THE UNIVERSITY OF MICHIGAN

COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Communication Sciences Program

Quarterly Report No. 1
15 April 1962 - 15 July 1962

MACHINE ADAPTIVE SYSTEMS

““Arthur W. Burks
- Johd H..Holland

R AN

ORA Project 03089

.oy @

b
-

under contract with:
DEPARTMENT OF THE ARMY
U. S. ARMY SIGNAL SUPPLY AGENCY

CONTRACT NO. DA-36-03%9-SC-89085
FORT MONMOUTH, NEW JERSEY

administered thrqught
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

August 1962

2t o,

<N\ ny‘\

UMR@RF)

V.)

TABLE OF CONTENTS

Page
PROGRAMMING AND THE THEORY OF AUTOMATA by Arthur W. Burks 1
CONCERNING EFFICIENT ADAPTIVE SYSTEMS by John H. Holland 29

iii

PROGRAMMING AND THE THEORY OF AUTOMATA

Arthur W. Burks

The second part of the last quarterly report was devoted to a general
characterization of the late John von Neumann's ideas for a theory of automata.
Von Neumann was the first to conceive of and propose the development of a
general theory of automata which would explain the computational and control
aspects of both natural information processing systems (e.g., nervous systems)
and artificial information processing systems (e.g., digital computers).

At about the same time that von Neumann started work on his theory of
automata Norbert Wiener propdsed the development of a similar subject, which
he called cybernetics, A few words of comparison of Wiener's cybernetics and
von Neumann's theory of automata are in order, particularly because of the
strong current interest in '"bionics''., Bionics is not a new subject as so many
people seem to think, but only a branch of cybernetics and of automata theory.

There is a great deal of similarity of subject matter and interest between
Wiener's cybernetics and von Neumann's automata theory, which is not surprising
in view of the fact that there was a good deal of direct interchange between the
two men., From our point of view the most important difference is that von Neumann's
theory was more closely tied to large digital computers than Wiener's cybernetics;
this is no doubt connected to the biographical fact that von Neumann participated
much more heavily in logic and computers than did Wiener. Both von Neumann's
automata theory and Wiener's cybernetics were highly programmatic: their main
achievement was to show that certain known results in biology, biochemistry,
logic, computer design, and computer use could be made the basis for a comprehensive
theory about control, programming, information, and computer design. Hence both
cybernetics and automata theory are important mainly as sources of problems,

methods, and suggestions. Von Neumann did accomplish substantial results in two

areas, First, the study of probabilistic automata, particularly with respect to
the problem of synthesizing reliable computers from unreliable components.
Second, the design of self-reproducing automata.

Wiener presented his conception of cybernetics in many published works, and
it is now very well known, Von Neumann published little on automata theory
during his life, and all he did publish was fragmentary and tentative. In view
of the importance of his ideas they deserve to be better known. The purpose of
the second section of our Fourth Quarterly Progress Report was to organize them
and present them so as to provide a jumping-off place for further work in this
area,

Von Neumann anticipated that modern technology would lead to computers many
orders of magnitude more complex than those built in the first decade after the
war, Recent developments in cryogenics, thin films, and tunnel diodes show that
the components for such computers are here, or at least near at hand., Whether
the computer industry is ready to design and construct very large systems composed
of such components is more problematic, Aside from the fabrication problems
involved in large systems of small components there are two theoretical problems,
the solutions to which would greatly aid in the construction of large and complicated
computing systems: the reliability problem, and the problem of how to organize
very large automata. Both of these problems belong to the theory of automata,

Von Neumann's position on this last point was even stronger than the one
just stated: he felt that it would be impossible to build very complicated
computers until the theory of automata was much further developed than at the
time he wrote., Whether or not such an extreme position is correct, it seems to
the writer and his colleagues in the Logic of Computers Group that developments
in the theory of automata along the lines envisaged by von Neumann will in time
have important applications to actual machines,

It has been recognized from the very beginning of the development of

general-purpose computers that a computer consists of both hardware and software,
and that while some of each is needed a great deal of interchange from one to the
other is possible. For example, division may be made a primitive operation of
the computer, or it may be programmed from additiom, multiplication, and a con-
ditional control command, It is important that from a theoretical point of view
the logical design of machines and the '"logical design' of programs involve the
very same principles. It is equally important that there is a programming and
logical design aspect to natural self-reproduction,

In the present paper we seek to abstract the common element from (1) programming
as it occurs in the theory of automata, including Turing machines (2) automatic
programming systems for actual computers and (3) the programming and control
aspects of self-reproduction, Because in connection with natural systems, biologists
have practically no information on this third point, our information on this must
come from automata theory (i.e., the work of von Neumann and work that has grown
out of it)., Biologists, biophysicists, and biochemists have learned a great deal
in recent years about self-reproduction, both at the cellular and the non-cellular
level, and including much about the informational aspects of self-reproduction,
but they have not yet learned much about the over-all control and programming
processes of self-reproduction, Perhaps the present decade will see important
advances in this area.

We begin by reviewing A. M, Turing's universal simulation result,

""On Computable Numbers, with an Application to the Entscheidungsproblem,'

Proceedings of the London Mathematical Society, Series 2, 42 (1936-37) 230-265.

"A correction,” ibid., 43 (1937) 544-546. We will not follow Turing's formulation

exactly,

Two different types of computing units are involved. First, a tape consisting
of an indefinite number of squares, each capable of storing a single symbol.

The tape is indefinitely expansible in one direction, but it is essential that

5

initially only a finite number of squares are "marked", i.e., are not blank.

The second type of unit is a finite control automaton with a ''tape head",

i.e., a finite automaton which can scan and read a square of the tape, erase

that square or write in it, and at the next step scan the square to the left or

the right of the square just scanned, A Turing machine consists of a finite
control automaton connected to a tape.

A finite control automaton and an indefinitely expansible tape are very
different, the former being finite and acfive, the latter being potentially
infinite and passive. But both are kinds of automata, constructible out of
switch and delay elements and passing deterministically from one discrete state
to another, The exact relations between them are of interest to the theory of
automata and programming. We will study these relations first from the point
of view of Turing machines and later on from the point of view of von Neumann's
self-reproducing automaton.

Let us establish the following conventions, The addresses of the squares
are 0, 1, 2, The finite control automaton of a Turing machine will scan
initially the square which has zero as its address. There is a fixed alphabet
for the tape, with characters of three types: a blank (the initial state of
almost all squares), non-numerical characters, and numerical characters. The
finite amount of information recorded on the tape initially (i.e., before the
finite control automaton begins to function) will be expressed by alphabetic
characters located in the consecutive even-numbered squares 0,2,4,..., 2n, where
n is a non-negative integer. This information will be called the program and
it will never be erased, i.e., we consider only finite control automata which
do not alter any part of the program found initially on the tape. It is easy
for the finite control automaton to sense the first blank even-numbered square
and thereby sense the end of the program, The computed answer will be expressed
in numerical characters printed consecutively in the even-numbered squares

following those with the program. The odd-numbered squares will be used for

6

"scratch work." M*T is the Turing machine composed of the finite control automaton
M and the tape T. It should be kept in mind that T is just a tape, not a 'tape
unit'"; the circuits for shifting and altering T are in M,

It is clear that the answer computed by a Turing machine is a digital
sequence, and that, under the fiction that there is a radix point (e.g., a binary
point) to the left, the sequence represents a real number between zero and one.
The case where the Turing machine produces no answer (i.e., a null sequence)
may be accommodated by speaking of the 'null number." Let 7}(M*T) be the number
computed by M*T,

Now let o be the class of numbers computed by all Turing machines, i.e.,

«={x|GWET) N = x)
We may think of a as being generated by 7](M*T) as the variable "M" varies over
all finite control automata and the variable "T" varies over all tapes. But
it is not necessary to vary both M and T at the same time to obtaina; ¢ may be
generated either by varying M while keeping T fixed or by varying T for a suitable
fixed M,

The first of these results is easily established., Let A be the tape which
is initially all blank and let ﬂ be the class of numbers computed by Turing
machines with blank tapes:

B = (x| @M NM*A) = x) .
We show that d=4. Consider a particular number'7KM*T). By definition the
program on T is finite; let T' be the finite segment of T containing this program
and let T" be the balance of T, Now a finite piece of tape with a program written
on it is itself a finite automaton or is very nearly so. At any rate we can
easily design a finite control automaton M' which incorporates both M and T' and
which uses T" as its tape. Then 7)(M'*T") =”n(M*T), and since T" is totally blank,
NM'*T") = YM'*A). Henced =4, Moreover, since a finite control automaton can

sense the end of the program on a tape, it can also erase that program, It

follows that for each tape T, o may be generated by varying M over the class of
finite control automata, i.e.,
d={x|@M) n(M*T) = X} .

It is obvious that M and T do not play dual roles in the generation of « .
For example, if My is a finite automaton which does nothing to the tape,ﬂ(Mo*T)
is the "null number'" for every T. This lack of duality is just what one would
expect, for though a tape is an automaton it is a passive one, Turing showed,
however, that there is a '"universal" finite control automaton M, which is
sufficiently powerful to generate & as T is varied over all tapes. Let

¥= {xj@an nMm =x} .
Turing's result is, then,d =y. He showed this by defining (hypothetically
constructing) M, so that it has this property: For each finite automaton M
there is a tape (M) such that

"n(Mu*,,g(M)) = N(M*A) .

The way M, works is of great interest since it involves the important notion
of simulation. Each finite control automaton M has a finite number of states,
Its passage from one of these states to the next is determined by the tape symbol
scanned; this behavior may be expressed by a finite state table, Each state of the
finite control automaton produces a certain effect on the tape; this information
likewise can be expressed in a finite table, These two tables constitute the
program on (M), Consider now the behavior of M*A, At each moment of time M is in
one of its states, and the tapeA has a finite sequence of symbols written on it;
hence the complete state of M*Acan be expressed by a finite sequence of symbols,
M,*0(M) simulates M*A.in the following way. M, inspects the program on.9(M),
determines the initial complete state of M*A, and records this complete state
on its own tape, Mu then iterates the following step indefinitely: by examining
the program on0 (M) and the last computed complete state of M*A it computes the

next complete state of MA., As the digits of 7)(M*A) are computed, Mu*;Q(M) records

8

these in the even-numbered squares beyond the program. Since M, can simulate
any machine M in this way, M, is a universal simulator.

It is easy to see that there are infinitely many finite control automata M'
which satisfy the defining property of M,, that is, such that for each finite
control automaton M there is a .tape /(M) for which

’n(MH;Q(M)) = NMA) .

We will call any such automaton M' a universal control automaton. To recapitulate:

all elements of A may be obtained with a blank tape, and all may be obtained
with a single universal control automaton,

The procedure used earlier to prove d=B is the reverse of the procedure used
later to prove A= . In the former a program was transformed into an automaton,
while in the latter an automaton was transformed into a program, The latter
transformation is much more significant than the former, partly because it is more
difficult to show that it works, but more fundamentally because of the difference
between a finite control automaton and a tape. A finite control automaton is
active and has the power to interpret a program, while a tape is passive and can
do nothing by itself, A practical corollary of this difference is the fact that
it is much more difficult to design a computer than it is to prepare a tape. We
buy one computer and use it to solve a wide variety of problems by varying the
program fed into it,

Let us explore further the practical bearings of Turing's universal simulation
result, The first point to note concerns the infinitude of a computation, The
tape of a Turing machine is potentially infinite and the computed output is in
general an infinite sequence., In contrast, all actual computers and all actual
computations are finite, This difference does not, however, really matter in the
present instance, for we can restate the universal simulation result for finite
computations. Let 7]f(M*T) refer to the first f digits of P|(M*T) if they exist,

otherwise to 7]04*T)‘ The universal control automaton M, has this property: For

each finite automaton M there is a tape /(M) such that for each f,
N M) = NeORA).

Thus in the application we are making of Turing's universal simulation result
the fact that a Turing machine is potentially infinite while an actual computation
is finite does not matter. It should be noted that there are applications of
Turing machine theory where this difference is essential., For example, people
often attempt to use certain results about Turing machines to help answer the
question "Is man a machine?'' Such results as the non-existence of certain

decision procedures

Turing, op. cit., shows that there is no decision procedure for whether

7I(M*A) contains a particular symbol, or whether 7](M*A) is an infinite sequence,

and the fact that no Turing machine can enumerate all mathematical truths

Kurt Gdel, "llber formal unentscheidbare SHtze der Principia Mathematica und

verwandter Systeme I," Monatshefte flir Mathematik und Physik 38 (1931) 173-198.

Gddel showed that there is no complete axiomatic system of arithmetic, from which

it follows that the set of mathematical truths cannot be enumerated by a Turing machine.

are cited as being relevant to the question., But if man is an automaton he is
most certainly a finite automaton, so results about Turing machines, which are
infinite, do not apply directly to the question '"Is man a machine?" There may be
indirect connections of importance to this question, but no one has yet shown that
there are.

Our second point of comparison between a Turing machine and an actual computer
concerns the distinction between a special-purpose and a general-purpose computer,
It is natural to think of M*A as a special-purpose computer, since its function is
to compute the single number 7](M*A), and to think of M, as a general-purpose computer,

since, suitably programmed, it can compute any number 7| (M*A). But this way of

10

looking at things can easily be misleading. The most essential difference here
is between a single Turing machine M*T and an infinite class of such machines
obtained by varying M while keeping T fixed or by varying T while keeping M fixed.
Moreover, as ''special-purpose" and general-purpose' are normally used by computer
people they connote practical rather than theoretical concepts. Most so-called
special-purpose machines are universal control automata in the sense defined
earlier, That this is so is fairly evident when it is realized that there exists
a universal control automaton with eight states operating on tapes having an

alphabet of five symbols,

Shigeru Watanabe, '"5-Symbol 8-State and 5-Symbol 6-State Universal

Turing Machines," Journal of the Association for Computing Machinery 8

(October 1961) 476-483,

Moreover, any actual special-purpose computer is used to solve a number of problems,
not just to compute one number 7q(M*T), and hence is programmed in some sense., A
computer is called general-purpose when it is relatively easy to program or use
it on any of a wide variety of problems, and it is called special-purpose when in
practice it can only be used to solve a relatively narrow class of problems, The
distinction between special-purpose and general-purpose computers is thus a
bifurcation of the class of universal control automata based on a practical criterion,
This brings us to our third, and last, point of comparison between a Turing
machine and a general-purpose computer., We referred to the information placed
initially on the tape T as a 'program,” but it might just as well have been called
the "data," for we can think of the machine M as defining a function from T to
OQ(M*T). To make the usual distinction between program and data we must divide
the information placed initially on the tape into two parts, one part to be called

the program and the other part the data. We then think of the program as defining

11

a function to be computed by the machine, the data as constituting the argument
or arguments of the function, and the computed output as being the function value
for those arguments. As so described, the distinction between program and data
is purely arbitrary, and this is certainly so from a purely formal point of view,
For example, it is arbitrary whether we say a number referred to in a conditional
shift of control (branch) command belongs to the program or the data or both, and
when a program is the object of computation (e.g., in compiling) this program is
the data, Our criterion for distinguishing program from data is an informal,
intuitive one: the program is that which, for the most part, directs operations;
the data are those items which, for the most part, are operated upon.

At this point it is desirable to use a slightly more complex notation for
the tape, Let I be the finite part of T containing the input information. The
rest of the tape is blank, and hence is A , so T may be represented by f’jk. In
this notation, each finite control automaton M defines a function from I to 7?(M*fﬂjk).
The behavior of the universal control automaton M, may then be stated as: For each
finite control automaton M there is a finite description £¥(M) such that

NMFOM A = 7ArA)

In this new notation "Q(M)" refers to the finite portion of the tape holding the
description of machine M, whereas earlier it referred to the whole tape which
contained this description,

M, is a universal simulator of Turing machines with blank tapes. Is there a
universal simulator of Turing machines whose tapes are of the form fajk? It
follows from considerations similar to those given earlier that there is. By our
earlier convention we considered only tapes in which the squares 0, 2, 4, ..., 2n,
where n is a non-negative integer, were occupied by alphabetic characters (excluding
the blank) and all other squares were blank, Let us now also consider tapes in
which the squares 2n+4, 2n+6, ..., 2n1 may also be occupied by alphabetic characters,
where n1§n+2. A tape 191Mf’si/jﬁ.will then consist of a description of machine M

on gquares 0, 2, 4, ..., 2n followed by the input information I on squares 2n+4,

12

2n+6, ..., 2n3. A finite control automaton M together with a tape of the form I” A
. S . s 1

defines a function from I to 7](M*I A). There is a finite control automaton M;

which will simulate any such machine, that is, for each M there is a finite tape

S (M) such that

Ny T n = e Y.
The basic principle and design of M& is the same as that of M,.

The foregoing involved the extension of our earlier conventions so as to
allow two distinguishable blocks of information on a tape. This extension can
be carried on indefinitely, using the squares

0, 2, 4, ..., 2n
2n+4, 2n+6, ..., 2n4
2ny+4, 2ny+6, ..., 2n,

where nlén+2, n2§n1+2, etc. A universal simulator may be designed for each level,
the universal simulator using one more block of input information than the machines
it simulates., Thus M, uses one block of input information to simulate all machines
M with blank tapes:
NMOM 0 = nor
M& uses two blocks of information to simulate all machines M with one block of
input information:
NeLLM YD = oriny
Ma uses three blocks to simulate all machines M with two blocks of information:
7{1\15*/9(M)’\1’\11”1) = Nrr 1T :
etc., etc., etc.
Autcmatic programming can be analyzed in these terms, and turns out to be a

case of Ma using three blocks of input information. Let M, be a general-purpose

13

computer (finite automaton) produced by some manufacturer, In the present state

of technology My will operate with a "machine language' inconvenient for the
programmer to use. Let P be the program expressed in this machine language and D
the data for a computation. Then a single "run" of the machine computes the finite
number 77f(Mm*P’ﬁDfTA), and if the run were extended to infinity and the machine
was supplied with an unlimited amount of tape it would compute 'TKMm*Fﬂ\D/‘UD.

Suppose now you have constructed a 'programmer's language"

Arthur W, Burks, "The Logic of Programming Electronic Digital Computers,"

Industrial Mathematics 1 (1950) 36-52. See p. 51,

(automatic programming language) in which a programmer can very easily write a
program and express the input data of a problem, It is theoretically possible to
build a machine which will understand this programmer's language directly; call
this hypothetical programmer's computer Mp. Supplied with program P and data D
this automaton will compute n(Mp*PAD/‘_/\,).

Since both Mp and Mp are universal control automata they are theoretically
equivalent, their differences being practical. The hypothetical computer My was
designed so as to match the human problem-giver well, that is, so as to be easy
to program., But Mp is impracticable in the present state of technology, the
manufacturer's machine My being the best machine actually available. Automatic
programming seeks to bridge this gap by doing with '"software" what cannot be done
with "hardware," to use the current computer jargon., Automatic programming works
in the following way. We write a coded description 49(Mp) of the hypothetical
machine Mp in the machine language of the manufacturer's computer Mpe In the
usual terms‘AQ(Mp) is the interpretive routine which translates from the programmer's
language to the machine language. Then M; operating under the direction of 49(Mp)

will compute the same function as Mp‘ That is, for any program P and data D, written

14

in the machine language of Mp

NMy* HMRY PN = W(Mp*p’\n’l) .

Since P and D are written in the machine language of M_ the programmer need know

p
nothing about the machine M on which the computation is carried out. lle need
only understand the machine language of the hypothetical machine Mp.

A comparison of the last two equations
nerr IV o
W(hfp*p%)

ML) TT 1)
N M A P07 A)

shows that an automatic programming system is an instance of Turing's universal

simulation result, with M playing the role of M&, Mp of M, P of I, and D of 11,

But not every such instance of Turing's universal simulation result is a case of
automatic programming, What is the differentia? That is, what do we require of

a universal control automaton M& and a translation routine /(M) so that they
constitute an automatic programming system, The additional condition is a practical,
human-oriented one: automatic programming is an application of universal simulation
which makes programming automatic for homo sapiens. Thus it is essential to the
idea of automatic programming that the hypothetical programmer's computer Mp be
easier for the programmer to use than the actually available manufacturer's

computer Mp. In other words, the computation system Mm*xg(Mp) must be matched to
the human much better than the system M; alone,

Let us consider for a moment the role of language in the operation and theory
of computers. From the point of view of current automata theory, automata are just
devices which jump discretely from state to state under the direction of input
symbols, Thus in proving his universal simulation result Turing shows how to
express the states and state transitions of a finite automaton M in a sequence.{ (M).
This requires only a rudimentary language. No concept of a machine language with
a complicated structure corresponding to the structure of a machine appears in

automata theory. But such languages are needed in working with actual computers.

The reason for this is obvious., The number of states assumed by any actual computer

15

in even a short time is much too large for a state-by-state analysis to be of

much use in viewing the whole computer, though such a mode of analysis is often
valuable in designing small portions of the computer, In planning and operating

a computer we must, therefore, organize it into interrelated units or compounds

at various levels: half-adders, flip-flops, etc., at the lowest level; registers,
memory switches, counters, etc. at the next higher level; arithmetic units,
memories, input-output units, control, etc, at a still higher level. The particular
organizations of current computers reflect strongly the present state of technology
and our current problem interests, and I feel sure that radically new organizations
will appear in the future, But in any case we must organize computers into some
such hierarchy of units simply because they are too complicated for us to
understand otherwise.,

The organization of the machine provides the basis for the structure of the
machine language. Thus a typical machine language is based on commands, one part
of which designates an arithmetic or control operation, the other part of which
designates memory locations. Now the machine language was designed from the
machine}s point of view, This is as it should be, but because man and machine are
so different the result is that the machine language is not well suited to the
human., For that reason we construct a programmer's language whose structure is
much closer to the structure of ordinary language., To do this is, as we noted
earlier, tantamount to designing a hypothetical programmer's computer which is
well-matched to the human user.

To recapitulate: The organization of a machine into a hierarchy of inter-
connected units is essential for the understanding, construction, and operation of
a complex computer. But none of this organization plays a significant role in
automata theory as it is usually conducted. For the most part, current automata
theory makes no distinction between a highly organized computer, on the one hand,
and any other possible machine which behaves in the same way. Compare, for example,

an IBM 7090 with another hypothetical machine which produces the same results but

16

which has no discernible machine structure and no machine language., Most results
in automata theory apply equally well and in the same way to these two machines,
which differ radically with respect to organization, As a consequence of this lack
of theory, the design and instruction of digital computers is an art, the art by
which man controls the machine,

The late John von Neumann sought a theory of the organization of automata
which would be based on '"that body of experience which has grown up around the

planning, evaluating, and coding of complicated logical and mathematical automata'

The Computer and the Brain, p. 2. See also his "The General and Logical

Theory of Automata,” pp. 1-31 of Cerebral Mechanisms in Behavior - The Hixon

Symposium (edited by L. A, Jeffress).

and which would have applications in the design and programming of digital computers.
He outlined the general nature of his proposed automata theory: its materials,

some of its problems, what it would be like, and the form of its mathematics. He
began a comparative study of artificial and natural automata. And he formulated

and partially answered two fundamental questions of automata theory: How can

reliable systems be constructed from unreliable components?

"Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable

Components," pp. 43-98 of Automata Studies (edited by C. E. Shannon and J. McCarthy).

and, What kind of logical organization is sufficient for an automaton to be able
to reproduce itself? His discussion of the last question is particularly relevant
to programming.

Von Neumann has two models of self-reproduction, a kinematic and a cellular

one.

17

The first is described in '"The General and Logical Theory of Automata,"
loc, cit. The second is described in a manuscript to be published by the
University of Illinois Press under the editorship of the present writer. It is
also described briefly in C. E. Shannon, '"Von Neumann's Contributions to Automata

Theory," pp. 123-129 of Bulletin of the American Mathematical Society, Vol. 64,

No., 3, Part 2, May 1958,

The cellular one is better for our purpose since it abstracts from kinematic
problems of motion and enables one to concentrate on organizational and structural
problems.

The basis of the cellular model is an infinite array of square cells, each
consisting of a finite automaton with 29 states, The state of a cell at time t+l
is a truth-function of its own state and that of its four contiguous neighbors
at time t, There is a fiducial state U, called the unexcitable state, and it is
stipulated that at time zero all but a finite number of cells are in state U,

The unexcitable state U corresponds to the blank state of a square of the tape of
a Turing machine. As noted earlier, initially all but a finite number of the
squares of the tape of a Turing machine are blank., Thus a Turing machine is
initially homogeneous except for a finite area on the tape and for the finite
control automaton interacting with the tape. Similarly, the basic framework for
a self-reproducing automaton is homogeneous, and at time zero all but a finite
number of cells are in this homogeneous state,

There is not time to develop the details of the construction and destruction
processes which may take place in this cellular system, but a few comments will
suffice for our purposes. As a first approximation we can think of the signals
transmitted through the system as being of two kinds: computation signals of the
usual kind, and construction-destruction signals, Construction signals may be

used to shift a cell from its unexcitable state into a particular switch-delay

state. Destruction signals may also be used for a destructive shift of a cellular
18

finite automaton back into its unexcitable state, A finite complex of cells in
a particular switch-delay configuration constitutes a complex finite automaton
which can compute in the way an ordinary finite automaton computes. Its output
signals may be converted into construction-destruction signals.

Consider now the finite area whose cells are initially in some state other
than U. It will be a finite automaton; call it the "primary automaton." Consider
next some other area (finite or infinite) of cells that are in state U, The primary
automaton can send signals into this area so as to organize it into a '"secondary
automaton," At any time this secondary automaton is finite, but it can get larger
from time to time, It is thus possible to have '"special purpose' construction in
this cellular system: a primary automaton constructs some particular secondary
automaton,

A universal Turing machine can be embedded in the cellular system, A finite
area is designed so as to be a finite control automaton, An infinite linear array
of cells constitutes the tape. The finite control automaton organizes the cells
immediately above and below the tape into a reading loop which passes through one
cell (square) of the tape. The finite control automaton can extend and contract
this loop by means of construction-destruction signals., Note that in the embedded
Turing machine the tape and control both stand still, and reading and writing are
done by means of an indefinitely expansible variable length loop, whereas according
to our earlier description of a Turing machine the finite control automaton and
the tape move relatively to each other, Structurally these two modes of operation
are different, but computationally they are equivalent. All that is required in
a Turing machine is that the finite control automaton have ultimate access to
each square of the tape.

Von Neumann showed how to design a universal constructing automaton M. in

this system, It is synthesized out of the following three main parts. (I) A finite

control automaton which can read any position of an infinite tape. This operates in

19

the same way as the finite control automaton of the universal Turing machine just
described. The tape itself consists of an infinite linear array of cells. The tape
is used to store the description XQ(M) of an arbitrary secondary automaton which is
to be constructed by M., Each automaton M is finite and hence each J(M) is also
finite, but there is no limit to the size ofJ(M). Since the tape is not bounded
in size it is not part of M., (II) A finite automaton which can interpret an
arbitrary description O (M), Parts (I) and (II) acting conjointly can read and
interpret L (M) and send constfuction-destruction signals to a specified secondary
area so as to construct M there. (III) A finite automaton which can reproduce

the tape of (I) along with its contents and attach the results to the secondary
automaton M, Parts (I), (II) and (III) operating together constitute the universal
constructing automaton M..

The finite automaton M. operates in the following way. When the initial tape
contents of the universal constrgcting automaton M. consist of a description JQ(M)
of a finite machine M, the universal constructor will build M and copy .J(M) onto
the tape of M, This result may be written:

M0 (M) —> M* (M) .
Self-reproduction is obtained by placing a description J(Mc) of the universal
constructing automaton on its own tape., The construction formula just written
applies to any finite automaton M, and since M, is a finite automaton the formula
applies to M.. Substituting "M." for "M" in the formula we obtain:

Mc* 4 (Me) — Me* /0 (M)
which, in a logical sense, is a case of self-reproduction.

Let us pause for a moment to compare Turing's system with von Neumann's., On
the surface they appear very different, but the fundamental logical and information
theoretic principles on which they operate are very similar., Both are closed
systems with a denumerable number of states, making deterministic transitions
between states, Furthermore, both systems are composed of finite automata. Each
square of a Turing machine tape is a two-state finite automaton. A square of tape

20

is not a very powerful automaton, to be sure, since it can do nothing by itself

but can only interact with the finite control automaton, but it is nevertheless

a finite automaton. Thus, initial states of the system aside, Turing's system consists
of an infinite one-dimensional homogeneous array of finite automata with a single

more complicated automaton attached to one element of the array. In contrast,

von Neumann's system consists of an infinite two-dimensional homogeneous array of
finite automata. |

In each case the system is used by imposing a finite amount of inhomogeneity
on it, This initial inhomogeneity can spread without bound throughout the system
as time progresses. The infinitude of the system provides the matrix or background
for unlimited growth, and the finite initial configuration of the system controls
the pattern of this growth, Thus a Turing machine consists of a finite control
automaton plus an unlimited amount of blank tape. Similarly, a von Neumann cellular
automaton consists of a finite automaton plus an unlimited number of cells in state
U which may be modified by that automaton.

With this comparison of a Turing machine and a von Neumann cellular system in
mind let us look at Turing's universal simulation result once more, In the proof
that @ =P a program was transformed into an automaton, while in the proof thatq =¥
an automaton was transformed into a program, Thus programs and automata are

sometimes interchangeable. When designing the ENIAC

This was the first electronic 'general-purpose'" digital computer, It is
described in my paper "Electronic Computing Circuits of the ENIAC,'" Proceedings

of the Institute of Radio Engineers 35 (August, 1947) 756-767.

we expressed this as a choice between constructing ("wiring in') an operation
(such as division) and instructing (programming) that operation. Today the point
would be made by saying that "hardware" and ‘software" are, within limits, inter-

changeable,

21

The "within limits" refers, of course, to the fact that there must be a finite
control automaton which is active and has the power to interpret a program. Thus
when a Turing machine is embedded in a von Neumann cellular system, the finite
control automaton must extend and contract the reading loop by which the tape is
read as well as direct the computation on the basis of what is recorded on the
tape. A program is really a state of an automaton, so the interchangeability of
programs and automata is really an interchangeability of state and system. One is
reminded here of the analogy between kinetic energy and potential energy. A finite
automaton M is active — a form of kinetic energy — while its description‘é)(M)
recorded in a succession of cells is passive — a form of potential energy. And
just as passive programs and active automata are interchangeable within limits, so
are potential and kinetic energy. In both cases some activity (kinetic energy) is
required in the system initially unless it is to remain forever quiescent,

Von Neumann was interested in an existence result concerning the logic of
self-reproduction: he sought a formal system with a reasonatly minimal base in
which one can construct an automaton that will reproduce itself in a manner logically
similar to actual self-reproduction, Hence his choice of a relatively weak
automaton as the occupant of each cell and his restriction that information cannot
propagate any faster than one cell per time step., As a consequence, the construction
of a self-reproducing automaton in his system is exceedingly involved and complicated,
Moreover, practical considerations dictate that it operate serially, because parallel
operation results in complicated, ad hoc phasing and interlocking problems.,

Systems more directly relevant to computer design and programming and the study
of adaptive and evolutionary processes can be obtained by strengthening von Neumann's
basis. This is done principally by placing much more powerful finite automata in
the cells, and secondarily by relaxing the restrictions on the speed of transmission
of information between cells, The second modification also makes parallel operation

feasible, Self-reproduction becomes simple in such a systen,

22

See for example, my "Computation, Behavior and Structure in Fixed and

Growing Automata,' Behavioral Science 6 (January 1961) 5-22.

and can, of course, become trivial, as when there is a cell state 6 such that a
cell in state 6 will cause any immediate neighbor in state U to go directly into
state 6,

One type of modification of this form has been made by John Holland, who
calls his systems iterative circuit computers., Another modification has been
tentatively considered by myself, and I will outline it here,

The idea of an automatic programming language is a commonplace now and it
is customary to teach this language to the user of a machine, rather than the
machine language. As noted earlier, an automatic programming language is the
machine language of a hypothetical programmer's machine Mp with a certain
organization, and this organization is presupposed in the automatic programming
language., This suggests that it would be better to teach the potential user of
a machine about the hypothetical machine Mp in conjunction with its language
rather than to teach the automatic programming language in isolation from this
hypothetical machine.

But what I wish to propose goes further than this., The hypothetical machine
Mp was designed to solve all problems of a very wide class, and hence does not
take advantage of the special properties of a particular problem., This limitation is
inherent in the idea of a general-purpose computer, For many problems it is easier
to think of the problem in terms of a special-purpose computer especially
designed to solve that problem, In doing this one will not be distorting his

natural way of formulating a problem to adapt it to a particular computer, Instead,

23

he can formulate the algorithm for solving his problem by designing a special-
purpose computer analogous to the problem,

I suggest, then, that instead of always writing a program for a problem one
should sometimes design a special-purpose computer for that problem, No doubt this
suggestion seems preposterous, But the moral to be drawn from the work of Turing
and von Neumann is that programs and computers are, to a large extent, interchangeable,
Since this is so there cannot really be such a great difference between writing a
(special-purpose) program and designing a special-purpose machine as it seems at
first sight, There appears to be a great chasm between these two types of activities
because the comparison between machine design and program writing is usually drawn
between the long, expensive, involved design procedures which have produced our

present general-purpose computers, and the relative ease of writing a program in a

given rigorously formulated program language. But this contrast is not the relevant
one here, The engineering design of an actual computer involves much more than the
purely logical design of the computer, and this purely logical design is constrained
by these engineering considerations., Moreover, in writing out or diagramming the
logical design of a computer one does not have available a rigorously formulated
design language comparable in power to the best current automatic programming
languages.

Hence my proposal involves the development of a framework or language of great
expressive power for specifying the logical structure of any computer. Experience
in machine design and the use of flow charts for programming suggests that this
language be diagrammatic as well as symbolic. Moreover, it is feasible to build a
computer which can scan a two-dimensional diagram, so that the design of a machine
in this language can be fed directly into the manufacturer's machine Mp. In other
words, in designing a machine M one is writing.é}(M) in the proposed machine design
language. The machine Mp must be instructed how to interpret the expressions written

in the machine design language — this calls for an interpretive routine dJ . To

24

summarize: when one is interested in a computation 77(M*D/3i) he writes £ (M)

VY
and gives it to the machine-program complex Mm*‘9' The number 77(Nhﬁe9 JQ(MI’\D/i7Q,
which equals 77(M*D/3x), is then produced,

Thus, my proposal involves, first, the development of a rigorously formulated

machine design language, and second, the development of a routine 9 for the automatic

translation of expressions in that language into the machine language of the actual
machine Mp. These two steps are, of course, the same as those required for the
development of an automatic programming system Mm*XQ(Mp): the machine language
corresponding to the programmer's machine Mp must be worked out and the interpretive
routine 0 (Mp) must be written., Likewise, the use of the automatic system Mm*g is
similar to the use of the automatic programming system Mm*JQCMp). In both cases one
is given a problem, To solve the problem on Mm*ég he writes a description ,J(M) of
a machine M which is equivalent to that problem, To solve the problem by means of
Mm*JD(Mp) he writes a program P which is equivalent to that problem,

The systems Mmts and N%ﬁJQ(Mp) operate on different levels of the hierarchy
of Turing machines introduced earlier. It will be recalled that the universal
machine My uses one block of input information to simulate Turing machines with
blank tapes, M& uses two blocks to simulate machines with one block of input
information, M& uses three blocks to simulate machines with two blocks, etc., etc.
In this hierarchy MmtS is a case of M&, as is shown by the formulas

N3 /MDY = 7T)
NOEFR/MTY N = ey,
and Mp used with AQ(MP) is a case of Mg, as is shown by the formulas
7 Mp* QM) P DAY = 7)M*PT DTN
nOM TN = e I

There are many possible approaches to our proposed machine design language.
We will briefly indicate an approach which is suggested by von Neumann's cellular

self-reproducing automaton but which diverges from it in a number of important

25

respects, A finite or growing automaton of any power may be stipulated as the
contents of a cell, provided that the specification of the automaton, either directly
or via a chain of definitions, is reasonably simple. Thus one cell could store

a number, with the understanding that the cell can store as many (finite) digits

as the number has. For example, if it stores a ten bit number x to begin with and

is to store 5?, 5}, 5&, «+. at various stages during the computation, the cell will
automatically grow in size so as to accommodate the extra bits that are produced

by successive mulitplications,

In specifying a problem by means of a special-purpose computer one would assume
as many serial stores, parallel memories, control units, etc,, as was convenient,
Data could be organized into blocks in natural ways. The control automata stipulated
could direct operations like: sum the series in block A, monotonize the data in
blocks B and C, withdraw from memory all sequences having property @, etc. There
would be provision in the machine design language for defining new automata in
terms of old ones, so once an automaton is specified others can easily be designed
in terms of 1it.

Von Neumann has a fixed crystalline structure for his cells. We propose to
allow new cells to spring up between old ones under the control of the computation,
Suppose a list of words is stored in bins and at a later date new entries are to
be inserted. This chanée would be conceived as an automatic process of inserting
new storage bins between the old ones. This change must, of course, be accompanied
by an appropriate change of the switches which connect these bins to the rest of
the automaton. In general, storage and computing facilities would be created
wherever needed and in a form suited to the problem being solved, Hence a batch
of information would not be stored in a homogeneous memory, as is the case in current
computers, but in a memory organized so as to reflect the organization of the
information itself, That is, the memory would be divided into categories, sub-
categories, etc., in natural and useful ways, cross-switching connections would be

assumed where needed, etc.

26

Current computers are organized into large, specialized units such as memories,
arithmetic units, and controls. The reasons for this organization are to be found
in the nature of the components from which computers are built. Since the special-
purpose computers to be designed in our proposed machine design language are not
to be built, there is no reason for organizing them in the conventional way. Rather,
they should be organized in whatever way best accommodates the problem at hand.
Consider, for example, a two-dimensional partial differential equation. It may be
convenient to solve this equation by computing the value of a function at all grid
points simultaneously, in which case the special-purpose computer should be
organized so as to do this, It should be clear from the foregoing that in our
proposed machine design language one could formulate machine organizations radically
different from present ones.

In conclusion, let us review briefly how one would use the proposed machine
design language. It would be most effective when applied to a problem capable
of analog treatment, i.e,, whose structure may be paralleled by the structure of
a special-purpose computer which will solve the problem, In such a case the
mathematical equation describes the behavior of a physical model, To specify the
solution of this equation one describes in the machine design language a special-
purpose computer which would operate analogously to the given physical model., The
description of this special-purpose computer is supplied to a general-purpose
computer which translates it into its own machine language and then solves the
problem,

I believe that the system just proposed for instructing and using digital
computers is practically feasible, though admittedly it would require a great deal
of development work, In any case, I think that the theoretical possibilities of
it, together with Turing's and von Neumann's results on universal machines,
illuminates the general nature of digital computers and the problem of their

relation to man, the machine-user.

27

CONCERNING EFFICIENT ADAPTIVE SYSTEMS

John H. Holland

1. Introduction

This study of adaptive efficiency is based upon the framework described
in "Outline for a Logical Theory of Adaptive Systems" [5]. Its principal ob-
Jject is to give some idea of the methods appropriate to that framework. Two
considerations prompted the choice of "adaptive efficiency" for this purpose:

1) the study of efficiency has lead to important results in related
areas such as information theory;

2) preliminary work indicated that, along this line, statistical mechan-
ics applies in a direct and simple way to the generation procedures and gen-
erated systems of automata theory.

The results are derived in a narrow and elementary context, but the methods
used (and the results) appear to extend naturally to broader contexts.

Section 2 ('General discussion') gives a general statement of the obser-
vations motivating the paper. The translation of these observations to the
more rigérous framework provided by automata theory requires first of all an
appropriate class of automata; the class of automata used has been described
elsewhere [6] and only a few relevant points will be reviewed in section 3
('Abstract basis'). Section 4 ('Adaptive efficiency') considers the concept
of efficiency as it applies to a restricted subclass of the systems described
in section 3. It is shown that acquisition of new information generally forces
a concurrent, less efficient use of information already accumulated. The main
result gives the rate of acquisition of information which (as a function of
the concurrent loss of efficiency) produces optimal adaptation. Loosely, the
result shows both that no system of the type considered should consign more

than half of its effort to acquisition of new information, and that there are

31

reasonable conditions under which this limit should be closely approached. The
final section ('Summary') discusses the particular results and their generali-

zation to the full range of systems described in section 3.
2. General discussion

Classically, adaptation is a process whereby an organism is modified to
fit it (or its progeny) more perfectly for existence in its environment. This
classical view, if one pays it close heed, sets distinctive conditions on a
theory of adaptive systems: The statement emphasizes that it is not sufficient
to characterize just the.system's internal processes. The environment (or
range of possible environments), the information received therefrom and the
ways the system can affect the environment must also be characterized. And,
when this is done, the phrase "...to fit it more perfectly for existence..."
still requires attention. The phrase suggests both a condition and a way of
meeting it: Clearly, the theory should provide a formal means of determining
which of two organizations is the fittest in a given environment. That is,
the theory should include a fitness-measuring function, either directly or in-
directly defined, enabling comparision of systems and selection of the fittest.
Only then is it possible to discuss the process of adaptation within the con-
text of the theory. "...to fit it...for existence..." suggests that the fit-
ness measure be defined indirectly in terms of & survival criterion. As a
matter of fact the problem of fitness can quite generally be rephrased in terms
of survival under conditions imposed by the environment [4]. The result is a
differential selection of systems according to fitness — the fittest systems
at any point in time being those which have persisted. In general terms, then,
the core of a theory of adaptive systems should be a study of differential

selection.

32

A living organism constantly exchanges imaterial and cnergy with its en-
vironment -— an environment which, even when it is homogeneous in the large,
involves important local variations. (One can observe similar interactions
in any adaptive system, natural or artificial.,) If a species of organism is
to survive it must at least partially control this interaction. Because the
environment does vary, this control can only be apropos if the organism re-
ceives and employs information about its environment. A system receiving no
information from its environment obviously cannot base its control procedures
upon the condition of the environment; '"complete" information, on the other
hand, opens the possibility of perfect control. Moreover, moving from the
first extreme of no information to the second of complete information, one
would expect a steady improvement in control possibilities. If the information
is received at a rate r, then adaptation is limited accordingly; a system can
alter its organization no more rapidly than it receives the relevant informa-
tion. Thus, the efficiency of a system's control is limited by the rate at
which it receives relevant information from the environment. And, of two
similar syétems in similar environments, the one exercising more efficient
control will be the one favored by differential selection. Or so it seems
intuitively.

It is another matter to give precision to this argument. The argument
as presented has, in common with most heuristic arguments, a very loose tex-
ture. It can hardly be validated or invalidated in its given form and it is
almost impossible to ascertain what elements of truth lie within it. In parti-
cular, although a relation between adaptive efficiency and information input
rate is suggested, the precise nature of the relation and its usefulness can
only be evaluated in a more rigorous context. The remainder of the paper will

be devoted to a deeper look at this relation.

33

3. Abstract basis

This paper makes contact with automata theory through the formally de-
fined class of iterative circuit computers. As the introduction notes, an
earlier paper [5] describes the use of this class as a basis for studies of
adaptation. Only points relevant to the present inquiry will be touched upon
in this section.

In general terms, the study of adaptation is a study of how systems gen-
erate methods enabling them to adjust efficiently to their environments. Let
us equate '"method" with "program of a specified universal computer." From a
more abstract viewpoint, then, an adaptive system is a schema for generating
programs in accordance with the dictates of the environment. Let any such

schema be called a generation procedure. The population of programs generated

at a given time can be considered the repertory of methods available to the
adaptive system at that time. The discussion here will be based upon gener-
ation procedures defined in terms of a selected finite set of programs, called

L]
generators, and a graph, called a generation tree:

1) No restriction is to be placed upon the programs selected for the
set of generators; in one case the set of generators may include just the equiv-
alents of individuel instructions, in another it may include highly sophisti-
cated heuristic programs. If some generation procedure is supposed to generate
all programs of a specified universal computer, the set of generators must in-
clude a complete set of instructions for that computer.

2) The generation tree specifies the combining processes whereby the
programs are formed from the generators. The vertices of the tree can be
divided into two categories: major vertices and auxiliary vertices. Each

major vertex of the graph represents a distinct program which can be formed

3k

from the generators. Each auxiliary vertex indicates a distinct combination
process — it can be thought of as labelled with a parameter indicating the
rate at which the process is taking place. Given the generation tree and an
initial population of programs it is possible to determine the population of
programs to be expected at any later time. A change in the rate of any combi-
nation process produces a change in the generated population sequence. That
is, a change of any rate constitutes a change of generation procedure.

With this refinement, adaptation becomes a matter of modifying the para-
meters associated with the auxiliary vertices of the generation tree — the
object being to change the generation procedure in such a way as to produce
combinations of programs better suited to the environment. Assume that the
set of generation procedures accessible to the adaptive system has been speci-
fied. Then the process of adaptation induces an orbit (in the set-theoretic
sense) upon the set. Different systems of adaptation will induce different
orbits. If the different orbits can be assigned ratings then this abstract
basis can be used to formulate questions of adaptive efficiency.

The problem of assigning ratings to orbits will be discussed near the
end of this section; there is, however, a prior problem: realization of gen—
eration procedures. As in information theory, realizations are of consider-
able importance -—— the channel capacity theorems gain much of their significance
from the companion "realizability" theorems which state the existence of codes
permitting transmission rates arbitrarily close to capacity (i.e. efficiencies
arbitrarily close to 1). Models of the foregoing generation procedures can
be constructed along the following lines:

The generators can be thought of as embedded in a discrete or cellular
space, each type occuring with a given density (the expected number of gener-

ators in some fixed number of cells). Each generator undergoes a random walk

35

in the space. Upon coming into contect with another generator it may, with
a probability determined by generators involved, connect to it (connected sets
of generators correspond to programs). At the same time combinations of gen-
erators may, with a probability again determined by the types of generators
involved, separate into component combinations. The rate at which generators
come into contact (the generation rate) together with the connection and dis—
connection probabilities determine the density of each type of program as a
function of time and the initial densities. That is, these factors determine
what programs are generated and in what order. Each choice of a set of con-
nection and disconnection probabilities selects a particular generation pro-
cedure. Special programs — so-called templates — can be added to the model
to modify the probabilities, a given population of templates thus determining
a unigue generation procedure. Let the generation procedure associated with

a given template-free model be called a free generation procedure, and let the

result of adding some templates to the given model be called a modified gener-

ation procedure. If the free generation procedure is taken as a basis, then

each modified generation procedure produces a population of programs skewed
relative to that of the free procedure. If it is assumed that there is a "cost"
involved in producing templates, then we can associate a "skewing cost" (per
unit time) with each modified generation procedure.

The iterative circuit computers mentioned earlier, will be used to pro-
vide formal realizations of these cellular spaces, their laws and processes.
The iterative circuit computer is not in itself an adaptive system; it should
be identified, rather, with the space in which the adaptive system is embedded.
The generators and their combinations will be represented by programs in the
computer. Because the iterative circuit computers have been characterized
mathematically, they can be used as a formal basis for theorems about the em-

bedded systems.
36

Each computer in the class is constructed of a single basic module (a
fixed logical network) iterated to form a regular array of modules. An appro-
priate choice of the basic module will yield an iterative circuit computer
structurally and behaviorally equivalent to any of the following types of auto-
mata! Turing machines (with 1 or more tapes) [9] [8], tesselation automata
[10] [7], growing logical nets [1] [2], and potentially-infinite automata [3].
Programs of an iterative circuit computer can be given the following properties
relevent to their interpretation as generators:

1) A given iterative circuit computer can execute arbitrarily many sub-
programs simultaneously (within limits imposed by size).

2) Sub-programs can be written so that, under local control, they shift
themselves from one set of modules to another set. Thus the geometry of the
underlying iterative circuit computer becomes the geometry of the space in which
the embedded program moves.

3) Sub-programs which are independent initially can move into contact
(occupy adjacent sets of modules) and connect so as to form a larger sub-pro-
gram capable of moving and acting as a unit.

L) Given any iterative circuit computer it is possible to select a finite
set of sub-programs (individual instructions in the limiting case) to serve as
generators such that any sub-program possible for that computer can be achieved
by an appropriate combination of copies of these sub -programs .

5) By a suitable choice of the basic module it can be arranged that
generators do not interpenetrate (or "over-write'") when shifting (cf. the notion

of a "billiard ball" physics).

37

Using the foregoing properties of generators one can realize any of the gener-
ation procedures described earlier in this section.

The question of rating orbits in the space of generation procedures can
be treated now on the basis of the preceding discussion of realization. A given
adaptive system can only be rated in terms of its performance in given environ-
ments. Thus some thought must be given first to characterization of permissible
environments. It will only be noted here that an environment can be thought
of as a population of problems presented to the system and that problems can
be embedded in the same space as the generated programs. (That is, problems
can be coded into the storage registers of the iterative circuit computer).

On their random walk through the space the generated programs will encounter
and attempt to solve the embedded problems. In other words, the population
of generated programs acts upon the population of problems to produce solutions.

Let each problem type be assigned a numerical quantity called "activation"
(the queantity might also have been called "reward" or "utility of solution").
This quantity is to be consigned or 'released" to the adaptive system whenever
the associated generation procedure solves the problem by means of one of its
programs. Let A(G,E,t) be the expected net rate of activation release at time
t when the generation procedure G is faced with environment E. (The net rate
can be taken as the expected release rate minus the skewing cost associated
with G.) Two generation procedures confronted by the same environment over
an interval of time, T, can then be compared in terms of the expected net
activation release over that interval. One can assign ratings in a similar
way to orbits in the space of generation procedures.

Briefly then the problem of adaptation, in the framework outlined, be-
comes one of modifying a free generation procedure in order to maximize acti-

vation release from the environment. In the paper referred to earlier [5]

38

the rate at which a given adaptive system accumulates activation determines

its survival (through duplication) in a population of adaptive systems. As a
result the population of adaptive systems undergoes a differential selection
according to abilityto solve problems in the given environment. That system is

fittest which in the long run accumulates the most activation.

L. Adaptive efficiency

4.1 Conditions, definitions, and initial considerations

The process of adaptation, as interpreted in section 3, involves a gen-
erated population of problem-solving programs acting upon a population of pro-
blems in an attempt to produce solutions. Assume that a set of generators,
complete with respect to some universal computer, has been chosen and that the
set of all possible programs formed from these generators has been enumerated
and labelled dl, d2, d5, ooy di’ «es « Assume, furthermore, that a population
of problems has been given and that it includes a denumerable number of different
problem types €15 €ps o) ej,

Following the description of section 3, let the programs and problems
undergo random walks in the embedding space. We will concentrate our attention
upon a bounded region of the space. Let the expected number of programs of
type d; in a unit volume at time t be a defined quantity, uniform over the
bounded region (i.e. the programs are to be thought of as distributed with "uni-
form density"). Denote this quantity by p(di); it will usually be referred to
as the "density of d;." Problems will be treated similarly and p(ej) will denote
the "density of problems of type ej." Let Py = %p(di), the "total program density!;

and Pe = §b(ej), the "total problem density," both be finite quantities.

39

p(d)) p(d,) p(a;)

Let v = s s ey mm—y ..
Pa Py Pa
pley) pley) ple;)

and 0= [L =20, == .
Pe Pe Pe

Vv and O, as defined, are elements of Hilbert space. In what follows the problem
population @ is held constant while the program population ¥ varies during the
course of its adaptation to O (¥ thus being a function of time).

For the purposes of this example, let each problem be so designed that only
one program at a time can attempt its solution. A problem will be called "unoc-
cupied" during any interval when no program is attempting its solution; at all
other times it will be designated as "occupied." An individual program, during
its random walk, will encounter various ones of the embedded problems. It will
be assumed that each time the program encounters an unoccupied problem it attempts
a solution. Such an encounter, between a program of type di and an unoccupied
problem of type ej, will be called an attempt of type (i,j). Each attempt of
type (i,j) is to last for an expected time tij’ at the end of which the expected
activation release is a, .. That is, the program di "attempts to solve" the pro-

iJ

blem eJ for tij units of time (on the average) and is "rewarded" by an amount aij
(on the average) for its efforts. If di does not even partially solve eJ then
aij = 0. The aiJ become progressively greater for program types which provide
more and more extensive partial solutions, reaching a maximum for programs (if
any) which solve the problem completely.

Because each attempt at a solution involves an "occupation time" tij’ a law
of diminishing returns applies to attempts. As p(di) is increased, for any i, an
increasing proportion of problems of any type ey can be expected to be occupied

by the di' Thus as p(di) increases, an individual of type 4, will find fewer and

i

fewer ej unoccupied and, for that individual, the expected number of attempts of
type (i,J) per unit time will decrease. But then, since activation release
occurs only after an attempt, the expected rate of activation release per indivi-
dual decreases also. In most cases of interest, the skewing cost per individual
of a given type ultimately increases as one attempts to skew the generation pro-
cedure more and more to the generation of that one type. Under such conditions

the net rate of activation release per unit volume for individuals of a given

type will become negative as p(di) approaches Py" These conditions can be sub-
sumed under the following general statement: A situation will be called competi-
Elzg.if, for any finite set of solvers D, the net rate of activation release per
solver becomes negative as p(D) approaches Pg-

It is important to note that, under competitive conditions, the discovery
of each new aij > 0 is important to the adaptive system. For instance assume

that at time t the system knows ay > 0 and has Jjust discovered a

= 8 . .
1% ipdp 113y’
assume further that dil cannot solve eJ.2 and rejects it immediately so that

a, . =0and t; . = 0 and, similarly, a, =0, t, ., =0. Let p(d,) = pn-
1) dp 1dp ipdy 291 g, Lt o
just before the discovery of & 3 Let p(dil) = p(di) = =— after the discovery.
2v2 2 2
Then other things being equal, a given program of type di (or di) will encounter
1 2

an unoccupied problem of type ejl (or eJ) more frequently after the discovery
2

than before. The increased attempt rate, coupled with the same total density of

programs d. and d, and the fact that a, . = a, , ylelds an increased ex-
ll 12 1131 1232

pected activation release. (A similar advantage accryes when it is found that
a single program can solve more than one problem.) Briefly, each new source,
aj >0, allows reduction of the saturation effect by allowing the successful

J
programs to be "spread" over a larger number of sources.

41

In the idealized situation so far presented, complete information about
the environment would consist of complete knowledge of the matrix aij’ the
matrix tij’ and the population ©. The adaptive system possessing this informa-
tion could then skew its program pppulation ¥ to maximize net activation release.
Lacking such information, the system can acquire it only through encounters be-
tween elements of its program population ¥ and the problem population 6. Obvi-
ously the system can only use information already accumulated as a basis for
skewing y. For example, consider a bounded adaptive system which initially has
no information about its environment. As time passes encounters between its
generated programs and the problems will provide information about some of the
aij (and the associated tij). After a time t, if this information is accumulated,
some finite subset, D(t), of program-types will be known to effect a positive
release of activation from one or more problem types. The system can then modi-
fy its generation procedure accordingly.

One strategy the adaptive system can employ in adapting to the environment
is to adjust ¥ at time t so that net activation release from known values of aij
is a maximum. That is, the density of elements of D(t) can be skewed so that
activation release expected from programs belonging to D(t), minus the cost of
skewing V¥, is a maximum. Under competitive conditions Pp» the total density of
programs belonging to D(t), will be less than pj.

We can show that this strategy is a "minimax" procedure for handling the
environment. To see this, let a loss function A(y,0) be defined in the follow-
ing terms:

A(y,0) d£. the expected net activation release (per unit time-volume)
when program population Yy operates on problems population O
u(e) d=f' Yo such that A(WG,G) = max A(y,0)

¥
af

AMV,0) = A(u(6),0) - A(y,0)

Lo

In other words, the loss assigned to ¥y in the presence of 0 is the difference

between the maximum net activation release possible and that actually obtained

by V.
af.

{6}, = the set of problem populations having a

t compatible with the

ij
values of aij known at time t.
thEZ the skewed program population resulting from the strategy of
maximizing net activation release from the Eggzg_aij.
AD(W,G) dﬁi the expected net activation release from program types
belonging to the subset D when ¥ operates on @ (where D
is some subset of the set of all program types, (di})
Consider some ¥ # Vy- By definition of ¥
AD(-(-,)(‘V:Q) s AD(t)(q’t’Q)
For any ¥, D(t), and € > 0 it is always possible to choose 9' € [G]t such that
A(¥,0') - Ap()(¥,0') <t
(Consider those problems ej, such that, for all i either aij' = 0 or else aij'
is unknown; choose O' € {O}t such that the ej' are in fact solvable only by

programs which occur with wery low density in y)

But then min A(¥,0) < min A(wt,G) for any v
{G}t {O}t

(Actually "min" should be replaced by "glb" in some cases.)

Therefore max [A(u(0),0) - A(vy,0)]

(e}
gm’ax [A(P(O):O) - A(‘y » 9)]
(G}t
Or max AMV¥,0) > mex My ,0) for any y
{o) {0}
t t
Or min max A(y,0) = x(wt,o)
¥ {Q}t

Thus wt "minimaxes" the loss function.

k3

Recall that ¥y is actually the program population which results if the
adaptive system takes a very short term or opportunistic view of the environ-
ment — attempting to maximize net activation release from known sources with-
out taking into account unknown sources. On the other hand, a minimax procedure
is by its very nature a very conservative procedure based upon the most pessimistic
estimates of the future. That the same population, Wt’ results whether the adap-
tive system operates on a very opportunistic basis or upon a very conservative
basis was at least unexpected. Nevertheless the adaptive system can do better

than wt.

4.2 Rate of information acquisition vs. limiting rate of adaptation, for

homogeneous systems

The fact that wt results from a minimax strategy in itself suggests that
there are more efficient adaptive procedures -~ generally, a performance much
better than minimax can be achieved at some small risk (often the strategy can
be designed to make the risk as small as desired while obtaining significant
improvement). As mentioned in section 3, two adaptive systems in a given environ-
ment are to be compared (over some interval of time T) in terms of their expected
accumulations of activation. Thus our search is for a strategy which, over an
interval of time T, will accumulate more activation than the strategy yielding wt.

The possibility of improvement stems frbm the adaptive system's ability to
control the rate at which it receives information from the environment. During
any interval, say from t to t+At, the system can be expected to attempt some
program-problem combinations (di’ej) for the first time. These first attempts
permit the system to add to its list of known aj 3y The system can control the
expected number of first attempts in a given interval by controlling y. If V¢ is

changed so that the density of program d; is increased, then the expected number

Ly

of encounters between di and various problems, ej, will be increased and, as &
result, the number of first attempts involving d; will also increase. In effect,
the first attempts constitute a random sampling of the environment biased accord-
ing to y. Note that if both ¥ and O are fixed, the expected number of first
attempts steadily decreases; to maintain a fixed (expected) rate of first attempts
the adaptive system must continually modify vy.

Let any encounter resulting in a first attempt be called an informative
encounter and let all other encounters be called non-informative.

af. ‘
c(t) = the expected number of encounters in the interval

(t, t+at)
af.
y(t) = the proportion of encounters in the interval (t,t+At)

expected to be informative encounters.
By suitably controlling the population Y the adaptive system can control y and
hence the rate at which it acquires new information about the environment. 1In
what follows it will be assumed that the average informative encounter itself
contributes negligibly to the expected activation release — negligibly because
of the inefficiency of the exploration process in comparison with the process
aimed at releasing activation from known sources. However the population V,
while maintaining ¥, can be modified to take advantage of the new information.
That is, at any given time there are many populations ¥ which will yield the pro-
portion y; certain of these populations use the newly discovered aij to better
15° By so modi-

fying ¥ in terms of the new information, the expected activation release, aver-

advantage than the population based upon the old list of known a
aged over all non-informative encounters, will be incremented.

a(t) = " the expected activation release per non-informative

encounter at time t.

k5

af.
8(t) = the average increment in a(t) to be expected from

use of informetion from a single informative en-
counter at time t.

In terms of the above functions:

t
a(t) = a(0) +J; Bycdt

If 7n(t) is the skewing cost at time t, then the net activation release (per unit
time-volume) at time t, A(t), is given by:
A(t) = a(l-y)c-n

T
Let A¥(T) = A(t) at
(fo (

i T
- f [a(1- e-n] at
0

In general, of two homogeneous bounded adaptive systems of the same size, the one
producing the greater A*(T) will have a selective advantage. The function 7y is
the control function which the system adjusts in an attempt to optimize A*(T) for
the environment ©. To gain some idea of how y affects A*(T) let us impose the
following simplifications:

Let O and hence c be constant. Constrain the adaptive system to operate
with y set to a constant y. Assume an average 5(t) = & can be defined for &(t)
when 7(t) = 7 and let 3(t) = kyc (the greater the number of informative encounters

per unit time, the greater the skewing cost). Under these conditions

t
a(t) = a(o) +f dycdt = a(0) + Syct
0
and
T
a*(1) - f [(@(0) + BFet)(L-5)e - kye] at

0

a(0)(1-7)eT + 57(1-7)c2-§f - kyeT .

The constant "7- which meximizes A¥(T) cen now be determined; for a maximum

dA
—_— = 0
e
Y T2
=2 Sl
or - 2(0)cT + Bc“— - Byc T -keT = O
2
whence 1 k+x(0)
- \

For many interesting systems, T is determined by the time the system re-

*
quires to accumulate some fixed amount of activation Ag. Uvon accumulating AO

*
the system duplicates and both it and its offspring begin anew to accumulate Ao.

If each of two systems requires Az to duplicate, then the one with the smaller
T will have a selective advantage. If, in addition, each system has the same
small probability p>0, over an interval At, of disintegrating into its component
parts, then the one with the smaller T will eventually displace the other complete-
ly in a mixed population of the two systems. 70, of course, yields the smallest
possible T under the constraints imposed upon its calculation.

If SeT (the increment in @ to be expected over time T if all encounters
were informative) is large compared to k+a(0) (the skewing cost per informative

encounter added to activation released initially per non-informative encounter)
1l

0 - .
2
be divided equally between obtaining new information and making use of informa-

then ¥y Thus, under such conditions, the adaptive system's effort should
tion already available. If such a result were to hold under more general condi-
tions, say under quasi-economic conditions, it would certainly be provocative —
no economic entity spends anywhere near this much of its effort in research.
Attention should be drawn to the fact that this result was obtained under
the assumption that the population ¥ could be iqstantaneously modified to whatever

form, under the constraint ;; best suited the current set of known a Thus the

iy’
result is a limiting result. If the time to adjust ¢ is not negligible the per-

formance will be degraded accordingly.

bt

It should also be noted that the result was obtained under the assumption
that the bounded adaptive system was homogeneous. If non-homogeneous systems are
employed improvements can be effected. In particular one can employ boundaries
(connected sets of generators) which selectively pass certain problem types. In
this way the local density of given problem types can be increased within the
bounded region. This makes possible an increase in the efficiency (attempt rate)
of any program which solves one or more of the concentrated problems. (A more
detailed discussion of non-homogeneous systems, including some results indicating
the conditions under which improvement can be expected, will be published in
another paper. One such result indicates the desirability of a high surface-to-

volume ratio for the bounded regionms.)

5. Summary

At first sight one might assume that an adaptive system can do no better
than to use discovered sources of positive utility (activation, reward) as fully
as possible from the moment of discovery onward. Such a strategy is a "minimax"
strategy for the restricted class of systems investigated in this paper and, as
it turns out, it is not in general the best strategy available to such systems.
A fortiori, it fails as a "universal" strategy for adaptation.

The crucial step in determining a more efficient strategy comes when one
tries to ascertain the net value, to the system, of additional information. For
the systems considered, the gross value of additional information is set by the

increment in activation release per operation which can be expected from the use

of the information. (Such a valuation can be used for any system which by its
operations can accrue positive utility from its environment.) In a competitive

situation (Wwhere the availability of unoccupied sources is a function of program

48

density) each new source discovered can contribute to the increment in activation
release per operation. Thus, under competitive conditions, information about a
new source, or information about a single program which handles several known
sources, or information about a program which handles a known source more rapidly,
all has a non-zero gross value. To determine the ggz_value of the information
its cost must also be taken into account. The cost arises because the system
must make less than full use of known sources in order to obtain additional in-
formation; the loss thus incurred is a cost which must be made up via use of the
additional information. For the systems studied this cost arises when the gener-
ated program population is diverted from utilization of known sources (non-informa-
tive contacts) so as to increase the frequency of new program-problem combinations
(informative contacts). The extent of this diversion is measured by the ratio,
7, of informative contacts to total contacts. The cost of maintaining y at a
given level is not a one-shot cost — if the generated population of programs
remains constant, the number of informative contacts per unit time falls off
exponentially. Under the conditions stated, each setting of y corresponds to an -
acceleration of the rate of accumulation of activation. Now, one adaptive system
is more efficient than another, in a given environment, if it can be expected to
accumulate some critical amount of activation in a shorter time than the other.
In systems for which y is defined, the efficiency of the system, and its advantage
under differential selection, thus depends upon the setting of y (optimum values
of 7 have been determined for an elementary class of bounded homogeneous systems).
On a broader scale, when gross value and cost are figured on the basis given,
the net value of information is directly related to the selective advantage that
information (used optimally) will give to the system.

Arguments similar to those used in the body of the paper can also be applied

in more general cases. For example, if the problems, ej, are stochastic processes

k9

which the programs, di’ are to predict, the argument goes through much as before
except that the frequency of various program-problem combinations becomes import-
ant because the activation release associated with each combination is a random
variable which must be estimated. The results also extend naturally to certain
non-homogeneous systems, systems which are partitioned into subsystems by means
of selective boundaries permitting passage of some programs and problems but not
others. Such considerations lead directly to the study of coupled generation
procedures and the study of the capabilities of systems realizing such procedures.
It can be shown that non-homogeneous systems will in general have a selective
advantage over homogeneous systems.

The results presented are, in themselves, quite elementary, although they
may be suggestive to those inclined to view them as signposts; the various rela-
tions and definitions, though exhibited in this elementary context, have a broader
scope. The primary purpose of the paper, however, has been to give evidence that
it is possible to obtain results pertinent to adaptation within a framework
provided by autometa theory, even when only elementary methods are employed. It
does not seem unreasonable that more sophisticated methods applied along similar

lines will extend the results both in breadth and depth.

50

Acknowledgement

I would like to thank the members of the Logic of Computers Group at The
University of Michigan for several helpful discussions cf perts of this paper.
The work it represents has been supported by the United States Army Signal Corps

through coatracts DA-36-039-sc-87174 and DA-36-039-5c-89085.,

51

1.

9.

10.

Bibliography

Burks, A. W., "Computation, Behavior and Structure in Fixed and Growing
Automata," Self-Organizing Systems, Pergamon Press (1960).

Burks, A. W., and Hao Wang, "The Logic of Automata,” J. Assoc. Computing
Machinery, 4, 2 and 3, 193-218, 279-297 (1957).

Church, A., "Application of Recursive Arithmetic to the Problem of Circuit
Synthesis," Summer Inst. Symb. Logic Summaries, 1957, Institute for
Defense Analysis (1957).

Fisher, R. A., The Genetical Theory of Natural Selection, Dover, (1958).

Holland, J. H., "Outline for a Logical Theory of Adaptive Systems," J. Assoc.
Computing Machinery, 9, 3 (1962).

Holland, J, H., "Iterative Circuit Computers," Proc. 1960 Western Joint
Computer Conf., 259-265 (1960).

Moore, E. F., "Machine Models of Self-Reproduction," Proc. Sympos. Math.
Prob. Biol. Sci., New York (1961).

Rabin, M. O., and D, Scott, "Finite Automata and Their Decision Problems,"
1BM J. Res. and Dev. 3, 3, 210-229 (1959).

Turing, A. M., "On Computeble Numbers, with an Application to the Entschei-
dungsproblem," Proc. London Math. Soc. (2), 43, 230-265 (1936).

von Neumann, J., The Theory of Automata: Construction, Reproduction, Homo-
geneity. (unpublished manuscript).

52

