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1. Introduction

There has been a long controversy as to who invented the stored program
computer. Unfortunately, this question is overly simplistic. The development
of the stored program computer took place in many steps and involved many
people. I will trace this development through its main stages, starting with
the antecedents of the ENIAC and ending with the first generation of stored
program computers: EDVAC, IAS, Whirlwind, EDSAC, UNIVAC I, and many others.

The period from 1935 to 1952 saw two important revolutions in computers.
The first was the employment of vacuum tubes to make a fast, reliable, powerful,
general-purpose computer. This development began with John Atanasoff's slow,
special-purpose electronic computer. It culminated in ENIAC, shown in Figure 1.
ENIAC was developed, designed, and built by a group of engineers, including
myself, under the direction of Presper Eckert and John Mauchly. ENIAC was revo-
lutionary: it was the first electronic, digital, general-purpose, scientific
computer, and it computed 1000 times as fast as its electromechanical competi-
tors.

The second revolution was the stored program computer. It too had im-
portant antecedents, which I'll explain in due course. There were two main
steps. Eckert and Mauchly invented the circulating mercury delay line store,
with enough capacity to store program information as well as data. John von
Neumann created the first modern order code and worked out the logical design
of an electronic computer to execute it.

This early work on electronic computers arose out of the background of
modern electronics and out of a well-established technology of mechanical and
electromechanical computing. See Figure 2. Many of the circuits of ENIAC were
electronic versions of mechanical and electromechanical digital computing de-
vices, and the architecture of ENIAC derived from the mechanical differential
analyzer. Thus ENIAC established electronic technology as the way to do com-
puting hitherto done mechanically and electromechanically.

ENIAC necessarily used electromechanical equipment for input and output,
and thereby tested the relative merits of the two technologies for computing.
Not surprisingly, some of the older and more experienced engineers at the Moore
School were sceptical about ENIAC. '"18,000 vacuum tubes? No one has ever
operated a system of more than 100 tubes or so. At any moment at least one
tube will be inoperative, and that may spoil the answer!" But the electro-

mechanical I-0 of ENIAC and EDVAC gave at least as much trouble as the elec-



trcnics. And so it has remained to this day.

In my discussion I will largely ignore input-output equipment, for the
hardware revolutions of ENIAC and the first stored program computers were
based on dramatic changes in the nature, speed, and cost of internal components.
The computing part of ENIAC dominated its I-O equipment, both in size and cost.
Today the situation is reversed. The logical equivalent of internal ENIAC can
be put on the end of your finger, and it costs much less than ENIAC equivalent
I-0.

2. ENIAC Hardware and Arithmetic Design

Vacuum tubes had been developed for radio and telephone communication.

In the mid-1930's they were still used mostly in analog or continuous fashion,
though flip-flops, counters, and small vacuum-tube switching circuits had been
invented and were used occasionally.

John Atanasoff of Iowa State College pioneered in using vacuum tube cir-
cuits for computing. Starting about 1935 he designed and partially built a
special-purpose digital electronic computer for solving simultaneous equations
by Gaussian elimination. He was assisted by Clifford Berry. Atanasoff and
Berry stored binary numbers on capacitors embedded in rotating drums, and they
did arithmetic and logic with vacuum tﬁbe circuits. These circuits were slow,
operating at 60 pulses per second, which was about the speed of relay circuits.

In the spring of 1941 Atanasoff conceived of a digital electronic version
of the differential analyzer. He communicated his idea to John Mauchly, who
was to join the faculty of the University of Pennsylvania's Moore School of
Electrical Engineering in the fall of 1941. The Moore School had a differen-
tial analyzer, which was used some but often stood idle.

After the USA entered World War II, the Moore School became a center for
calculating firing tables. The differential analyzer was soon used full-time
for calculating trajectories. A group of young ladies also calculated trajec-
tories, using electrically powered mechanical calculators: Friedens, Monroes,
Marchants. Herman Goldstine was the Army Lieutenant in charge of this activity.

One day Mauchly suggested to Goldstine that trajectories could be cal-
culated much faster with vacuum tubes. Herman thought John's suggestion a good
one, and asked for a proposal. John and Pres Eckert then wrote '"Report on an
Electronic Diff.* (sic) Analyzer'" (April 2, 1943). This was submitted to the
U.S. Army's Ballistic Research Laboratory, Aberdeen Proving Grounds, on behalf
of the Moore School. |



In this proposal Eckert and Mauchly offered a machine that could compute
ballistic trajectories at least 10 times as fast as the differential analyzer,
and at least 100 times as fast as a human computer with a desk calculator.
Goldstine persuaded the Ballistic Research Laboratory to fund the proposal.

The "electronic diff.* analyzer' later became the '"Electronic Numerical Inte-
grator and Computer,' or "ENIAC" for short.

John and Pres proposed to achieve this very high computing speed by oper-
ating vacuum tube circuits at 100,000 pulses per second. Physicists had used
fast electronic circuits for counting cosmic rays, but these did not need to
be, and were not, very reliable. The first development task on the ENIAC proj-
ect was to design reliable counters that worked at 100,000 pulses per second
and to show by test that switching circuits could work at a comparable speed.
The final ENIAC operated at 100,000 pulses per second and thus became the first
computer to fully exploit the vacuum tube technology of the time.

We will discuss some of ENIAC's arithmetic circuits in a moment, but to
put this discussion in perspective we must first make a few general remarks
about the machine's organization. ENAIC was composed of a large number of
semiautonomous computer units, arranged as in Figure 3. There were 25 comput-
ing units proper: 20 accumulators, one high-speed multiplier, 3 function
table units, and a divider & square-rooter. There was a constant transmitter
for input and a printer unit for output. Each of these units had its own local
program circuits, and there was also a central program control, called the
master programmer. All these units were timed by signals from a central clock,
the cycling unit.

The programming circuits of ENIAC were very important and occupied a
large part of the machine. In the computing units proper the control circuits
were about equivalent in size to the arithmetic circuits, and more complex. We
will discuss ENIAC programming in detail later (sec. 4). For the moment it
suffices to say that subroutines were set up mechanically on local program con-
trols. These subroutines were connected to the master programmer, which oper-
ated them in proper sequence, each subroutine being employed a fixed number of
times or until a branch occurred.

One last point needs to be made before we return to ENIAC arithmetic.

The units of ENIAC were not fully autonomous, because computing always required
the cooperation of two or more of them. ¥For example, addition was accomplished
by transmitting from one accumulator to another. - Correspondingly, local pro-

gram controls on these accumulators had to be stimulated simultaneously.



The arithmetic design of ENIAC was influenced mainly by two kinds of
calculators: mechanical desk calculators, electrically-powered and hand-
operated; and electromechanical card-operated IBM machines. We knew of the
relay computers built and being built at the Bell Telephone Laboratories by
George Stibitz, Sam Williams, and others. We also knew of Harvard Mark I, a
general-purpose electromechanical calculator designed by Howard Aiken and
several IBM engineers. We did not know of the work of Conrad Zuse or of the
British Colossi machines.

In mechanical technology, arithmetic registers were formed of toothed
wheels, and carrying was done with cams and ratchets. Numbers were trans-
mitted by shafts with gears, or the linear equivalent, toothed racks. In elec-
tromechanical technology, relays were used for switching and stepping switches
were used for counting. Relays could be "locked" to form flip-flops. Numbers
were transmitted as electrical pulses on wires. IBM machines and Harvard
Mark I combined mechanical and electromechanical technology.

In ENIAC, the toothed wheel and stepping switch became the electronic
counter. A decade ring counter is shown in Figure 4. Switching was done with
vacuum tubes. The 6SA7 (tube 9) of Figure 5 functions as-a "gate' or switch.
The program control is activated when a program pulse (from another program
control or the master programmer) sets the flip-flop (tubes 1, 2, 3, and 4).
When the flip-flop is set, it activates one input of the 6SA7 gate. The next
program pulse from the cycling unit is then passed by the 6SA7. This pulse
rests the flip-flop, closing the 6SA7 gate, and via tubes 10 and 11 drives
a program line to start the program controls used in the next operation.

Both numbers and control signals were transmitted as voltage pulses. We
called these "pulses" when they lasted about 3 microseconds, and 'gates' when
they lasted much longer. The basic pulses and gates came ultimately from the
cycling unit (see fig. 13 below).

We have listed the main electronic building blocks of ENIAC: counters,
flip-flops, and vacuum tube switches. Let us now move up a full level in the
hierarchy of ENIAC structure and consider how the high-speed ultiplier worked.
For brevity I'll call it the "multiplier," and the two numbers to be multiplied
the "ier" and the "icand".

Since_the multiplier could not multiply by itself, we need to consider
it and four associated accumulaférs: ier accumulator, icand accumulator, and
two partial products accumulators. The three uncovered panels in the center

of Figure 6 constitute the multiplier, and the associated accumulators are to



the left and right.

The time required for an ENIAC multiplication depended only on the
number of iler digits called for in programming a multiplication. After a
preparatory addition time, ENIAC multiplied one digit of the ier by the whole
icand in a single addition time, dividing the partial product into left-hand
(LH) and right-hand (RH) components. It did this by means of a pre-wired
multiplication table. Two final addition times were used for combining the
LH and RH partial products and making compleﬁent connections.

For the reader interested in the task of an ENIAC design engineer, I'll
explain how the multiplication circuits worked. Figures 7 and 8 show a sample
of these circuits. The figures cover a two-digit ier, a two-digit icand, and
that part of the multiplication table and its output tubes needed for the icand
digits of 0, 1, 2, and 3.

The ier selector in the upper left-hand corner of Figure 7 consists of
and-gates with two inputs (tubes A0O-A9 and BO-B9). Each selector gate is con-
nected on one input to the ier accumulator and on its other input to a control
wire. These control wires select the digit positions in turn; line 1 for the
units digit, then line 2 for the tens digit. The selected ier selector gate
activates the multiplication table through a driver (P, Q, R, S, etc.).

The multiplication table proper is a resistor matrix, each resistor es-
tablishing a direct electrical connection from an input digit wire (0-9) to a
table output gate below (tubes Cl, D1, D2', El1-E4, F2-F4, and G1-G4). A multi-
plication table input wire which is activated drops its voltage, thereby clos-
ing those output gates to which it is directly connected via a resistor.

The table output gates also receive groups of pulses from the cycling
unit; see Figure 13 below. Each gate left on by the multiplication table
passes these pulses, which go through tubes U, V, etc. to the icand selectors
below. Thus the table output gates produce, on separate wires, pulses which
represent the product of the selected ier digit by all the digits 1 through 9,
divided into LH and RH components. The LH components go to the LH icand selec-
tor (H2-H9, J2-J9), then to the LH shifter (M1-M4), and finally to the LH par-
tial products accumulator. The right-hand components go to the RH ier selector
(K1-K9, L1-L9), RH shifter (N1-N4), and RH partial products accumulator.

We will trace the logical behavior of these circuits for a specific ex-
ample. Let the ier be 40 and the icand 30, so the desired product is 1200,
consisting of a LH component of 1000 and a RH component of 200. Consider the
action of the multiplier while it processes the tens ier digit, which is 4.



The program circuits hold line 2 active while the tens digit of the ier
is heing processed. Hence the ier selector gates A0-~A9 are activated from the
right. (The shifter gates M3, M4, and N3, N4 are also activated by control
line 2.) Tube A4 is also activated on the left by the ier accumulator, so it
goes on, turning P off and Q on, thereby lowering the voltage on input line 4.
This line turns off all the table output gates to which it is directly con-
nected through resistors, leaving the remaining gates on. As far as the icand
digit 3 is concerned, the LH gate D1 is on and D2' is off, while the RH gate
G2 is on and gates Gl, G2', G4' are off. Gate D1 sends one pulse to row 3 of
the LH icand éelector (H3, J3) and gate G2 sends two pulses to row 3 of the RH
ier selector.

These streams of pulses are gated by the icand selectors and then shifted
by the shifters before being transmitted to the partial products accumulators.
Since the icand is 30, a pulse representation of 100 comes from the LH selector
and a pulse representation of 20 from the RH selector. Because line 2 is acti-
vated by the program circuits these are shifted one position to the left, so
1000 goes to the LH partial products accumulator and 200 to the RH partial
products accumulator. At the end of the multiplication process these would be
combined to give 1200, which is the product of 40 times 30.

This completes our explanation of how the ENIAC multiplier and its asso-
ciated accumulators performed high-speed multiplication. The multiplication
table was invented for mechanical calculators about 100 years ago. It was used
in the IBM 601 crossfooting multiplier of 1931, which could be programmed to
compute things like AxB+(C+D, A+C-D, and AxB-C. This machine will be described
below in connection with ENIAC programming (sec. 4 and figs. 14 and 15).

Was this particular adaptation from mechanical technology wise for ENIAC?
Fast multiplication made mechanical and electromechanical calculators superior
to their predecessors. But ENIAC did many more operations, solved much more
complicated problems, and had to be slowly programmed for each of these. Did
fast multiplication in ENIAC provide a sufficient gain in speed over the method
of repeated addition, or the faster method of repeated addition-or-subtraction,
to justify it? Would the binary system have been a better choice than the deci-
mal system? These are interesting questions which I cannot go into here..

I'11 tell a story about the IBM 601 and ENIAC, which illustrates a gen-
eral point about invention. An inventive IBM engineer wrote me a few years ago
concerning the ENIAC multiplier: '"I felt you were doing electronically almost
exactly what we had had in general use for 12 years in the 600 and 601." I am



reminded of what Sir John Fleming, the inventor of the vacuum tube diode, is
supposed to have said of Lee de Forest's invention of the triode: 'That is no
invention; all de Forest did was add a third wire to my valve!l"

Actually Fleming's tube was ''only" a rectifier, whereas de Forest's tri-
ode was an amplifier, and amplification is what made the radio and electronics
industry possible. Likewise, the computer industry became truly important when
it moved from mechanical and electromechanical technology to electronics. This
technological shift produced the transition from the industrial revolution to
our current computer-control revolution.

Besides Atanasoff, we knew of two others who had worked on special-purpose
electronic computers, in both cases for fire control. Perry Crawford wrote his
master's thesis at MIT on controlling anti-aircraft guns electronically, and
Jan Rajchman did preliminary development work on an electronic fire control
calculator at RCA. Both developed electronic computing circuits and both in-
vented a hardware constituent used in ENIAC, the resistor matrix function table.
I described the fixed resistor table of the multiplier a moment ago. 1In it, a
given input line drove a fixed set of output lines through resistors. One could
make a variable table by installing a ten-position switch for each digit entry
of the table. The resistor from the input line could then be manually switched
to any one of nine output wires, representing the digits 1 through 9. ENIAC
had three function table units for storing arbitrary functions, and each of
these was based on a variable resistor matrix table set by switches.

The straightforward way to build a switéhing network, such as a multipli-
cation table or function table, is to connect a diode between an input wire and
each output wire it is to drive. The ratio of the backward resistance to the
forward resistance of the diode is very high. But solid-state diodes did not
exist then, a vacuum diode was about as "expensive' as a triode, so in many
applications this method of switching was not practical.

The resistor matrix function table was a way of using linear resistors
as switching devices in read-only memories. When Jan Rajchman told von Neumann
of his invention, Johnny replied: 'That can't work, Jan, it's just one big
short circuit!" His point was that resistors are not rectifiers, and hence
every output is connected to every input. This is clear from Figures 7 and 8.
But with careful design the desired paths had much less resistance than unde-
sired paths, and output gates could safely sense the difference. Thus in Fig-
ure 8, tube Q (line 4) does not directly drive the input to gate D1, but only
through highly resistant back circuits.



The ENIAC project was funded to facilitate the preparation of firing
tables. The calculation of trajectories was a good problem for computing
machines, because the calculation depends critically on the drag function
G(v?), which gives the resistance of the air to the movement of the shell as
a function of the velocity squared. This function is an ill-behaved function
of the shell's velocity, especially as the shell passes through the sound bar-
rier. In hand calculation the resistance was read from printed tables, and on
the differéntial analyzer the resistance was fed in from an input table. Such
a table is shown on the right in Figure 9. Originally it was operated by hand.
Later it was operated automatically by means of a photocell which read a black-
white boundary and signaled a servomechanism feedback circuit.

All of these table input methods were too slow for ENIAC. Hence we used
variable resistor matrixes set by hand switches. There were three function
table units. Each had two panels of electronic equipment and a portable func-
tion table matrix box; see Figure 3. One portable matrix appears in the fore-
ground of Figure 1 and the other two in the right rear, with operators setting
switches.

A function table stored 104 entries, each with 12 decimal digits and two
signs. Two signs were provided so that two numerical functions of 6 digit
accuracy could be stored in one table. Two decimal digits were used to select
a function value in the range 0 to 99; the extra four entries (-2, -1, 100, 101)
were there to facilitate interpolation. Note that the total digit capacity of
the three read-only tables was about 4000 decimal digits, or 20 times that of
the 20 read-write accumulators!

When ENIAC computed a trajectory the ballistic drag function was stored
in one of these function tables. Without the resistor matrix the values of
this function would have had to be brought 1nzfrom the outside as needed, a
much slower process. At its dedication the ENIAC computed a trajectory in
20 seconds, faster than the shéll itself, which took 30 seconds to reach its
target! Thus the read-only resistor matrix played an essential role in the
success of ENIAC.

3. ENIAC Organization and the Differential Analyzer

I have already mentioﬁed that ENIAC was composed of 25 computing units
(accumulators, multipliers, function tables, and divider & square-rooter), an

input unit, and an output unit. To program ENIAC to solve a particular prob-



lem one had to interconnect the digit circuits of these units and also their
programming circuits. In addition, the programming circuits had to be con-
nected to the master programmer.

ENIAC's organization came from, and closely paralleled, that of the dif-
ferential analyzer. The 1943 ENIAC proposal, on which Ordnance staked about
$100,000, was titled "Report on an Electronic Diff.* Analyzer," with the fol-
lowing footnote explanation of the term "Diff.":

*The word Diff. is deliberately abbreviated. Present differen-
tial analyzers operate on the basis of integrating continuously, i.e.,
by differential increments; the electronic analyzer, although it is
believed that it would be both speedier and more accurate, would oper-
ate using extremely small but finite differences. The abbreviation
"diff." may thus be considered to represent 'difference' rather than
"differential" in the case of the electronic device.

The differential analyzer was a mechanical analog computer for solving
differential equations. It had been invented by Vannevar Bush at MIT. The
Moore School had built one for itself and a similar one for Aberdeen Proving
Ground. Figure 9 shows the Aberdeen machine. The differential analyzer could
solve a variety of differential and integral equations, and hence was to some
degree a general-purpose machine.

There were three fundamental types of calculating units in the differen-
tial analyzer: integrators for integration of functions, differential gears
for addition-subtraction, and fixed gears for multiplication-division by a
constant. There was no primitive unit for multiplication. Multiplication was
accomplished through integration by parts; this required two integrators and
one differential gear.

Inputs were inserted as initial conditions, or supplied continuously from
an input table. The outputs were plotted on output tables or printed. In Fig-
ure 9 the integrators are on the left, the input-output plotting tables on the
right, and the printing mechanism is in the foreground. The main bay holds the
gshafts used for interconnections. Differential and fixed gears were mounted
on these shafts.

An integrator consisted of a metal wheel riding on a rotating glass disk
at a variable distance f(y) from the disk's center. For each increment dy of
rotation of the glass disk, the metal wheel rotated the amount f(ydy. The
wheel output was thus .ff(y)dy. This rotational output went to a torque ampli-
fier and thence to a shaft in the bay. Originally the torque amplifiers were
mechanical, but during the war they were replaced by an arrangement of two

polaroid disks, a light beam, a photocell, and a servomotor.



10

To set up the differential analyzer to solve a particular system of dif-
ferential equations, the operator interconnected the units by shafts and gears
into a pattern corresponding to the equations. The whole system was driven by
a shaft representing the independent variable. This shaft was rotated by an
electric motor.

Figure 10 is a diagram from Douglas Hartree's Calculating Inetruments
and Machines showing the set-up for the following integral equation, where X is

the independent variable and y the dependent variable:

%‘Z— = —/g—xy- dy + fy cos (x+y)dx.

Scale factors and signs are omitted from the diagram. The independent variable
shaft x is driven by a motor. The output was recorded from the dependent vari-
able shaft y.

With this information about the differential analyzer as background, let
us look at the structure of ENIAC. Figure 11 is from the 1943 ENIAC proposal,
and shows how the units of the machine were to be interconnected and controlled

80 as to solve the differential equation
dy .
2

The solution for y is, of course, an exponential, sine, or cosine, with suitable
constants.
The corresponding difference equation is Azy = k(At)zy. For the nth step

of the integration the 'electronic diff. analyzer' needs to compute

2 2
W), = k(B8 *1xy,
(), = @y, + Q%)
Yy = Yy + (Ay)n :

The constant transmitter holds k(At)? and the accumulators hold the quantities
indicated in Figure 10.

I will trace one step of the integration. The constant transmitter sends
k(At)? to the multiplier and the, y—accumulator sends Yp-1 The multiplier com-
putes [k(A%)?] x Y,_1> Which is (Azy)n and sends it to the A?y-accumulator for
temporary storage. It is added from there into the Ay-accumulator to give the

new value of Ay. That is then added into the y-accumulator to give the new



11

value of y.

Note that the A%y-accumulator was used only for temporary storage. More-
over, if k and At are chosen so that k(At)? is a power of ten, the electronic
multiplier can be replaced by a mechanical shifter of wires. The difference

equations then reduce to

d
@y), = @Gy), y + 107y,

Y " Yy + (Ay)n :

These can be solved with just two accumulators, one for (Ay)n and one for Y+
The second transmits to the first through a wire shifter which shifts the trans-
mitted number d positions to the right, and the first then transmits to the
second, the quantities received being accumulated in both cases.

This method was used to test two ENIAC accumulators in the summer of 1944.
The number in each accumulator was displayed with neon lights, and it was in-
teresting to see the contents of the accumulators going up and down, one dis-
playing the sine and the other displaying the cosine.

These two accumulators were connected in a pattern very similar to the
interconnection pattern of integrators V and VI of Figure 10. Each of these
integrators feeds the other, just as each ENIAC accumulator augmented the other.
In Figure 10 both integrator V and integrator VI are fed x+y as the independent
variable. The output from the metal wheel of each controls the distance be-
tween the metal wheel and the center of the rotating glass disk of the other.
Hence one integrator produces sin(a+y) and the other produces cos(x+y).

The shift from the analog differential analyzer to the digital ENIAC re-
quired a shift in the representation of data.

In the differential analyzer, the values of variables were represented
by the positions of integrator wheels and disks, and the positions of the shafts
driving and driven by the integrators. In ENIAC, numbers were held in the coun-
ters of accumulators, and transmitted in pulse form over groups of wires called
digit trunks. Sometimes a digit trunk was a ll-wire cable, but usually it was
composed physically of digit "trays" connected to each other and to program
panels by ll-wire cables. A '"tray" was 8' long, an inch thick, and wide enough
to carry ll wires shielded from each other by metal partitions. Ten wires were
used for decimal digits, each digit being transmitted as a pulse sequence, and
one wire was used for the sign.

In Figure 12 the program panels are in the middle and the digit trays are
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abcve them. The trays below are used for program lines in a similar way;
they will be discussed in the next section.

A caveat should be entered here. I am describing the general way in
which ENIAC did things and am not attempting to be complete. For example,
some numbers were transmitted as slow signals over cables. fhe contents of
the ier ané icand accumulators were transmitted to the ier and icand selectors
of the mul?iplier in this manner.

The differential analyzer had a unique shaft, the independent variable
shaft. It was driven by a motor, the speed of the motor conérolling the speed
of computation. In ENIAC this shaft became a ten-wire trunk carrying clock
signals to ENiAC units, and the motor was replaced by a compiicated ciock used
to synchronize ENIAC operations. This clock was called '"the master pulse gen-
erator" in the proposal and "cycling unit" in the final ENIAC. Its ten out-
puts are shown in Figure 13. There are nine distinect groups of pulses, the
individual pqlses lasting about 3 microseconds. There is onq long pulse of
70 microse¢onds, called the "carry-clear gate' and used mainly in the accumu-
lators.

Some earlier digital machines were clocked. IBM punched card calcula-
tors were timed from the rotating mechanism that pulled the cards through the
machine. Thus the significance of an electric pulse from a hole depended on
the position of the hole in the card.

The shift from analog differential analyzer to digital ENIAC also re-
quired the addition of programming circuits. In the differential analyzer all
computing units operated simultaneously. In ENIAC two or more units were re-
quired forjan arithmetic operation, but they played different roles. For ex-
ample, if the contents of accumulator 7 were to be added to those of accumu-
lator 9, accumulator 7 transmitted and accumulator 9 received. Hence program-
ming circu?ts were needed to operate the arithmetic circuits in proper

parallelism and sequence. These circuits will be discussed in the next section.

4, Programming ENIAC

The differential analyzer was programmed manually, with a wrench in one
hand and a gear in the other. ENIAC programming was also manual, but one
plugged cables and wires, and set switches. The method of programming by plug-
ging wires_was derived from the IBM plugboard. 1I'll explain this in connection
with the IBM 601 crossfooting multiplier; see Figures 14 and 15.
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The plugboard of Figure 15 is wired to calculate AxB+C+D. We mentioned
earlier that the IBM 601 multiplied one digit of A (the ier) by all of B (the
icand) in one addition time. The partial products were placed in two counters,
a left-hand counter (LHC) and a right-hand counter (RHC). The numbers C and D
were placed in these counters initially, and thus appeared in the final sum.
The addition of C and D to the product was called "crossfooting," from an
accounting term meaning to add across rather than up and down a column of num-
bers. Note that the LHC and RHC "counters'" accumulated sums; in ENIAC we
called them "accumulators."

We'll explain the wiring of Figure 15 in terms of a payroll calculation.
There is a punched card for each employee, with A being the number of hours,

B the hourly rate, and C and D fixed amounts to be added to the paycheck.
Point () shows that the brushes which pick up 4 and B are wired to the ier

and icand counters, respectively. At point @D the factors C and D are trans-
ferred from the bruéhes to RHC and LHC; the position of these wires depends on
the locations of the decimal points. In the middle of the plugboard another
occurrence of CD shows that a 1/2 entry is wired into one of the partial prod-
uct counters. This 1/2 produces a rounded digit in the position to the left,
the contents of its position and the positions to the right are deleted from
the answer. ENIAC used the same method of round-off.

At point () the stepwise multiplication results are wired into RHC and
LHC. Point () shows how some control wires are to be plugged in. 1I'll ex-~
plain two of the connections. The multiply-crossfoot switch is wired to ac-
complish crossfooting (the addition of C and D to AxB) rather than for mere
multiplication (4xB alone). Also, RHC and LHC are wired so their contents,
the right- and left-hand components, will be combined at the end. Point CD
is located near the middle of the diagram. It shows wiring that carries the
result AxB+C4+D to the brushes and to a summary counter which accumulates
AxB+C+D for each employee, and hence registers the total payroll.

The wiring of Figure 15 is deceptively simple, because groups of digit
wires are represented by single lines. For example, at upper left the brushes
B21-B25 are joined by a single line, an arrow from B23 goes to the multiplier
counter digit position E6, and positions E4-E8 are connected by a horizontal
line. This symbolism means that brush B2l (reading column 21 of the card) is
to be connected to multiplier counter digit position E4, and similarly for the
other five digits of the ier. Thus a single arrow represents a bundle of six

digit wires. A typical IBM plugboard was somewhat of a mess, as was an ENIAC
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prchlem set-up.

Let us now see how ENIAC was set-up or programmed to solve a specific
problem. This was a dual task: digital communication paths were established
among the numerical circuits of the units, and a program proper was set up on
the program controls. To avoid ambiguity we will call the first part "numeri-
cal programming' and the second part ''programming proper.'" Except foxr the
branch operation, these two parts of a program were separate. We will now
discuss them in turn.

Each of the ENIAGC computing units had input and output sockets for ten
digit signed numbers. These inputs and outputs were connected to digit trays
by jumper cables. The cables are prominent in Figure 12, where they go from
the top of the accumulator program panels to the trays above. They are on the
left in Figure 6. The jumper cables and trunk lines are shown schematically
at the top of Figures 16 and 17.

Interéonnecting the numerical circuits of ENIAC was analogous to setting
up the differential analyzer. Both operations established data communication
channels between computing units. But there was an important difference. In
the differential analyzer, all shafts rotated simultaneously. In ENIAC, the
digital channels were used as needed, according to instructions set on local
program controls. An accumulator, for example, had five input sockets, (labeled
%, B, ¥, 6, and €) and two output sockets (one for "add" and one for "subtract'").
When setting up an accumulator program control the operator set a switch to one
of the eight positions o, B, Y, 8, €, A, S, AS. The "AS" position caused the
accumulator to transmit simultaneously over both its add output and its sub-
tract output, so it could add into one accumulator and subtract into anmother
at the same time.

The main function of a numerical program of an ENIAC was to establish
digital communication channels among the units. An auxiliary function was to
axrange for some simple numericél transformations. Mechanical "shifters'" and
"deleters' could be inserted inéo digital sockets. A shifter was a plug-socket
combination in which the wires were shifted to effect a multiplication or
division by a power of ten. It was the digital equivalent of the fixed gear
of the differential analyzer. To round-off the number in an accumulator the
operator did two things. She set a switch to clear the accumulator to "five"
i one decade position. And she inserted deleters in the outputs to delete
the unwanted digits.

Two adjacent accumulators could be interconnected for double precision
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(20 decimal digits).

This concludes our explanation of the numerical part of an ENIAC program.
This part determined the precise effect of the instructions set on local pro-
gram controls, so it is analogous to microprogramming. We turn next to the
second part of an ENIAC set-up, the programming proper. This involved inter-
connecting ENIAC control circuits and setting switches so that these circuits
would direct the numerical circuits to perform the desired computation.

Each of the ENIAC computing units had several program controls. We will
describe first how the programmer used them and then how they controlled the
numerical circuits. The reader should refer to the lower parts of Figures 16
and 17 for schematiclrepresentations of ENIAC programs. Figure 17 pictures
part of a chart showing how to set up ENIAC to integrate a trajectory by the
Heun second-order method. This was a program which I had drawn up in the spring
of 1944, while ENIAC was still being designed.

A typical program control had an input socket, some switches on which
the instruction was set, and an output socket. When stimulated with a program
pulse the program control carried out the instruction set on its switches, and
then emitted a program pulse. These program pulses were transmitted around the
machine on a gystem of trays and cables running below the program panels. A
subroutine was established by interconnecting local program controls in parallel
and in series and setting the switches to specify the operations wanted.

I'11l illustrate this process by showing how ENIAC solved the very simple
differential equation

v
using the first-order difference equations

Ayi = Ax

Yi-1
y; = Y1 + Ayi.

The program calculates 100 values of yi(i = 1,2,...,100) starting from the ini-

tial value Y, The interval of integration Axr is chosen to be a power of ten

(e.g., .01) so the multiplication yi-le can be done with a mechanical shifter.
The program has two subroutines, one for inputs (lines (@ and (®) and

one for calculating and printing (lines @, @ s @ , and @). Each sub-

routine is started by a pulse from the master programmer, and when each is

finished it returns a pulse to the master programmer (on line @ ). The oper-
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accr starts the program by pushing a button on the initiating unit. The pulse
produced goes to the master programmer on line (). From there it goes to
line Q) to start the input subroutine.

The input subroutine has two sub-steps. The pulse on line () goes to
the card reader program control, which causes the card reader to read a card
containing yo and Axr. The output pulse on line () then goes to instruct the
constant transmitter to transmit y, and also to instruct accumulator no. 1 (or
program control #1) to receive y,. The qutput from the latter on line @
goes back to the master programmer.

The master programmer then executes the calculation and print subroutine
100 times, for steps 7 = 1,2,...,100. At the beginning of step © the conteats

of the accumulators are:

No. 1 holds Y:1

No. 2 holds x.
-1

No. 3 is clear.

This subroutine has four sub-steps, which I will identify by their program

input lines.

@ Y1 is transmitted from accumulator no. 1 (control #3) and received
by accumulator no. 3 (control #1).

(® Accumulator no. 3 (control #2) transmits Y 1 which becomes yi_le
(i.e., Ayi) after being shifted two positions to the right by a
mechanical shifter. Accumulator no. 1 receives Ayi (control #2)
and adds it to Y;_qs tO make the new value Yge

® The constant transmitter sends Ar and accumulator no. 2 (control #1)
adds it to x_.

1-1
® The printer now punches the values of Y; (accumulator 1) and x.

to obtain z

7
(accumulator 2) on a card. |

The output pulse goes on (D) to the master programmer, which stops the compu-

tation after the step 7 = 100 is completed.
The role of the master programmer in an ENIAC program should be clear

from this example. The master programmer had input and output sockets for
program pulses, six-stage counters for controlling subroutines in sequence,
and banks of decade’counters for counting the number of times a subroutine had
been executed. The desired numbers were set on switches. By these means it
could operate a set of subroutines in sequence, causing each to be executed a

fixed number of times (as preset on switches) or until a branch occurred.
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Overall, the master programmer had electronic facilities for managing a large
and rather complicated structure of subroutines.

For the branch operation the sign digit of a number was converted into
a program signal by an otherwise unused (dummy) program control and then fed
into a program channel. A negative sign resulted in a program pulse, which
caused the master programmer to shift to another subroutine. A positive sign
produced no program pulse, so on this alternative the master programmer con-
tinyed to execute the same subroutine.

This completes our description of ENIAC programming proper. We'll next
make a few remarks on the control circuits of a typical ENIAC unit. These
circuits were of two kinds: the local program controls, and the common control
circuits. Through its program switches, each local control of a unit operated
the common control circuits of the unit, and the common circuits in turn oper-
ated the numerical circuits.

A simplified accumulator program control circuit is shown in Figure 5.

A pulse on its input set the flip-flop, which remained on during the execution
of the instruction, in this case for one addition time., Tubes 3 and 4 are the
flip-flop proper, and tubes 1 and 2 are used to set and reset it, When it is
set the flip-flop performs the following switching actions. Through tubes 6
and 7 it activates the common control circuits for receiving a number, trans-
mitting a number (for adding), or transmitting the complement of a number (for
subtracting), according to the switch setting. Through tube 8 it operates
common circuits for clearing or not clearing the accumulator after transmission,
according to the switch setting. The flip-flop also turns on gate 9, which
then passes a program pulse from the cycling unit at the end of the addition
period. This pulse resets the flip-flop. It may also go through tubes 10 and
11 to a program line, where it will initiate the next step of the program.

Let us summarize our discussion of ENIAC programming. It had two parts:
numerical programming and programming proper. The method for each was mechani-
cal: plugging in cables and wires and setting switches by hand. This method
was derived from the IBM plugboard. |

Numerical programming was analogous to and derived from the process of
gsetting up the differential analyzer to solve a problem. Programming proper
involved interconnecting ENIAC control circuits and setting switches so that
these circuits would direct the numerical circuits to perform the desired com-
putation. Subroutines were established on the local program controls of the

computing, input, and output units of ENIAC. The master programmer was then
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se* up to orchestrate these subroutines into a single master routine for

solving the problem.

5. Evaluation of ENIAC

We have covered the antecedents and nature of ENIAC, its hardware, arith-
metic design, organization, and method of programming. After summarizing the
results I'll take stock and see what ENIAC added to the history of computers.
I1'11l conclude that its main contribution was a hardware revolution: the suc-
cessful employment of vacuum tubes to make a fast, reliable, powerful, general-
purpose, scientific, digital computer.

We saw in Section 3 that ENIAC's organization derived f;om the differen~
tial analyzer. To a person familiar with modern computers, this organization
does not seem natural or simple. Let me illustrate this point with a story.

Once I gave a lecture on ENIAC and wanted to display a program tray, a
heavy metai object eight feet long. A computer science student was néarby and
I asked him to help me carry it to the lecture hall, He looked very puzzled
and uninterested, and I could see him thinking: That piece of junk! What's
that for? So I said: That's a communication channel of ENIAC. He continued
to stare at me, so I added: ENIAC was the first general—burpose electronic
computer. He remained unimpressed. Finally I said: That's part of the ENIAC,
the first multiprocessor. His face lighted up, and he rushed to help me!

However, ENIAC was not really a multiprocessor in the modern semse. No
ENIAC unit could compute by itself, just as no unit of the differential analy-
zer could compute by itself. A single full electronic arithmetic unit did not
come until the first stored program computers.

The original aim of the ENIAC project was to build a digital electronic
version of the differential analyzer. Later, it was realized that this would
.2 a general-purpose scientific computer. The following question was not
asked at the time, but it is relevant here. Various electronic computing
organs were available: counters, flip-flops, switches, and resistor matrices.
How could these organs best be organized to make a large, powerful, general-
purpose computer? ENIAC's organization was not a simple and efficient answer
to this question. A logical organization more like that of the first stored
program computers would have produced a smaller and better machine. But even
with ideal designs ENIAC would have been a very large machine, perhaps 50 times
as large as any known electronic system.

We saw in Section 4 that ENIAC was programmed by a mechanical technique
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derived from the IBM plugboard. For comparable problems, ENIAC was easier to
program than the differential analyzer, because wires and switches were easier
to manipulate than shafts and gears. However, an electromechanical method of
programming would have been superior. For example, programs could have been
set up on a central bank of stepping switches and relays. For a specific prob-
lem these could have been positioned by electrical signals from a paper tape
or deck of printed cards.
In their 1943 ENIAC proposal, Eckert and Mauchly mentioned the possi-

bility of centralized control by punched cards. Referring to their Figure 1
(our fig. 11) they said:

For completeness, the diagram includes a "Program Selector' to
emphasize that centralized control by punched cards or other means
may be used if desired. Such a selector may, for instance, be used
to vary initial conditions from one run to the next, or even to
change the sequence of operations and thereby the equation being
solved. [Italics added.]

This was not achieved in ENIAC.

In evaluating ENIAC, one should keep in mind that it was developed during
World War II. The immediate goal was to calculate firing tables. Tﬁe long
range goal was a general-purpose computer. ENIAC's organization and method of
programming served this purpose without being novel. Moreover, because of the
emergency character of the war, ENIAC was developed very rapidly. The proposal
was written in April, 1943. Work on electronic counters began in June. The
prototype accumulators were working and the basic logical design of the whole
machine completed by the summer of 1944. ENIAC began to solve its first prob-
lem in December, 1945. This was an important problem from Los Alamos, still
classified. By February, 1946 ENIAC completed this problem, and had been
demonstrated publicly. The whole period was less than three years.

The engineering of ENIAC was most excellent. This was due primarily to
Pres Eckert. He led in the design of fast circuits and saw the importance of
reliability for such a large and novel system.

Rigid safety factors were imposed on all electronic designs; for example,
a factor of three on voltage swings, a factor of two on switching times. The
whole system was constructed from a few basic circuit types. Circuits were
mounted on removable plug-in units whenever the number of inputs and outputs
were sufficiently small. Components were carefully selected, pretested, and
operated below their standard ratings. We always gated short pulses (about
3 microseconds) against long pulses (which we called gates), never short pulses

against short pulses.
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Several diagnostic modes of operation were incorporated in the system.
Just as the independent-variable motor of the differential analyzer could be
slowed down to improve the accuracy of the computation, so the cycling unit
of ENIAC could be slowed down to insure correct operation or for diagnostic
purposes. ’In addition, the operator could set the cycling unit to operate in
a. control mode. When it was in this mode she could call for clock pulses as
she wanted them, either in cycles of one addition time, or pulse by pulse. All
ENIAC circuits were designed to hold their information in static form whenever
the cycling unit stopped. Also, all flip—flops and counters had neon lights
attached to each stage, so their states were easily ascertained.

The master programmer could be rearranged so that the program was divided
into small segments operable independently. By all these means, the operator
could step the computation along, program segment by program segment, addition
by addition, pulse by pulse, until she located the error. Also, the parallel
programming facilities of ENIAC allowed her to have test routines on the ma-
chine to be run periodically.

These design precautions were sufficient. ENIAC needed to be carefully
maintained and operated with suitable precautions. It turned out, for example,
that whenever the heaters of the vacuum tubes were turned on several tubes
would fail, so it was necessary to always keep the heaters on. After it was
completely debugged and when it was properly maintained, ENIAC operated with
good reliability.

The 18,000 vacuum tube ENIAC proved that electronic technology could be
used to make fast, powerful, reliable, general-purpose computers. Its speed
of computation was three orders of magnitude greater than the speed obtainable
with electromechanical technology, and it solved problems hitherto beyond the
reach of man. The electronic design of ENIAC was optimal, and led naturally
to the stored program computer. .

ENIAC constituted a hardware revolution in computers. It took them from
the electromechanical to the electronic. It began our modern age of electromic

computers.

6. High-Speed Read-Write Electronic Stores

ENIAC had fast electronic éircuits for storage, arithmetic, and control,
and executed complicated programs rapidly. However, its storage capacity was

small and its programming procedures mechanical. The technology was availlable
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for programming it electromechanically, but even then its programming equip-
ment would have been one full level of technology below its electronic com-
puting circuits.

| Both the storage and programming deficiencies of ENIAC were eliminated
by its successors, the first generation of stored program computers. These
machines put programming on a par with arithmetic and control, and thereby
began a second revolution in computing.

I shall divide the development of the stored program computer into two
historical stages, the preliminary design stage (1944-46) and the final design
and construction stage (1946-52). The preliminary design stage had two re-
lated parts, the development of hardware for storing information, and the de-
sign of an order code and suitable organization for the stored program computer.
The final design and construction stage saw the development and completion of
many stored program computers, those of the EDVAC family (EDVAC, EDSAC, UNIVAC I,
SEAC, SWAC, etc.) and those of the IAS family (IAS, Whirlwind, ILLIAC, JOHNNIAC,
IBM 701, ete.). I will not have time to discuss this stage.

From the beginning, designers of electronic computers were aware of the
need for a storage device superior to the vacuum tube register or counter.
Atanasoff invented his rotating drum with capacitors as a solution to this
problem. Both Crawford and Rajchman invented the resistor matrix function
table store, but this was only a partial solution, since it was a read-only
memory. Perry Crawford made an important contribution when he proposed a cyclic
magnetic disk memory. Pres Eckert realized that a computer based on such a
memory would be superior to ENIAC. Early in 1944 he proposed a numerical cal-
culating machine based on rotating magnetic discs or drums.

The next step in the development of electronic memories occurred when
Pres and John combined the cyclic idea of drum and disc memories with the super-
sonic delay line being used to time radar signals. To measure the elapsed time
of a radar pulse from the antenna to the airplane and back to the antenna, an-
other pulse was sent down a delay line and reflected back. Pres had garlier
worked on these lines at the Moore School for the MIT Radiation Laboratory.

Figure 18 shqws the delpy lines of Maurice Wilkes' Cambridge EDSAC, the
first stored program computer to operate. I'll explain how the delay line
memory worked, using the schematic diagram of Figure 19.

Electronic circuits were connected in a cycle with a tube of mercury which
had a quartz crystal at each egd. A quartz crystal is a piezo-electric device

which will convert electrical pulses into physical or acoustic vibrations, and
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v. 2 versa. An electrical pulse from the circuits caused the input crystal
to vibrate, producing an acoustic pulse in the mercury. This acoustic pulse
traveled down the tube and caused the output crystal to vibrate, so it pro-
duced an electrical pulse. The electrical pulse returned to the electronic
circuits, where it was retimed by reference to a clock pulse and reshaped.
The absence of a pulse would cycle similarly.

Preliminary design work was done by Pres and Kite Sharpless. Measure-
ments indicated that 1000 pulse positions (bits), spaced one microsecond apart,
could be stored in a single delay line. About ten vacuum tubes (envelopes)
were needed to reshape and retime pulses and to switch pulse streams In and
out of memory, so that 1000 bits could be stored at the cost of about 10 en-
velopes. Moreover, because of the serial nature of the delay memory, fewer
switching tubes were required for entering and recovering information than in
flip-flop or counter memories. Thus the new memory was better by more than a
factor of iOO to 1! It was now possible to store program information, as well
as data, electronically and at high speed.

In the late summer of 1944, not long after Pres and John invented the
mercury delay line store, von Neumann conceived of using an electron beam
oscilloscope for computer storage. Information is placed on the surface of
an iconoscope tube by means of light coming from the outside; this information
is then sensed by an electron beam. Johnny thought that information could also
be placed on the inside surface of such a tube by having an electron beam
either deposit a charge in a small area or not. The recorded information would
later be read by means of the same beam. Charge would leak from one area to
the next, so the information would need to be periodically refreshed, as in
Atanasoff's drum memory.

This idea was not worked out at the time. It turned out to be more dif-
ficult to reduce to practice than the mercury delay line, but electrostatic
.tores were later developed by Jan Rajchman and, independently, by F. C.
Williams in England.

Thus two forms of high-speed, read-write memory of sizeable capacity
were conceived in 1944: the cyclic mercury delay line store and the random-

access electrostatic store.

7. Code and Orgénization for the Stored-Program Computer

At the Moore School we then planned to build a stored program computer,
the "EDVAC", for "Electronic Discrete Variable Arithmetic Computer.' It would
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have a large mercury delay line memory, at least 1024 words of 32 bits. 1In
comparison, ENIAC had 20 words of variable storage, about 400 words of read-
only store, and the equivalent of perhaps 200 instructions, mechanically set.

Pres and John had devised ways of operating circuits at a megacycle
pulse rate, matching pulse against pulse for switching at this rate. Serial
addition could be done in 32 microseconds, as fast as the numbers circulated.
Multiplication by repeated addition would be several times faster than "high-
gspeed' ENIAC multiplication, and would match well with the waiting time for
the circulating delay memory.

Because EDVAC would be so much faster, smaller, and simpler than ENIAC,
there wasno longer the need for parallelism to gain speed, and it was decided
to store numbers serially and process them serially. The guiding principle of
EDVAC design was: one thing at a time, down to the last bit!

The delay-line store was to be used for both numbers and orders. In his
earlier proposal for a numerical calculating machine based on magnetic discs or
drums, Pres had proposed storing program information on some discs or drums.
Since the storage of instructions and data in the same device is unique to the
stored-program computer, it is important to be clear on our concept of a ''pro-
gram' at that time.

The Harvard Mark I and the Bell Laboratories' machines used electro-
magnetic components for storage and computation. They, like ENIAC, were
limited in their read-write storage capacity.‘ Orders for these machines were
expressed in binary coded form and punched into paper tape. Paper tape is a
read-only memory, and the orders punched into it referred to storage bins by
means of fixed addresses. Thus these machines used fixed or constant address
order codes.

In March of 1945 von Neumann spent two days at the Moore School having
extended conversations with Pres, John, Herman, and me about EDVAC. These
meetings were devoted mostly to the hardware design and local organization
of the memory and the arithmetic equipment. EDVAC was to have a memory unit
of mercury tanks, arithmetic equipment, magnetic tapes for input and output,
and control equipment. There were to be one or two switches to transfer in-
structions and numbers from memory tanks to the computing equipment. There
were to be serial adding, multiplying, and dividing circuits, fed by short
delay lines. |

After these meetings Johnny went off and wrote a draft report on the
design of EDVAC. Without his knowledge, this was issued as First Draft of
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a / zport on the EDVAC, Moore School of Electrical Engineering, June 30, 1945.
Undoubtedly he would have given credits to others. In my personal opinion
these would have gone primarily to Pres Eckert and John Mauchly, and secon-
darily to Herman Goldstine and myself,

1'11 give a brief description of von Neumann's EDVAC organization and
order code. For this description I'll draw on my Introduction to his Theory
of Self-Reproducing Automata.

The basic internal units of EDVAC were a high-speed memory y? a central
arithmetic unit gﬁ, and a central control EE} For communication there was
an outside recording medium E, and input organ i, and an output organ 0.

The memory m'was to be composed of possibly as many as 256 delay lines
each capable of storing 32 words of 32 bits each, together with the switching
equipment for connecting a position of‘H to the rest of the machine. The
memory was to store initial conditions and boundary conditions for partial
differential equations, arbitrary numerical functions, partial results ob-
tained during a computation, etc., as well as the program (sequence of orders)
directing the computation.

The outside recording medium EAcould be composed of punched cards, paper

tape, magnetic wire or tape, or photographic film, or combinations thereof.
It was to be used for input and output, as well as for auxiliary low-speed
storage. The input organ I transferred information from R todg; the output
organ g_transferred information from % to E. The notation of‘g‘was binary;
that of E.was decimal.

The central arithmetic unit 95 was to contain some auxiliary registers
(one-word delay lines) for holding numbers. Under the direction of the central
control CC it was to add, subtract, multiply, divide, compute square-roots,
perform binary-decimal and decimal-binary conversions, transfer numbers among
its registers and between its registers and g, and choose one of two numbers
according to the sign of a third number. The last operation was to be used
for transfer of control (jumping conditionally) from one order in the program
to another.

The first bit of each word was zero for a number, one for an order.
There was a single switch connecting the memory to the rest of the machine.
This switch sensed the first bit: of a word coming from memory and on that basis
routed numbers to the central arithmetic unit Sé and orders to the central con-

trol SS: Eight bits of an order were allotted to the specification of the

aoperation to be performed and, if a reference to M was required, thirteen bits
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to an address.

Normally orders were taken from the delay lines in sequence, but one order
with address 2 provided for the central control 99 to take its next order from
memory position 2. This was the unconditional shift of control. The condi-
tional shift of control was based on the central arithmetic unit q&'s ability
to choose one of two numbers according to the sign of a third number. The first
two numbers were the addresses of the orders which were to be executed accord-
ing to whether the condition on the third number was or was not satisfied.

Numbers were processed in Eﬁ serially, the least significant bits being
treated first, and only one operation was performed at a time. when a number
was transferred from Qﬁ to address w oflﬁ, account was taken of the contents
of w; if w contained an order (i.e., a word whose first bit was one), then the
13 most significant bits of the result in gﬁ were substituted for the 13 address
bits located in w. The addresses of orders could be modified automatically by
the machine in this way, leaving the operand part of the instruction untouched.

This last feature of Johnny's order code was crucial, and was invented
by him to facilitate programming in the new machines. These new machines would
be capable of storing large quantities of data. Von Neumann saw that while the
fixed address order codes of the Harvard and Bell machines were adequate for
the limited memories of these machines, they would not be efficient for the
large memories of the new electronic machines.

Von Neumann's solution to this problem was to invent the modern variable
address code. In his EDVAC code variable or virtual addresses are stored in
orders. The program is then written so that the machine calculates and sub-
stitutes a specific address into an order before each specific execution of
that order. This subgtitution process is controlled by branching when the
variable addreés reaches a preset bound. Thus von Neumann designed his EDVAC
code to make possible the recursive loops we are all familiar with. What
today we call indexing and relative addressing was accomplished in EDVAC by
processing addresses in the central arithmetic unit Ef'

It is worth comparing the way EDVAC and ENIAC handled different uses of
arithmetic in computing. In ENIAC, the primary arithmetic of solving a problem
was done in éccumulators, working with the multiplier and the divider square-
rooter. Function table look-up was accomplished by local arithmetic and switch-
ing circuits in the function: table units. The master programmer of ENIAC also
did arithmetic. It used counters to count the number of times a subroutine

was used, and caused a branch when a limit number (preset on switches) was
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v~~ched. In EDVAC, all these arithmetic functions were centralized in the
one central arithmetic unit 9&.

In summary, von Neumann was the first to see and exploit the fact that
when orders or instructions are stored in a high-speed read-write electronic
memory, they can be manipulated arithmetically and modified by the machine
itself. His variable address EDVAC code was the basis of the modern computer
software revolution.

I'1ll make one last point about Johnny's logical design of EDVAC. This
concerns the separation of logic from electronics. In ENIAC these were mixed.
A gate tube performed the logical operations of ''mot-and" (''man'), but it
could only drive so much capacitance in the allowed time before an amplifier
was needed, and the amplifier was a logical 'not'". The logical design of ENIAC
proceeded pari passu with the electronic design. As a consequence, the logi-
cal design of ENIAC was not really completed until the circuit design was
finished.

In contrast, von Neumann worked out most of the abstract logical design
of EDVAC in his draft report. He did this by using idealized switches with
delays, derived from the logical neurons of Warren McCulloch and Walter Pitts.
This abstraction of logic from engineering enabled him to do the logic of
EDVAC without simultaneously doing the engineering, and thereby made it pos-
sible for him to essentially complete the design in one draft. This also
simplifies the historian's task, for it makes sharper the division between
the preliminary design stage (1944-46) and the final design and construction
stage of the stored-program computer (1946-52).

We all knew that von Neumann's logical designs were realizable because
he had worked out the building blocks with the group before he wrote the re-
port. I remember well a meeting in the spring of 1945 at which we discussed
serial adders. Pres and John had designed several serial adders, the simplest
cf which took ten tubes. Not knowing of these results, von Neumann announced
cheerily that he could build an adder with five tubes. We all looked amazed,
and Pres said, "No, it takes at least ten tubes.'" Johnny saic, "I'll prove

1

it to you," rushed to the board, and drew his adder.

""No," we said, "your first tube can't drive its load in one microsecond,
so an inverter is needed, then another tube to restore the polarity." And so
the argument went. Johnny was finally convinced. But he was not taken aback.
"You are right,” he said. '"It takes ten tubes to add — five tubes for logic,

and five tubes for electronics!"
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In his First Draft of a Report on the EDVAC von Neumann also proposed
the development of a high-speed memory using an electron beam oscilloscope.
He thought such a store would be superior to the delay line store because
all the storage cells in a cathode ray tube would be directly accessible.

Late in 1945 von Neumann decided to build a machine at the Institute
of Advanced Study based on an electrostatic storage tube to be developed at
RCA Laboratories by Jan Rajchman. The rest of the computer was to be designed
and built at the Institute. Jan's storage tube was called the '"Selectron".

In the end the Williams tube electrostatic memory was developed before the
Selectron, so the IAS machine used it. One machine of the IAS family, the
JOHNNIAC at RAND Corporation, used Selectrons. For the story of this and many
other topics I have discussed see Herman Goldstine's The Computer from Pascal
to von Neumann (Princeton University Press).

In the spring of 1946 Johnny, Herman and I worked out the logical design
of the Institute for Advanced Study computer (IAS). Our report, Preliminary
Discussion of the Logical Design of an Eleotronic Computing Instrument, was
issued an June 28, 1946.

To take advantage of the gain in memory speed of Selectrons over delay
lines, we planned to store the bits of a word in parallel, one bit per Selec-~
tron, and process them in parallel. This required more arithmetic equipment
than a serial arithmetic unit, but it saved the control equipment needed for
timing serial operations. With 40 bit words, two orders could be placed in
one word, an important economy. It seemed that in these ways the IAS machine
would be an order of magnitude faster than EDVAC and no more complex.

Figure 20 lists the 21 internal orders of the IAS machine. '"S(x)" de-
notes the word stored or to be stored in Selectron address x. There were to
be 4096 words, stored in 40 Selectrons. There was a register associated with
this memory, called the ''Selectron register'. Words were moved from the
Selectrons to it, and thence to either the arithmetic unit (for a number) or
the control (for a pair of orders). Words were moved from the arithmetic unit
to the Selectron register and then into the Selectrons. The arithmetic unit
contained a 40 bit accumulator and also a 40 bit register.

The leftmost 12 bits of an order were for an address and the rightmost
8 bits specified an operation. There were two orders in a word, left-hand and
right-hand. Correspondingly, address substitutions and shifts of control were
of two forms, left-hand and right-hand.
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The accumulator could add, subtract, or take the absolute value of S(x).
It could be cleared or not before these operations. It could halve or double
its contents by appropriate shifts. Multiplication and division involved both
the accumulator and the arithmetic register. The contents S(x) could be trans-
ferred to the arithmetic register, and the arithmetic register would transfer
to the accumulator. The accumulator could transfer to S(r), either totally
(for numbers) or partially (for substituting addresses in orders). We decided
not to have orders for square-rooting and conversions between binary and deci-
mal, but to program these operations.

This completes my description of the preliminary design of the IAS com-
puter. 1Its order code and logical design was, I think, superior to that of the

machines based on the serial mercury delay line memory.

8. Conclusion

I will conclude by summarizing briefly the state of the stored program
computer at the end of the preliminary design stage in the summer of 1946. The
mercury delay line memory was known to be workable, though not yet designed or
built. Von Neumann's logical design of EDVAC was available; the electronic
design had yet to be done. The Selectron was being developed. The preliminary
logical design of the IAS machine had been done; the electronic design remained.

The final design and construction stage of the development of the stored
program computer was beginning. Several groups were working at this time, and
others started later. Much development and construction work remained, mostly
electronic, some logical. The history of this stage (1946-52) would take an-

other long paper.
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FIG. 2 ORIGIN OF ENIAC AND THE STORED PROGRAM COMPUTER
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Fig. 12 ENIAC Programming Panels and Cables
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Fig. 18 EDSAC Delay Lines
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Symbolization

e Operation
Complete Abbreviated
i S(x) - Ac+ x Clear accumulator and add number located at position x in the Sclectrons into it
2 S(x) > Ac— x — Clear accumulator and subtract number located at position x in the Selectrons into it
3 S(x) » AcM xM Clear accumulator and add absolute value of number located at position x in the Selectrons into it
4 S(x) > Ac—M x —M Clear accumulator and subtract absolute valuc of number located at position x in the Selectrons into it
5 S(x) - Ah+ xh Add number located at position x in the Selectrons into the accumulator
6 S(x) - Ah— xh— Subtract number located at position x in the Selectrons into the accumulator
7 S(x) - AIM xhM Add absolute value of number located at position x in the Selectrons into the Accumulator
8 S(x) - Ah—M x —hM Subtract absolute value of number located at position x in the Selectrons into the Accumulator
9 S(x)— R xR Clcar registers and add number located at position x in tho Sclectrons into it
10 R =-A A Clecar accumulator and shift number held in register into it v
11 S(x) X R—» A xX Clear accumulator and multiply the number located at position x in the Sclectrons by the number in the
register, placing the left-hand 39 digits of the answer in the accumulator and the right-hand 39 digits
of the answer in the register
12 A-+S(x) >R X+ Clear regisier and divide the number in the accumulator by the number located in position x of the
Selectrons, leaving the remainder in the accumulator and placing the quotient in the register
13 Cu — S(x) xC Shift the control to the left-hand order of the order pair located at position x in the Selectrons
14 Cu' - S(x) xC’ Shift the control to the right-hand order of the order pair located at position x in the Selectrons
15 Ce - S(x) xCe If the number in the accumulator is 2 0, shift the control as in Cu — S(x)
16 Cc' — S(x) xCc' If the number in the accumulator is 2 0, shift the control as in Cu’ — S(x)
17 At - S(x) xS Transfer the number in the accumulator to position x in the Selectrons
18 Ap - S(x) xSp Replace the left-hand 12 digits of the left-hand order located at position x in the Selectrons by the left-
_ hand 12 digits in the accumulator .
19 Ap' — S(x) xSp’ Replace the left-hand 12 digits of the right-hand order located at position x in the Selectrons by the left-
hand 12 digits in the accumulator
20 L L Multiply the number in the accumulator by 2, leaving it there
21 R R Divide the number in the accumulator by 2, leaving it there

» Register means arithmetic register.

Fig. 20

Instruction Set for the Institute of Advanced Study

Computer
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