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ABSTRACT

The aim of this report in general is to present some theories
concerning code conversion and the design of code conversion equipment
for digital computers.

Volume I deals with a restricted type of character-to-character
conversion represented by the Transliterative Function. Such conversions
do not require remembering previous states nor any time-space transforma-
tiong., Some theory and a number of effective techniques are given for de-
signing the required equipment-—such design being presented at a level of
considerable logical abstraction.

The remainder of the report, to be published subsequently, will
cover the following topics:

Volume IT will discuss the use of various types of equipment—
tubes, relays, etc.—as means (1) for carrying out the logical designs of
Volume I, and (2) for effecting more general code conversions and format
conversions—e.g., those involving serial-parallel transformations, shift
codes, ete.

Volume IIT will present detailed proofs and some relevant disg-
cussion of two topics presented in Volume I, concerning (1) minimal net-
works—in particular, the Balanced MS Net, and (2) the theory behind and
validity of the technique for folding trees.
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LANGUAGE CONVERSION FOR DIGITAL COMPUTERS

General Introduction

It is the purpose of this report to make a general survey of code
and format conversion. This will not be a complete survey of the problem,
but only a preliminary investigation which is designed to make clear the
general nature of the problem, to formulate some of the chief available
techniques, and perhaps to serve as a foundation for more detailed studies
of such conversions and the design of equipment therefor.

Code conversion is a special case of language translation, and it
is useful to consider it in this light. While no sharp lines can be drawn
between what is normally called a code conversion and an ordinary linguis-
tic translation (e.g., German to English), the difference can be indicated
roughly. Basically, a code conversion is a translation at the character
level, while an ordinary linguistic translation takes place at the sentence
level. Later in this section the concept of message transliteration will
be defined; put in terms of this concept, the difference is that code con-
versions are primarily message transliterations, while ordinary language
translations are not.®

In accounting work the initial data and end result are expressed
in a natural languege whose alphabet (in this part of the world) consists
of Iatin letters, Arabic numerals, and a few auxiliary characters such as
the dollar sign. Since electronic and electro-mechanical circuits gener-
ally work most easily in a binary system, most machine languages have two
basic characters: represented in this report by '0', 'l'. Thus, an ade-
quate machine language is an artificial language with two basic characters
(bits), which characteristically represents alphanumeric characters by rel-
atively short sequences of bits so chosen that the translation between the
natural language and code (and hence between codes) is essentially a message
transliteration.

It should be noted that many machine languages are not quite bi-
nary but are almost so. Consider for example a representation of data on
a magnetic tape which is six channels wide. On such a tape there is a nat-
ural grouping of bits into sequences of six; the edges of the tape consti-
tute, so to speak, parentheses. This grouping provides information in the
technical sense of that term, since a machine when turned on in the middle
of a message finds, not a continuous sequence of 0O's and 1's , but
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rather a sequence of clearly defined sequences each of which consists of
six O0's and/or 1's . The same point holds with regard to the usual
organization of characters into "words" inside a machine.

Thus a typical machine language has two primary basic characters
( 0 and 1 or their equivalents) and sometimes secondary basic charac-
ters—e.g., ) or its equivalent . As a consequence it is convenient
in discussing code conversion to apply a notion of character broader than
that of basgic character. For example, in discussing the tape language
mentioned above it is often convenient to regard the characters not as
1's and O's but as ordered sextuples of 1's and O's . For the pur-
poses of this report and from a syntactical point of view, a language L
consists of charactér-type* class, C , and formation-rule class, F |,
determining a set of message types {M} , each message being a finite se-
quence of character-tokens of class C : my, my, ..., MWy

Though code conversion is largely a matter of syntax rather than
of semantics, it should not be overlooked that a language has a semantic
(meaning) dimension, as well as a syntactic (formal) one. The concluding
statement of the previous paragraph does not constitute an entirely ade-
gquate definition of 'language' because, among other things, 1t ignores this
dimengion. Thus the statement in question does not establish the proper
identity (or diversity) criteria for codes. For example, there are two
teletype codes, each comprised of the same character-type class (thirty-
two five-bit sequences) and the same formation-rule class (i.e., the same
sequences of characters are allowable messages in both), which nevertheless
are different because different five-bit sequences ( 01000 and 00101 )
are employed to represent a '#!

Not all the syntax of a machine language is represented by the
use of basic characters other than 0 and 1 . Often, perhaps usually,

As used herein, the terms 'character-type' and 'character-token' are
synonymous with the terms 'character-design' and 'character-event', respec-
tively. Since there is no standard terminology on thig point, either set
of terms seems permissible although 'type' and 'token' would appear to be
preferable to 'design'and 'event' for the following reasons. First, the
former terminology is older (cf. The Collected Papers of Charles Sanders
Peirce, vol. IV, paragraph 537) and an existing terminology should not be
changed without due cause. Second, 'type' and 'token' may be uged alone
as abbreviations for 'expression-type' and 'token-type', whereas 'event'
and 'design’ are somewhat misleading. Third, it is often desirable in
semantic work to take as a token, not a single eventﬁze.g., a single read-
ing of 'red'), but a substantive or sequence of events (e.g., one occur-
rence on a given page of a specific token of a book throughout the life
of that book).




syntax is represented by sequences of bits in the same way that alphanumer-
ic characters are represented. Thus, spaces, paragraphs, indentations, and
various kinds of brackets that occur in a message written in a natural lan-
guage may be coded in the same way that alphanumeric characters are coded.
There is an interesting consequence of this: namely, a coded "message" can
contain two or more syntactical structures. Consider as an example a message
written in a natural language which i1s organized into unequal-length words,
sentences, paragraphs, and pages. This message can be translated into a ma-
chine language which is organized syntactically into equal-length words and
blocks in such a way as to preserve the syntactical structure of the origi-
nal message, in the sense that the original message can be recovered by
translating back into the natural language. Thus the coded machine repre-
sentation of the original message contains both the original syntactical
structure and the syntactical structure of the machine language.*

The concept of translation can now be applied to languages whose
characters are finite sequences of two basic characters. Consider two lan-
guages, L and L' , consisting of character-type classes, C and C' ,
and formation-rule classes, F and F' , determining sets of message-types
{M} and {M'] . Any function, ¢ , which maps {M} into M"Y is called
a translation furiction. Such a function is called reversible if and only if

M]_‘7é My . R ¢(M]_) # ¢(M2) . ;

If ¢ is a reversible translation function from L to L' , no informa-
tion is lost in translating by means of it; that is, any message Ml may
be completely recovered from its translation ¢(Ml)

In this report we are interested only in translation functions
which are reversible or almost reversible.** Furthermore, we are not in-
terested in all such functions. Thus translation functions such that for
long messages M any character of M' requires for its determination
simultaneous storage of all characters of M , or even such that the first
character m; cannot be produced until all of M 1is scanned, are not very
useful from the point of view of mechanized accounting. However, we know
of no sharp lines dividing the translation functions which are useful in
mechanized accounting from those that are not. The most that can be said
is that the interesting translation functions belong either to the special

See for example the internal language of the Michigan report, The Lan-
guages for an Electronic Accounting System, Sec. 2.3.1 and 2.3.2.

**  For example, the translation discussed in the report previously cited

ig not completely reversible. E.g., 37.00 and 37 would both translate
into the external language as ... 037.000
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class of message transliteration functions (to be defined below) or strongly
resemble members of this class.

It is now possible to define the concept of a transliterative func-
tion: a single-valued function whose domaln and range are sets of finite
sequences of O's and 1's -—each set (domain and range independently)
consisting of sequences of equal length. (ILater this definition will be
restricted to exclude non-information-carrying bits—see section k4.)

,Consider now a translation function ¢ from L to L' which is
explicitly defined as follows:

Blmy,mpse.) = Wlm), Y(mp), oo

where 4? is a transliterative function and my,Ms,... 1s an arbitrary
message of L (the individual m; being character-tokens of class C of
I ). Any function, @ , so defined is a message transliteration function.

So far, the format arrangement of a message has not been discussed,
Indeed it will be noted that our concept of translation function has no place
for chenges in format, since any two messages which differ only in format ar-
rangement will be related to one another by the identity translation function.
However, it may be assumed for the present that the messages are transmitted
a character at a time, bits of a sequence representing a character—an my
—all being available at one time (compare the definition of a language given
earlier). Under these circumstances a message transliteration could be most
simply executed as a character-by-character translation. For this purpose
the following kinds of equipment would be required: (1) a function switch
to realize Q’ , (2) memory for one character, (3) whatever memory is needed
for buffering purposes (i.e., velocity matching), and (4) a few fairly simple
control circuits. Since we are interested in code conversions that are mes-
sage transliterations, or nearly so, it is clear that a function switch is
an essential part of all code converters discussed in this report. But func-
tion switches have other uses than in code conversion, so it seems desirable
to study function switches per se. This will be done in Volume I.

Function switches may be realized (constructed) with various cir-
cuit elements: relays, vacuum tubes, mechanical lever arrangements, etc.
Not all such elements are equally flexible, however. For example, crystal
rectifier "and's" and "or's" cannot be combined as freely as can, say, d-c
vacuum-tube "and's" and "or's". On this account it is useful to think of
the designing of a function switch as progressing through three stages.

The first is the construction of an abstract logical design based on logi-
cal operation. The second is the translation of this design into one in

terms of elements which are idealized representatives of equipment. The
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theory developed by Shamnon (6, 3, 4, 12), Aiken (11), and Brown and Roches-
ter (8) is essentially at this second level, for to a large extent they base
their work on relays, tubes, and diodes, respectively. The third stage is
the construction of the complete circuit design with all detalls indicated
that are needed for actually assembling the physical switch. The last of
these three stages is beyond the scope of the present report. The first
two stages will be treated in Volumes I and II, respectively.

In code conversions which are not message transliterations, memory
circuits often play a more dominant role. For example, if the incoming mes-
sage is expressed in a shift code, the last shift character to have occurred
must be remembered. Again, in converting from unequal-length to equal-length
numbers an incoming number must be scanned (and hence remembered) before it
can be pogitioned properly and before dummy characters can be added. It
should be noted that while such a converter realizes a non-trivial transla-
tion function (one in which it is not the case that @(M) =M ) it requires
only a rudimentary function switch, so that the circuit emphasis is upon mem-
ory. For this reason it is doubtful that it should be called a "code conver-
ter" at all. It is perhaps more properly called a "format converter",

There are other conversions which doubtless should be called format
conversions and not code conversions. All merely space-time conversions fall .
in this class: e.,g., a "serial-gserial to parallel-parallel conversion"., The
translation function governing such a conversion is completely trivial, since
for all messages, M , @(M) =M (at least if the ordinary cohcept of char-
acter is maintained), and it is for this reason that such conversions are not
properly called code conversions. Nevertheless, any study of code conversion
should be extended to include these format conversions for two reasons. First,:
such conversions involve the same kinds of equipment as are required for code
conversion. Thus in a "serial-serial, parallel-parallel" conversion, where
the instantaneous rate of flow of information out of a converter 1s not al-

- ways equal to the input rate of flow, memory for buffering is required as
well as distributing circuits for rearrangement of the data. Second, in
actual practice such conversions are often combined with bona fide code con-
versions.”

For these reasons it is convenient to make a rough-and-ready class-
ification of conversion into three kinds, depending on the characteristics of
the equipment required:

Code Conversions—those requiring'primarily function switches; e.g.,
conversions between six-bit codes, four-eight codes, and five-bit
shift codes.

See for example The Design of the languages for an Electronic Accounting
System, Sec. 2.3.2 and 2.3.3%; and The Program Translations: Tape Language
to Internal Language.
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Format Conversiong—those requiring primarily memory units and dis-
tributing and arranging equipment; e.g., space-time conversions and
simple equal-length—unequal-length conversions.

Code-and-format Conversions—those requiring a substantial amount

of both function switch equipment and memory and distributing equip-
ment; e.g., a conversion from a serial-parallel, unequal-length-word,
five-bit ghift code to a parallel-parallel, equal-length-word, four-
eight code.

It is desirable to have a single name for all of these conversions.
'Language translation' seems too restrictive, since a mere format conversion
hardly involves a translation between two different languages. On the other
hand, 'language conversion' seems satisfactory, since 'conversion' is flexible
enough to cover all the cases, and we are certainly dealing with languages.*

Another example of a conversion that is both a code and a format con-
version is that between the coded language and the internal language designed
by the Michigan Project.** 1In fact, an appreciable proportion of the transla-
tion which will occur in a highly developed automatic accounting system is of
a comparable degree of complexity. Under these circumstances one would expect
in a report of this character a discussion of the logical design of converters
for all three types of conversion. But it must be remembered that general de-
sign techniques for such converters are being discussed rather than the design
of ‘specific converters. Now the logical components of code-and-format conver-
ters are the ‘components of code converters and format converters as well. Hence
it seems fairly sufficient at this level of generality to discuss the design of
code converters and format converters, omitting any detailed discussion of code-
and-format converters as such. An additional reason for this omission is that
any example of a code-and-format converter is likely to constitute enough mate-
rial by itself for a fairly substantial report. In reading this report, how-
ever, it should be kept in mind that the individual code converters (Volume I)
and format converters (Volume II) are emphasized primarily because this seems
a sultable way of discussing the logical components (and their interconnections)
for all three kinds of converters.

*  The term 'language conversion' was suggested by Don Stevens.

** See the references in the penultimate footnote preceding.
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VOLUME I

THE LOGICAL REALIZATION OF TRANSLITERATIVE FUNCTIONS

l; Introduction

Volume I is a study of the design of equipment for realizing*
Transliterative Functions (essentially, single-valued functions of sequences
of 0's and 1l's of uniform length to sequences of O's and 1's of uni-
form length—see Def. L4, section 4). Such devices will be called Functian
Switches. They m;§félgb be defined in more customary terms as IRE‘(l)“*
function switches*** modified by requiring (1) that a simultaneous applica-
tion of signals to the input will cause the simultaneous appearance of the
corresponding output signals and (2) that none of the auxiliary circuits
for timing, pulse generating, etc., be regarded as part of the Function
Switch. These requirements do not prevent the bits of a sequence from com-
ing serially into the mechanism (of which the Function Switch is a part).
The circuits for handling such an input, however, would not be part of the
Function Switch proper as the term is used here.

The term Realization is formally defined in section 4. This formal mean-
ing, however, is simply an attempt to make precise, in a particular context,
the generally understood meaning of the term which is adequate for all but
the most 'formal' occurrences of the term throughout the report. In general,
technical terms when used in special sense peculiar to this report will be
capitalized and will be underlined at the first occurrence. The index will
show where the term is introduced or defined.

*x Such numbers appearing in parentheses after an author or term refer to
the bibliography at the end of the volume.

**¥X The IRE definition states that a function switch is "a network or system
having a number of inputs and outputs and so connected that signals repre-
senting information expressed in a certain code, when applied to the inputs,
cause output signals to appear which are a representation of the input in-
formation in a different code". 1In the terminology of this report the IRE
function switch is a "language converter".
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As was pointed out in the General Introduction, the design of

Function Switches is broken down into three stages: logical, idealized
equipment, and complete circuit design. The present volume is devoted
exclusively to the first of these stages. The principles of the proposi-

- tional calculus are used freely. "Logical elements" (assumed realizable
in equipment) are defined having the properties of conjunction, disjunc-
tion, and nagation, and symbolic networks are constructed by "wiring" these
elements together to produce switches.

The aim of the volume is achieved by first giving constructive
procedures for a few basic component—or "building-block"—switches which
may not in themselves constitute a useful realization technique; next, in
terms of these components, defining switches for certain special kinds of
Transliterative Functions; and finally, giving techniques for combining
and modifying these switches to give switches realizing an arbitrary Trans-
literative Function. In section 2, the basic concepts used in the construec-
tion and study of the abstract logical circuits are defined. All the methods
for constructing Function Switches are given in sections 3 and 4 with the
exception of that for the folded tree, which is discussed in section 5 in
connection with minimality and loading properties of switches.
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2. Definition of Logical Elements and Networks

This section introduces the basic logical elements which will be
combined into symbolic circuits (representing physical Function Switches)
by techniques to be considered later. It gives rules for the combination
of these elements into networks and places some restrictions on the types
of circuits to be considered. Finally, it defines and discusses some gen-
eral properties of these logical networks, which may have some significance
for their physical realization and which may be used as a basis for compari-
son.

The logical operators: conjunction, disjunction, and negation,
are chosen as the basic elements. It is assumed (and will be shown in a
later volume) that they can be realized by physical equipment (e.g., pulse
control units, relays, tubes, etc.). Each such piece of equipment is repre-
sented by a geometric figure or enclosure along with a set, W , of directed
line segments associated with it (see Figure 1). The line segments corres-
pond to the Inputs and Outputs of the physical element and will be referred
to as Wires. The figure together with its wires is called a Logical Element.
Congider a Logical Element, E . Let W represent the set of wires associ-
ated with it. Then the inputs of E form the subset, Wy , composed of all
the wires of W directed toward E (i.e., with the arrowheads pointing to-
ward E ). Only the inputs may be ‘'driven'—i.e., put into one or the other
of two electrical states, '0O' or 'L' , by connection to an outside source,
Any subset WO of W may be denoted as the set of outputs of E provided
that the union of inputs and outputs is the set W . The output will be
the single arrow (wire) directed away from the Element unless otherwise
specified, '

The Logical Elements are defined as follows: The square in Figure
1(a) represents a piece of equipment with two or more inputs and a single
output which is in the 1 state if and only if all of the inputs are in the
1 state. Thus it represents the logical operation, conjunction, and is re-
ferred to as a Conjunctive Element. The triangle of Figure 1(b) represents
a Disjunctive Element: its single output is in the 1 gtate if and only
if at least one of its inputs is in the 1 state. The circle enclosing an
'N' , Figure 1(c), is a Negation Element—a device with a single input and
a single output having the property that the state of the output is opposite
to the state of the input.

The above three Primitive Elements are sufficient for construéting
all of the networks to be considered and all such networks will be assumed,
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in the interests of simplicity, to be compounds of these Primitives even
‘though, in certain applications, another choice of Primitives would seem
to gerve as well or better.

As an example of an auxiliary compound element, the Double-and
is introduced in Figure 2. This element is a logical interpretation of the
relay (Figure 2c) as it is frequently used in contact networks (ef. section
5), Tt is represented as a compound of Primitive Elements (Conjunctive) in
2(a) and in convenient abbreviated symbolism in 2(b). The labelling of the
input pair (~p, p) represents the standard relay interpretation which is
the only mode of operation to be considered.

If tubes are to be used, it is natural to define enclosures (ele-
ments) representing the stroke functions. With the proper interpretation
of voltage levels, a double triode corresponds to the disjunctive and the
pentode to the conjunctive stroke function; these elements are discussed
in section 3.3.

Although such compound elements as the two above are of secondary
importance to this report, the posgibility of such alternatives deserves
emphasis because of their usefulness in more specialized applications.

The Function Switeches considered in Volume I will be compounded
from the Logical Elements exclusively, though not all possible combinations
will be considered. The allowable combinations are defined by the follow-
ing rules whose primary purpose is to ensure that each output will be a
function of the inputs. Such a combination is called a Network.

1. Any one of the Primitive Logical Elements, or—the "degen-
erate element”"—a single wire with terminals labelled ‘'input' and
'output', constitutes a Network whose Inputs, Outputs, and Wires
‘are those of the Element,

2, If Fl and F2 are distinct Networks with designated inputs
and outputs, they can be combined to form a compound Network F
as follows:

A.1 All inputs of Fy are designated inputs of F .

.2 Fach input of F2 must be designated an input of
F or it must be connected to a single output wire
of Fl . (Several inputs of F2 may be connected
to the same output wire of F; .)

.3 No other connections between Fl and Fo, -are per-
mitted.
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B.1 All outputs of Fo are designated outputs of F .,

.2 Every output of F; which is not connected to an
input of F2 must be designated an output of F .

.3 Any inputs of Fl or Fo may also be designated
outputs of F

C. The Wires of F are defined to be its inputs to-
gether with its outputs.

The force of 2C ig that the internal connections of a network—
unless they are Network outputs—are not called Wires of F but must be
referred to as Wires of the components, F; , F, , etc.

The rules B.l and B.2 (omitting B.3) define a set of outputs
which is adequate for all specific Switches* discussed in this report and
will be referred to as the Natural Outputs. Rule B.3 will, of course, be
assumed in any general remarks or theorems concerning the class of Networks.

Some typical examples of Networks are shown in Figures 3a, 3b,
and 5b. Figure 5c is an application of the Double-and notation to the
Network of Figure 5b.

«

It is the philosophy of this volume to treat Networks as logical
entities., Nevertheless, there are frequent allusions to concrete applica-
tions and it is to be expected that some readers will carry this transla-
tion into physical equipment even further. It should be pointed out,
therefore, that the Networks are most easily interpreted in terms of static
operation; i.e., the 1 and O signals or states of the Wires should be
thought of as "high" and "low" d-c levels rather than as pulses. The rami-
fications of the pulse or dynamic interpretation are taken up in section

bk,

Although the general question of which of a number of circuits
or Networks is "best" for a particular job must remain unanswered (or,
perhaps even unformulated), two eriteria for comparison which appear to
be of some use are presented below.

The first is the Element Input Count denoted by 'C'. It is the
total number of inputs for all of the Logical Elements of the Network.

= :
The term 'Switch' will be used frequently in referring to a specific

Network.
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The network of Figure 3(a) has 12 three-input Conjunctive Elements and so
C= 36, while the "tree" of Figure 5(b) has 28 two-input Elements and C = 56.
The Element Input Count is considered a rough index of the complexity of
the circuit relative to the type of Element used in its construction. Its
significance depends on the particular physical elements used in its reali-
zation. Thus in trees (pyramids) designed by Aiken's (1) techniques the
number of control grids is a specific interpretation for the Element Input
Count of the corresponding abstract circuit.

The second property to be defined is a loading property. Two
types of loading are distinguished for each Input of a Network, serial
loading and parallel loading. To determine the serial loading of an in-
put g , consider the set of all sequences of Logical Elements of the
Network, {(EI,EQ,...,Em)} , where (1) q is an input of E; , (2) the
output q; of Ej_q 1is connected to an input of E; (and possibly to
other elements), and (3) the output of E  1is an output of the Network.
Such sequences are called Chains. (A Conjunctive Chain is one composed
entirely of Conjunctive Elements.) The length of a Chain is the number
of Logical Elements it contains. Pick out any Chain L of this set which
has a length equal to or greater than that of any other Chain in the set.
Then the length of I 1is defined to be the Serial Loading Coefficient of

q

Although no use is made of it here, it 1s interesting to note
that the idea of serial loading may be extended by defining the "serial
loading coefficient of a logical element, E" in an analogous fashion,
the output of E replacing q in the definition given above.

The Parallel Loading Coefficient of a Network input, q , is
defined as the number of Logical Elements to which g 1is directly con-
nected. As in the case of serial loading, this idea may be extended to
any Logical Element.

The parallel loading of an input, q , does not describe the
situation completely. This can be done only by considering the parallel
loading coefficients of all the Logical Elements appearing in Chains hav-
ing as a first term a Logical Element with g as an input. These coef-
ficients might be displayed in the form of a matrix to be associated with
g . For the special cases to which it will be applied in this report
(with one exception in section 5), the concept as defined is adequate.

The loading characteristics of a Network will be presented as a
set of Loading Couples: number pairs, (S,P) , one for each Network in-
put, where S 1is the Serial and P +the Parallel Loading Coefficient. 1In
Figure 3b, the Loading Couples for all Network Inputs are the same, (1,8)..
In Figure 5b the loading of the two wires of a pair is the same: for a
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wire of P, or of P, , the couple is (3,2); for Pz, (2,4); and for
P, (1,8).

The significance of these numbers varies with the physical equip-
ment considered for the realization. For example, in a relay tree the
serial loading and the parallel loading for Logical Elements is of little
significance, while the Parallel Loading Coefficient for the switch inputs
is of great importance: 1t 1s the number of transfer contacts operated by
an input relay. It is studied in section 5 and more extensively in Volume
ITI. On the other hand, serial loading is of considerable interest if the
circuit is to be realized by crystal rectifiers.
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3. Logical Design of Networks

The purpose of sections 3 and 4 is to present techniques for
"constructing"—at the abstract level of design—switches which realize
Transliterative Functions. It has been found possible to realize all
Transliterative Functions by simple combination of a very small number
of components (Switches). Since these components may have wider applica-
tion than it is the purpose of this report to consider, they will be pre-
sented separately in the present section, independently of their use in
realizing Transliterative Functions. In section 4 this application will
be considered in detail. Section 3 will, however, anticipate the subject
matter of section 4 to the extent that the components are capable, without
modification, of realizing functions.

The present section will be divided into two subsections:

3.1. "Conjunctive Switches: MS (Multiplicative Switches) and
MS Nets" showing first the construction and operation of
these components, and, second, a more detailed discussion
of two dmportant specific examples, the "Tree" and the
"Balanced MS Net".

5.2. "Alternative Switches Using Other Logical Elements" which
describes, primarily, the use of stroke function elements.

The definitions of Switches in this section (with one exception)
have the form of constructive procedures: 1i.e., given the proper specifi-
cation of input sets, use of the rules laid down by a definition will pro-
duce a unique Switch. This aspect will be pointed out specifically for
each definition as it is presented.

3.1. Conjunctive Switches: MS (Multiplicative Switches) and MS Nets

The Multiplicative Switch—hereafter referred to as 'MS'-—de-
rives its name from the mathematical concept Cartesian Product.* The Car-
tesian Product idea, which is fundamental to this volume, is most frequently
applied to sets of wires. To facilitate its application to Networks, a

*
Given a sequence, J » of sets, 87,...,8, , the Cartesian Product of

J 1is the set of all possible n-term sequences such that the ith terms of
any sequence belong to S; . Note for future reference that this opera-
tion is associative: (8; X 8,) X 53 = 851 X (5 X 85) .
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closely related Concept called the "Cartesian Conjunction" will be defined.
Congider a Switch A , a collection, & , of disjoint sets, Il,...In s
each consisting of two or more input wires of A , and the set, 0 , of
the output wires of A ; then

Def. 1. A subset, S , of 0O 1is called a Cartesian Conjunction
of £ , denoted 'CC({)' , if there is a 1-1 correspondence be-
tween the Cartegian Product of ,Q and S such that if w, is
the wire of S corresponding to e , an element of the Cartesian
Product, then all Conjunctive Chaing with We as output originate
in e and at least one Chain is counected to each wire of e (e,
g., see Figure %a or 5g).*¥

In all the Switches explicitly discussed in this volume CCCQ)
will be unique and will be referred to as the Cartesian Conjunction of
although in general there may be several distinct sets which are Cartesian
Conjunctions of a given g

The Cartesian Conjunction operation can be iterated: 1i.e., the

I; sets may themselves be Cartesian Conjunctions. This leads to:

1

Corollary to Def. 1. Cartesian Conjunction is associative; i.e.,

(cc(d;) X cc(@3)) X co(@s) = ccly) X (ce(dy) X colds))

This follows directly from the relation to Cartesian Products which is as-
sociative,

Throughout the report, the number of elements in a set or sequence,

S , will be denoted by the expression N(S) . Applying this notation to
the present case, clearly

N(cC(£))

1l

n
TT N(T;) . (1)

J=1

The following property is also worth noting. Given an input set, I , a
grouping into %-collection, éZ , of disjoint subsets Iyse005I, 5 such

that I = _Ul I, , and the resultant cc(€) , it is not possible, on
J= n
the same I , to form a different grouping, {' (of subsets 5, I-= 'Ule)
J:
such that cC(L') = cc(¥) ; and, conversely, two unequal output sets

The operating condition being established here is that, to each e cor-
regponds an output wire which is in the 1 state if and only if every wire
of e 1is in the 1 state. WNote that CC({) , unlike the Cartesian Prod-
uct, is independent of the order of the sets in £ '

10
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cannot be the Cartesian Conjunction of the same € .| These statements
follow easily from the definition of Cartesian Product.

An MS ig a Switch for producing the Cartesian Conjunction—
gpecifically:

Def. 2.% A Multiplicative Switch (MS) is a network whose set
of inputs, I , can be grouped into a collection, Jd , of

disjoint subsets such that I = 'ﬁl I, (N(I3) > 2) in such
a way that the set of outputs isJTCC@Q) , each output wire
being the output of a single n-input Conjunctive Element whose
inputs are the wires of the corresponding element, e , of

the Cartesian Product of 42 .

The constructive force of this definition is that, given an input set I
and a partitioning, J , then one and only one MS can be\produced.**

Figure %a shows an MS with the input set I of 7 wires grouped
into subsets, I; of 3 wires and I, and 15' of 2 wires each, and with
the Cartesian Conjunction represented by the 12 output wires in accordance
with formula (1).

For MS's'in general the number of Logical Elements (Conjunctive)
required is equal to the number of output wires, IWi N(Ij) , and the
Element Input Count is given by the formula J=

C = n TTN(Ij)

J=1

One of the essential characteristics of a Multiplicative Switch is that
every sequence of states appearing on its inputs has the same number, k ,
of 1l's . This property might be taken as the basis for defining a broad-
er class of switches which includes the class of MS's as a subclass. Such
Switches would realized Tramsliterative Functions whose domain sequences
each have a fixed number, k , of 1l's , and whose range sequences, as
for the MS (cf. Decoding Function, section L), each have a single 1
A switch of this class would consist of a set of k-input Conjunctive Ele-
ments, one for each sequence in the domain, the Element inputs being con-

.nected to the k switch inputs which register 1's corresponding to the

associated domain sequence. This type of switch would, for example, decode
a 2-out-of-5 code which cannot be handled by the MS.

For this purpose, Switches with inputs or outputs permuted are not con-
gsidered distinct—the problem is discussed in more detail in connection
with MS Nets ( last footnote, p. 19).

11
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The Serial Loading Coefficient for any input wire is obviously 1 ; the
parallel loading, however, is dependent on the subset, I. , to which
the wire belongs and the loading characteristic is expressed, for a wire
Wj of 13 , by the Couple

n
(L, TT N(I,)) (3 #3)
J=1

E.g., for the MS of Figure 3b, the Loading Couple for any wire of Il is
(1,4); for any wire of I, or Is (1,6).

The MS shown in Figure 3b deserves special mention, It is a
familiar piece of decoding apparatus and is characterized by the property
of having its set of input wires grouped into pairs (i.e., for all J=1,

Ceeen N(Ij) =2 ). Henceforth, such input pairs will be referred to
as Polar Pairs because of the common mode of operation which uses such a
pair to represent a truth value-variable (or a binary digit-position): a
signal on one wire meaning 'true' (or 1 ) and a signal on the other mean-
ing 'false' (or O ), which requires that the two wires be in opposite
states, i.e., polarized. The Switch itself will be called an Exponential
Switch because of the analogy between its relation to the general MS and
the mathematical relation of exponentiation to multiplication,*

The concept of Polar Pair provides motivation for the introduc-
tion of a component which, though not itself a conjunctive switch, is fre-
quently used as an auxiliary to such switches: the Polarizer. The purpose
of this Network is to convert a set of inputs representing one variable
per wire into the Polar Pair representation. This is done by the obvious
device, shown in Figure 4, of introducing a negation element in parallel
with each original wire. Clearly, given a set of inputs, the Polarizer
is unique. The primary importance of the Polarizer in the development of
the present theory is that it allows the existence of Polar Pair inputs to
be assumed, without loss of generality, whenever it is convenient to do so.

¥ The analogy is particularly interesting if the set-theoretic basis for

exponentiation (as related to Cartesian Product) is considered where, let-
ting m and n represent the cardinality of two sets, Sp and S,
m? is interpreted as the number of possible mappings of S, into S, ,
which is also the cardinality of the Cartesian Product, Sy X...n factors
...X Sy . The analogy can be followed through easily to produce a 1-1
correspondence between the set of mappings and the set of switch outputs.
In the present case, n 1is, as before, the number of subsets of the set
of inputs, and m is 2 . Note that the definition could apply equally
well for any integer, m , other than 2 . (N(Il) = N(Ip) = ... = N(I,)
=m); the restriction to m = 2 1is merely to effect a slight simplifica-
tion in the present report,

15
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Figure 4. Polarizer

The final definition of this subsection provides a means for
interconnecting MS's to give greater flexibility and at the same time
provides limitations which keep the resultant class within reasonable
bounds for purposes of analysis.

Def. 3. An MS Net 1s a Network composed entirely of MS's and
(1) having a set of input wires, I , whic% can be grouped
into a’collection, , of subsets, I = U, I, , such that
cc(¢) is a subset of the set of Network o&%puts;* and with
the MS's connected as follows: (2) If I% is a subset of the
input set of an MS (as in the definition of‘MS) and if S 1is
the set of outputs >f an MS or one of the I. of the MS ﬁet,
then any connection between the two sets requires that I. =8
(i.e., the two sets have the same number of wires and the wires
of T! gre connected to those of S in 1-1 fashion). And sim-
ilarly if a wire of S is designate&”és a Net output, then the
entire set S must be so designated.

This definition is the exception to the constructive procedure
policy. The rules of the definition do not lead to a unique switch, given
specified input sets. The definition merely defines a broad class of net-
works to which some of the most useful Switches (e.g., Trees) belong.

¥ The get of outputs of an MS Net may consist of any outputs allowed by

the definition of Network which satisfy (1); however, most of the useful
examples explicitly referred to will have as their designated output set
the set of Natural Outputs. Similarly with inputs: only the Polar Pair
case will be considered in detail,

1k
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Some of the conditions of this definition will bear amplifica-
tion. The explicit requirement that the MS Net be a Network is necessary
to rule out feed-back loops which are unnecessary in code transliteration,
Condition (2) is of some interest and will be discussed in more detail in
Volume III of this report. For the present it may be said that its purpose
is to prevent Splitting of MS output sets—some wires connected to one MS
sub-input, some connected to another—a situation which has thus far re-
sisted general analysis to a degree altogether out of proportion to any
advantages apparent in the procedure. It should be pointed out, however,
that condition (2) does permit a phenomenon which shall be referred to as
Branching: in the terms of the definition, an S , if taken in its en-
tirety, may be identified, in the prescribed manner, with more than one
Ij and/or be designated a Net output.

Figure 3c is an MS Net (with Branching), the shaded enclosures
representing the MS's, 07 = cc({d'), & = {Pl,Pe} and O, = cc@), ¢ =
iPl,Pg,P5} . The output set consists of the union, 0 u O,

Figures 5 and 6 represent a type of MS Net which is of particular
importance and is characterized by having no Branching; i.e., an MS output
(or Net input) is directly connected to exactly one MS input subset or is
a Net output (not both). Most MS Nets to be dealt with are of this type
and will be referred to as Simple MS Nets. In such a Net it is easily
seen that the outputs are the Natural Outputs and constitute precisely
the Cartesian Conjunction of the input subsets.

The construction of an MS Net can be expressed notationally by
a Construction Formula, Thig formula gives the outbut of the Net as a
function of its inputs. The connective, 'X' , denotes Cartesian Con-
junction, a parenthesized expression denotes and M5 (if an expression
oceurs more than once it represents a Branching of the output of the MS),
and the connective, u , indicates that the Switch output set is the
union of the output sets of the MS's so joined—no additional connections
being made. (The symbol Pj will be used rather than Ij whenever the
input subsets are Polar Pairs.)¥

The MS Net of Figure 6 for n = 4 1is expressed by the formula

(P; X Bp) X (P3 X Py) (2)

* . . .
Although no such cases arise in this report, it should be pointed out

that the occurrence of identical MS's (i.e., described by identical Formu-
‘las) has not been provided for. The situation can be handled easily by
attaching subscripts to the parentheses if distinct MS's are to be formed.

15
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and that of Figure 3c by

(Pl X PE) u ((Pl X Pe) X P5) . (3)

The 'u' in formula (3) indicates that the output is produced by two MS's,
Note that (2) represents a Simple MS Net (no Branching), since no expres-
sion is repeated, but that (3) has Branching as indicated by the repeated
occurrence of '(Py X Pp)!

The associative property of Cartesian Conjunction offers a method
of constructing a variety of Nets to produce the same output function. For
example:

(Py X Py X Pz X P)) (21)

(((Pl X Py) X P;) X Ph) (2")

3)
represent alternative methods (i.e., alternative MS Nets) for realizing the
output given by formula (2). Formula (2') yields the Exponential Switch of
Figure 3b, and (2") the Tree of Figure 5.

Having established all of the basic conjunctive components and
discussed some of their general properties, two specific MS Nets of par-
ticular importance will now be considered.

The Standard Tree. The most succinct characterization of a
Standard Tree is by means of its Construction Formula,

((...(((P; X Py) X P5) X Py) X ...) X BY)

From this formula it can be seen that the input set (I) consists of a
collection (&) of n (Polar*) Pairs, P1,...,Pp ; that P. is con-
Jjoined with the preceding P's by constituting one of two input subsets
for an MS whose other input subset is (in effect) PpX ... X P'—l ; and
that the Tree output is the output of the "final" MS—the one having Py
among its Inputs. It is clear, also, that the Standard Tree is a Simple
MS Net, since no expression is repeated in its Construction Formula and
the Formula expresses precisely CCQQ)

The only mode of operation to be considered for the Tree (as well as
for most other Switches) is with Polar Pair inputs; therefore it is con-
venient to use the P. notation from this point on. It must be pointed
out, however, that, for purposes of constructing the switch it is not in-
tended to impose any restriction on the manner in which the inputsnare
energized—it is required only that the input set satisfying I = ‘Ul Ij

has N(Ij) =2 for all J . : J=

16
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As a constructive procedure, it is clear that, given the input
set, I , and its collection of subsets, ¢ = {Pj] , a "unique" switch
is determined—unique, that is, with the usual minor qualifications con-
cerning permutations (see last footnote, D. 19).

Figure 5 represehts a typical Standard Tree. In 5a the basic
elements are MS's. In 5b the MS's are isolated by the heavy-line enclo-
sures and their internal Elements shown in detall. Figure 5c shows the
abbreviated Double-and notation which derives its simplicity from two im-
portant characteristics of the Standard Tree: (1) the Conjunctive Elements
always occur in pairs; and (2) all of the Conjunctive Elements (or, equiva-
lently, the Double-ands) of an MS (those constituting a vertical column in
the diagrams) are connected directly to one and only one P, —each such
column is said to form a Bay. Characteristic (1) is common to the larger
class of "Folded Trees" (which is discussed in section 5 and includes the
Standard Tree), while (2) is peculiar to the Standard Tree. In Figure 5c
all the Double-ands in a column are associated with the Pj appearing be-
low it.

The element input count for the Standard Tree (and, in fact, for
Trees in general) is given by the formula

<o o= 8eRl_o)*

where n 1is the number of pairs in the input. The number of conjunctive
elements is, of course, C/2

The loading figures will be given for a P. , since they are
identical for the two wires. Both the serial and parallel loadings vary
with the input pair and are given in the usual Couple notation by (n-j+1,
23'1) for J¥2 . For P, the value of the Couple for j=2 applies.

The second (parallel) Coefficient here is of special interest (particularly
in relay networks), since it may become excessively large as j increases.
The folding. process, described in section 5, is an effective method for

distributing this load over the Pj

The Balanced MS Net.** The second of the gpecific Switches to
be described is, again, a Simple MS Net. The designation 'Balanced' is

*
In line with the general policy of this section, this formula is for

a "static" tree. The "dynamic" tree, which is more common in the litera-
ture and which is discussed extensively in section 5 and in Volume III,
has the formula C = 4(28-1)

** Phe concept of this Switch was derived from Brown and Rochester (8),
where a crystal diode version was presented and discussed in somewhat un-
precise language.

18
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derived from the fact that each of its MS's has exactly two input subsets® —
I=1I;ul, —and that N(Il) is as nearly equal to N(I,) as possible.
Here, as in the case of the Tree, the definition is in terms of Polar Pair
inputs., The switch will be defined recursively by giving rules for its
construction starting with the output and proceeding systematlcally to the
input.

The Balanced MS Net with input set I =
as follows: J

=]

P. 1is constructed
1 dJ

1) Designate a set of o8 ywires as Network outputs. They will

con tltute the output of a single MS with I = I; u I, and N(Iy)
% 1)/27%* , N(Ip) - t %2 2 1

2) ILet T _Dbe an input set of an MS .of a partially completed Net
such that I has not as yet been connected to any other MS, and
N(I) = 2% for some integer x .***

a) If x =2 then connect in 1-1 fashion to T the
output, 0 , (N(0) = N(I) = 2X) of an MS with input
set[X} S Il u I, having N(I;) = pL(x+1)/2] gng N(I,)
= 2

-

b) If x =1 , then designate the wires of I as an
input pair of the Net.

Figure 6 shows a number of Balanced MS Nets. Consider the case

of n=5, =P uPpu...uPs . There are 22 = 32 output wires
for M), . The 1ﬁputs of M are split as evenly as possible into I; ,
N(I;) = L(5+1)/2 =8 and Ip , N(Ip) = o5/21 222y . I

turn, the inputs of M, are spllt 1n§ Ill , with N(Ill) = ol(3+1)/2]
=L and I, , with N(I,) =2 [3/2 The Construction Formula
for this switch is obviously

(((P X Bp) X P5) X (B X By)) XX

¥ Such MS's may be referred to as 'two-dimensional’.

*x '[x]" means 'the integer part of x'; this notation will be used fre-
quently throughout the report.

o It can be established inductively that every I will satisfy this con-
dition.

***Note that in such a Net as this, the Construction Formula might have been
written with any permutations of the subscripts on the P's without in

any way changing the form of the Net. For present purposes (and there seems

to be no reason in practice for doing otherwise) all such permutations of in-
puts which have no effect on the outputs (other than permutation) nor on the

construction of the switch, will be identified—i.e., a switch for given in-

put conditions specified by the definition will be considered unique.

19
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It is not entirely obvious from the rules of construction that the result-
ant Net will have the required n input pairs. That this is actually the
cagse can be demonstrated conveniently by means of the Construction Formula,
Start with the output set expressed as the 5-term Cartesian Conjunction,
(Pp X P X Pz X P X P5) , (to use the example of Figure 6). Then the
rule for inserting additional parentheses corresponding to the construction
rule for adjoining MS's is to 'bifurcate' the smallest parenthetical expres-
sion into two such which differ at to number of P's by at most one. The
resultant formula obviously denotes the proper number of inputs ( P's '),
and the correspondence to the actual rules of construction can be verified
readily.

The above definition defines the Balanced MS Net by telling how
to built it. An alternative.definition which is primarily descriptive
rather than constructive and will be used in the discussion of minimality
properties in Volume III may be stated as follows:

The Balanced MS Net with input set I =Py u ... uP 1isan
M5 Net

having 2" final outputs from a single MS,

—~
o o
S SN

using 2-dimensional MS's throughout, and

(e) such that each MS has its input sets 'balanced'; i.e.,_for
2X outputs the two input sets have N(Il) = ol(x+1)/2]
and N(1,) = 2[x/2]

The two definitions have been proved equivalent but, in the in-
terests of brevity, the proof is omitted.

The Element Input Count and Loading Couples for the Balanced MS
Net cannot be conveniently stated for the general case., For the case
n = 2K | however, the Element Input Count is C = 2 1;0 o(2K-1+1)
Figure 6 presents schematic diagrams of the Nets with' n input pairs for
values of n ranging from 2 to 10 with the Element Input Count, C ,
computed for each and the Loading Couples given for the case of n = 10

The most important characteristic of this switch is stated for-
mally as follows:

Theorem. The Element Input Count of a Balanced MS Net with n
input pairs is less than or equal to the Element Input Count of
any n-input-pair MS Net.

The proof of this theorem is rather lengthy and will be reserved for Volume
III.
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53.2. Alternative Switches Using Other Logical Elements

) The construction of Networks consisting exclusively of Disjunc-
tive Elements is quite straightforward. Such Nets are important in encod-
ing, but because of their simplicity and because no alternative modes of
construction are considered, the treatment of section 4.2 in connection
with realization suffices without additional treatment here,

In section 2 the use of logical elements other than conjunction,
disjunction, and negation was suggested, although these three were accepted
as the "vocabulary" for the report. One slight digression from this policy
was made with the introduction of the Double-and in the discussion of Stand-
ard Trees. The present section will consider some additional alternatives.
All of the elements introduced are definable in terms of the standard vocab-
ulary (e.g., see Figures 7a' and 7b'). While the alternatives could have
been tied into the general theory of the report by this means, they have
not been so treated and the present section can be considered as an appen-
dix upon which one of the subsequent theory will depend,

The use of vacuum tubes leads naturally to the logical stroke

functions; two examples of these functions will be discussed below.’E

The so-called "Sheffer" or Conjunctive Stroke (non-conjunction),
p/q = def. ~ (prq) , is realized by a plate-loaded pentode without a phase
inverter. It is represented diagrammatically as in Figure T7a, whose defini-
tion 1s the same as the definition of the standard network of Figure Ta'.

The Disjunctive Stroke (non-disjunction), plq = def. ~ (pvq) |,
1s realized by a pair of triodes in parallel. This function is diagrammed
in Figure Tb, with the corresponding standard network as in Figure 7b' or
as in 7b" by the duality, ~ (pvq) = ~p-~gq

These elements can be combined into Networks, following the rules
of section 2. In particular, switches similar to the MS may be constructed:
the Conjunctive Stroke MS (CSMS) as in Figure Tc and the Disjunctive Stroke
MS (DSMS) as in Figure Td. These switches give the same result as the stand-
ard M5 with the qualification that the CSMS produces the negations of the
outputs of an MS and the DSMS produces the output which would be produced
by an MS with each of its inputs negated—cf. Figure Tb". (In other words, -
the CSMS with a negation on each of its outputs and the DSMS with a negation

In the two realizations below it is assumed that a high voltage level
represents 'true' and a low level 'false'. These conventions could, of
course, be reversed with a resultant interchange in the functions realized.
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on each of its inputs would produce exactly the result of a standard MS—
thig is obvious from a consideration. of the stroke elements themselves.)

One practical example of the use of these Stroke MS's is in the
tree type of Network. Figure Te shows a Stroke Function of 2 Bays (3 in-
put pairs). The CSMS and DSMS are each enclosed in heavy-line boxes with
their internal elements represented as in 7a' and Tb" in order to show
how the interconnection effects a cancellation of the negations. In the
case of a switch input connected directly to a DSMS the effect is to negate
the signal on each wire of the pair, but since these are Polar Pairs, the
situation is perfectly symmetric and amounts merely to interchanging the
labels of the two wires. A Stroke Tree of any number of Bays may be simi-
larly constructed by using a DSMS for the final (output) Bay and then al-
ternating CSMS and DSMS for the remaining Bays.
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E; Techniques for Realizing Transliterative Functions

‘ The purpose of the present section is to present effective tech-
niques for conStructing, in terms of the components of the preceding sec-
tions, switches for realizing all of the transliterative functions. These
functions are considered in three categories with one or more realization
techniques for each category: "Decoding Functions'in section 4.1, "Encod-
ing Functions" in section 4.2, and the general case, "Arbitrary Translit-
erative Functions" in section 4.3.*¥ Up to this point Volume I has been
concerned exclusively with the static mode of operation. Pulse operation
is discussed separately in section 4.4, "Modifications to Provide Pulse
Outputs™. :

First some terminology will be established. Both "realizations"
and "transliterative functions™ have been referred to previously, with vary-
ing degrees of formality. The formal definitions will now be given.

* .
One might naturally ask at this point why the title of this section

is not expressed in a more direct manner in terms of switches (e.g., De-
sign of Transliterative Switches) with the internal organization of the
section based on types of switches rather than on functions. This ap-
proach wés attempted in the initial study of the subject and was discar-
ded for reasons which, if is felt, warrant the present digressive explan-
ation. The difficulty is clearly exemplified by the IRE definition:
"Function Switch, One-Many. A function switch in which only one input
is excited at a time and each input produces a combination of outputs.”
(sometimes referred to as an "Encoding Switch"). Note that, in general,
this definition describes a "mode of operation” rather than a type of
switch—i.e., it merely defines the type of Transliterative Function the
switch is to realize. Specifieally, it says of the switch itself simply
that it has "outputs" whose state is in some way dependent on the state
of its "inputs". Under such’a definition, any Function Switch (e.g., a
"many-one" or "decoding" switch) would be a "one-many" switch if its
inputs were properly activated. Since this type of definition offers

no means for distinguishing'various kinds of switches per se, there ap-
pear to be two alternatives: (1) the method of this report, which re-
lies on functions since functions can be distinguished, and does not at-
tempt to classify the switches; and (2) the formulation of definitions
which do permit the classification of switches (perhaps from a considera-
tion of their output under all possible input states)—an undertaking
which, in the light of a cursory investigation, appears to be somewhat
formidable.
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Def. 4. A Transliterative Function, T , is a single-valued
function (mapping) from a set of sequences of 0's and 1's
all of the same length (the domain of definition) onto another
set of sequences of O0's and 1's also all of the same length
(the range) with the condition that there are no "dummy" digits
in either the domain or the range; i.e., for any digit-position,
x , of a sequence, the set (range or domain) must contain two
sequences, s and s' , such that s has a 1 in position x
and s' hasa O in position x .¥

The domain of T will be denoted by 'D(T)!' , its range by
'"R(T) ' , and an element (sequence) of the domain or range, regpectively,
by 'dl( ' or 51mply '‘d;' and 'ri(T)' or simply 'r;' -—i.e., D(T)

T)
[ )} = {ri(T)S

Def. 5. A network is said to Realize or to be a Realization
of a Transliterative Function, T , if there exists an order-
ing wy,wp,... -3¥p of the set of input wires and a correspond-
ing ordering Wlpeeo ,wk of a subset (perhaps proper) of the
output wires having the property that whenever the sequence of
states of w,...,w, 1is equal to a dj, d;€ D(T) , then the

n
sequence of states of ﬁi,...,ﬁk 1s equal to T(di)

This definition postulates the existence of a 1-1 correspondence
between the bit positions of the domain sequences and the set of input
wires, and a similar one between range sequences and a subset of the out-
put wires. There is another important aspect of domain sequences: they
may be thought of as representing information impressed on the inputs from
outside. If this information is presented on n Polar Pairs of wires, it
is not to be considered an n bit sequence but instead a 2n bit sequence.

The concept of Realization defined here is, admittedly, a nar-
rower concept than the ordinary intuitive one.** It is, however, adequate
for the purposes of this report and has the advantage of stating precisely
the kind of realization which the given techniques produce.

¥
This condition could be omitted, enlarging the class of Translitera-

tive Functions, but the functions thus admitted would hardly be of suffi-
cient interest to warrant even the slight modifications that would be
necegsary in the subsequent theory.

A definition closer to the intuitive idea of realization would, for
example, admit, under certain circumstances, realizations in which a
proper subset of the inputs is activated in accordance with d4(T)
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The term 'technique' is used here in a special sense. Tech-
niques are constructive procedures, each associated with a specified
class of Transliterative Functions, describing step by step a fully ef-
fective method for building a switch to Realize a given Function of the
class. Furthermore, it is desirable, and will be a characteristic of
all techniques presented, that the relation between inputs and outputs
required by the given function be made explicit by means of a labeling
of the wires as in the definition of Realization.

The application of these Techniques together with simplifica-
tions of the Switch produced may result in "Disjunctive Elements" with
but a single input. When this occurs the "Disjunctive Element" is to
be eliminated and its input designated a Switch output. It 1s also pos-
sible that a Technique will produce a switch with a "dead-end" input—
one which is neither a Switch output nor an input to a Logical Element
(e.g., if an Encoding Function—see section 4.2—has the all-zero se-
quence in its range). Such a switch is not strictly a Network by the
formation rules of section 2. However, the status of such a wire is so
obvious, and the treatment so simple—merely ignore or eliminate it—
that it seemed advisable to admit the discrepancy rather than to compli-
cate the theory further in order to treat this special case with full
rigor.

4.1. Decoding Functions

Def. 6. A Decoding Function is a Transliterative Function,
Ty » such that:

(a) every r;(Tq) contains a single 1 , and
() NO(Ty)) = NR(T)

The effect of condition (b) is to make Decoding Functions 1-1.
Functions satisfying condition (a) alone are handled by the techniques
for arbitrary functions.

The inputs of the Switches constructed in section 3 were in
Polar Pair form. In order to consider such input sets it is useful to
define a Polar Sequence as a SequUeNCe &aj,ap,..-,80k having 80312823
either 0,1 or 1,0 for J=1,2,...,k

Def. 7. A Complete Decoding Function, T, , is a Decoding
Function satisfying the following:

(a) every element of D(T,) is a Polar Sequence, and
(b) every Polar Sequence of length N(d;(T.)) is an
element of D(T,)
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It follows clearly from this definition that

no(r,)) - 2MAT2_ yg(e,))

Theorem 1. A Complete Decoding Function, T, , with

N(d;(T¢)) = 2n can be realized by any MS Net with I =
n
Ul Py (i.e., with input set consisting of n Polar

3=
Pairs).

Corollary. If T, 1s realized (in accordance with Theorem
1) by a Simple MS Net, then there are no extraneous output
wires, i.e., the set of output wires? 0 WR(TC)

Proof. D(T_ ) 1is the ,C_éz.rtesia.n Product of n sets, each con-
sisting of the two pairs, (0,1), (1,0) , i.e., D(T.) = ((0,1), (1,0))" ,
and is represented by the states of the pairs of wires of , the set of
n P,'s of the Net. The Network output, O , by definition contains the
Cartésian Conjunction, CC(J) , i.e., a distinct output wire of CC(¢{)
is activated for each sequence of the Cartesian Product, D(T,) , repre-
sented on the inputs. Each wire of the CC(#) may be assigned an integer,
x , as follows: Consider the image sequence, T,(d;) , for d3ED(T) o
It contains a single 1 . Denote the position in which the 1 appears
by x , and assign x to the wire of CC({) which is in the 1 state
for d; . If this is done for all d;&D(T,) , all wires of CC(¢)
will be labeled by an x  , 1 £€x <20 |

The wires of CC(@) then, considered in the sequence of the
x's , clearly effect a Realization of T, . The corollary follows im-
mediately from the fact that for a Simple MS Net O = cc(@)

With the result of this theorem, the following specific Realiza-
tions are immediately available:

Technigue 0. A Complete Decoding Flmctioh, T c ! with (iomain
sequence of length 2n ( N(d4(T.)) = 2n ) can be Realized by

(a) an Exponential Switch,

(b) a Tree, or n

(¢) a Balanced MS Net, with input set I = U Pj
J=1

Siﬂce explicit Construction Procedures were given in section 3
for each of the switches, (a), (b), and (c), and since the labeling of
the wires described in the proof of Theorem 1 gives an ordering of input
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and output sequences which establishes the functional correspondence, Tech-
nique 0 is fully effective as required. Note that since the three Switches
are simple MS Nets, the Corollary to Theorem 1 indicates that there will be
no extraneous output wires.

A Decoding Function, T , may fail to be Complete by violating
either of the two conditions characterizing a Complete Decoding Function—
i.e.y

(1) The elements of D(T) are not all Polar Sequences.

(2) Not every Polar Sequence of length N(d;(T)) is an element
of D(T)

In the technique given below, step A provides for fallures of
type (1) and step C for those of type (2).

Technique 1.

A. Examine the sequences of D(T) .

1. If not all the sequences of D(T) are Polar Sequences,
provide a Polarizer with N(d(T)) inputs.* Its outputs
are to be connected, in the obvious manner, to the Switch
constructed below. Define n = N(d4(T)) .

2. If every d;(T) 1is a Polar Sequence, define n =
N(di(T))/E and proceed to B.

B. By Technique O(a), (b), or (¢) construct a Switech for the
Complete Decoding Function with n Polar Palr inputs.

C. From the Switch produced by A and B remove any Logical Ele-
ment which is not in a Chain terminating in any one of the
N(D(T)) required outputs.

_Technique 1 is illustrated in Figure 8a (disregarding Switch M, )
by applying it to the function Ty defined in Table II of section 4,3,

It may be the ease that some part of every domain sequence-—~the same
part for each—ig a Polar Sequence and the remainder not. In practice it
would be possible in this case to provide a Polarizer of less than N(d4(T))
inputs for use with only the "unpolarized" positions, although formally this
simplification has been ignored in the interests of presenting a unified gen-
eral theory. ”
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Clearly the sequences of D(Td) are not all Polar Sequences and so accord-
ing to step A.1 a L -input Polarizer, P , must be provided. Step B re-
quires the construction of a Switch for the Complete Decoding Function with
N(d;(T)) = % Polar Pair inputs by Technique O(a), (b), or (¢)=—i.e., by an
Exponential Switch, a Tree, or a Balanced MS Net. In the example a Tree is
used — My in the figure. The inputs of P may be labeled in any order
and the outputs of P are connected to the inputs of M1 in the obvious
manner, After a particular labeling of the inputs of P has been chosen,
the outpEﬁs of Ml are labeled by congidering the di(Td) . Assign the
label 'w,' +to the output wire which is activated whenever the sequence

of states of the input wires, W) oW, Wz W) is d4 (the state of W
corresponding to the kth bit of di ); where Jj 1is the position number

of the 1 in Td(di) . Finally, proceeding according to step gz'the
unnecesgsary Loglical Elements are eliminated—in the figure they are drawn
with broken lines.

Simplifications may be possible in Switches constructed by this
technique. No comprehensive study of simplification procedures has been
made, but examples illustrating some of the possgibilities are given in
section 4,3,

4.2, Encoding Functions

Def. 8. An Encoding Function is a Transliterative Function,

T, , such that every d;(T,) contains a single 1

The following technique provides a Realization for any given
Encoding Function, T, , where n 1s the number of domain sequences, n
1s the number of range sequences, and d; is defined to be the domain se-
quence whose ith bit is a 1

Technique 2,

(1) Provide n input wires and n Disjunctive Elements. Des-
ignate the Element outputs as switch outputs; assign the integers
from 1 to n to the input wires, and those from 1 to n to
the Disjunctive Elements.

(2) Connect the ith input wire to a distinet input of the jth
Digjunctive Element if the jth bit of Tg(d;) isa 1

Nothing was stated about the number of inputs of the Disjunctive
Elements, since this would depend on the .nature of T, . In general, it
is clear (by virtue of.the exclusion of "dummy" digitsin Def. L) that no
Element will require more than N(D(T.))-1 inputs. In the "most efficient”

v
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case—a 1-1 funetion with N(D(T.)) = 2%, N(r;(T.)) = x —every Element
will have 2%-1 inputs, since each output must be in the 1 state for
exactly half of the 2% input states.

Technique 2 is illustrated in Figure 8a for the function, T, ,
defined invTable IT of section 4.3, The Switch produced is My, . The
input wires may be numbered Wis++e3W, 1n any order—the order here being
chosen merely for convenience in the example of section 4.3. Note that in

Figure 8b the single~input Disjunctive Element has been eliminated.

A Switch produced by Technique 2 can often be simplified. Such a
Switeh will consist of Disjunctive Elements whose inputs are wires of I ,
the set of input wires for the Switch. Suppose some subset, I. ,of I is
contained in the input set of several of these Disjunctive Elements, say
El""’Ek . Then let I, be the input set for a new Disjunctive Element,
E , and replace each E; (i=1,...,k) by a Disjunctive Element Ei' hav-
ing the same input set as E; except that the output of E replaces the
gubgset I, of inputs of Ei . This procedure will reduce the Element Inf
put Count, C , by an amount

AC = (k-1) (C(E)-1) -1 ,

from which it is apparent that AC > 0 if k= 2 = C(E) but not k = C(E)
= 2 =—for which AC =0 .

4.3, Arbitrary Transliterative Funetions

While the Technique of this subsection is intended, as the title
implies, to Realize any Transliterative Function, the functions of primary
interest are those which are neither Decoding nor Encoding Functions. For
the special functions previously dealt with, the present Technique degener-
ates to either Technique 1 or Technique 2.

The procedure for an arbitrary Transliterative Function requires
. two stages: first "decoding", then "encoding". That is, for a given arbi-
trary function, T , define a Decoding Function, T3 , and an Encoding Func
tion, T,  such that for any x€D(T), To(T4(x)) = T(x) . This requires
that R(Tg) = D(T,) . These conditions fully specify the two functions.*

Note that the definition of Decoding Function, plus the exclusion of

"dumwy digits" in the definition of Transliterative Function requires that
- R(Tq) be constructed of exactly N(D(T)) sequences, each of N(D(T))

digits, and each having exactly one 1 in a unique position. The specific
correspondence between range and domain for each of the two funetions, so
long as it satisfies the conditions that Tg is 1-1 and that To(T4(x)) =
T(x) , is irrelevant since such distinctions can all be resolved by the
proper labeling of the wires of the same Switch. :
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Technigue 3. Glven an arbitrary Transliterative Function, T ,
form the related Decoding Function, Ty » and Encoding Function,
T, . Realize these functions, respectively by Technique 1 and
Technique 2. Then connect the outputs of the switch for Ty to
the inputs of the switch for T, , Joining wires with correspond-
ing labels.

The Switches constructed by the application of this and the preced-
ing Techniques may often be simplified. Some of the ways in which this may

be done are given by the following example.

Congider the funetion T defined below:

TABLE I
a T : T(d)
1111 -
> 110 000
1100}
1110 -
> 001 000
Loto]
1101 > 010 000
, 1001
. 0110 > 000 110
0100
0000 - : —> 000 001
1000 - > 001 110

Applying Technique 3 will yield the Switch of Figure 8a. (if*a‘“
Tree is used to realize 'Tq ) as is shown below.

The related Decoding Function, Ty , and Encoding Function, T, ,
are given in Table II on the following page.

The labeling of the input wires of P and the output wires of

M; , and the construction of the Switches P and M; , are as discussed
in the example following Technique 1. The Switch, M, , for T, is con-
gtructed by Technique 2. Ten input wires and six Disjunctive Elements are
provided. Input and output wires may be labeled in any order (the ordéring
of the input labels in Figure 8 was chosen merely to facilitate the drawing
of the diagram). After the wires have been labeled, M, ig constructed by
connecting the Switch inputs to the Disjunctive Elements as in step (2) of
Technique 2. The Switch for T 1is completed by connecting the input wires
of M, to the output wires of M; : 5& to w; .
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TABIE II
d(Td) Tq Tg4(d) = d(Te) Te Te(Td(d))=T(d)

1111 ——> 1 000 000 000
1100 =—————> 0 100 000 000

1110 ————> 0 010 000 000 }
1010 ————> 0 001 000 000

] ————> 110 000

001 000

1101 -————> 0 000 100 000 —————> 010 000

1001 —~—————> 0 000 010 000 )
0110 —————> 0 000 00l 000 } ———> 000 110
0100 ————> 0 000 000 100,

0000 —————> 0 000 000 010 ————> 000 001

1000 3> 0 000 000 001 —— 5 00l 110

The Simplification of this Switch is carried out by a sequence of
steps, each illustrated by a figure., Figure 8a represents the switch as
constructed by Technique 3 and Figures 8b and 8c present further simplifi-
cations.

In the Switches of Figure 8 some of the Elements and wires are
drawn in broken lines and some in "x-ed" lines. The former represent the
omlgsions and the latter the additions effected at the stages of simpli-
fication represented.

In Figure 8b the s1mp1if1catlons carried out are the elimination
of the "Digjunctive Element" with one input and the omission of five Con-
Junctive Elements, each of which has an input that is not an input of any
other element (this is not always possible, as is pointed out in the second
paragraph following).

Another type of simplification is illustrated in Figure 8c. Here
two Disjunctive Elements contain, as a subset of their inputs, the output
of all the Conjunctive Elements with a given input, () . In thig example
these Conjunctive Elements may be eliminated and 1 connected directly into
the Digjunctive Elements (since if 1 is in the "1" gtate one of the pos-
sible combinations of i must be in the "1" state).

Caution mugt be exercised in the process of simplification. For
example, the funetion T may have in its range the zero sequence. No con-
nections are necessary for the switch to realize this output. Thus an input

am et
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to the switch for T, , the corresponding output of the switeh for Ty >

and itg Conjunctive Element may be eliminated (possibly others, depending

on the funetion). Consider Figure 9. It shows a Double-and in the output

MS of the Tree realizing Td . Wy is in the one state for di on the
inputs and Vs is in the one gtate for d. . Suppose T(dj) ig the zero
«gequence; then this output and Conjunctive Element may be eliminated. How-

- ever, although the Element for w; has an input, k , connected to no
other Conjunctive Element, it cannot be eliminated since both d; and 4.
may occur on the inputs. Thus the simplif%cation effected for the switch
of Figure 8b is impossible here.

Unfortunately no technique is known for producing the simplest
switeh for an arbitrary Transliterative Function or even, in terms of this
report, a switch with minimal element input count. The application of
Boolean Algebra and the methods of Aiken (11) and Veitch (13) are aimed
et this problem but are heuristic in naturé, not effective as the term is

-uged here. For any given case, further methods of simplification may be
-obvious, and trial and error procedure is in order.

h.h. Modifications to Provide Pulse Output

It has been mentioned before that, whenever such an assumption
is required, the switches of this volume are to be considered ag static.
?fimarily this qualification is a precautibn against raising questions of
pulse-matching whose answers might lie far beyond the scope of this report.
Tt is clear, however, that if equipment is available which is sufficiently
Tlexible to gate pulses with pulses or with static signals without requir-
ing prohibitive conditions of simultaneity, then the preceding theory can
be considered applicable to pulse as well as static operation or a combina- -
tion of the two.

Since the general problem ig closely dependent on detailed engi-
neering considerations, the present discussion will be limited to a few
gimple methods for producing pulse outputs from a system designed for static
operation.

An obvious method which can be applied to any static switch what-
‘soever is to comneet a "dynamic gate" (a 2-input conjunction with one static
and one pulse input) via its static input to each output of the switch and
‘then connect all of the pulse inputs in parallel to an external source whieh
will produce a pulse whenever the switech is to be "read".

For Simple MS Neﬁs it is possible to introduce the pulse at the
input rather than at the output-—or, for that matter, at the input (of an
entire Ij ) of any MS of the Net. This procedure is shown in Figure 10a
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for a Tree and in Figure 10b for a Balanced MS Net. Under this method
every Chain of Logical Elements in which a pulse is introduced must be
compoged entirely of dynamic gates from the point of oceurrence of the
pulse to the output. The method is restricted to Simple MS Nets for two
reasons: (1) an element must not have more than one pulse input in order
to avoid the difficulty of matching pulses against pulses—this is assured
by the restriction against Branching; and (2) it must be possible for the
pulse to reach any output—this is assured since every output is an element
of the Cartesian Conjunction and therefore is fed by each input.

An effective comparison of the relative desirability of these
methods depends ultimately on such considerations as relative cost of dy-
namic and static gates. The following example, however, may help to clarify
the problem. Consider Figure 10b. The method depicted requires four addi-
tional dynamic gates and the replacing of forty static gates by dynamic gates
—~eight in Mp , thirty-two in My . Represent the "cost" of conversion
by 4G + WOAG — T representing the "eost" of dynamic gates and AG the
"cost" of dynamic gates less the cost of static gates. The method is clearly
& poor one for this particular switch—assuming that dynamic gates cost more
‘than static gates (i.e., AG > 0 )—since the same effect could be produced,
for example, by inserting the pulse at the input pair P. at a cost of only
2G + 36AG . But if the pulse were introduced at the output of M, at cost
8% + 32AG the comparison between this and the other two methods could not
be made without knowledge of the ratio of G to AG . \
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2; Characterigtics 9£ Function Switches

The object of this section is to compare in terms of the Element
Input Count and loading properties some of the different Switches introduced
in sections 3 and 4. The Techniques of section 4 combine an MS Net with,
perhaps, a Switech for an Encoding Function and possibly a Polarizer to re-
alize an arbitrary Transliterative Function. The only choice ig in the
selection of an MS Net which may be an Exponential Switch, a Tree, or a
Balanced M3 Net. It is primarily these switches which are to be studied.

In the case of a Tree, loading is an obvious problem and a Tech-
nique 1s presented here for designing a Switch—the "folded tree"—closely
related to the Standard Tree but having more desirable loading properties.
Alth?ugh 1ts Element Input Count is the same as that of a Standard Tree and
its set of outputs is the Cartesian Conjunction of its inputs, it is not
necegsarily an MS Net and the theory behind it is somewhat different. For
these reasons it 1s discussed in this gection rather than as a part of the
theory presented in section 3.

«

D.1. Element Input Count and General Loading Properties

The problem of selecting the "best" switeh for a given purpose
cannot be dealt with, A switech is "best" only with respec¢t to some well-
defined set of properties (probably requiring specifications of actual
physical equipment) and usually with respect to a certain class of switches.
Two properties, Element Input Count and Loading, have been defined for sym-
bolic Networks which under propef interpretation may have a certain general
significance for their physical counterparts. The Element Input Count is
considered first.

The Elﬁment Input Count of an Exponential Switeh is given by the

formula C=m J] N(P;) =m 2® , where m is the number of input pairs.
i=1

L For a Standard Tree (with static output) the formula is C =
8(2m-+ - 1)

For the Balanced MS Net the only formula available igs C =
2

ok-1 s Where the mmber of input pairs is restricted to n=2o% .

However, the three may be compared for various values of m
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Element Input Count Comparison

m
Switch _ 2 b > 8
Exponential Switch 8 an 160 2048
Standard Tree 8 56 120 1016
Balanced MS Net 8 48 96 608

Switches may be judged on the basis of this property alone, the
"best" switch being the one with the smallest C . In this sense, the
example suggests that the Balanced MS Net is "best", the Exponential Switch
worat. Switches "best" in this sense are called "minimal”: a switch for
a given Transliterative Function is Minimal with respect to a set of switches,
S , which realize this function if its Element Input Count is at least as
small as that of any other switeh in § .

It was stated in section 3 as a theorem and will be proved in
Volume III that in the set of all MS Nets whose input consists of m in-
put pairsg the Balanced MS Net is Minimal,

The generalization of the idea of minimization to switches for
arbitrary Transliterative Functions is very difficult. It is partly at
this problem that the methods of Aiken and Veitch are directed. These
methods are heuristic and ineffective in the sense that while they are
methods for simplifying they do not lead directly to the desired "minimal”
switch. This general problem of Minimization is formulated and a possible
approach indicated in Volume III.

The second characteristie to be considered is Loading. This
property (as defined in section 2) is deseribed by a set of Loading Couples
of the form (S,P). , one for each input, where S is the Serial Loading
Coefficient and P the Parallel Loading Coefficient, All the Switches
considered in this section have the property that both inputs of a pair,

P, , have the same Loading Couple, which will be referred to as the Load-

i
ing Couple of Py .

For the Exponential Switch the Loading Couple is (1,2%-l) for
every input, where m 1is the number of input pairs. If the input pairs
of a Btandard Tree are numbered in the "natural" way (i.e., starting with
those farthest from the Switch OQutput), then for the ith input pair (i2>l),
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it is (m-i+l, 21~1) . The couple for i=1 is the same as that for
i=2 . Again, no general formula has been developed for the Balanced
MS Net because the mode of construction makes it impractical. The Load-
ing Couples for an example are compared below,

Comparison of Loading Couples®

P1 P2 P3 Ph P5

1. Exponential Switch '(1,2“) (1,21‘) (,1,21‘) ‘(1,21‘) (1,21*)
2. Tree (4,2)  (42) (3,20 (2,2))  (1,2Y)

3. Balanced MS Net (3,2)  (3,2) (2,4)  (2,2)  (2,2)

The Parallel ILoading Coefficient of every input of the Exponential
Switch is inordinately large for even a moderate number of input pairs though
its serial loading is ideal, The Tree also has poor loading characteristics
but they can be improved by the "folding Technique" of seetion 5.2.

While these Couples give some insight into the loading properties
of a switeh, a\moré’complete‘picture is glven by considering the parallel
loading properties of the individual Logical Elements. This can be done
easily for any MS Net because of the following:

Remark: If T=I1u...ul, is the input set of an MS Net,
then the input wires constituting Ij all have Parallel Load-
ing Coefficient Ls (J=1,...,m) . Furthermore, all outputs
(i.e., Element Outputs) of a given MS of the MS Net have the
same Parallel Loading Coefficient,

The truth of this statement derives from the "non~-gplitting” condition in
the definition of MS Net.

Iet M be an MS Net, ILabel the MS's of M : Mj,...,M, and
let the corresponding Parallel Loading Coefficients be Ly,...,Iy . Then
define LiMi to mean that every Element Output of M has Loading Coef-
ficlent Iy4 G- 3M; would mean that every element in My has Coef-
ficlent 3 ). For the input wires the corresponding notation is KjIj

* cr. Figures 3b, 5, and 6 for examples of Switches 1, 2, and 3, respec-

tively. Note, however, that the first two figures are Switches of 4 rather
than 5 input pairs. .
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where ‘Kj ig the Parallel Loading Coefficient of each wire in the set I. .
The parallel loading properties of the entire MS Net, M. , can then be de-
geribed by & sum

2 <
s(M) = Z LiMi + Z'KJIJ . (1)
i=1 =1

In the cases to be considered the I, will be Polar Pairs and so will be
replaced by Pj . Formula (1) may ge thought of as a simplified form of
the following sum, which may be defined for an arbitrary Network, A :

n' m'
S(A) = ,Z,LiEi + Z KW (2)
i=1 J=1

where E; ranges over all of the Logical Elements of A , W, over all
its inputs, and L] and K} are the correspofiding Parallel Loading Coeffi-
cients. If A =M , formula (1) may be derived from (2). Group together
the Logical Elements of each M; of the Network: for example, let L{Ei +
.+« + LiE. be the expression for M; . Since this is an M3, Ly =1Ip =
cew = I% y represent this common value by IL; and substitute it for the

LY . Replace the resulting expression, IsEy + ... + LyE. , by L.M;

Tﬂe derivation is completed by doing this for each MS of the Network and
proceeding similarly for the input wires.

Many variations of formula (2) exist. In this report we are pri-
marily interested in switches whose inputs are Polar Pairs, the two wires
of a pair having the same loading coefficient. Consequently, we are inter-

ested in formulas of the form
t

Il m
s(A) = z LiE; + Z KsPy . (3)
‘ i=]1 J=1

There will be many occasions for referring to the second of these sums,
m : _

Z%.Kij y which is consequently defined to be the Load Distribution of
J:::

the Switeh A. The term, Load Digtribution, may be used without reference
to a particular switch to refer to any expression of this form (since there
will always exist some switeh, D , with this as the Load Distribution of
D ). If S is a given Load Distribution and D is a switch having S

as its Load Distribution (there may be many such D ) then S 1is said to
be agsociated with D

It is sometimes desirable in studying a Network, A , to "break"
it into two or more "subnetworks", to consider the Load Distributions of
these parts, to add the Load Distributions together when the Networks are
combined, and so on. In general Load Distributions may be added together

Lo
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(when the corresponding switches are combined) as linear expressions. For
example, (3P) + 5P, + 8P + 1P3) + (1Py + 2Py + 5Pz + TP5) = 5P + 5Pp
+ 6P5 + 9P, +7’P5

Consider S for the Standard Tree, T , and the Balanced MS Net,
B , constructed on 5 input pairs (see Figures 6 and 11, respectively). For
the Tree:

8(T) = (247 + 2Mp + Mz + OMy) + (2P + 2Pp + 4Pz + 8Py + 16P5) .

For the Balanced MS Net:

(S(B) = (2 + MMy + B+ OM) + (2P + 2P + ?PB + 2P| + 2Ps)

The Load Distribution of the Tree is:

2P + 2Pp + 4Pz + 8P + 16P5 .
For the Balanced MS Net 1t is:

2P; + 2Pp + §P5 + 2P + 2P5 .

In the case of the Tree the parallel loading is good except for
the input pairs with higher subscript (e.g., P) and P5 ). The loading
for the Balanced MS Net is good except for the elements in the MS's near to
the output MS (e.g., Mz ).

The problem is more acute for the Tree and has serious physical
implications. For example, in a relay tree the Parallel Loading Coeffi-
cients of the inputs may be interpreted as the spring lpad on the ¢orres-
ponding relay coils. Because the Load Distribution, g%i Kij y for the

Standard Tree has these undesirable properties, the next section considers
a method for modifying the Tree Network to give a better Load Distribution.

5.2. The Folded Tree Technique

The folding process for improving Load Distribution and the re-
gulting "folded tree" Network are not new. A folded tree is generally
considered to be a modification of a Standard Tree, but in this report a
slightly different point of view is taken. The Folded Tree is considered
as a distinet and independent Network and is defined as one having as its
outputs the Cartesian Conjunction of its inputs and differing from a Stand-
ard Tree, if at all, only in the assignment of its Double-ands to input
pairs. (A Double-and, A » 1s assigned to Input pair Py if P, 1is con-
nected to the inputs of A .)
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By making the assignments in different ways, different Load Dis-
tributions may be obtained. The distribution desired in a given case in-
volves consideration of the load limitations of the driving components,
the operating characteristics of the Conjunctive Elements of the Network,
the available sizes of the conjunctive components if they are in package
units, ete.

The remainder of this section is devoted to (1) describing a
simple method for determining if a given Load Distribution can be realized
in a Folded Tree, and (2) describing a practical method for constructing a
Folded Tree with any desired realizable Load Distribution.

Consider a Standard Tree, T , and label its Double-ands 1iAj ,
where i specifies the Bay or MS in which the Double-and appears counting
from the left, and j the position in the Bay counting from the top. The
"subnetwork" whose Double-ands all belong to Chains passing through iAj
and have "prescript" k = i ("prescript" refers to the k in kAj ) is
a Network which is itself a Tree. It is called a Minor Tree of T and is
denoted T(i,j) .* The Double-and, iAj , is called its Key (see Figure
11). Standard Trees do not themselves have Keys. However, if they are
modified for pulse output by inserting dynamic gates at the P; input,
they will have a Key (see section 4.L).

In the remainder of this section, the words Tree, Standard Tree,
and Folded Tree will always refer to Trees with Keys unless otherwise spec-
ified. Furthermore, the method of construction given is designed to yleld
a Folded Tree with a Key. The modifications needed to apply the method to
Trees without Keys are indicated at the end of this section,

A Folded Tree may be drawn exactly as a Standard Tree except for
the connections of input pairs to Double-ands. If these connections are
omitted and the Double-ands labeled as for the Standard Tree, then the def-
initions and notation for Minor Trees, Keys, and so on may be used in the
same manner as for a Standard Tree. This is true because these concepts
depend on the "internal" connections of the Network and not on the connec-
tions of Double-ands to input pairs. Consequently, in the remainder of this
volume the terms Tree, Minor Tree, etc. will refer to Folded Trees (of which
the Standard Tree is a special case).

With every Minor Tree, T(i,j) , of T 1is associated a Load Dis-
tribution denoted 'S(i,j)' . Since the Key of T is 1Al , the Load
Distribution of T is denoted 'S(1,1)'

Included in this definition of a Minor Tree are the Networks containing
a single Double-and with outputs which are outputs of T

L
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The Load Distribution of a Tree contains & aingle term with co-
efficient 1 . It will be necessary to refer to this term often, and so
it is denoted 'U(S(i,j))" which is read 'the term with unit coefficient
in 8(i,J) ' or 'the unit term of S(i,j) '. These concepts are illus-
trated in Figure 11, where the Pp above each 1Aj 1is the input pair to
which 1Aj is assigned.

Figure lla is a Folded 5-bay tree with Load Distribution S(1,1)
= 8P) + 1Py + TP5 + TP, + 8P . (A 5-bay Standard Tree has §(1,1) = 1P}
+ 2Ps + 4P, + BP + 16% Figure 11b shows the two L-bay Minor Trees
of T, T(2,1) and (2, 2) , with Load Distributions 8S(2,1) = kP + 6P5
+ 1P, + hP5 and S(2,2) = hkp; + 1P3 + 6Ph + hPS , respectively. Clearly,
U(s(2,1)) = 1), and u(s(2, 2)) 1P3 . The assignments of input pairs
in Figures 1lb, ¢, d, and e are the same as in lla.

Method for determining if a desired Load Distribution can be
realized in a Falded Tree. A Load d Distribution § = d1P) + doPo + ... +
dyP, 1is called AdmlsSLble if and only if

n
Al }Z: a;
i=1

A.2 ;?; ay = j?; pt-1 k=1,2,...,0 ,
= 1= )

where the df refers to the d; in monotonic non-
decreasing order; and

oi-1

.
3

il

A3 there is but a single 1 among the di .

Using this concept, the following theorem  holds.

The theory behind the methods given here was suggeéted by Shannon (10),
Part II. It is fully developed in Volume III, where the problem of folding
and the procedure given here are fully discussed.

Conditions A.1 to A.3 for Admissibility are given by Shannon, and he
also proves that any Admigsible sequence can be derived by folding (i.e.,
the "if-" or "sufficing-gtatement" in the theorem), although he does not
give an effective method for doing it. The proof in Volume IIT that the
effective procedure described in this section is a valid one affords a new
and constructive proof of the "if statement" of the theorem. The necessity
or "only if" statement in the theorem (i.e., any sequence derived by folding
is Admissible) does not appear in Shannon's article but is proved in Volume
ITI.
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Theorem: A Load Distribution, 5 , of n terms is the Load
Distribution of a Folded n-Bay Tree if and only if § 1is Ad-
migsible.

Thus to decide if a desired Load Distribution can be realized
in a Folded Tree it is necessary only to determine its Admissiblity. Ad-
missible Load Distributions are those which can be asgociated with Folded
Trees.

Consider §(1,1) = 1Py + 12P, + 12P, + 12F) + 13Pg + 13B; as
such a.gggired distribution. Conditions Al go A.3 are sat?sfied for

(1) 1+12+12+12+ 13+ 13 =63= iﬁ ol-l gatisfying A.1.
i=1

(2) The partial stms of S computed in monotonic order are

1, 13, 25, 37, 50, 63 and those of the powers of 2 are 1,

3, T, 15, 31, 63 . Comparison shows that condition A.2 is

satisfied.

(3) s(141) has a singlé 1 satisfying A.3.

Hence 8(1,1) is Admissible and so can be realized in a Folded Tree,

These conditions can be applied to classes of Load Distributions
to determine if the members of the class can all be realized in Folded
Trees., For example, consider the set of Load Distributions, {g(l,l)n}- .
The 'n! indicates the number of input pairs and the lower bar denotes
the Load Distribution which, for the given n , has its maximum coeffi-
-clent as small as possible. There is just one such distribution for each
n and it is obviously an important one. The Load Distributions of this
clasgs are given by the following rules:

- (1) et 1,d,d,...,d,d,...,d be the n coefficients of §(1,1),
(we are not interested in the correspondence between Loading Coef-
ficients and input pairs here and so consider only the coefficients).

(2) Determine d from d+F = (2°-2)/(n-1) , where d is the
integral and F the fractional part of the quotient. If the de-
nominator of F is (m-1) then the numerator of F gives the
number of d's in the sequence, and d = d+l

© The distributlon, 8(1,1) , considered in the preceding example
is the element of {8(1,1 } for n=6 , for d+F = (64-2)/(6-1) = 12-2/5;
d=12, 8=13 and the number of 13's 1is 2

Although the Load Distribution for this example is Admissible,
it is not obvious that every Load Distribution in the set, {8(1,1),}
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is Admissible. However, there is the following:
Theorem. The Load Distributions of {g(l,l)n} are Admissible.

Proof. Conditions A.l and A.3 hold obviously for all §(1,1),
A.2 can be shown to hold by assuming that there exists a k<n at which
it fails. This can be shown to imply that it fails at k=n (i.e., that
A.1 fails), but this is impossible. Hence A.2 is satisfied. Q.E.D.

Constructing a Folded Tree with a given Admissible Load Distri-
bution, Since a Folded Tree differs from a Standard Tree with the same
number of inputs only in the way in which its inputs are comnected, a
Folded Tree with Admissible Load Distribution S(1,1) may be constructed
by first building a Standard Tree with the appropriate number of input
pairs but without giving the connections of the Double-ands to these in-
put pairs; second, determining from S(1,1) the assignment of the 1Aj's
to the inputs; and, third, making the connections jindicated.

Clearly the major problem is the determination of the agsignment
of the 1Aj . For a given Load Distribution, alternative assigmments will
in general be possible. The procedure here presented leads, somewhat arbi-
trarily, to one posgible assignment, The bare method is presented here,
the theory behind 1t being reserved for Volume III. The method may be con-
sidered as falling into two parts, The first is the determination of the
Load Distributions, S(i,j) , for every Minor Tree of the Folded Tree
T(1,1) being constructed, The second is the determination of the assign-
ment of 1A from S(i,3) .

Consider part I. We are given an Admissible Load Distribution
and are to determine from it the Load Distributions of the Minor Trees of
T(1,1) . This is accomplished by repeated application of a process called
"splitting".* If §(i,J) is the Load Distribution of T(i,J) , a Minor
Tree of T(1l,1) , splitting will yield 8(i+1,2J-1) and S(i+1,2j) ,
the Load Distributions of T(i+1,2j-1) and T(i+1,2j) , the Minor Trees
into which T(i,j) divides. Table III is the work sheet for a specific
example showing how successive splitting of Load Distributions beginning
with S(1,1) will yield all the §(i,J) . Load Distributions with labels
in the first column and with the unit term deleted (the reason for this will
be apparent later) are those to be splitj the two into which it splits ap-
pear immediately below. Each §(i,Jj) appears twice, first with label in

* Not to be confuged with the Splitting of MS outputs discussed in sec-

tion 3. ,
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the second column as the product of a splitting and then with label in the
first as a Load Distribution to be split. Figure 11 shows the same example
diagrammatically. Figure lla is the Folded Tree being constructed with the
assignments indicated (by the P, above 1iAj —these assignments would
not be known, of course, until the entire process has been completed). Fig-
ures llb-e show its decomposition into Minor Trees. Below are the corres-
ponding S(i,j) —the arrows indicating how the splitting took place. The
S(i,j)'s shown in Figure 11 were calculated on the work sheet and used to
determine the assignments given in Figure lla. They are given there so
that the relation of T(i,j) , S(i,j) , and iAJ may be seen.

Consider now the following procedure for splitting. It is con-
venient to think of it as consisting of three steps:

Step One. Delete U(S(i,J)) from s(i,j) . (In the Table,
these reduced Distributions, which are the ones to be split,
are labeled $(i,j)* in column 1, the two determined by the
split are labeled in column 2, and appear in the immediately
following lines.)

Step Two. Consider the coefficients of the terms of S(i,j)*
in monotonic increasing order. Suppose there are r terms:
denote the coefficients in their monotonic order by ‘al,ag,
...ya.' and denote the corresponding coefficients of S(i+1,
23-1) by 'dy,...,b.' and those of S(i+1,23) by 'ciy...,
cr 1

Step Three. Determine the bjy and ¢y by the following rules:

(A) If a =2 then by = [ay +A¥|i and c; = [y + 1 - Al
2

for all i , where Aj

(B) If ay>2 then by = a)-1, b2-l, cy=1, ¢y = ap-1; and

b; and c; are given by the formulas of (A) for i>2

The idea behind these formulas is quite simple and they are easy
to apply after a very little practice. It is: (1) to provide for the '1'
in each set of coefficients, and (2) to split the a; , 122 , in such
a way that the sum of the "b" coefficients determined through i 1is as

The asterisks (stars) appearing in Steps One and Two are part of the
symbolism.

¥ The brackets represent the greatest integer in the contained quantity
as before.
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nearly equal as possible to the sum of the corresponding "e" coefficients
with the somewhat arbitrary proviso that at every step Aty 20 . It is
worth pointing out that in actual calculation the work is even simpler than
it appears from this description, because all terms (except possibly the
first three) are split as evenly as possible. If aj is even, then D,

= C, = aj/2 . If a. 1is odd, then consider Aj : if it equals O let
the larger part of aj be e, ; if it equals 1 1let it be bj . This
does not mean that it is necessary to compute the sums each time; it is
only necessary to keep track of the difference (which can be only O or

1 for j=3 ).

The method is now applied to splitting S(1,1) of the example
into 8(2,1) and S(2,2) .

Step One. Delete U(S(1,1)): s(1,1)* =s(1,1) - U(s(1,1))
8Pl + 7P3 + TPy + 8P5 .

Step Two. Assign the labels ’ai' so that the i's repre-
sent the monotonic order of the coefficients of S(1,1)* :
a), a1 a5 az
8p) +TP5 + TP, + 8P

thl + blP5 + bQPh + b5P5
chPl + ClP + CEPM + c3P5

Step Three. Calculate by and c; = Since T = ay >2
we apply rule (B)

6;

]
il

by = a1-1 = 6; by = 1; ey

[8 ‘ é?-?)] b ey- £8+1 ;(7-7)1

8+(11-11 8+1-(11-11
K [*“(—rl} Booe [—*——(‘2‘—1] = b

13 Cp = an-1

I
1

by I

Repetition of this 3-step procedure will yield all S(i,J)
Table. III illustrates a systematic work sheet for recording the calcula-
tions. The two sequences determined above appear on lines 2 and 3 respec-
tively. After practice all the necesgary calculations can be performed
mentally and the results written directly onto the sheet.

Now tensider part II, the assignment of the Double-ands of T(1,1)
to input pairs., The rule is simple: Assign 1AJ to U(8(i,J)) .
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Thus if the assignment of 2A2 is desired, consider §(2,2) =
kpy + 1P5 + 6Py, + nP5 . Clearly U(S(2,2))=1P3 and so by this rule
2A2 is assigned to P, . The assignments of all the 1Aj of the ex-
ample are given in Diagram lla.

The Folded Tree, T(1,1) , constructed by this method will have
a Key. The following Technique summarizes the procedure and indicates,
parenthetically, the modifications needed if a Key is lacking.

Technique k4.

1. Test the desired Load Distribution for Admissibility. If
it is Admissible, call it S(1,1) and proceed to step 2. (If
the Load Distribution has no unit term, it may be an Admissible
Load Distribution for a Tree without a Key. There must, how-
ever, be at least one term with coefficient 2 ., Choose one
of these, say 2P, , replace the 2 bya 1 , and apply the
criteria to the resulting Load Distribution. )

2. Construct a Standard Tree with Key adjoined (unless the Key
is lacking as indicated above) with the appropriate number of
input pairs but without connecting them to Double-ands.

3, Determine the agsignments of the iAj Dby:

a. Generating the set of §(i,j) from S(1,1) and

b. Assigning 1Aj to U(S(i,J)) . (If T(1,1) does
not contain a Key, then 8(1,1) , reduced by eliminat-
ing 2P, , is defined as $(1,1)* and handled accord-
ingly. In all other respects the method is unchanged. )

4, 1In the Standard Tree constructed in step 2 make the connec-
tions indicated in step 3.
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TABLE IIT

Col?mn Col\zlmn Pl P, P5 Ph P5 Colllunn Col;mn Pl P, P3 P), P5
s(1,1) s(1,1) 81117718 s(k,2)* 2
s(2,1) 4 61| L 5(5,3) 1
s(2,2) L 1164 S(5,k4) 1
s(2,1)* L 6 Lol s(k4,3)* 2
S(3,1) 3 3 1 s(5,5) 1
S(3,2) 1 3 3 8(5,6) 1
5(2,2)% \ 6 | u || s(uu 2
S(3,3) 3 311 s(5,7) 1
S(3,4) 1 313 5(5,8) . 1
5(3,1)* 3 3 S(k,5)* 2
S(k,1) T2 1 5(5,9) 1
s(4,2) 1 2 s(5,10) |1 |
5(3,2)* 3 3 | s(k,6)* 2
S(k,3) 2 1 8(5,11) L
S(k,k4) 1 2 s(5,12) 1
5(3,3)* 5 bl S(h,7)* 2
s(k4,5) 2 1 5(5,13) 1
s(L,6) 1 2 S(5,1L) 1
S(3,4)* 3 |3 || s(k,8)% 2
S(4,7) 2 |1 5(5,15) 1
S(k4,8) 1 |2 s(5,16) bl
S(h,1)* 2
S(5,1) 1 Total number
5(5,2) 1 of 'l'g! 8 1 7 ! 8

These are S(i,j) without the term with unit coefficient.
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