ENGINEERING RESEARCH INSTITUTE
UNIVERSITY OF MICHIGAN
ANN ARBOR

THE LOGICAL DESIGN OF AN IDEALIZED

GENERAL-PURPOSE COMPUTER

»AKV{ L }2

v

_IRVING M. COPI .

Project 1828

BURROUGHS CORPORATION
RESEARCH CENTER
PAOLI, PENNSYLVANIA

30 October 1954

s

é/ e (*/,q,d

¢
wr

ii

Table of Contents

Section
Preface
1. Introduction
2. The Computer and its Parts
3. Logical Symbolism and Diagrams
L. STORAGE
L.1. Information
L.2. Cells and Storage Bins
4.3, Address Decoder
4.4, sSerial Storage
5. ARITHMETIC UNIT
5.1 Machine Arithmetic
5.2. Operation of the CONTROL ‘
5.3. The Functions of the ARITHMETIC UNIT
5.4 Execution of the Arithmetic Instructions
6. CONTROL
6.1. ADDRESS COUNTER
6.2. CONTROL CLOCK
6.3. OPERAND DECODER
6.4. Operation of the CONTROL
Footnotes
Bibliography
Figures
Appendices
A. BSome Operations of the ARITHMETIC UNIT
B. Machine Solution of a Simple Problem
C. Multiplication
D. Arithmetic Operations on Instruction Words
E. Logical Design of the ARITHMETIC UNIT

Page

iii

10
1k

17
20

20
25
27
29

33
33
37
39
Lo
Ly
L6
k7
56
56
29
62

66
68

iii

Preface

This is the second (and last) report of a series of
which "Theory of Logical Nets"% [2] was the first. We
shall make some comments about the relations of the two
reports.

‘ "Theory of Logical Nets" gives a foundational analy-
sis of logical nets (diagrams of digital computing cir-
cuits) in general. This second report presents a particular
logical net, which represents the structure of an idealized
general-purpose digital computer. Thus the first report
contains the foundations for this second one, which pre-
sents an application of the nets analyzed in the first
report.

The logical design of the general-purpose computer
presented here was worked out by the first author inde-
pendently of Project 1828. It was this work that stimu-
lated the research already embodied in the first report.
Since this design shows how the nets of the first report
may be used;, it seemed desirable to present the logical
design of the computer as a second report in the series.

In doing so we found it necessary to work out a set of
logical formulas describing the behavior of the computer,
and, since this material is of interest as an application of
symbolic logic to computers, we have embodied it in the

present report.

THE LOGICAL DESIGN OF AN IDEALIZED
GENERAL-PURPOSE COMPUTER:

l., Introduction.

There are many known complete logical designs for
general purpose digital computers, but all of them are
in terms of specific systems of equipment and most of them
are very complex. That complexity is enforced not en-
tirely by logical but also by engineering considerations
pertaining to the physical problems involved in the
actual construction of a machine. It seems desirable,
therefore, to present a design for a complete general-
purpose digital computer which shows its basic logical
structure in abstraction from the engineering problem of
realizing that structure physically. We give such a
design in the present paper, patterned in a general way
after the machine described in [1] o Since we use some
of the techniques of symbolic logic in its exposition,
our logical design is much more "logical® than is usually
implied by the use of that term.

The present paper is intended to serve two important
purposes. First, as has been said, it is intended to show
what is logically required for a general-purpose computer
as distinguished from what is required physically, the

latter being relative to the present state of the computer

art., Second; it is intended by abstraction from the re-
quirements of equipment to show how a design can be ob-
tained which is much simpler, though admittedly idealized,
and hence much easier to understand. Our presentation
should have pedagogical value for communicating the basic
structure of a general-purpose machine to those acquainted
with the rudiments of symbolic logic but lacking in engi-
neering background.

The present paper is a continuation of [2] , which
gives a foundational analysis of logical nets (diagrams
of digital computing circuits) in general. The structure
of our idealized general-purpose computer is here repre-
sented by a particular kind of net studied in [2] , the

well-formed net.

2. The Computer and its Parts.

Our automatic computing machine contains three main
parts with communication channels between them (Fig. 1).
The first part is the ARITHMETIC UNIT, which performs the
arithmetic operations of instructions 4, 5, 6, 7, 8, and
9 of Fig. 2, and which "senses" the end digits of a number
when that is required for the execution of instructions 13
or 1l4.

The second part of the computer is its STORAGE, whose

bins contain both numbers to be operated on and instructions
to perform specified operations. The STORAGE contains two
parts, a serial storage and a parallel storage. The paral-
lel storage contains 4,096 storage bins: bin 0, bin 1,

bin 2, ...y bin 4095, whose numbers constitute the addresses
of the bins.

The machine must provide a path along which numbers
can be transferred between the STORAGE and the ARITHMETIC
UNIT when instruction 4, 5, 6, 7, 10, or 11 is executed.
In our computer this path is the EfEEE-%iEg.-£9 whose
sixteen components tn, i1, ccos §l5 are represented by
horizontal lines connecting the ARITHMETIC UNIT and the
STORAGE in the lower part of Fig. 1.

For the machine to solve a problem it must be given a
list of specific instructions, whose execution will result
in the solution to the problem. The execution of these
instructions is under the direction of the CONTROL, the
third main part of the computer, which consists of all the
equipment of Fig. 1 not yet described. Instructions for
the machine are stored in order in bins of the parallel
storage, and, except when it is instructed to "jump"®
(see 12, 13, and 14 of Fig. 2), the computer executes these
instructions seriatim. To this end count must be kept of

the instructions as they are executed; this function is

performed by that part of the CONTROL called the ADDRESS
COUNTER, which at any given time will contain the address
of the bin storing the next instruction to be executed,

A set of instructions for the machine to execute in
solving a problem is a routine, and every routine, however
complex, is constructed out of a small number of primitive
or basic instructions (the fourteen listed in Fig. 2).

As each instruction emerges from the STORAGE it goes to
the CONTROL, and that part of the CONTROL called the
OPERAND DECODER then stimulates the appropriate control

AANAAAANNANN

ngﬁi to make the other parts of the computer perform what-
ever functions are required for the execution of that in-
struction. Eleven control wires lead from the CONTROL to
the other parts of the machine: six, bearing the general
label A, from the OPERAND DECODER to the ARITHMETIC UNIT;
and five, labeled S, from the OPERAND DECODER to the
STORAGE. There are also two control wires, labeled C,
which connect different parts of the CONTROL, both C,
and C; lead from the OPERAND DECODER and CONTROL CLOCK
to the ADDRESS COUNTER, and C4 1leads also to the equip-
ment in the center of Fig. 1 labeled 3;. Different
basic instructions cause the CONTROL to stimulate different
sets of control wires, as indicated in Fig. 2.

How these various parts perform their functions will be

explained in detail: the STORAGE in Section 4, the ARITH-
METIC UNIT in Section 5, and the CONTROL in Section 6.

56

3. Logical Symbolism and Diagrams.

Since our diagrams are logical nets in the sense of
@] , the lines in them represent wires. Each net wire in
our diagrams is in one of two states (0,1) at each discrete

AANAN A

moment of time 7T =0, 1, 2, coo o (Whenever we use /T
as a time variable, it ranges over discrete moments O, 1,
2, ... unless otherwise stipulated.) The two states 0
and 1 are complementary; they correspond to the truth
values false and true, respectively. In our diagrams con-
trol wires are labeled with capital letters, other wires
(information wires) are labeled with small letters from the
Latin or Greek alphabets. To assert that the wire labeled
f 1is activated or stimulated at time T we write either
£, £(T), £=1, or £(T) = 1; and to assert that it is
inactive or not stimulated we write either f = 0 or
f(‘T) = 0. Thus the symbols used to label wires are system-
atically ambiguous: any such symbol f is on the one hand
a label for the wire beside which it appears, and on the
other hand it is a function symbol f£f(/7) whose argument “7T
ranges over successive discrete moments of time and whose
values are the wire states 0 and 1.

Our primitive logical symbol, the stroke function

_£M~§, means not both f and g, and the corresponding

diagrammatic stroke element appears in Fig. 3a as a square

60

nucleus with two input wires (f and g) and one output wire

flg (as in [2]). Other logical symbols we shall use
are: negationgljl(or alternatively ::{), meaning not f;
(inclusive) disjunction, f v g, meaning £ and/or g;
conjunction, fg (or alternatively f-g), meaning

f and g; material implication, f O g, meaning not f or g;

equivalence, f = g, meaning f and g or not f and not g;

and inequivalence, f # g, meaning f and not g or g and
not £f. Just as these six functions can be constructed out
of the stroke function (see pp. 255-256 of [4]), so the
six corresponding diagram elements can be constructed out
of stroke elements, as shown in Figs. 3b, c, d, e, £, and goz
Each right-hand diagram in Figs. 3b, ¢, d, f, and g is a
definitional abbreviation of the diagram to its left. Having
introduced the symbol for negation, we have additional ways
to assert that wire £ is inactive at time T: £, £(T),
f =1, and f(T) = 1. Similarly we could assert that it
is active by writing £ =0 or f(T) = 0.

The inequivalence element has many properties which
make it very useful in computer work. It can be used as a
complementer, for if either input is in state 1, the state
of the output wire will be the complement of the state of
the other input (this application was first pointed out in
[7]). We shall later (in Section 5) make use of the fol-

lowing properties of inequivalence: it is both associative

and commutative, and f; £ £, Foooo # fyy 1is true just in
case an odd number of its arguments are true. That it has
these properties is readily proved by induction on the num-
ber of arguments. Hence we can have an inequivalence ele-
ment with any number of inputs (see Fig. 7 for a 3-input
inequivalence) .

It is convenient also to introduce a generalized
threshold element having I positive input wires
f15 f55 oc0, £1 and J negative input wires (a negative
input wire to an element is one which attaches to that
element through a negation element) Bls 825 ocos E3s
and a positive integer threshold T. Such an element is

diagrammed in Fig. 3h, and its behavior is characterized

1%

| I J _
by the equation h = [(Z_ £4+ Zgj) g?_] where 2 ,+ |,
i=1 J=1

(ty

and have their usual mathematical significanceo3 For
any I, J, and T 2 0 the threshold element is easily con-
structed out of elements already available. Where
I>1I+Jd;, h=0 and the construction is trivial. The
equation for the non-trivial case is an inclusive dis-
Junction whose disjuncts are all possible conjunctions of
I arguments from the set of I+J arguments

{il’ £o5 ooy L5 8y Bps coos gJ} , and hence may be
realized by a net containing only negation, conjunction,

and disjunction elements (see Theorem 12 of [2]). It

should be clear that disjunction and conjunction elements
with any number of input wires are special cases of our
generalized threshold element.,

A second primitive element used in representing
digital computing circuits is the ggégx_element, which
appears in Fig. 31 as an oblong nucleus with one input wire
f and one output wire g. As in the case of the other ele-
ments, each of its wires possesses one of the two states
(0,1) at each discrete moment of time: the output wire g
is in state 0 at ‘T = 0, and thereafter it possesses the
state possessed by the input wire at the prior moment of
time. The equations which describe its behavior are:

g(0) =0 and g(7+ 1) = £(/T) for every time T.

We use two additional primitive elements: an input
ng whose activation puts the wire attached to it into
state 1, and an output %5&92 which emits a visible signal
if and only if the wire attached to it is in state 1. These
are diagrammed as circles with the letters K or L in
their interiors, as in Fig. 4. They represent relatively
slow ways in which the operator can insert or receive in-
formation from the computer.

We use only nets that are well-formed in the sense of
[éj , but to simplify our diagrams we sometimes omit arrow-
heads and wires, as between the small and large circles in

Figs. 3e and 3g, and we sometimes show arrowheads going both

ways to avoid duplication of wires., We also allow a
multiple Jjunction, that is, a confluence of n Z 2 output
wires, to abbreviate an n-input disjunction element in the
manner of Fig. 3J), whose behavior is governed by the
equations (fvgvh) =1i=J]=k. And we place a dot at
the intersection of two lines to indicate that the wires
represented by those lines are connected, as at the left of
each right-hand key in Fig. 4. Our final convention is
that (except for Fig. 3) wires having the same label are
understood to be connected, whether they occur in the same

diagram (as the t;'s in Fig, 7) or in different diagrams
(as the t4's in Figs. 1, 4, 5, and 7).

4. STORAGE.

4.1, Information.

At any one time a single wire can carry one Ei& of in-
formation, O in its off state, 1 in its on state. The two
digits O and 1 suffice for the expression of all real
numbers in binary notation, and the term "bit" is a con-
traction of "binary digit." The machine's vocabulary con-
sists of words, each of which is a sequence of sixteen bits.4
At any moment exactly one word will be on the trunk line,
each of whose sixteen components 1ty (L=0, 1, 2, coo, 15)

carries one of the word's sixteen bits. (Whenever we use

10.

the variable 1 as subscript of a letter which labels a
wire, it ranges over 0, 1, 2, ..., 15 unless otherwise
stipulated.) 1In the machine each word is an ordered set of
wire states, and every word is expressed by a number in
binary notation. These words can be used to express either
numbers or instructions. Their use to express numbers will
be explained in Section 5; in the present section we ex-
plain their use to express instructions.

A typical instruction, such as ADD X (4 of Fig. 2),
is expressed by an }933532338§~w0rd whose first four digits
dpd;dyd; constitute ., its operand and whose rightmost twelve
digits constitute its address (X = g4§5000515), which
specifies the location of the storage bin containing the
number to be operated on. (In the case of instructions 1, 2,

3, 8, and 9, the address part is unused.)

4.2, Cells and Storage Bins.

A Egi;g which is a circuit capable of receiving and
storing one bit of information, is easily constructed out
of the elements described in Section 3. To see how the cell
at the top of Fig. 4 stores information, we first observe
that gg = (gﬁgov'ﬁzgg . Now consider what occurs at any
time “T when all of the control wires are in state 0., If
Qg(fr) = 1, its signal will pass through the conjunction ele-

ment below hF up to make gg(fr) = 1, whence Qg(ﬁr+-l) =1,

11,

and if all control wires remain inactive, then Qg(ﬂifl) = 1
will entail hj(T+1) = 1 also, whence gg(fn 2) =1, On
the other hand, if Qg(q‘) = 0, no signal will reach 289
and gg(qr) = 0, whence QS(7’+-1) = 0, and, if all control
wires remain inactive, then gg(fr+ 1) = 0 will entail
gg(ﬂr+—l) = 0 also, whence 98(4”+-2) = 0, Thus, if no
control wires are activated during the interval in question,
whatever state a cell possesses at time 77T will continue to
be possessed by it at times 7+ n for n =1; 2, 3, coo »

Note that each symbol Qg of Fig. 4 has a three-fold
significance: it labels the output wire of the delay element
to its left, it is a function symbol gril(q—) as explained
at the beginning of Section 3, and it also labels the cell
within which it appears. This three-fold significance attaches
to the labels of all cells within the machine:,[?gl and ,A?é
in Fig. 6, aj; 1in Fig. 7, and %y in Fig. 8,

Sixteen such cells are combined as in Fig. 4 to make one
storage bin, which can receive and store a word, one bit in
each cell. The parallel storage consists of 4,096 such bins
ng Q}g cooy 2&095 connected in parallel as indicated in
Fig. 5.

When the machine is idle all components of the trunk
are in state 0, and all cells of the bin can be cleared to
state 0 manually by activating the key at the upper left
corner of Fig. 4. That key's activation at such a time T

12,

prevents any signal that may be at Qg(fr) from reaching
Qgg whence gg(rr) =0 and 92(’74-1) = 0 regardless of
the value of Qg(ﬁr)o Having thus cleared all cells to O,
a 1 may be inserted in any cell by activating the key at
that cell's right. For if all control wires are in state O
and the key at the left is not activated, then activating
the right-hand key at time T will cause a signal to pass
through the conjunction element below Q? up to make
Qg(’r) = 1, whence gg(fr4-1) = 1, and the cell will con-
tinue to store the 1 until caused to change by the acti-
vation of the left-hand key or of some control wire. Thus
the keys can be used to load each cell with 4its initial bit
of information, and the lights provide a crude way of getting
information out of the bin, since each one is visibly on or
off according as its cell contains a 1 or a 0. We
assume that the keys are inactive in the following discus-
sion,

Three control wires lead to each bin, a distinct set to
every bin. Fig. 4 shows the nth bin and its control wires

g?g RY, and TR, Its ith cell b® is connected to the ith

=i
component tj of the trunk.

The control wire T% 1is the transmit wire for bin n.
When it is activated, the bit in each cell enters the appro-

priate component of the trunk, passing from Q? through

130

the lower conjunction element onto t;, whence Li = 29°Qio

It is convenient to be able to alter an instruction by
changing its address without modifying the operand. Hence
the wiring of the first four cells of each bin is different
from that of the last twelve cells, as shown in Fig. 4. The
control wire Bg is the partial reception control for bin n.
It connects, by way of the disjunction element, to the last
twelve cells ng Qgs sooy ggso If it is activated at time
T (by instruction 11 of Fig. 2), and BE is not acti-
vated, then whatever bit is on trunk component t; (i = 4, 5,
soos 15) at time -7 will flow through the upper left con-
junction element of cell bY onto hj, from which it will
emerge at ‘7T +1 to occupy 92, in which case QQQT+1) E.gi(q?
for 1= 4, 5, cees 15, and DI(T+1) = bI(T) for i =0, 1,

Ry 3.

The control wire 32 is the total reception control
for bin n. It connects directly to the first four cells
and by way of the disjunction element to the last twelve
cells also. If it is activated at time /T (by instruction
10), then whatever bit is on trunk component ty at time 77

will occupy cell g‘il at time T+ 1; in this case

bI(T+1) = £, (T,

The storage bin's behavior is described more com-

pendiously by the equations

]

BI(T+1) = [Bp(7) t; (1) v ER(m)p2¢7)] for 1=0, ..., 3, and

1
b3 (T+1) ={[BL VBT & (VEL(D B2 -0} (M} for 1= 4,
cooy 156

lAOv

4.3. Address Decoder.

For the computer to use the information in its paral-
lel storage, it must have some method of switching to or
selecting a specified location there. Twelve binary digits
suffice to specify any storage bin uniquely. The Address
Decoder is a switching mechanism which activates the proper
storage bin when it receives the twelve digit number which
is the address of that bin.

The Address Decoder has 4,096 distinct output wires
B> B1s ece5 B4095> each connected to a distinct storage
bin of the parallel storage. Each distinct p; 1is acti-
vated hy a different set of twelve digits which may be
carried by the pddress ﬁecoder‘s twelve input wires §49
S55 o005 S315. The functional connection is accomplished
through the use of 4,096 threshold-1l2 elements, as shown
in Fig. 505 The same twelve input wires are connected to
each of the 4,096 threshold-12 elements, those connections

being described by the equations: py = (§4§5°°°§i4§i5),
P = (54550”514.‘3_15)9 ce0s Biogy = (§4§5°°°=§l4§15)’

24095 5-(§4§5°°°§14§15)°
General directions for the parallel storage are car-

ried by control wires Sp.., Sp¢, and Sy (Figs. 1 and 5),
at most one of which is in state 1 at any time., Each of
these control wires is connected to 4,096 different con-

Junction elements, whose other input wires are the 4,096

15,

distinct pj's. Since at most one of the control wires

érp’ Srys Sy 1s activated at any time, and exactly one of

the Address Decoder's output wires pp, Pjs ccos 24095

is activated at any given time, there is at any given time

at most one bin n for which any of the control wires

Rn

=p
such a bin n, at most one of those three control wires

, By, I' is activated at that time, and, if there is

5;, Bg, EP is activated at that time. The equations which

describe the circuits diagrammed in Fig. 5 are of the form:
Ry = (Spp°2n)» By = (8p4°Ry)s I' = (Syepy)-

For example; in the execution of instruction 4 of
Fig. 2, ADD X, the operand 0100 of that instruction
causes control wire Si to be stimulated and the address
X, X500 X5 enters the input wires of the Address Decoder to
stimulate its output wire p,. That stimulates 7%, the
output wire of a conjunction element whose two input wires
are §t and DPys to make the number in bin X pass onto
the trunk where it is available to the ARITHMETIC UNIT.

Here and throughout this paper we speak as if the
electrical response of a circuit were instantaneous, which
is not strictly accurate. For our remarks to be made un-
objectionable we need only make the duration of the time
interval we refer to as a "moment" sufficiently large to
permit the signal to pass from any part of the machine to

any other part during that interval. Our "moments" need

16,

not all be of the same duration, of course, and intervals

of any different durations may lie between what we refer to
as "successive moments." It should be kept in mind that the
shorter the durations of these "moments" and the shorter the
time lapses between them, the higher the speed of computa-
tion that can be achieved by the machine,

These remarks should suffice to indicate that the
states 0 and 1 of our wires need not be pulses, but can
alternatively be static states. It is, of course, part of
the idealized representational function of our diagrams
that they permit of either interpretation.,

In practice a relatively uncomplicated physical device
may correspond to a very complex logical net; no one-to-one
correspondence is suggested between the elements of our
diagrams and the physical components of the computing
machine which realizes them. For example, our general de-
sign for the parallel storage (less the keys) can be realized
physically without using separate delay lines, as by a
Williams? tube cathode ray storage device which consists of
many tubes and associated circuits. The delay elements in

‘our diagrams represent the fact that information is stored,
but do not represent the specific physical devices that may
be used to accomplish that storage function. Our design is
intended to represent the logical role rather than the phy-

sical constitution of a computer and its parts. Hence many

17.

of the details of the circuits involved in the Williams!
tube storage (pulse shaper, etc.) are not represented by
our diagrams. Nor is the breakdown into parts similar,
for a single tube will store bits from many bins (say,
1024 of them), with the contents of a single bin distri-

buted over sixteen different tubes.

4.4. Serial Storage.

In addition to the relatively limited parallel storage
already described, our computer has a theoretically in-
finite serial storage,6 which supplements the parallel
storage. The serial storage consists of sixteen parallel
strings of cells, every cross section of which may be re-
garded as a storage bin. Our computer is so designed that
exactly one storage bin belongs to both the parallel storage
and the serial storage.7 For definiteness, we specify it
to be bin 4095 of the parallel storage, which must be given
somewhat more complicated cells to enable it to play its
dual role. In Fig. 6, which shows only three cells of the
topmost string, the middle cell diagrammed belongs to this
special bin. Each string is to be thought of as extending
indefinitely in both directions.

It is clear from the diagram that if neither of the
control wires §b’§f is activated, every bin of the serial

storage save 24095 continues to store whatever information

18.

it contains, and if 33095 = 5_{;095 = 0, then p*%75
also continues to store whatever information it contains.
Now, if control wire 8y (§f) is activated at time 7,
the internal circulation or storage of information in each»
cell is interrupted at the threshold-3 element in each ordi-
nary cell and at the threshold-4 element in each special
cell of the shared bin, and any bit of information in each
cell will pass up the wire to the right of its delay element,
through the left (right) conjunction element above, and down
to the input wire of the delay element of the cell to its
left (right).

If we assign the labels ..., /3;2, /?Zl:,ﬂ??’ /31,,4??,
..+ to the cells of the serial storage, where ,{?g is
Q§095, the behavior of the serial storage is described by

the expression

=40 =40 n - n+l -1

B2 Es {stannz[,m - AT s, - 41 v
- = n
5, (T -,s_f(rr)-ﬁi«r)]} ,

Where }_‘1_':...,—-2, -l, O, l, 2, oo e [

If a word located in an ordinary bin of the serial
storage is to be used, the contents of the serial storage
must be shifted backward or forward until that word occupies
the special bin Qﬁ095, from which it is immediately avail-
able to the computer as described in Section 4.2. Hence the

greater capacity of the serial storage is purchased, so to

19.

speak, at the expense of ready availability of its con-
tents.

At this point the analogy should be noted again be-
tween our diagrammatic conventions and the process of de-
finition. Just as a single term can be introduced as an
abbreviation for a whole sequence of other terms, so some
parts of our diagrams are to be understood as definitional
abbreviations for other, more complicated parts. We have
already pointed out that each right-hand diagram in Figs.
3b, ¢, 4, f, and g is a definitional abbreviation of the
diagram to its left. Similarly, in Fig. 5 each box g?
is to be understood as a shorthand notation for the more
detailed diagram of storage bin bP® presented in Fig. 4.
(Both, it should be noted, are connected to the same three
control wires and the same sixteen components of the trunk.)
And the block labeled STORAGE in Fig. 1 is a definitional
abbreviation of the complete net whose parts are repre-
sented in Figs. 5 and 6, that is, of the combined and inter-

connected parallel and serial storages.

20.

5. ARITHMETIC ONIT.

5.1. Machine Arithmetic.

Before describing the operation of the ARITHMETIC
UNIT we must discuss the arithmetic of the machine.

A binary numerical expression +0.Xj...X)s (20)
is directlz regresented in the machine by the word
OX)...X;5, and a binary number -0.Xj...X%)5 (¢ 0) by
the word 2-.%)...X;5. For example, +.110...0 (+3/4)
is directly represented by 0.110...0, and -.110...0 (=3/4)
by 1.010...0. Clearly any binary number Xx 1in the range
-1< X <1 can be directly represented in the machine to
within 2'15. Numbers outside this range can be indirectly
represented in the machine through shifting them into the
range by multiplying them by 2™ with some appropriate n.

The binary point of a number is not directly repre-
sented in the machine. However, it is convenient to 1magine,
and sometimes to show, a binary point to the right of the
leftmost bit of every machine word that directly represents
a number.

It will be convenient to introduce an additional con-
vention at this time. Just as a symbol like by may either
name a wire or symbolize a function (which takes on one of
the two values 0,1 at each time /T°) (see Section 3), so a

symbol like b may either name a sequence of sixteen

_1.

wires Dby, «..5 byjg OT symbolize a function (which takes
on one of the 216 values: 0.0...00, 0.0...01, ...,
l.l...10, 1.1...11 at each time /T). Our earlier use of
t (Section 2) to stand for the trunk consisting of the
wires 15, «.05 Y35 accords with this convention.

We shall introduce four operations on machine words:
machine addition, machine subtraction, machine doubling,
and machine halving; defining them so as to maintain a
certain correspondence with the analogous operations of
ordinary arithmetic. Where x and y are machine words
which directly represent the numbers oK and /?, respec-
tively, and 2z 1is the result of performing machine addi-
tion on X and y, then if &+ /8 can be directly repre-
sented in the machine, it is directly represented by z,
whereas if o+ / can not be directly represented in the
machine, 2 directly represents a number congruent to
O + 4 modulo 2. Similar remarks apply for the other three
operations also. We will hereafter use the signs x+y,
-X+Y, 2y, and (1/2)y to denote our four machine oper-
ations. Basically, the machine does arithmetic modulo 2
with a precision of one part in 215, For example,
0.110...0+ 0,110...0 = 1.100...0, i.e., 3/4+ 3/4 = -(1/2),
since 3/4+3/4 = -(1/2) modulo 2; and halving 0.0...01
{2-15) ~gives 0, while halving 1.1...11 (-271%) gives
-2;3.

22,

The machine operations of addition, subtraction,
doubling, and halving are the only machine arithmetic
operations for which there are instructions in Fig. 2.
However, other machine operations (e.g., multiplication,
division), as well as machine operations on numbers which
cannot be directly represented in the machine, can be pro-
grammed; that is, there exist routines (sequences of
instructions of Fig. 2) for making the machine perform
these additional operations.

Our machine arithmetic operations are to be performed
by nets constructed out of our logical elements, and these
nets must all be realized by our ARITHMETIC UNIT. The
machine arithmetic operations performed on sixteen digit
words (x,y) must be defined in terms of logical operations
performed on the several bits (x;, y;) of those words.

We first define machine addition. Our task is to
express
(8) Z=X+Y
as a logical relation between Xxj, yi, and 23. It is
helpful to define the auxiliary word g whose 1i-1lst bit
§i1 (1 >0) is the carry digit from the addition of the
three summands: Xy, yj, and the carry digit §4. It is
clear that §15 4is 0, and that z; is 1 if and only if

an odd number of the summands x;, y;, §4 are 1l. The

23.

result concerning inequlvalence established in Section 3
enables us to express this rule by

(4,) 23 T (% £91 % 51)-

And since fi—l is 1 Just in case at least two of the
three summands are 1, we have the equations:

(82) §i-1 = (avavxy f4vys§1) for 1> 0,

(45) 15 = 0.

Before defining machine subtraction we introduce the
machine operation of complementation C, whose field con-
sists of words. We define C(x) to be the machine repre-
sentation of that number within the range -1< x ¢ 1 which
is congruent modulo 2 to 2-x. The complementation oper-
ation is very useful because a negative number —.51.;.515
is directly represented in our machine by C(0.Xj...X35).
Machine complementation is related to logical complementation

(negation) in the following way. We define

5 =df ?_{_O._x_looogc_ls;

and refer to Xx as the bitwise complement of x. Now 2
PP, O ettt s,

is the arithmetic sum of 1.11...1l1] and 2-15

» and clearly
x = 1.11...11-x, whence
c(x) = go.gl...zls+ 0.0...0L.
Machine complementation is therefore performed on a number
by adding 217 to the bitwise complement of that number.
Since the arithmetic operation of subtracting X from A

is equivalent to the addition of the negative of & to /f,

R4y

we can define machine subtraction in terms of comple-
mentation and addition. Thus, the formula for machine
subtraction
(s) Z= -X+y
becomes

2= C(x)+y = X+y+0.0...01.
By using (A;) and (A;) we can translate z = X+y 1into
logical terms; and since 515 is one of the summands in the

-15 can be

rightmost digital position, the addition of 2
accomplished by setting §;5 equal to 1. Thus, machine
subtraction of the word x from the word y can be defined

in terms of the following logical relations among the bits
Xy ¥i> (51, and z;.
(81) Zy = (—_3.(._1 3 Y 3 31)’
(85) 51_1 = (-E-i}-’-iv 215 iv X.isi) for 1> 0,
(83) 515 = 1.

To define machine doubling we want to express
(D) z =2y
in logicai terms. Since a 1 1in the ith position has twice
the value of a 1 1in the 3i+1st position, doubling con-
sists merely of shifting each digit of y ~lef£,bne“binary
position with respect to the binary point. We express (D)
in terms of the logical operations on the bits Yy by
(Dy) Zy = Y341 for 1415,
(Dy) Z)5 = O,

25.

Similarly, halving is accomplished by a right shift. We

define machine halving,

(H) z = (1/2)1

by

(H,) 2y =Y3.3 for 1>0,
(H2) 29 = Yo

5.2. Operation of the CONTROL.

Instructions 4, 5, 6, 7, 8, 9, 10, and 11 of Fig. 2
all involve the ARITHMETIC UNIT. Before describing how
the ARITHMETIC UNIT is to function in their execution, we
must explain briefly how the CONTROL affects the ARITHMETIC
UNIT. Exactly how the CONTROL performs the functions we are
going to describe will be explained later in Section 6.

Since the instructions involving the ARITHMETIC UNIT
all refer to a "number in the ARITHMETIC UNIT", it will be
convenient to have a way of referring to this number. We
will stipulate that it is located on the sequence of wires a.

At any time /T the wire sequence d,, d;3, d,, ga
is in exactly one of sixteen distinct states. These sixteen
states, together with the state of the CONTROL CLOCK, com-
pletely determine the states of the thirteen control wires
labeled A, S, and C with appropriate subscripts. (When
the machine is inoperative, none of the wires is stimulated.)

Fig. 2 tells what control wires are activated for the various

6.

states of d,, 4;, 4,, ga when the machine is operating;
control wires not marked as active are stipulated to be in-
active. The state 1111 can occur only by a mistake in
programming; when it does occur, no control wires are
activated, and it produces no effect.

When one of the instructions 4, 5, 6, 7 is being
executed, the CONTROL will activate §; and also send the
address X to S, e+ 8159 thereby causing the STORAGE
to transmit the number in storage bin X to the trunk t.
Hence we may assume that when these instructions are being
executed the number in storage bin X is on t and there-
fore available to the ARITHMETIC UNIT.

When instruction 10 or 11 is being executed, the
CONTROL will activate §rt or §rp’ respectively, and
will also send the address X to §4’ ceey §15, causing
bin X to receive in the desired fashion any number on the
trunk t. Hence we must so design the ARITHMETIC UNIT that
these instructions cause the contents of a to occupy t.

We may summarize the effect of the CONTROL on the
ARITHMETIC UNIT as follows. When one of the instructions 4
through 11 is being executed, control wires A, Ah’ Ac’
Als’ Ars’ Att are in the states shown in Fig. 2; at any
other time these wires are all inactive. When instruction 4,
5, 6, or 7 is being executed, the number in bin X 1is also

on the trunk t. Finally, when instruction 10 or 11 is

27.

being executed, the CONTROL causes whatever number the
ARITHMETIC UNIT places on t to be prbperly received by

the correct bin.

5.3. The Functions of the ARITHMETIC UNIT.

In the previous subsection we described every possible
way for information to be directed to the ARITHMETIC UNIT
by the CONTROL. 1In this subsection we consider three
general functions performed by the ARITHMETIC UNIT on the
basis of this information, and explain how it performs the
first two.

The first function is the transmission of information.
When either instruction 10 or 11 is executed, the ARITHMETIC
UNIT is to transmit its contents onto the trunk t. If
either of these instructions is executed (see Fig. 2) étt
will be stimulated, hence we want the machine to realize
the expression

Aee O (ii = §1)°

This function is accomplished by the conjunction elements
to the right in Fig. 7. The ARITHMETIC UNIT is also to
supply the bits ag and a5 to the CONTROL, which is
accomplished simply by running wires from these cells to
the CONTROL as indicated in Fig. 7. We will simplify the
discussion of the remainder of this section by ignoring the
transmission function of the ARITHMETIC UNIT (and the re-

levant parts of Fig. 7).

28.

The second function performed by the ARITHMETIC UNIT
is storage. It is clearly required that when the ARITHMETIC
UNIT is not executing any of the instructions 4 through 9,
it must continue to store the number a. Inspection of
Fig. 2 shows that Ar is activated when and only when one
of the instructions 4 through 9 is being executed. Hence
when A.(T) =0 we want a(7) = a(T+1). This storage
may be accomplished by using sixteen delay elements, with
input wires r5, ..., I15 and output wires a5, «.., 215

as in Fig. 7, so connected that

11}

B0 (zy = 3y).

Since a;(T+1) = r;(“T), the ARITHMETIC UNIT does perform
the desired storage function.

The third function performed by the ARITHMETIC UNIT
is the modification of its contents from a(T) to
a(T+1) in accordance with instruction 4, 5, 6, 7, 8, or 9,
which we shall refer to as arithmetic instructions. The
design of a net which will realize the arithmetic instructions
is the most complicated and difficult part of the task of
designing the machine. To it we devote both the following

subsection and Appendix E.

29.

5e¢4. Execution of the Arithmetic Instructions.

In this subsection we shall derive a set of formulas
which the ARITHMETIC UNIT must realize for the arithmetic
instructions to be executed. We derive them by combining
the various arithmetic instructions with the equations
(A), (s), (D), and (H) of Section 5.1, which define the
various machine arithmetic operations. We note that the
result of an operation performed at time /7 1s to appear
at r at time 77 and at a at time T +1.

Instruction 4 demands that r contain the result of
performing the machine addition of the number at t to the
number at a. For the ARITHMETIC UNIT to fulfill its in-
tended function, it must realize the conditional
(A™) If ADD X is enjoined, then r = t+a.

Now by Fig. 2, ADD X is the only instruction which involves
the stimulation of A, and Ay but not A,. Hence the
antecedent of (A®) may be replaced by Aréhgé. And a
translation of the consequent of (A™) into a logical formula
concerning the states of individual wires may be made by
using (4;), (A5), and (A3), substituting ry for 2z, ty
for Xy, and a; for yj. In the ARITHMETIC UNIT we are
constructing, the auxiliary word,‘s will be realized by the
set of wires cg, €1, +ee) C155 hence we also substitute

¢y for Si in the (A) equations, We thus obtain the fol-
lowing formulas for the ARiTHMETIC UNIT to realize:

30.

(a]) A E, O fzy = (4 Fay #ef
(A%) ALK, > {ey 1 = (t424v tye5vay i)} for i 0,
(43) ALK S {e, = 0f .

A set of formulas for the ARITHMETIC UNIT to realize
to execute instruction 5 may be derived from the (S)

equations in a parallel way. We thus obtain

(s™) If SUBTRACT X 1is enjoined, then r = -t+a,
(s]) AAA, D {ria('ﬁiiei,#gi)} ,
m — —
(52) AphphAc Dfesy = (Rya;vEieqvayey)} for 1> o0,
m -
(83) AAA D fes =1 .

Instruction 6 demands the replacement of r by t.
For it to be executed, the ARITHMETIC UNIT must realize
the conditional
(™) If TRANSFER X is enjoined, then r = t.

Consulting Fig. 2, we find that this can be represented as
(Tl) A AhA) (r Ei) |

Instruction 7 demands that r be replaced by -t; for
it to be executed the ARITHMETIC UNIT must realize the
conditional
(Tc™) If TRANSFER COMPLEMENT X 1s enjoined, then r = C(t).
Since -t = -t +0, the formulas required here can be re-

garded as special cases of the (S) formulas, with 0 sub-
stituted for y. After that substitution has been made,

31.

the resulting formulas easily simplify to

(TCIJY_I) . I"-'h CD ir = (-E E Ci); s

(TC7) AEA, = {ci 1 = (&yey)f for 1> 0,
m 5

(TC3) ARpA, = 7015 Lo

which the ARITHMETIC UNIT must realize to execute instruc-
tion 7.

Instruction 8 demands that r Dbe replaced by <2a; for
it to be executed the ARITHMETIC UNIT must realize the
conditional
(D™) If DOUBLE is enjoined, then r = 2a.

Again substituting r for 2z and a for Yy, this time

in the (D) formulas, and consulting Fig. 2, we obtain

(o) AA 2fr, =a .7 for 1>0,
~ /
W = 0Nn:
(D) Ardyg O (L5 =0j -

These formulas must be realized by the ARITHMETIC UNIT for
it to execute instruction 8.

Instruction 9 demands that r be replaced by (1/2)a;
for it to be executed the ARITHMETIC UNIT must realize the
conditional
(H™) If HALVE is enjoined, then r = (1/2)a.

Again we substitute r for z and a for y, this time in
the (H) formulas, and consult Fig. 2, to obtain
(B) AA D {zy Za,f for 1>0,

m P
(3) Arhrs O {20 =% -

32.

These must be realized by the ARITHMETIC UNIT if it is to
execute instruction 9.

We have now completed the task of deriving a set of
formulas which the ARITHMETIC UNIT must realize if it is to
do its part iﬂ executing the arithmetic instructions.

These are the fourteen formulas whose labels have super-
script m and subscripts 1, 2, #&dv3. These fourteen

formulas, together with the storage formulas (see Section 5.3)

(K) ' _K.r) (I-i = Ei)
and
(k) a;(T+1) = r; (7)),

provide a complete specification of the ARITHMETIC UNIT
(since we have agreed to neglect its transmission function).
Any logical net which realizes these sixteen defining
PNNAAAAAAANS
formulas will be a satisfactory ARITHMETIC UNIT. It is
INAASAAANANN N
readily verified that Fig. 7 is such a net, by observing
that the last formula above is satisfied by the delay ele-
ments, and then taking each of the remaining formulas in
turn and determining that under the conditions stated each
ry has the proper relations to aj; and Eil Performing
this verification will facilitate understanding how the
ARITHMETIC UNIT works.

33.

6. CONTROL.

6.1. ADDRESS COUNTER.

Apart from "jump" instructions (12, 13, 14 of Fig. 2)
the computer executes in order the instructions stored
in a sequence of bins of the parallel storage. To do so
it must count off those instructions as they are executed,
and this function is performed by the ADDRESS COUNTER
diagrammed in Fig. 8.

Each of its twelve cells gi, al, ..., aj, can re-
ceive and store one bit of information, so the ADDRESS
COUNTER as a whole can receive and store a twelve digit
number X X5e0X]5. If all control wires are in state O
and no keys are activated, each cell gi continues to
store whatever information it contains. Any number in
the ADDRESS COUNTER is the address of some bin of the paral-
lel storage. To load the ADDRESS COUNTER with the address
of the bin containing the first instruction we want the
machine to execute, we must be able to change the contents
of the ADDRESS COUNTER. The keys shown in Fig. 8 enable us
to make any desired change. Activating the key at the lower
left (when the machine is idle) clears all of its cells to
0, and activating the key of cell al at time “T" makes
gi(ﬂ‘#l) = 1; thus we can load the ADDRESS COUNTER with any

number we please.

34.

As remarked at the bottom of the TABLE OF INSTRUCTIONS
on Fig. 2, at every even numbered time /T = 2k when the
machine is operating, control wires §t and gt are
activated. At any such time, then, C4 = 1 permits the
bit stored in cell gi to pass through the rightmost con-
junction element onto sy (L= 4, 5, ..., 15). Since
S4s S5y <e+y 815 are input wires to the Address Decoder
(see Fig. 5), and since §; 1s also activated then, that
storage bin whose address is contained in the ADDRESS
COUNTER at any even numbered time T = 2k will transmit
its contents onto the trunk at that time.

Hence when the computer begins to solve a problem
the first instruction it executes is the one stored in
that bin whose address is stored in the ADDRESS COUNTER,
usually bin 0. To keep track, whenever the ADDRESS
COUNTER sends an instruction from the nth bin onto the
trunk it must count, that is, add a 1 to the number it
contains at that time.

(Any twelve digit number X, X50+-X15 contained in the
ADDRESS COUNTER is the address of some bin of the parallel
storage, and can also constitute the address part of an
instruction word, as in goglgegagﬁg5...gl5. Whenever we
consider the numerical aspect of a word we must keep in

mind the discussion of range presented in Section 5, and

the convention that a binary point is imagined to follow

35.

the leftmost bit of every number word. This convention
should apply to instruction words too, for it is often con-
venient to perform arithmetic operations on instruction
words, as will be illustrated in Appendix D. From this
point of view the 4096 addresses of the 4096 bins of the
parallel storage are 0.000000000000000, 0,000000000000001,
«eey 0.000111111111111, and the number in the ADDRESS
COUNTER is 0.000X,Xs...X 5 OF (54_:55...3515)2'15.
Consequently the address of the next bin after that one is
(§¢§5...§15)2_154—2"15. It will, however, be convenient to
continue to speak in this connection of the number in the
ADDRESS COUNTER as §¢§5...§15, and of its successor as
that number + 1.)

Let us suppose that the number in the ADDRESS COUNTER
at time /T is X Xg-+-X)5, and to it we wish to add 1,
which is Y ¥g5+<X15 where Y15 = 1 and L) T X5 T «es T
L1, = O. The sum Z)25++215 of these two numbers is re-
cursively defined (see Section 5) by the equations:

2z; = (Ei #Xi ¥ 51)
and
5118 vz Eivy §,) where §i5=o0.

Since <§15 = 0 and 215 = 1, by the first defining equation

we have 2&5, and by the second defining equation we

Z =
_..15 -
have §14 = 515' Now for every i <15, ¥y = 0, whence

51_1 = 1:_15 12 and also 2; = (_Jgi .-'p." 5 i)‘ These formulas

36.

must be realized by the ADDRESS COUNTER if it is to perform
its counting function correctly.

For the formulas developed in the preceding para-
graph to be realized by a circuit, that circuit must contain
wires corresponding to X15 X5y oo X5 to ‘54’<§5’ essey
5143 and to z,, Zs, ---» Z]5, and these wires must be so
connected that their behavior is described by those formu-
las. If net wires g{, g{, and gi correspond to Ei’ <§i’
and 24 respectively, those wires must realize the equations

= 1t _.=.gtep! < f = g1
Z'_:{_ = (?.'_i i_ Q._{) and Ci_1T85%3 for 1 < 15, L15= 815>

and giA g{5°
The diagram in Fig. 8 satisfies the preceding equations
when C,. =0 and Cy = 1l. By assumption, a! = x, and since
Cr =0 and Ct =1 at every even numbered moment ‘T = 2k,
at every such moment r' will contain the immediate suc-
cessor of the number in a, and that successor will occupy
a at the following moment ‘T = 2k +1.

If at an odd numbered moment /T = 2k+1 a "jump" is
to be made in executing instruction 12, 13, or 14 of Fig. 2,

control wire QT =1 and C, = 0, and the address X of

t
bin X referred to in the "jump" instruction OBEY X

(or OBEY X IF MINUS or OBEY X IF 215 IS 1) occupies wires
545 855 o5 515 (as will be explained in the following

section). Since gt = 0, no signal can pass from g{ onto

37.

ii through the cell's rightmost conjunction element; and
since gr = 1, no signal can pass from gi to gi

through the conjunction element to the left of g{. But
the lower left-hand conjunction element permits any bit of
information on s; to pass onto r! at time T=2k+1

and to occupy a! at time /T = 2k+2. Hence the address X

of bin X referied to in the "jump" ins@ruction OBEY X
will be contained in the ADDRESS COUNTER at time ‘7 = 2k+2.
At that even numbered moment both S, and C, are auto-
matically activated, which makes bin X of the parallel
storage transmit its contents onto ﬁhe trunk aﬁ time

T= 2k + 2, and causes the ADDRESS DECODER to éontain, at
the following moment ‘T = 2k +3, the address of bin X+ 1.

6.2. CONTROL CLOCK.

We wish to be able to start the machine at any time,
and we want control wires §t and gt to be automatically
activated at every even numbered moment while the machine is
solving a problem. Our device for éccomplishing this
function is the CONTROL CLOCK, which occupies the lower
right-hand part of Fig. 9. The behavior of the right-hand
delay circuit, which may be desc?ibed as a "blocking oscil-
lator circuit", is described by the equation g(T) =

(T
2k, ... 1independently of anything that may happen else-

O mod 2). Thus g 1is activated at T = 0, 2, 4y «ee,

i

where in the machine.

38.

The left-hand delay circuit operates somewhat dif-
ferently. If the wire f 1is inactive, then activating the
START KEY at time /7 will activate h. At time T+ 1 the
signal will emerge from the delay element above, and if f
is still inactive, the signal will pass onto h again
and up again to the delay element. Thus, so long as
£ = 0, activating the START KEY at time /T will activate h
at times 7T , T+1, T+2, «ee

The two delay circuits work together to produce the
following result. So long as f = 0, if the START KEY is
activated at either time 7 = 2k-1 or 2k, h will be
activated at times 2k, 2k+1, 2k+2, ... « The other
input wire g 1is activated by the right-hand delay cir-
cuit at times 2k, 2k+2, 2K+ 4, Hence the output
wire controlling C¢ and S; 1is activated at times 2k,
2k +2, 2k +4, and so on. Once started, the computer's
activity is cyclic, with control wires S, and C, acti-
vated at every even part of the cycle, starting at the
moment the START KEY is activated if that is done at an
even numbered moment, or at the following moment if the
START KEY was activated at an odd numbered moment.

We wish also to be able to stop the machine, both
manually and by instruction 1 of Fig. 2. To stop the
machine we must activate £, which will prevent any sig-

nal from the upper delay element passing onto h, thus

39.

clearing the left-hand delay circuit. As Fig. 9 shows,

f can be activated either by activating the STOP KEY

or by activating QB but not d,, 4y, or d,. Hence

the operand 0001 signals the machine to stop. This cir-
cuit is part of the OPERAND DECODER, which is discussed in

the following subsection.

6.3. OPERAND DECODER.

We have shown in Sections 4 and 5 how the STORAGE
and the ARITHMETIC UNIT function when their various con-
trol wires are activated, and we have listed in Fig. 2
the various different instruction words that activate
different sets of control wires. It is the operand or
first four binary digits of an instruction word which
specifies which control wires are to be activated for the
instruction to be executed. The OPERAND DECODER which
occupies the left-hand part of Fig. 9 is a switching mech-.
anism which activates the proper set of control wires when
it receives the four digits of an operand. |

The four wires d,, 4,, 45 QB are connected to
various threshold elements in the way indicated. That
the desired functional connections are realized by the
OPERAND DECODER is easily verified. For example, the
control wire A » Which must be activated for the exe-

=r
cution of instruction 4, 5, 6, 7, 8, or 9 of Fig. 2, is

40.

activated by any of their operands, as described by the

following equation:

A = (—'O—d dlg_zg_3v 9—09151-2-@-3" —O—d dlg'Z-d‘BV _.0_.d d1§.29.3v _..O_.d dlg'Zg-B v
90912293) .

That equation can be simplified to

A. = (Eo.cll v Qo'iliz) ’
which is obviously realized by the address decoder as
diagrammed in Fig. 9. The functional connections between
operands and various sets of control wires could be speci-
fied in many different ways: the present arrangement was

selected to permit simplifications of the kind indicated.

6.4. Operation of the CONTROL.

Four parts of our computer are represented by blocks
in Fig. 1, and each has been explained in detail. We have
now to explain the rest of the CONTROL, which consists of
sixteen conjunction elements and sixteen delay elements,
together with the wires connecting them to the other parts
of the computer. Each component ;d of the trunk is
connected to an input wire of one of these conjunction ele-
ments, whose other input wire is connected to control wire
gt‘ The output wires g; of those conjunction elements
lead to separate delay elements, whose output wires lead to

d:O, gl’ Qz) QB a.nd §4, §5, o 0oy £l5.

41,

The functioning of these parts can best be explained
by showing how they operate when the machine is executing
an instruction under the direction of the CONTROL. When
the machine is engaged in solving a problem, at any even
numbered moment /7 = 2k control wires 8, and C, are
automatically activated, making the ADDRESS COUNTER send
the address of some storage bin down wires S, S5s +ces 815
to the STORAGE. The STORAGE 1is thereby caused to transmit
the instruction word from that bin onto the trunk. The
sixteen digits of that instruction word pass through the
sixteen conjunction elements above (since (;(2k) = 1)
to occupy the sequence of wires t". At the following
moment 7 = 2k+1 (an odd cycle) the sixteen bits of
the instruction word emerge from the sixteen delay elements.
The first four bits (its operand) pass along 49> 49, 45,
93 to the OPERAND DECODER, and the last twelve bits (its
address) pass along S, 855 <+es 815 either up to the
ADDRESS COUNTER, if its operand causes the OPERAND DECODER
to activate control wire C,, or down to the STORAGE if
its operand causes the OPERAND DECODER to stimulate either
control wire S;, S.i, OT §rp‘
Thus we see that at every even cycle the computer
brings a new instruction word from STORAGE onto ité trunk,

and at each following odd cycle the computer executes the

instruction enjoined by that instruction word. We will

42 .

now illustrate this process.

Consider the actual sequence of occurrences when the
computer begins a routine whose first two instructions
TRANSFER 101 and OBEY 6 IF 25 IS 1 are in bins O and 1,
respectively.8 Now if the ADDRESS COUNTER contains all
zeros, and we activate the START KEY at either time
T = 2k-1 or /T = 2k, the machine will begin its run at

T = 2k, when §t =, =1, and the ADDRESS COUNTER trans-

t
mits 00...00, the address of bin 0, along wires 845 855
ce+2 515, to the STORAGE. Bin O transmits its contents
0110000001100101 onto the trunk, up through the con-
junction elements onto gg. Then at ’T'=‘254-l those bits
emerge from the delay elements, the operand 0110 going
along dg, d;, dy, d3 to cause the OPERAND DECODER to
activate control wires Sy and A.. At the same time the
address 000001100101 goes down 845 855 <++s 315 to the
STORAGE, which transmits the number x from bin 101 onto

the trunk, and then into the cells of the ARITHMETIC UNIT,
since A, is activated. At 7T = 2k+2 we have Sy = Cy =1
again, and the ADDRESS COUNTER transmits 00...0l1, the
address of bin 1, along §A’ Sgs cees 875 to the STORAGE,
which transmits its contents 1110000000000110 onto the

trunk, up through the conjunction elements onto t". Then

at T = 2k+3 those bits emerge from the delay elements,

43.

1110 along dg, 43, 4o, d3 to the OPERAND DECODER, and
00...0110 onto 8,5 555 <5 5)5- Now what control wires
the OPERAND DECODER activates will depend upon the present
contents of the ARITHMETIC UNIT, which contains the number
5051"’§l5‘ If the rightmost digit X15 of that number
is 1, g15 = 1, and control wire (C;, is stimulated by
the OPERAND DECODER. In this case the address 00...0110
now occupying wires 24’ 55, ceey §15 enters the ADDRESS
COUNTER, which at the following time 7 = 2k+4 will
transmit it down to the STORAGE to cause the instruction
word in bin é to pass onto the trunk. But if the right-
most digit X5 is 0, a5 = 0, and the OPERAND DECODER
activates no control wires. 1In this case the address in
the ADDRESS COUNTER remains 00...010, and at the following
time ‘T = 2k+4 1t is transmitted down to the STORAGE to

cause the instruction word in bin 2 to pass onto the trunk.

by

Footnotes

The writing of this paper was done under the sponsor-
ship of the Burroughs Corporation, Research Center,
Paoli, Pennsylvania.

The logical design and analysis is primarily the
work of the first author (A.W.B.) and the exposition
is largely the work of the second author (I.M.C.).
Thanks are due to Dr. R. L. Cartwright for helpful
criticisms and suggestions.

Some logical nets involving several primitive elements
may be physically realized by devices no more compli-
cated than those required for the physical realization
of a single primitive element. For example, an elec-
tronic circuit using a single multigrid tube can
realize.a conjunction element.

The threshold elements here defined are different from
those discussed in either [5] or [éJ .

Forty bits is a word length more typical of actual
computers.

The complexity of the Address Decoder could be reduced
by using a less straightforward design, as explained in
[3] .

An actually infinite serial storage is not a net in the
sense of [2] . But the serial storage is so connected

to the machine that the whole net has the property

45.

that at any arbitrary time only a finite number of its
wires have changed from their initial states. Hence at
no time is the net presumed to contain an infinite
amount of information, and it can therefore be regarded
as a finite but indefinitely expansible net.

The serial storage may be realized by a magnetic tape
(or set of tapes) with sixteen parallel channels of
information. Here a single cell corresponds to a region
of the tape which is or is not magnetized, and the
operation of shifting the contents of the bins forward
or backward is realized by moving the tape mechanically.
On this interpretation the serial storage represents a
relatively rapid way in which information can pass be-
tween the computing machine and its operator.

See Appendix C for a complete routine of which this is

a segment.

[1]

3]

46.
Bibliography

Burks, Arthur W., Herman H. Goldstine, and John

von Neumann, Preliminary Discussion of the Logical De-

sign of an Electronic Computing Instrument, Part I,

Vol. I, The Institute for Advanced Study, 1946.
Burks, Arthur W., and Jesse B. Wright, "Theory of
Logical Nets," Proceedings of the I.R.E., Vol. 41,
1953, pp. 1357-1365.

Burks, Arthur W., Robert McNaughton, Carl H. Pollmar,

Don W. Warren, and Jesse B. Wright, Complete Decoding

Nets: General Theory and Minimality, ERI Report 1828-1-T

(Burroughs Corporation Research Center, Paoli, Pennsyl-
vania), Ann Arbor, 15 July 1954. To be published in the
journal of the Society for Industrial and Applied Math.
Copi, Irving M., Symbolic Logic, New York, 1954.

Kleene, 3. C., "Representation of events in nerve nets
and finite automata," RM-704, RAND Corporation, 1951.
McCulloch, Warren L., and Walter Pitts, "A logical cal-
culus of the ideas immanent in neuron activity," Bull.

of Math. Biophysics, Vol. 5, 1943, pp. 115-133.

Patterson, George W., "Logical Syntax and Transformation

Rules," Proceedings of a Second Symposium on Large-

Scale Calculating Machinery (Cambridge, Mass., September

13-16, 1949), Cambridge, 1951, pp. 125-133.

CONTROL

OPERAND
DECODER
AND
CONTROL
CLOCK

\

Y

y

Y

Y

Y

ADDRESS
COUNTER

HEE b

\

do

ARITHMETIC
UNIT

'f;.',;:t ts S4 S5,..54 Ss
2
. YYYYOVIYYY
h.;tl j-—
;tZ —al-
-3 —
! -
)4—» > e
g~ B
<> - STORAGE
> -4
| SN -
s 5l ped <
et~ <>
> <
> <>
- ,t -
-5 -

BLOCK DIAGRAM OF COMPUTER

Fig. 1

7.

TO41NOD

48.

OPERAND DECODER

(At every even cycle T = 2k when the machine is
operating, d; = 4y = dp = d3 = O, and wires S

and C{ are activated.)

OUTPUT WIRES
INSTRUCTION OPERAND ACTIVATED AT
dodyidpds T = 2k + 1
1. STOP 0001
2. SERIAL FORWARD (Move contents of serial
storage one bin forward) 0010 Se
3. SERIAL BACKWARD (Move contents of serial
storage one bin backward) 0011 Sy
L, ADD X (Add the number in storage bin X to the
number in the arithmetic unit) 0100 StApAp
5, SUBTRACT X (Subtract the number in storage bin
X from the number in the arithmetic unit) 0101 StArAhAc
6. TRANSFER X (Transfer the number in storage bin
X to the arithmetic unit) 0110 StAr
7. TRANSFER COMPLEMENT X (Transfer the negative
of the number in storage bin X to the
arithmetic unit) 0111 S¢A. A,
8. DOUBLE (Double the number in the arithmetic unit) 1000 Ar Ay s
9. HALVE (Halve the number in the arithmetic unit) 1001 A, AL
10. STORE IN X (Replace the number in storage bin X
by the number in the arithmetic unit) 1010 SpthAit
11. SUBSTITUTE IN X (Replace the rightmost 12 digits
of the number in storage bin X by the corre-
sponding digits of the number in'the arithmetic
unit) 1011 S. A
rp tt
12. OBEY X (Execute next the instruction in storage
bin X) 1100 Cr
13. OBEY X IF MINUS (If a, = 1, then execute next
the instruction in storage bin X) 1101 8o DCy
1L. OBEY X IF a;5 IS 1 (If a;5 = 1, then execute
next the instruction in storage bin X) 1110 ais D Cp

TABLE OF INSTRUCTIONS

Fig. 2

]
fl
g Q)
a. STROKE ELEMENT: fig
f@—’f f—o—o—e f

b. NEGATION ELEMENT: f=y4(fif)

¢ | ¢
f

g___:j——(vg) qu-vao)
c. DISJUNCTION ELEMENT: (fvg)=,(f1g)

f —— f

. }—(fq) g—XD——tfa
d. CONJUNCTION ELEMENT:(fg)= df(ﬂi)

f

D=t

e. MATERIAL IMPLICATION ELEMENT:(faq)"df(Tvq)

f
(f=g) i Q)
9

f. EQUIVALENCE ELEMENT:(fmg) = [(fg)v(73)]
f f
Do e O Y

g. INEQUIVALENCE ELEMENT: (fog)= ¢ [(f5)v(Fq)]

f E. h
i
9
h. GENERALIZED THRESHOLD ELEMENT

t— g
i. DELAY ELEMENT:g(0)=0, gtr+)afir) FORT=0,),2,..

f J
i%h f i
q}:)-"éj
g k h

k

j. MULTIPLE JUNCTION ABBREVIATING A MULTIPLE
INPUT DISJUNCTION ELEMENT: (fvgvh)sisjsk.

ELEMENTS
Fig. 3

L9.

BIN OF PARALLEL STORAGE
Fig. L

50.

S'p 4?-
2

St —o a f
St —=
R : R? R:oai R’ T«”;
— —
— [
4094
b° — b|,.. ,D p*o% :
[—
- |
L -
-+ {0
:“Dt|
12""!t|a
—~a fu
-+t

PARALLEL STORAGE

Fig. 5

51.

9 *314

3OVHOLS VIY3S

®
@

S60Y

-nmo¢._.

g

Ig

-©

9

52.

‘ (TO CONTROL)

»ce—to

tt

0z,-.,0)q
l (%)H.__Ah
u r a
" 15 > 15 I s
Ar 2
w An
15 — 2 A,

(TO CONTROL)
ARITHMETIC UNIT

Fig. 7

53.

ADDRESS COUNTER
Fig. 8

-5k,

STOP START
KEY KEY

OPERAND DECODER

CONTROL CLOCK
OPERAND DECODER AND CONTROL CLOCK

Fig. 9

55.

56.

Appendix A. Some Operations of the ARITHMETIC UNIT

In this appendix we shall illustrate the actual

machine procedure in executing arithmetic instructions.

l. Subtraction.

If the instruction SUBTRACT X 1is executed,
Sty = Ap = A, = A, =1 and all other control wires are in
state 0. Let us suppose that the number XpX)-e+X15 is
in storage bin X and the number Yoly--+L35 is in the
cells of the ARITHMETIC UNIT.

Since St = 1, the number in bin X will pass onto
the trunk, whence 1tj = X4 Each trunk component tj
is an input wire to an inequivalence element (at the left

of Fig. 7) whose other input wire is A,, and whose output

wire is t!, whence t] = (t; £ A.). Now A, =1, so
1 = ¢ . ! = %)
LEY or Y =X,

By assumption, a; = y;, and since A, = 1, each bit

Y; Dpasses through the lower left-hand conjunction element
of its cell onto wire w;, whence wy = yjy.
1
We now observe that ;i, LA and ¢, are the three

input wires of an inequivalence element whose output wire

is uy, whence u; = (t! $w; $c;) or u = (X Fyy £y
We also observe that where i

>0, .E:i
three input wires of a threshold-2 element whose output wire

s Hys and cy are the

57.

= 1 1 or . -
iS .g_i__l, Whence E.i__l —_ (.t’.iy_v.iv Eig_iv Ei_c-i) _(_3,1__1 =

(zi}f.i" i_:ig_iv X-igi)’ for i> 0. Now S5 = A, and A,

n
[
-

whence Ci15 = 1, and with this condition added, the two
preceding equations for u; and Ci 1 conform to the
general recursive definition of subtraction, whence the
number whose bits occupy wires Yy, say 5051"‘215’ is
congruent modulo 2 to the difference y,y co X157 XgX]eeX] 50
Since A, = 1, the bit occupying aj cannot pass
through the conjunction 2 element below Ty but the bit
(Ei) occupying wire u, can pass through the conjunction
element to the left of r; and thus pass onto rj. Hence,
if SUBTRACT X 1is executed at time /T, a number congruent
modulo 2 to the result of subtracting the number in bin X
from the number in the ARITHMETIC UNIT will occupy wires rj

at time ‘T and will occupy the cells a; at time T+ 1.

2. Doubling.

A number in binary notation is doubled by moving its
binary point one position to the right, which amounts to
shifting each of its digits one position to the left. If
the instruction DOUBLE 1is executed, AL = A =1 andall
other control wires are 0. Suppose the number Ly-Xy++-¥5
occupies the cells a; of the ARITHMETIC UNIT.

Since §t = Ay T 0, every component of the trunk

t; = 0; and since A, = 0, each ;i = 0 Dbecause it is the

58.

output wire of an inequivalence element whose input wires
are equivalent (both 0). Since A =0, S5 = 0, and every
¢i = 0, since each (] for i<« 15 1is the output wire of
a three-input threshold-2 elemen§,two of whose inputs are 0.

Since A, = 0 (and A, = 0, which is relevant in cell
gé) no signal from a; can pass through the lower left-
hand conjunction element onto wire w,. Instead wy5 = 0
and each wire wy for i < 15 1is occupied by the bit Yi+1
from ai 419 which can pass up to w; through the con-
junction element whose input wires are a;, ; and Ay,
since A;4 = 1.

Now each uy contains the same bit as W;, for u; is
the output wire of an inequivalence element whose three in-

put wires are Ei, Cy 5 and Wi the first two of which are

in state O. Since Ay =1, rj = uj, whence the number
occupying wires rjy is Z§'12'°°Xl50° Hence if DOUBLE is
executed at time T, a numﬁer congruent modulo 2 to twice
the number in the ARITHMETIC UNIT will occupy wires ry
at time ‘T and will occupy the cells ay at time T4+ 1.

59.

Appendix B. Machine Solution of a Simple Problem.

To program the computer for evaluation of the poly-
nomial 2x+y-z for a particular set of values of its
variables, say 1/4, 3/8, and 5/16, we proceed as follows.
First, we store the indicated values of X, y, and 2z in
bins 11, 12, and 13. Then we decide that a straightforward
way for the machine to solve the problem is to have it
transfer x to the ARITHMETIC UNIT, double it, add to that
result the number y, and then subtract from that result
the number z. At that time the desired solution will be
in the ARITHMETIC UNIT. Standard procedure is to have the
machine store its answer in a bin of the parallel storage
before it stops; we select bin 14 for this purpose.

Now the routine is inserted into the computer: the
first instruction word in bin O, the second in bin 1, and
so on. The routine for this problem is written below, on
the left informally, on the right coded for insertion into

the machine.

bin O: TRANSFER 11 0110000000001011
bin 1: DOUBLE 1000000000000000
bin 2: ADD 12 0100000000001100
bin 3: SUBTRACT 13 0101000000001101
bin 4: STORE IN 14 1010000000001110

bin 5: STOP 0001 000000000000

60.

bin 11: x 0010000000000000
bin 12: y 0011000000000000
bin 13: 2z 0010100000000000
bin 14: (to contain solution: 0100100000000000)

Having completed preparing the machine by clearing its
ADDRESS COUNTER to 00...0, we activate the START KEY at
time T = 2k-1 or 7 = 2k, and the computation begins at
time T '—‘.2_15. At T = 2k the ADDRESS COUNTER transmits
its contents along S4s S55 ee5 815 to the STORAGE, which
sends the instruction word from bin O onto the trunk and up
through the sixteen conjunction elements to trn. At
T = 2k +1 the instruction word initially in bin O emerges
from the delay elements above t", its operand 0110 going
via go, ceey g3 to the OPERAND DECODER, and its address
0...01011 going via S,s S5y o5 S5 to the STORAGE;
These cause bin 11 to transmit its contents 0010...0 onto
the trunk and cause the ARITHMETIC UNIT to receive that
number from the trunk into its cells aj. At T = 2k+2
the ADDRESS COUNTER transmits its contents (now 0...01)
along SJ> 555 +++5 S15 to the STORAGE, which sends the
instruction word from bin 1 onto the trunk and up through
the conjunction elements to t". At every even cycle a new
instruction word goes through the trunk up to the delay ele-
ments, and at the following odd cycle that instruction is

executed., Finally, at T = 2k+ 11 the machine stops.

61.

The machine's activity during this run can be shown in
tabular form. All storage bins retain their initial con-
tents throughout the run except bin 14 which receives the
solution at time /T = 2k+ 9. Significant changes occur in
the ADDRESS COUNTER, in the ARITHMETIC UNIT, and in wire
sets t"; dy, ..., ga; and 8,5 Sgs ++e5 S15° These are
all shown in the following table.

Address _ Arithmetic
Time'T Cdunter gg,g{,...,gii“gor..,gg §4?§§3...,§15 Unit
2k 0 OllOO...OlOll\ﬁ 0000 0...00000 0
Rk +1 1 00000...00000 0110 0...01011 X
Rk +2 1 10000...00000 0000 0...00001 X
Rk +3 2 00000...00000 1000 0...00000 R_X
Rk + 4 2 01000...01100 0000 0...00010 _X
Rk +5 3 00000...00000 0100 0...01100 2X+ Y
Rk + 6 3 01010...01101 0000 0...00011 RX+ Y
Rk +7 4 00000...00000 0Ol01 0...01101 RX+y-2
2k +8 A 10100...01110 0000 0...00100 2X +y-2
2k +9 5 00000...00000 1010 0...01110 2X +y-2
2k+10 5 00010...00000 0000 0...00101 RX+ y-2
2k+11 6 00000...00000 0001 0...00000 RX +y-2

62.

Appendix C. Multiplication.

To program the computer for multiplication we make
use of all of the "jump" instructions listed in Fig. 2.
For simplicity let us suppose that the two numbers to be
multiplied are positive and have been scaled into the
range of the machine, so 0 £x< 1 and 0y <1l. Since

§O is 0, it is obvious that

and that

5

Xy = 51512-1 +-514x2-144-...+—§112_l

which is equivalent by successive partial factorings of 2"l

to
Xy = (~--(£1512-l*'5142)2_l*'--'+'le)2—l-
It is conveniiﬁt to define the broduct of two such

numbers x and Yy by recursion, letting 20 = 0 Dbe the

Oth partial product and Py = (Bi-l+'516-1z)2-l the ith

partial product. The product of x and y 1is the 1l5th

partial product 215. (Because of the limited number of
cells in our ARITHMETIC UNIT the product Xxy formed by
the machine will be truncated after its 15th binary place,
and equal to the correct product only within 2-15.)

We program the multiplication of x and y by having

the machine form the successive partial products P;, Py,

«+«+y and stop when it has formed 215. Given Pj_; Wwe

63.

form gi by adding X16-1L to Ri—l and halving their
sum. Now X,, .y =¥ if Xig-1 = 1, and XL~ Q

if X14-1 = O The computer can determine whether Xx;. ;
is 1 or O by transferring x2'~1 to the ARITHMETIC
UNIT and sensing its rightmost digitff§16_i, which occupies
cell 25 If a5 is 1, y must be added to Pi-l’

—

and their sum halved to obtain Pi> whereas if 25 is O,
Py 1is obtained simply by halving Ei—l'

To form successive partial products until 215 is
obtained the machine must keep count of the number of
partial products it has formed. This count is kept by
placing an index 1 (initially 0) in bin 104 and adding 1
to it# as each new partial product is fotﬁbh; so the index
. If

i
the number 15 1is subtracted from 1, the result will be

in bin 104 will be 1 when the machine has formed P

minus if P, has not yet been formed (in which case we
want the machine to continue the process of forming suc-
cessive partial products), whereas that result will fail to
be minus for the first time when Py has been formed (in
which case we want the machine to stop). Consequently, when
the number 1i-15 has been formed in the ARITHMETIC UNIT

our next instruction should be OBEY O IF MINUS, and the
instruction after that one should be STOP.

*See, however, the discussion in Section 6.1l.

64.

Qur complete routine for the multiplication of two
positive numbers Xx and y can now be set down as follows.

bin 0: TRANSFER 101

bin 1: OBEY 6 IF 2y Is1

bin 2: HALVE

bin 3: STORE IN 101

bin 4: TRANSFER 103

bin 5: OBEY 10

bin 6: HALVE

bin 7: STORE IN 101
bin 8: TRANSFER.102
bin 9: ADD 103

bin 10: HALVE
bin 11: STORE IN 103

bin 12: TRANSFER 104
bin 13: ADD 105

bin 14: SUBTRACT 106
bin 15: OBEY O IF MINUS

bin 16: STOP

65,

bin 101: 521'1(§, gz'l, cens 52‘14)

bin 102: y
bin 103: Py (0, «e., By5)
bin 104: 1 (0, «e.y 15)
bin 105: 1

bin 106: 15.

66.

Appendix D. Arithmetic Operations on Instruction Words,

As remarked in Section 6.1, it is sometimes convenient
to have arithmetic operations performed on instruction words
as well as on number words. Such operations occur in the
following routine, which also illustrates the use of the-
instruction SUBSTITUTE IN X. The problem is to compute
the sum of a collection of numbers 21007 21017 ***’ 2199
stored in bins 100, 101, ..., 199 of the parallel storage.

bin 0: TRANSFER 202

bin 1: ADD 200

bin 2: STORE IN 202

bin 3: SUBSTITUTE IN 4
bin 4: TRANSFER O

bin 5: ADD 203

bin 6: STORE IN 203
bin 7: TRANSFER 202
bin 8: SUBTRACT 201
bin 9: OBEY O IF MINUS

bin 10: STOP

bin
bin

bin
bin
bin
bin

bin

100:
101:

199:
200:
201:
202:

203:

67.

2100
2101

2199
1

199
i (99, ..., 199)
i 199

2 a4 (0, «v0vy = EJ)'
J=100 J=100

68.

Appendix E. Logical Design of the ARITHMETIC UNIT.

The discussion of the ARITHMETIC UNIT in Section 5.4
conveys no idea of the process of discovering or inventing
a net to realize the sixteen defining formulas there pre-
sented. In this appendix we shall attempt to show how sym-
bolic logie can be used to achieve that end. The present
discussion is intended to serve three purposes: first, to
provide an alternative method of showing that the ARITH-
METIC UNIT does perform the functions required of it;
second, to show how symbolic logic can be used in logical
design; and third, to help the reader understand more clearly
how the ARITHMETIC UNIT works.

It is obvious that (K'), the sixteenth defining for-
mula of Section 5.4, which is a;(7+ 1) = r;(T), can be
realized by sixteen delay elements with input wires r;
and output wires a;, and these will constitute the core of
our ARITHMETIC UNIT.

The task of constructing the remainder of the ARITH-
METIC UNIT can be'viewed_in the following way. We have
sixteen output wires rj; whose states are.to be determined
in every case by the states of all the input wires t, a,
and the five control wires A, Ah’ Ac’ Als’ Ars‘ Our
task is to comstruct a net from these inputs to outputs I

which will be governed by the fifteen remaining defining

690

formulas of Section 5.4. That task is easily accomplished
if we can find an expression of the form

r; = F(t, as Ay Ay Ay Ay A.g)
for each rj, such that these expressions logically entail
the remaining fifteen defining formulas. For any net which
realizes these expressions will also realize any formulas
logically entailed by them. And once .the gi's are ex-
pressed as explicit functions of the other terms, we can
construct the net quite mechanically from the elements ex-
plained in Fig. 3.

In carrying through the program sketched in the pre-
ceding paragraph we shall find it convenient (though it is
not necessary) to consider wires ry and cy_, as outputs
whose states are determined by the states of the input
wires ¢y, Yy, 25.75 24> 8341 and the five control wires.
The fifteen defining formulas of Section 5.4 describe the
ways in which the states of these output wires are determined
by the states of those input wires. But those fifteen con-
ditional formulas express the functional dependence of
r; and gy.j1 on the other terms not explicitly but only
implicitly. What we now wish to find is an expression of

the form
(Er) Iy = .E(_C_i: -t‘i’ 8412 &9 25471 Ar’ Ah’ _A.c’ Als’ Ars
for each rj, and an expression of the form

(Ee) €ij1 = E(E.i: £y 25 15 245 23410 Aps Ay ALy Ajos A

70.

for each Sy 12 in which Iy and ¢4 _, appear as explicit
functions of the other terms. Of course we must also find

an expression of the form

(Brs) 15 = E(&ys Ay Aoy A5 A1)

to complete our program.

The defining formulas governing ry and cy_1 are

all of the form

(Ir) Q(Ar,éh:éc,élsyérs) o {_I_'j_ = .I_{.(.Qiyﬁj_:é.i_l,é.i:ii.{. l)} ’
(Ic) Q(Ar’-&h’-‘&c’é-ls’érs) 2 59.1-15 ﬂ(.@.j_:.t_'.j_:ii-l:_a_j_:.a_i.;-]_)} ’
and

(115) g(ér:éh,_&c)éls’érs)D {315 = -ﬂ-(gi’-t-i’é-i—l’—a-i’—a-i"‘l)}’

in which r; and €41 appear as implicit rather than
explicit functions of the other terms. From them, however,
it is easy to derive the desired expressions of the type
(E,) and (E) by means of the following theorem, in whose

statement we use the notation Z_o(j for O(lV O<2v --oVO(J.
J=1

and ;T“J fOI’ dl' “z’ooa.dJo
J —

Theorem J. If 2 0(‘_j and o2 oy for every i ¥ j,
J=1

5 J
jz{aj 3(/)’; b’j)} if and only if ﬂE’: ;]Zi(xj XJ

Since the antecedents of the various (Ir) formulas cover all’

possible cases, exactly one of them being true at any. given

71.

time that the ARITHMETIC UNIT is to function, Theorem J

can be applied to obtain the desired expression.
[Er] ry {(Aréhgc) (ti3ases)v(ApAphd.) (By#as3cy)v «.ov
..A_r_a.'.i} .

In the same way Theorem J applies to (Ic) to yield the

i

desired expressions

[ECJ £i-1 = {(Ar.&hlc) (tjaqviieqvascy)v(AAAL)
(RyaqvEicqvages)v(A R A) Gcy)} ,

for i> 0, and

[Els] &5 = {éréc} .

This last expression is equivalent to

[E]'.5] &5 = &e

since inspection of Fig. 2 shows that A, = (ApA.).

From these expressions we can pass directly to a net
constructed out of the elements of Fig. 3. But such a net,
while realizing the defining formulas, would not do so very
economically. It would have, for example, different 3-input
inequivalence elements for the first two disjuncts of [Er] ’
whereas it is possible to use just one such inequivalence
element, as in Fig. 7.

To construct a more minimal net we first alter some of
the defining formulas of Section 5.4 to bring them into the
same general form as the others. The formulas whose labels

are (AT), (Ag), (A?), (S?), (Sg), (S?) remain unchanged.

72.

But (T?) is replaced by three formulas, by the following
considerations. In Section 5.4 instruction 6 was regarded
simply as demanding the replacement of r Dby t. We can
equally well regard it as demanding the replacement of r
by t+0, which makes it a special case of addition. By
substituting r; for 2z, 14 for x4, 0 for y,, and
g4 for Si. in the (A) equations of Section 5.1, we ob-

tain in place of the single formula (T?) the three formulas

[7}] AEE Ofr, = (5, 30% e)f s
EI'I;] Arzhzgc‘3{-(31—1?— (LiOVLi_C_iVOgi)} for 1> 0,
3] ALK Dfc) 5= 0%,

to be realized by the ARITHMETIC UNIT.
Similarly, the three formulas for TRANSFER COMPLEMENT X

are written as

EBCT] A‘-rzhé-c - {-?-i = (-E-i 30 $ 9_1)§ ’
[TCIS] A.rEhA_c 2 {_C_i_l-’— (Ej_OV _-t:i_g_iv Ogi)} for 17 0O,
ETCI;] A_rEhAc 3{215 = 13 .

Just as the transfer can be treated as machine addition
to zero, so doubling can be treated as the combination of a
left shift (to accomplish the doubling) with an addition
of zero. Since t = 0 whenever instruction 8 is being
executed, doubling can be treated as the combination of left
shift with addition of t. This treatment permits us to
develop, for instruction 8, formulas of the same general type

as for the others. Here we obtain four formulas

73.

[b7] Ad D fry = (b $ay,,#e)] for 1415,
[05] by 3{Ei-li(Eiéi+1"1°-191"ai+1—°-1)} for 1=0,
[Dglj Ak 5D {9-15 = 6} ’
[0, Ad D {rys =03

By a parallel route we arrive at four formulés to be

realized by the ARITHMETIC UNIT in executing instruction 9.

Lyl Bhpg O fry = (g #ay #e)f for 1>0
[Ahs D fe; 1= (B4a; v byeyy 8y g8)} for 1> 0,
[65] Abrs D {85 =05,

[HIZ] AI'A:r's = {I-O = EOS ¢

These twenty formulas take the place of the first
fourteen defining formulas of Section 5.4. We construct a
more minimal net by first deriving a smaller number of
expressions which will logically entail these twenty. To
exploit the fact that all of the twenty which have the same
subscript have the same general form, and that A, occurs
in every one of their antecedents, we introduce the auxiliary
variables t!, w;, and £ , and construct an expression of

—i
the form

= !

Bl a2 {n =@t #e))

which will entail (aT), (sD), [7}], [rc]], [D], and [H]].
We also try to construct an expression

[E,] 8 > fe, =(tlwvilevue)s

which will entail (A3), (Sp), [T3], [rc3], [P3],and [H3],

74.

and an expression
] A D fus =€}
which will entail (AI;), (s‘;‘), [TI;J, ['rcgl], [D’;], and [HI;].
When they have been constructed they can be readily com-
bined with [Dﬁ],[hﬁ], and (K) to give us a set of expres-
sions whose realization by the ARITHMETIC UNIT will enable
it to fulfill its part in the execution of all arithmetic
instructions.

Let us first consider E{. By inspection we note that

when A, is stimulated ([Sm],[?CQJ), &i is Ei’ whereas

in all other cases ([A"™],[T™],[D™],[H®]), &} is &,-

Hence we have

U
7N
ot
i

|et

= T
8,0 (g =E) and K D (g
and by Theorem J

D>

or
[Le] £z (8 EL).

Next let us consider w;. When 4 1s stimulated
([A@], [sm]), W; 1s ay; when A;4 1s stimulated (21,
wy 1is aj,q; when A.. 1is stimulated ([, wy is a; 73
and in all other cases ([T™], [Tc™]), w; 1is O. Hence

we obtain
] w, = (Apayvhyay VA2,) for 0<i<l5.
By [D?J, for W15 We drop the second disjunct{gf [Mﬁ];

and by [H]], for ®, we replace the third disjunct of [M°]

75.

by A <2o° Here we may replace the restriction on i in
=r

[Me] by the convention that
§-_16 =0 and é__l = é_o'

Finally let us consider those of the twenty defining

formulas whose labels have a subscript 3. When A, 1is
. m m -

not stimulated ([A?_], [TBJ’ I:D3 ’ [H?J), _0_15 = 0. When
Ac"{ is ‘stimulated (CSI;], ETC?]), g5 = 1. Hence [E3] becomes
[Eé] _A.r > (2.15 = .A.c)'

We now assert, without proof, that formulas [Ej],
[Ezj, [L°],[M°], and [Eé_‘) jointly entail all twenty of

our defining formulas.¥®

*The proof is complicated, but may be facilitated by
using appropriate versions of the following theorem, in
whose statement we use the notation §§_F_ for the re-
sult of replacing every occurrence of the variable ﬁ in

F by the expression X :

Theorem M. XD §_2$1§‘_ if and only if both X4 D F
and x@ogslF

An example of its use is the following. Inserting-.in
formula [E;] the value of _t_;‘ given by [L°] , we obtain
the expression

TSR AEN (O SRR EREN
Now applying Theorem M to that expression we obtain

84,0 {zy = (& 2w Fe}

and

— = -E- .
Ad, O {31 (-—i ¥ LE} ‘;t -91)} (footnote7g§ntinued
p.

76.

We can now use Theorem J to derive an expression
of the desired form (Er) which is equivalent to (K)
and [El] . The derived expression is
= N 1
[v] r,oz [Eava (sl gw Fe)] .
We can also derive an expression of the desired

form (Ec) from [E2] and the formula

L. D ey = (Ewyvitje, vime,)}

which can be stipulated to hold since (K) places no re-

striction on ¢4 7. The derived expression is

o b— 1 1]
[P<] g3 = (Hwv tie,vwe,).

(Footnote from p. 75 continued)

In these two formulas we insert the value of w; given

by [M° to obtain

Arhe O fmy 2[4 # (Ahéi"élsﬂi-f-l"A—rsii-l)f‘-*-c-i]}
and

Aph, O {li = [-t-i 3 (Apa;svhigagp1vhreay 1)#e4]} -
Since Ay (4, = 1) implies both A., =0 and A4 = 0,
from the two formulas above we obtain

AAE, D fry = (& # 2y # e
and

AAMA, O {I'_i = (& ¥ 24 % _Qi)} ’
which are (A?) and (S?) of our defining formulas. The
other defining formulas may be derived from [El]’ [Ez],

ﬁﬂ], [M{], and [Eé] by similar procedures.

77“

Thus [P°] implies CE2] , though not conversely. The
net realizing [Pf] is satisfactory, however, since any
net which realizes [Pﬁ] will also realize [Ez].

Now we introduce a new variable, uj, which we de-
fine by means of the equivalence
[Q°] u; T () £ w; £y
If we now replace the expression which defines uy by
uy in LN], we obtain
[ve) r; = (Rpagv ALny).

The degree expressions [L°] , [M°] , [N°] , [P°],
[Q°J constitute the definition of the ARITHMETIC UNIT
which was sought. Any net which realizes them will per-
form the functions required, and it is easy to construct
a net which realizes them out of the elements explained
in Fig. 3. This net is in fact Fig. 7 (less the elements
used in accomplishing the ARITHMETIC UNIT's transmission

function).

Tt
3 9015 02846

2846 7374

