Q. Sup-
pose that, for some label P;, there is no vertex in C labeled Pi Now
let 5' be a different tree state which coincides with §= except for the
settlngs of the vertices labeled P;. Q would be in state 1 in S' as
well as in S, contrapy to the assumption that the tree is complete decod-
ing, Hence, every tree state determines one chain such that for each



label there is at least one vertex with that label in the chain, Differ-
ent tree states determine different chains; and since there are ot gif-
ferent tree states, there must be 2" gifferent chains, each of which has
the property that for each label there is at least one vertex with that
label in the chain. But these are all the chains that there are, since
an n-bay labeled-tree contains exactly o chains, Hence, any complete
decoding labeled-tree is a folded tree.

Proof of sufficiency: Consider any n-bay folded tree. Every tree out-
put Q is on a chain C containing, for each label Py, one and only
one vertex labeled P;., Hence, there is a tree state S 1in which all
the wires of C (including Q) are in state 1. Also, for any different
tree state §', there will be at least one vertex of C in a different
setting and so Q will be in state O in 8'. Therefore, (1) each tree
output will be in state 1 in one and only one tree state. Furthermore,
(2) any two tree outputs will be in state 1 in different tree states,
vhich can be proved as follows. If @, and 4o are different tree out-
puts on chains C, and C,, respectively, then let i De the number of
the latest bay in which C; and C, have a vertex V in common. Sup-
pose that V 1is labeled Py, and suppose (without loss of generality)
that C; includes the upper vertex-output of V., C» must then include
the lower vertex-output of V. In order for Q; to be in state 1, V
will have to be in.the upper setting, and, in order for Q, to be in
state 1, V will have to be in the lower setting. Hence, Q; and Qs
are in state 1l in different tree states.

Since there are as many tree states as tree outputs it follows
from (1) and (2) that the tree is complete decoding., This completes our
proof of Theorem 1.

An.EAbay standard tree is an n-bay labeled-tree in which any
two vertices have the same label if and only if they are in the same
bay. Fig. 5. is a 3-bay standard tree.

Fig. 5.



(If we interpret the vertices as in Fig. 2, an n-bay standard tree is
essentially the same as the 2-n tree defined in Section 4 of [II].)

Consider now two electrical devices, T; realizing a 6-bay stan-
dard tree and T, realizing a 6-bay‘folded tree in which the number of
vertices labeled P, ouuy Eﬁ; respectively, is 1, 12, 12, 12, 13, 13,
Both perform the same decoding function but the latter has a more nearly
equal distribution of labels. Since all of the vertices with the same
label are set in the same way at any one time, this means that the load
distribution on the wires controlling the settingsof the vertices is
more nearly equal in T, than in T,. (The sequence 1, 12, 12, 12, 13,
13 will later be referred to as the "loading sequence" of the tree rea-
lized by Tp.) If the devices are constructed of relays (and for reasons
indicated earlier in this section the tree is more important for relay
contact nets than for electronic digital computing circuits), a further
factor needs to be considered, This factor is the number of contacts
that each available coil controls., One transfer contact can realize
one vertex, but two contacts of the same relay cannot realize vertices
with different labels. If one had available relays with eight transfer
contacts each, T, with load distribution 1, 12, 12, 12, 13, 13 would
require eleven relays, while the (standard tree) circuit T, would re-
duire only ten relays., On the other hand, a (folded tree) circuit with
load distribution 1, 8, 8, 15, 15, 16 would require only nine relays.
Depending upon whatqphysical equipment is available, different load dis-
tributions for a folded tree offer greater or less advantage. It is
therefore of practical interest to know what different load distributions
are possible for folded trees,

We are thus led to consider the interesting problem of deter-
mining how the Pj's can, in general, be distributed among the 2.1 ver-
tices of a folded tree. More precisely, given a sequence of n 1integers
81y seay By is there an n-bay folded tree having, for each i, ay ver-
tices labeled Ei? A condition for a sequence of positive integers to
have a folded tree corresponding to it was stated in [I] and there proved
to be sufficient, That condition is the property of "admissibility" as
defined in the following section. All the sequences discussed in the pre=-
ceding examples have this property; 1, 2, 5, 6, 20, 29 is a sequencé‘that
does not, In Section 3 of this paper we prove admissibility to be &' nec-
essary condition also; and in Sections L and 5 we present and justify a
method of construction which when applied to any admissible sequence of
positive integers results in a folded tree corresponding to that sequénce,

~ thus providing a proof of sufficiency different from Shannon's earlier
proof which was not constructive.



3. LOADING SEQUENCES; ADMISSIBILITY

In this section 'we define an arithmetic condition on sequences
of non-negative integers, which we shall call the condition of "admissi-
bility," and show it to be a necessary condition for a sequence to re-
present a distribution of labels among the vertices of a folded tree. To
define "admissibility" we must first introduce some additional notions.

Let V(i,j), 1 £ J £ 277, be the jth vertex in the ith bay.
Inasmuch as the bays are vertical in our figures, 1(1 ,1) 1is the top
vertex of the ith bay, V(i,2) the vertex next to the top, etc. It is
clear that the vertex-outputs of V(i,3) are the vertex-inputs of
V(i+1,2j-1) and V(i+l,2j). Now let us consider all the chains which
include V(i,j). These all have a common vertex in each of the first
i bays. That part of the labeled-tree which includes V(i,j) and all
vertices from the last n-1 bays which are on chains containing V(i,J),
together with all vertex-inputs and vertex-outputs of those vertices, s
itself a labeled-tree and is called a minor tree. We refer to it as
T(i,J) since it is determined by V(i,j). T(1,1) is, of course, the
original labeled-tree itself. Note Fig. 6 in which 2‘_(2,2) is cirecled.

We assume without any loss of generality that the m labels
of T(1,1) are Py, Psy...,Pp. The index of Px in T(i,j) is the
number of vertices labeled Pr in T(i,i which we denote by ak(i J) .
The loading sequence S(i,j) of T(i,j) 1is the sequence a1(isd)seees
am(i,j). Note that ayx(i,j) is sometimes O. §(1, 1). is then the load-
ing sequence of the original labeled-tree T(1,1).

Fig, 6



In Fig. 6. 8(2,2) is 2, 2, 1, 2, vhile $(1,1) is 3, 5, 3, k. Note that
T(i,3) V{1,3), 8(3,d), and & (i,J) are functionally dependent upon the
labeled-tree under consideration as well as upon 1 and Jj, even though
that. functional dependence is not explicit in our notation,

Where _S_ ig a finite sequence of non-negative integers a1,
seey 8y, We define M(8) to be the sequence rearranged in monotonic
non-decreasing order, zeros deleted. Thus, if S is 3, T, 5, 0, 2,
1, 0, 5, M(ﬁ) is 1, 2, 3, 5, 5, T«

A sequence S of m integers satisfies the unit condition
if there is a 1 in the sedquence. _S_ satisifes the total sum condition
if the sum of the terms of S 1is 2-1, where p is the number of non-
zero terms. S satisfies the partial sum condition if, f0£ each
k £ p, the sum of the first k terms of M(8) is é 27-1, A
sequence § is admissible if it satisfies all of these three conditions.
Thus, 0, 5, 0, 1, 0, 5, 4 is an admissible sequence in which m = 7
and p = U4; and 1, 9, 5, 10, 6 is an admissible sequence in which
m = p = 5.

Theorem 2: A minor tree T(i,j) of an n-bay folded tree is an (n-i
+1)-bay folded tree.

Prooft Obviously T(i,J) bas n-i+l bays. All the chains of T(1,1)
containing V(i,Jj) have the vertices of the first i bays in common,
These are labeled with exactly 1 of the labels, Now each chain must
contain each of the remaining n-i labels in the last n-i bays. But
these chains (with the vertices of the first i-1 bays deleted) are
the chains of T(i,j). Hence, T(i,j) isa folded tree,

Theorem 3: In an n-bay folded tree S(i,j) has i-1 zeros and n-i+l
non-zero terms.

The proof is immediate from Theorem 2.

Theorem 4: 1In a folded tree, if V(i,j) is labeled Py, then a,(i,J)
= 1.

Proof: Since V(i,Jj) is labeled Px, no other vertex in any chain
containing V(i,j) is labeled P,. For suppose that V(i',j'), i' + 1,
on a chain C with V(i,J) is also labeled Py. Then (C has n-2
other vertices which must (in order to satisfy the folded tree condition)
be labeled with n-1 other labels which 1s impossible,

10



Theorem 5: In a folded tree S(i,]) satisfies the unit conditon.

Proof: This follows directly from Theorem k.

Theorem _é: In a folded tree S( i,j) satisfies the total sum condition.

n-i+1

Proof: This follows from theorem 3 since there are 2 -1 vertices in
T(1i,3).
Theorem 7: In an n-bay folded tree ?k(i+l)2;1'l) = 0 1if and only if

ap(i*1,23) = O.

Proof: T(i,j) by Theorem 2 is a folded tree and, therefore, each Py which
labels any vertex of T(i,j) has to label at least one vertex in each chain
of T(i,j). Every such chain contains V(i,J). Beyond V(i,J) each chain
of T(i,j) lies wholly within T(i+1,2j-1 ) Tor T(i+l,2]). Hence any label
oceurs in T(i+1,2j-1) if and only if it occurs in T(i+1,2]), from which
Theorem 7 follows directly.

Theorem 8_v In an n-bay folded tree S(i,]) satisfies the partial sum
condition.

Proof: The proof is by induction, beginning at the nth bay of the tree
and going to the left. We first show (1) that, for every 'j = ph~? , the
theorem holds for S(n,j). We then show (2) that, if it holdg for S(i+l,J)
for every j = ol it holds for S(i,j) for every j = 2871, (1) is
true by Theorem 3 for _S_(_ J) has only one non-zero term, We prove (2) by
showing that, if it holds for S(i+1,2j-1) and S(i+l, 2Jj), then it holds
for S(i,j). Suppose V(i,j) is labeled Py. Let M(S ( i,d)) be ag(i,d),
ag,(1,4), ago(1,3), .., 2gy_;(1,3), where, of course, aq(1,d) = 1. By
hypothesis S(i+1, 2;1-1) and §(i+l,2j) satisfy the partial sum condition;
in other words, for each k £ n-i, the sum of the first k terms of
M(S(1+l 2j-1)) or M(S(1+l 2j)) = pk_1. Now, if such a condition holds
for a monotonic non-decreasing sequence , it holds for the sequence in any
order. Furthermore, since, for k # g, a(i,j) = ax(i+l,23-1) +

8y (i+1,2j), with the aid of Theorem 7 it is easy to see that the non-zero
terms of S(i+l,2j-1) are ag,(i+l,2j-1), ..., ag, . j(i+1,24-1). and the
non-zero terms of §(i+l,2J]) are ag (itl,23), e.ey 8gn_i(i+l,2]). Hence for

11
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each k € n-i, ig._g (3’._+l,2i-l) = 2 -1 and ﬁlgg (_i_+l,2_j_) >
X= X - X= X
o¥_1. Hence, Z(gg'x(i_ﬂ,e;-l)+ggx(_i_+1,2;)) 2 oK*tlo, (learly,
x=1 -

k k
aq(1,4) +X§_l"a'gx(i’i) = 1 +Z(z_a;gx(i+l,2_i-l) +

X=1

8, (141,20));

nv

2k+ 1

. k
hence for a k € n-i, a (i,3) + a (i, -1, which means
ny k n-i, _q(_;.sl) é_gx(_,g) )

that the sum of the first k+l terms of M(S(i,d)) is = 25"
that S(i,j) satisfies the partial sum condition.

-1, proving

Theorem 9: The loading sequence S5(1,1) of an n-bay folded tree is an
admissible sequence of n non-zero terms.

This result follows immediately from Theorems 3, 5, 6, and 8,
putting i = j = 1.

4, THE SPLITTING TECHNIQUE

In this section we provide an effective method of constructing
a folded tree with a given admissible loading sequence of positive inte-
gers. The proof that this method will produce a folded tree is given
in the next section. The procedure consists in taking the loading se-
quence proposed for the folded tree T(1,1), selecting the unit term for
V(1,1), and dividing the remaining terms so as to yield two admissible
sequences, one for T(2,1) and the other for T(2,2)., This procedure,
called the "splitting technique', is then repeated for each of those two
sequences to provide admissible sequences for T(3,1), T(3,2), T(3,3),
and T(3,4), The process is iterated until T(n,2""!) is reached. It
will be proved in the next section that each vertex isthus provided with
a label and that,for each Xk, the proper number of vertices will be labeled

_:F_)ku

It must be admitted that there are glternative splitting tech-
niques which applied to the same admissible sequence give different folded
trees. Our splitting technique, for example, applied to the admissible
sequence 1, 4, 5, 5 givesa folded tree having three different labels in
its last bay, but there is also a folded tree with the same loading se-
quence which has only two different labels in its last bay (see Fig. T).

12



Fig. 7

In this section and in Section 5 we let S'(i,Jj), which is
ai(i,d), as(i,d), «.., ap(i,d), be the sequence obtained by repeated
applications of the splitting technique from 8'(1,1), which is an
arbitrary admissible sequence without zero terms. The symbols S'(i,J)
and S5(i,Jj) are to be clearly distinguished even though in some cases
they refer to the same sequence of numbers. S5'(i,j) 1s the sequence
derived by our splitting technique from a given admissible sequence
8'(1,1), whereas 5(i,j) is the loading sequence of T(i,J), a minor
tree of a given labeled-tree. '

Let us suppose that S ‘(i,i) is a given admissible sequence.
We describe now the splitting technigue which determines S'(i+1,2j-1)

and S'(i+l,2j). For every k, if ag(i,j) = 1or 0, then let
_a;l'{(_i_+1,2;]_-l) =" il'{(iﬂ.,%i) = 0. Let M(S'(i,J)) be Llyd1s eos _clp,
(It will turn out that p = n-1.) We then determine sequences Db,

weesy bp 8NA Ci, +..y Cp, such that, if 4 1s ap(i,d), by and cx
are to be ak(i+l,2j-1) and g_}‘{(}jl,%j_), respectively, The recursive
procedure for determining by and ¢, is as follows: (1) put ¢; =
and by = 4d;-1; (2) if by = 1 (i.e., if & = 2), proceed to (3),

otherwise first put by = 1 and co = do-1; (3) (for each X,
x  3,and, for x = 2 if d; = 2) assuming that bi, ..., b |
and Ci, weey Cxy have been determined, put

b ) d, * Ax

13



and

f dy + 1 - Ay
- |25
where
x-1
by = z(ﬁy'l’) .
y=1

Here (@], for any real number @, is the integral part of g, i.e.,
the greatest integer not greater than ¢. The reader can readily
verify that for each X, by + cx = dx-

Tn sctual calculation the work is even simpler than it appears
from the formal statement of the procedure. The idea behind the split-
ting technique is simply to provide for the 1 in each sequence, and, for

each d ., to find a b, and ¢, such that b +c, = d,, insucha
way that

>
b
y=17

is as nearly equal as possible to

X
5

y=1

We also require that
X
>¢y
y=1

be never less than

S
y=1
except where d; > 2 and x = 2. Thus, all terms except possibly

the first three will be split as evenly as possible so that AX for

x > 3 is either O or 1. For X > 3, then, if gx is even,

by = &y = d,/2; if d, is odd and Ay 1is 1, then Dby = (4_+1)/2
and ¢y = (gx-l)/Q; if dy 1is odd and Ay 1is 0, then Ex = ?d _1)/2

1k



and cy = (_c_l_x+l)/ 2. Furthermore, Ay does not have to be recalcu-
lated each time for x > 3; for if dy is even, then Ay, = Bys
and if -q-x is odd, then Ax+1 ig 1 if A:x is O and O if Ax is 1.

The following table carries through a calculation from
S8'(i,j) to 8'(i+l,2j-1) and §'(_i+l,2g).

5'(1,4) 0 3 0 1 8 1k 5

d-sequence 3 SW‘

b-sequence

N
b
Ul
-3

c-sequence 1 L 3 1
S (_i+l,2g'_—l) 0 2 0 0 5 7 1
8'(i+1,2)) 0 1 0. O 3 7 L4

It is simple to rearrange the terms of the b and ¢ sequences in
forming the sequences S'(£+l,2_i—l) and $8'(i+1,2j) in accordance

with the rule that where dy 1is ay(i,J), by and c, are aj(i+l,
2j-1) and ay(itl,2j), respectively.

To illustrate the case where d, = 2, conglder the
M(S'(i,J)) sequenee 1, 2, 5, 9, 14. Here the b-sequence is 1, 2, 5,

T and the c-sequence is 1, 3, 4, T.

Since we have shown how an admissible S'(i,j) is split into
S'(i+1,2j-1) and S'(i+l,2J), it is easy to see that given 5'(1,1)
all the S'(i,j) can be calculated, provided all the applications of
the splitting technique yield admissible sequences. Once all these
have been calculated, a folded tree whose S(i,j) is S'(i,J) can
easily be constructed. If there are n terms in S'(1,1), then, of
course, we want an n-bay folded tree. An n-bay tree is constructed
and each vertex V(i,j) is labeled -Ek where 31'{(;1'_,;) is unity.

(In the next section we prove that a vertex will be assigned one and
only one label by this procedure. )

We will now provide an example showing the use of this pro-
cedure in constructing a 5-bay folded tree with the given admissible
loading sequence, 1, 7, 7, 8, 8, which is one of the most evenly ba-
lanced loading sequences possible for a 5-bay folded tree. We omit
the d-sequence, as well as the b-sequence and c-sequence, in each
step.

15
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Since 8'(1,1) is1, 7, 7, 8,

§'(2,l) is O, 6, 1, lL, 1&, and §'(2,2) is 0, 1, 6, LL,. LL;
_S_'(5,1) is 0, 3, 0, 3, 1, and §_'(3,2) is 0, 3, 0, 1, 3;
8'(3,3) is 0, 0, 3, 3, 1, and _S_'(5)l*) is 0, 0, 3, 1, 3;
8'(4,1) is 0,2, 0, 1, 0, and 8'(k,2) is 0, 1, O, 2, O;
§'(k,3) 18 0,2, 0,0, 1, and S'(k,4) 1is 0, 1, 0, 0, 2;
8'(4,5) is 0, 0, 2,1, 0, and S'(4,6) is 0, 0, 1, 2, O3
S'(4,7) is 0, 0,2, 0, 1, and S'(4,8) 180, 0, 1, O, 2.

For each 1i,J we label ¥(i,j) P, where the kth term of 8'(1,J)
is unity. It is not necessary to compute §'(5)l) for any j, since
every _\_7_(5 sJ) can be labeled with that label which has not already

appeared in the chain containing that _\['(5 »d)s The result is Fig. 8,
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5., THE VALIDITY OF THE SPLITTING TECHNIQUE

In this section we show that, given any admissible n-term
sequence S'(1,1) containing no zeros, the procedure specified in
Section 4 always results in a folded tree whose loading sequence
5(1,1) = 8'(1,1). Thus we have a constructive proof that the ad-
missibility of any sequence of positive integers is a sufficient
condition for it to be the loading sequence of a folded tree. The
most difficult part of the proof is to show that the splitting tech=-
nique is admissibility-preserving, i.e., to show that the sequences
8'(i+1,2j-1) and 8'(i+l,2j) which result from S'(i,j) by the
splitting technique are admissible if §'(gpgj is admissible.

(We do not give a complete proof here but rely on the
results obtained in [I¥ ], We shall, however, present enough of the
proof to give an intuitive understanding of the argument.)

Theorem 10 If 8'(i,j) is an admissible sequence with at least -
two non-zero terms, then the two sequences which result from apply-
ing the splitting technique to it satisfy the unit condition.

Proof (here and in the following proofs we use the motaiion developed in Sec-
tion L) Since 8'(i,j) has at least two non-zero terms, d; must
exist. d; > 1 since M(8'(i,J)) satisfies the partial sum con-
dition, If d; = 2, then by = ¢y = 1, If d; > 2, then
8'(1,J) cannot have exactly two non-zero terms, otherwise S'(i,J])
would not satisfy the total sum condition; hence, d, also exists

and ¢; = by = 1,

Theprem 11: Both of the sequences which result from applying the
splitting technique to an admissible sequence satisfy the total sum
condition,

Proof; We need two lemmas.

Lemma 1. If 4 = x & p+1,then A = O orl; if
d; = 2, then this is so for x = 1,2,3 as well,

The proof is by induction, and can be found on p. 33 of [IV]

(Lerms 1). (Note that "d," of this paper corresponds to "ai" of [IV],)

17



Lemms, 2. Ap+1 = 0,

Proof: We show first that Ap-.+ 1 = Oorl, By Lemma 1
the only possible exceptions to this would be where d; > 2 and

= lor2, If p = 1, then d; = 2, inorderthat M(S'(i,J))

satisfy the total sum condition. If p = 2, then d; +d, = 6
by the total sum condition. If d, > 2, then d; = 4, = 3,
since the d-sequence is monotonic non-decreasing. Here c¢; = bp
= 1 and b; = cp = 2 sothat Az = O. Having shown that in
every case Ap + 1 = O or 1, we must now show that the-value is
actually O. As mentioned in the preceding section, for each X, Cy
+ by = dy; hence,

X 2 2
/_EX + /——va = Zix .
x=1 x=1 X=1

But, since M(S'(i,J)) satisfies the total sum condition,

L
~Na, = 2P,

and

2
2B -
x=1

Ir Ap+1 were 1, then their sum would have to be odd. Hence,

The theorem now follows directly, Since Lemma 2 entaills
that

18



and

N

by

»
i
[

are equal, it follows that

D D D
- < _,pH1
zg-x = 2>by = ngx =2 -2 .
x=1 x= x=1
Hence,
2 2
— = p-
> o= >g = 2

»
I
=
»
1]
—

and Theorem 11 is proved.

Theorem 12: If Di, <., P.p and Ci, ees, ep are the sequences
which result from the application of the splitting technique to an
admissible sequence §'(i,j), then for every x such that 1 £

x € p,

b, T 2%
y=1
and
X
I > X
ziy = 2-1 .
y=1

This is proved as Lemma 3 on p. 34 of {IV]. (The "derived
order", as the term is used in [IV], is the order bi, bp, ..., b
and ¢y, Cpy ..., Cp @S Opposed to the monotonic order.) Roughly,
Theorem 12 follows because M(S'(i,Jj)) satisfies the partial sum
condition and the xth term of the b-sequence and the xth term of the
c-sequence are usually obtained from the (x+1)st term of M(S8'(i,J))
in such a way that

X

EY
=1
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is nearly equal to
Thus,

is approximately

X
/2> 8, -
y=1

Since 1, d1, ..., 4 are the first x + 1 terms of M(8'(1,d))
and,since S'(i,Jj) satisfies the partial sum condition,

Xy

ny

X
l+$_q_y
7=

and hence

nw
no
o
1
=

X
1/2> 4,
i

Theorem 13: If §'(i,j) is admissible, then 5'(i+l,2j-1) and
S'(i+l,2j) satisfy the partial sum condition.

This is proved as Theorem 3 on p. 40 of [IV]. In order
to prove Theorem 13 one must extend the result of Theorem 12; for
the b-sequence and c-sequence are not always in monotqnic non-de-
creasing order, and a sequence satisfying the summation condition
of Theorem 12 may no longer satisfy it when monotonized. Fortu-
nately, it can be proved that after the third term the b-sequence
and c-sequence are each, in the terminology of [IV], quasi-mono-
tonic, i.e., for any x and x', if 4 £ x < x' £ p, then by
Ex’ +1 and ¢y £ Ccy' + 1. It is rather easy to show by virtue
of this fact and Theorem 12 that, for each X,

1

-
>b ® 2N,

i1’
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where Di, ..., p% is monotonic after the third term and results
from by, ..., Ep by interchanging the appropriate terms after ba;
similarly for the c-sequence. (Cf. the theorem on p. 18 on [1V].)
The extension of this result to the case where the first three terms
are rearranged to make the entire sequence monotonic is made in the
proof in [ IV].

Theorem 14: For every i < n, if §'(i,j) has n terms inclu-
ding exactly i-l1 zero terms and is admissible, and if S'(i+1,2§-1)
and 8'(i+l,2j) are obtained from S'(i,j) by the splitting tech-
nique, then S'(i+1,2j-1) and S'(i+l, 2j) are admissible and each
contains exactly 1 zeros.

Proof: That these are admissible follows from Theorems 10, 11, and
13. §‘(_j:+l,2<_j_—l) differs from bj,..., bp in at most the presence
of zeros and the order of terms, which does not affect admissibility;
similarly for S'(i+l,2j) end ci, ..., ¢,. To prove that they each
have 1 zeros, it suffices to prove that there is one and only one -
unit term in $'(i,Jj). That there is one follows from the fact that
S8'(i,J) satisfies the unit condition. That there is only one follows
from the fact that S'(i,j) satisifes the partial sum condition; for
if there wWere at least two, then the sum of the first two terms of
M(S'(1,j)) would be 2 < 22-1,

Theorem 15: Given $'(1,1) as an admissible n-term sequence with-
out zeros, the procedure specified in Section 4 results in an n-bay
folded tree whose S(1,1) = 8'(1,1).

Proof: From Theorem 14 it follows that for any Jd < 211 the se-
quence S'(n,j) has n-l1 zeros and is admissible., Its one non-zero
term, say, 8k, must be unity by the total sum condition, and so
V(n,j) is labeled Py. Therefore, (1) S'(n,j) ie:S(n;j) and

T(n,J) is.a folded tree.

We now go on to prove that (2) for any i and j, if
'(i+1,23-1) 1is S(i+1,2j-1) and 8'(i+l,2J) is S(i+1,2]), and if

(1+1,2j-1) and T(itl,2J) are folded trees, then 8'(i,J) 1is
(1,§) and T(i,J) is a folded tree. There is a set

P ceey P
Sj T "mn-i}
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of n-i distinct labels such that each chain of I(ifl,gi-l) contains
exactly one vertex labeled with each member of the set. The m;th, ...,
my_jth terms of $(i+1,2j-1), which is 8'(i+1,2j-1), are exactly those
terms which are non-zero terms. There is a similar set for T(i+l,23) .
Now this set is identical to the set for T(i+l,2j-1), since for any g
the gth term of §f£i&l,2g—l) will be made zero by the splitting tech-
nique if and only if the gth term of §'(i+l,2j) is made zero. If
V(i,J) is labeled Py, then k is not one of the my,..., m,_;; this
is so because the kth term of $'(i,J) is one and, therefore, the kth
term of 8'(i+1,2j-1) and the kth term of $'(i+l,2j) are each zero,
From this it follows that every chain of T(i,j) has exactly one vertex
labeled with each member of the set

eu,P
{"k’-ml’ "mi} ’

since a chain of T(i,j) is either a chain of T(i+1,2j-1) or a chain
of T(i+l,2j)  with V(i,j) and its vertex input added. Hence T(i,j])

is a folded tree. Now each term of &'(i,j), except aj(i,J) = 1, is
equal to the sum of the corresponding terms of §'(i+l,2j-1) and S'(i+l,
23); ap(i+l,23-1) = Ek(ifl:gi) = 0. (This follows from the specifi-

cation of the splitting technique.) Since the vertices of T( i,j) are
those of T(i+1,2j-1) and T(i+1,2j) together with V(i xi)’ it follows,
from the fact that 8 (1+1 2j-1) 1is S(i+1,2j-1) and S'(i+l,2]) is
S(i+1,2), that” 8'(i,J) 1is S(i,4).

From (1) and (2) it follows immediately by induction that S'(1,1)
is $(1,1) and T(1,1) is a folded tree.

6. THE ECONOMY OF THE FOLDED TREE

The question arises as to whether circuits represented by folded
trees are the most "economical'ones which can function as complete decoding
circuits. As we have indicated earlier (Section 2) the answer is in the
negative so far as electronic digital computing circuits are concerned (see
also Section 5 of [II]). However, folded tree relay transfer contact nets are
probably the most economical (in a sense to be defined) of all complete de-
coding relay transfer contact nets. To formulate this proposition precisely
we must delimit the class of diagrams whose realizations are all such com-
plete decoding relay transfer contact nets. ' |

Our definition of vertex diagram at the beginning of Section 2
was motivated by two considerations: (1) that a relay transfer contact
is well represented by a vertex with a single vertex-input and two vertex-
outputs, and (2) that in a relay transfer contact net the relay
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transfer contacts can be arbitrarily connected. Hence any relsy trans-
fer contact net can be represented by some vertex diagram. In this
section we go on to define ann-label complete decoding vertex diagram
in such a way that every transfer contact net which performs a complete
decoding function is represented by a diagram of this kind. Our belief
that folded tree relay transfer contact nets are probably the most eco-
nomical of all complete decoding relay transfer contact nets can now be
more precisely stated as the conjecture: The n-bay folded tree has the
minimal number of vertices of any n-label complete decoding vertex
diagram.

The objection may be made that the minimality of the number
of vertices of a complete decoding vertex diagram is not a sufficient
condition for its realization by relays to be minimal in cost, for the
cost of a relay transfer contact net depends not only on the number of
transfer contacts in it but also on the number of relay coils required
to operate 1t, To particularize this objection, consider the problem
of constructing a complete decoding net using only relays with eight
transfer contacts each; here the number of relays required is a better
indication of the cost of the net than the number of transfer contacts
it contains.

There is a certain force to this objection., However, it is
to a large extent'mitigated by our previous folding results. For if
an n-bay standard tree circuit has a minimal number of contacts, we
can in practice use that folded tree circuit which of all n-bay folded
trees has the least number of relay coils. For an example see the last
part of Section 2. When relays with different numbers of contacts are
available at costs which are not directly proportional to the number of
contactsthey contain, then a different folding can be employed to min-
imize the total cost of the circuit,

We have not proved our minimality conjecture, but in this
section we present a partial result in that direction. To this end we
will introduce a certain subclass of the class of n-label complete de-
coding vertex diagrams, namely, the subclass of all n-label progressive
diagrams. We shall prove that the n-bay folded tree has the minimal
number of vertices of an n-label progressive diagram. It seems, intui-
tively, that an n-label complete decoding vertex diagram which is not
an n-label progressive diagram should have at least as many vertices
as an n-bay folded tree, and it is on this ground that we make our
conjecture.

We now proceed to carry out the program sketched above, Since
all the vertex diagrams considered in previous sections were trees, we
first present an example of a vertex diagram that is not a tree (Fig. 9).
(Note the use of the loop in the wire W of Fig. 9 to indicate that the
wire W does not touch the wire V.)
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Fig. 9

Some of the concepts already introduced in connection with
trees must be generalized to apply to arbitrary vertex diagrams.
First, we require a more general method of déscribing the way states
of wires are determined. To accomplish this we define the notion of
the connection of two wires.

We say that two wires are directly connected when they touch
each other. A vertex is directly connected to a wire whenever the wire
is either its vertex-input, or itsupper (lower) vertex-output when the
vertex is in the upper (lower) setting, Two wires W and W' are
connected if there is a sequence of wires and vertices Xi; ..., X,
(n = 1) such that W is X;, W' is X , and such that, for each
i< n, X, is directly connected to X;+1l. By taking n = 1 we
see that any wire is always connected to itself., The sequence X,,
«+ey X, 1is a connection of W and W', Thus, whether two wires in
a diagram are connected usually depends upon the settings of some of
the vertices of the diagram.

An n-label complete decoding vertex diagram (with designated
diagram input and diagram outputs) is a vertex diagram in which the
following hold.

1. EFEach vertex  V has exactly one label from a set of n
distinct labels.

2, For each label there is at least one vertex with that
label.

3. There is exactly one wire K designated as the diagram
input.

4, A diagram stateisadefinite assignment of the vertex
settings such that (a) all the vertices with the same label
are set the same, and (b) a wire is in state 1 if and only
if it is connected to the diagram input.
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5. For each diagram state, there is at least one wire which is
in state 1 in that diagram state and in state O in every other

diagram state, and for each diagram state one such wire is de-

signated (arbitrarily, if there is more than one) as a diagram

output of the diagram.

The diagram input is in state 1 in any diagram state since
it is always connected to itself. Since there are n labels for
the vertices, there are o1 diagram states, and, therefore,zn
diagram outputs. For any diagram output, (Q), let S(Q) be
the diagram state in which Q is in state 1.

Sometimes in these diagrams a vertex may have the state of its
vertex-input depend on the state of one of its vertex-outputs.
For example, consider the uppermost vertex of Fig. 10. When it
is in its lower setting, the state of its vertex input Q, depends
upon the state of its lower vertex output. For this reason the
terms "vertex-input" and "vertex-output" are not as appropriate
for the more general class of vertex diagrams as they are for
the class of trees.

Obviously, trees are vertex diagrams, and by Theorem 1 n-bay
folded trees are complete decoding n-label vertex diagrams.

For an arbitrary connection zl"°':Z@! if Kk is directly
connected to X, for m > k + 1, then X, .q,...,%, ; are
superfluous; the sequence with them deleted is gtill a connec-
tion. It is easy to see, therefore, that in a diagram state,
S, if there is a connection between W and W', then there is
a connection between them in S without any superfluous vertices
or wires. A chain of a diagram output Q is a sequence X,,

‘o of wires and vertices which in $(Q) is a connection
of the input X and Q without any superfluous elements.
Obviously, the chain as defined in Section 2 is a chain in this
sense.

If Xy,...,%y is & chain C (where X, is the diagram input
K and X, is a diagram output), then for any 1,j such that
i < J we say that X; is earlier than X, in C. If X is
a vertex, then X; , and §i+l are wires S% the vertex, one being
the vertex-input of X and the other being one of the vertex-out-
puts of Xj; we say that Xy., 1s the early wire and Xi+; the
late wire of the vertex Xi in the chain (. ~ If the early wire
of a vertex in a chain is the vertex-input, then we say the vertex
is oriented forward in the chain; if the early wire is a vertex-
output, then the vertex is oriented backward. For example, the
vertices labeled P, in the chains of Q, and Q, in Fig. 10 are
backward, whereas the vertex labeled P, in the chains of Qs and
Q4 1s forward in both those chains. The vertex labeled P; 1is
forward in all chains.
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Fig. 10

A progressive diagram 1is a complete decoding vertex diagram
in which each output Q has at least one chain in which all vertices
are forward. The folded tree is a progressive diagram while Fig. 10
is a complete decoding vertex diagram which is not progressive,

An output Q of a progressive diagram may have more than
one chain in which all vertices are forward. It is convenient to pick
out for each output Q of a progressive diagram one such chain and
refer to it as C(Q), or the selected chain of the output.

Where Q and Q' are two distinet diagram outputs of a
complete decoding vertex diagram, we define V(Q,Q') to be the latest
vertex V in C(Q) whose early wire is in state 1 in S(Q') and whose
late wire is in state O in 5(Q")s Such a vertex must exist since the
diagram input X 1is in state 1 in S(Q') but Q is in state O in
S(Q'); the latest wire of ({Q) wvhich is in state 1 in ${(Q') must
be the early wire of a vertex in C(Q)., For example, in Fig, 11
V(Q1;94) 1is the vertex labeled Py in C(Q;) and V(Q4,Q.) is the
vertex labeled Pp in ({Q4). This example shows, incidentally ,
that V(Q,Q') and V(Q)Q) are not always identical.

Fig, 11
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Whenever A 1is any set of outputs of a progressive diagram
we let D(A) be the set of just those vertices V(Q,Q') where
Q and Q' are both in A, If A has only one output Q, then
D(A) 1is the null set, since there is no V(Q,9). For any set
A and any output Q not in A, A+ Q¢ is the set whose members are
Q and all the members of A.

Theorem _1_6_:; If A is a set of one or more outputs of a pro-
gressive diagram, and if Q 1is an output not in A, then there
is a vertex in E(é"'i@b which is not in D(A).

Proof: Let V be the latest vertex V(Q,4') in ((Q) where
Q' is in A, “We shall prove that V is not in D(A), from which
Theorem 16 follows directly since V mist be in _]_J»(é+¥@_.§)

We shall use the reductio ad absurdum method. Suppose that
V is in D(A). Then there are diagram outputs Q" and Q"
in A such that V is V(Q",Q"'). ILet x Dbe the early wire
of V in C(Q) and y the late wire. Since the diagram is
progressive and since V 1is in 9(9_,_), X 1s the vertex-input
and y 1is a vertex~output of V. Let 2z be the other vertex-
output of V. Since V is V(Q",9"'), x 1s in ((Q") and
either y or z is in C(Q") |

-

Case I. y is in C(Q"). Then y 1is in state 1 in S5(Q").
The latest wire in C(Q) which is in state 1 in S(Q"), then,
can be no earlier than jy, and hence V(R,Q") is later than V
in C(Q), contrary to the original stlpulatlon that V De the
latest such vertex in C(Q). '

Case II. z is in C(Q"). Since V is V(Q",8"'), x
must be in state 1 in S(Q"'), and z in state O. This means
that the setting of the vertex V in 5(Q"') must be such
that y 1is in state 1 in S(Q"'). Reasoning as in Case I,
then we can show that V(Q,Q"') is later than ¥V in C(Q),
which is likewise contradictory. This completes the proof of
Theorem 16.

Theorem 17: In a progressive diagram, i1f A 1s a set of k
outputs then there are at least k-1 vertices in D(A).

Proof: Let As,...,Ar be a sequence of subsets of A such that
A is A, A; has exactly 1 members, and, if 2 £ i = k-1,
Ai 1is a proper subset of Al $1° Thus, A;,, has Jjust one member
besides those of A;. There is at least one vertex in D(A5);
and by Theorem 16 D(Aj4;) has at least one more vertex than

D(A;). Hence, D(4,) has at least k-1 vertices.
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Theorem'éﬁs In the class of n-label progressive diagrams the n-bay
folded tree has a minimal number of vertices.

Proof: In an n-label complete decoding vertex diagram there are 2n
outputs. If A 1is the set of all these outputs, the D(A) must
have at %eaSt 2l.1  vertices. Hence, the diagram must have at
least 2 -1 vertices which is the number of vertices in the n-bay
folded tree. '

7. A GENERALIZATION OF THE FOLDED TREE

In this section we shall consider generalized folded trees
containing vertices, all of which have the same arbitrary number of
vertex outputs and possible settings. A vertex with m vertex-out-
puts is called an m-order vertex and its m settings are the first
setting, the second setting, ..., the mth setting. The ith vertex
output is the ith right-hand wire from the top. (See Fig. 12.)

Fig, 12

A generalized n-bay folded tree containing vertices of order
m, called an n-bay m-order folded tree, obviously contains

St o= (21)/(me1)

vertices. Thus an n-bay folded tree as previously defined has order 2,
The déefinition of "complete decoding" is the same as that given in Section
2, and the generalization of Theorem 1 goes through quite easily,
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It is not difficult to see what sort of physical realization
an m-order vertex can have, either in relay circuits or in electronic
digital computing circuits. In relay circuits the m-order vertex re-
presents a single-pole m-throw switch, e.g., a stepping switch. In
electronic digital computing circuits the m-order vertex can represent
an arrangement of m conjunction elements generalized from the arrange-
ment of Fig. 2.

As in Section 2 we asgk the question, for a given loading
sequence, &1, »..; & , 1S there an n-bay m-order folded tree having
a, vertices labeled P;, ..., and a, vertlces labeled P ? We have
a generalized condition of "admissibility" which we can prove to be
necessary and which we conjecture to be sufficient if the sequence
contains no zeros, Our generalized condition of admissibility involves
four conditions, as compared with only three in Section 3.

A sequence satisfies the unit condition if there is a 1 some-
where in the sequence. It satisfies the total sum condltlon if the sum
of all the terms is equal to

D
(f-1)/(m1) = >o
x=1

where p 1is the number of non-zero terms. A sequence §' satisfies
the partial sum condition if, for each k £ p, the sum of the first
k terms of M(S) is greater than or equal to

k : x-1
(m-1)/(m-1) = >ot

It satisfies the congruence condition i1f, for each term ) =

1(mod m-1), i.e., gkml is divisible by m-1, A sequence is admissible
if it satisfies all four conditions. WNote that admissibility as defined
in Section % is a special case {g = 2) of this more general notion of
admissibility, for any sequence of integers -satisfies the congruence
condition when m = 2,

Theorem 19: The loading sequence $(1,1) of an n-bay m-order folded
tree is an admissible sequence of n non-zero terms.,

Proof: Obviously, S(1,1) must satisfy the unit condition and the total
sum condition. The reader can reread Theorem 8 and its proof and see
that it very easily generalizes from the case (m = 2) to prove that
S(1,1) satisifes the partial sum condition for any m. To demonstrate
that 5(1,1) satisfies the congruence condition we consider any n-bay
m-order folded tree having Ek(l:l) vertices labeled gko Suppose that
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for each h é n there are k  vertices labeled P in the hth bay.

There are m chains and each chain must have exactly one vertex labeled
P .

=k’
' n-h+1
But a vertex in the hth bay is on exactly m chains., Hence (1)
the number of chains 1s equal to
n b n
g B o
. =h=— -
h=1
By elementary number theory we know that for any non-negative integer
X, @? = 1(mod m-1). Thus, for each  h, Eh_P -ht1 o Eh(mOd m-1).
Hence (2)
n n
n-h+1 _
:Egghg = :ZE (mod m-1)
h=1 , h=1
From (1) and (2), since m" = 1(mod m-1), it follows that
n
gk(l,l) = :Eggh = 1(mod m-1) . .

This completes our proof of Theorem 19.
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APPENDIX
Interchange and the Folded Tree

The phrase "folded tree" is appropriate because a folded
tree can be obtained from the standard tree of Section 2 by the tech-
nique of "folding." That technique, perhaps better described as
"interchange," can be defined as follows. An n-bay labeled-tree
T'(1,1) results from an n-bay labeled-tree T(1,1) by an interchange
of P and P in the minor tree T(i,j) when all the vertices
lebeled P, 1in T(i,j) are labeled P, in T! (i,d) and vice versa,
all other vertices of T'(1,1) being labeled the seme as in T(1,1).

By referring to the definition of "folded tree", it is not
difficult to see (1) that if T'(1,1) is obtained from T(1,1) by
interchange, then T'(1,1) 1is a folded tree if and only if T(1,1)
is, '

It can also be shown (2) that for any n-bay folded trees
T(1,1) and T'(I,1) having the same set of labels, T'(1,1) can be
obtained from TE(l,l) by a sequence of interchanges. For suppose
T:(1,1), To(1,1), ..., 1s a sequence of distinct n-bay labeled-trees
where T;(1,1) is T(1,1) and where T ‘+1(l,l) is obtained from
Ex(l,l) by the following process, Having ordered all the vertices
of Ty(1,1) in the sequence V,(1,1), yx(e,l),&(2,2),3{(5,1),1}((5,2),...,
we consider the first vertex V (i,]j) which hdd a label different from
the corresponding vertex V'(i,J) of T'(1,1), Suppose that P, and
P are the labels of Y_X( i,j) and V'(i,]), respectively., Then
Ty+1(ls1) results from T (1,1) by interchange of P, and P in
-I-l-x@- »d)s It is easily seen that P, must label at least two vertices
in T (i,J), so the interchange can always be made if Ex(l,l) is nct
iderfical with T'(1,1), Obylously, then the label of ¥, (i,i) and
the labels of all vertices of T (1,1) which precede Y-x+1<'-§;’g=) in
the ordering of vertices mentioned above are the same as the labels of
the corresponding vertices of T'(1l,1). It is not difficult to see
that the sequence T;(1,1), Tx(1,1), ... has a last member ,_T_q(l,l)
which must be T'(1,1).

Since a standard tree is a folded tree, it follows from (1)
and (2)thatanecessary and sufficient condition that an n-bay labeled-
tree with labels Pi, ..., P, De a folded tree is that it be obtainable
from the n-bay standard tree by a sequence of interchanges.

Everything asserted in this appendix is true also of trees
all of whose vertices are of order m > 2.
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