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1. Introduction*

We will begin with automata composed of the idealized primitive elements
usually studied in automata theory, and then consider automata based on primi-
tive elements which simulate more closely the actual operation of both artifi-
cial and natural systems. We are particularly interested in comparing the com-
putational powers and rates of these more "realistic" automata with the compu-

tational powers of idealized automata.

2. Idealized Automata

"nan" (not-and)

An idealized automaton is constructed from instantaneous
switches and unit delays whose initial output states are either one or zero
(Fig. 1). Unlimited branching ('"fan-out") is allowed, but all cycles must
pass through delays. These primitive elements operate synchronously, with

time having the integral values O, 1, 2, ... .

A finite idealized automaton is composed of a finite number of elements.

Those wires which are not driven by other wires are called the inputs of the
automaton; certain wires are designated as the outputs of the automaton.
There does not exist a single satisfactory general definition of an infi-

nite automaton, and we will consider only one special case. A Turing machine

*The writing of this paper was supported by the U. S. Army Signal Corps

through Contract DA-36-039-SC-89085 and Grant DA-SIG-36-039-61-CL.




consists of a finite idealized control automaton attached to an infinite tape.
The tape itself is an idealized automaton. It is an infinite shift register,
that is, an infinite iterative array of finite idealized automata. EFach fi-
nite automaton of this linear array is the same except that a finite number
of them may have delays whose initial outputs are one instead of delays whose

initial outputs are zero.

Our only purpose in having both kinds of unit delays is to be able to
vary the kind of delays in an automaton (i.e., the initial state) while leav-
ing the rest of the automaton unchanged, as in the present instance. Either

kind of delay can be synthesized from the other by means of the nan switch.

This is the same as saying that only a finite number of squares of a tape may
be marked initially; all the rest must be blank. Since the control automaton
is finite, only a finite amount of information can be stored in a Turing ma-
chine initially. It follows that at each time t only a finite amount of in-
formation will be stored in a Turing machine, though this quantity of informa-
tion can grow without bounds. Note that a Turing machine in our sense has a
finite number of input wires and a finite number of output wires, in contrast
to Alan Turing's original conception [1].

Since actual switching takes time, this separation of primitives into in-
stantaneous switches and pure delays is clearly an idealization. It is a use-
ful idealization for two reasons. First, Boolean algebra (i.e., truth-function
theory) may be applied simply and directly to the analysis of instantaneous
switches, whereas the analysis of switches with built-in delays is more com-

plicated. ©Second, the time actually required for switching varies with the
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state of technology, and hence it is desirable to have both instantaneous switch-
ing primitives and switching elements with built-in delays, the former for study-
ing what is needed from a purely logical point of view, the latter for studying

what is needed from a technological point of view.

3. Behavior and Computation

Let there be given a finite alphabet of input {output )} characters or states.
Let I be the set of all infinite sequences of type omega (i.e., corresponding to
the numbers O, 1, 2, ... ) of input characters, and let © be the set of all in-

finite and finite sequences of output characters.

A finite sequence may occur as the computed output of an automaton; see

below,

When a sequence < i,, i1, iz, ... >of I is fed into the inputs of an automaton
at times 0, 1, 2, ... respectively the autom&ton will produce an output sequence
< 65, 61, G2, ... > Dbelonging to ©; the behavior of an automaton is the mapping

it produces from I into 6. Finite automaton behaviors have been studied in-
tensively (e.g., [2], [3]), but though the behaviors of Turing machines are of
interest ([4], [5], [6]) the concept of behavior is not nearly so important for
the theory of Turing machines as the concept of "computation." This latter con-
cept has been defined in a number of different ways, none of which is applicable

to finite automata, so we will offer a new definition of computation.

This is an extension of the definitions of [4], p. 285.




Each sequence of I{6)} may be regarded as an input f{output) tape. An in-

put tape may be placed in the input tape reader R of Figs. 2 and L, which works

as follows. The tape symbol being scanned at time t appears at the output in-
stantaneously. When the "read control" wire is activated (put in state one)

at time t the tape reader advances the tape one square, so that at time t+1 the
next symbol appears on the output of the tape reader and hence at the input of
the automaton. If the read control is inactive at time t the tape is not ad-
vanced, so that in this case the symbol which appeared at the output of the

tape reader at time t also appears there at time t+l. The output tape writer

W of Figs. 3 and 4 works similarly: whenever the "write control" wire is acti-
vated the tape symbol being presented to the tape writer by the automaton is
recorded on the output tape and the tape is advanced to the next blank square.
Note that the read and write control wires are outputs of the automaton, so
that it controls their actions. Both reader and writer can only move their
tapes forward, so that neither can be used for intermediate storage during a
computation. The computation of an automaton is the mapping it produces from

I into O when the sequences of I are supplied to the input tape reader and the
sequences of 6 are produced by the output tape writer (see Fig. L4).

It is clear from this definition that behavior is a special case of compu-
tation: that case in which the read and write control wires are always active
(in state one). That is, behavior is '"real-time" computation.

The foregoing definitions of behavior and computation also apply to the
slow automata and cellular automata to be introduced later.

It is of interest to compare finite idealized automata and Turing machines



with respect to certain problems concerning behavior and computation. Consider,
for example, the four problems: Is there an algorithm (i.e., Turing machine)
for deciding whether any two < finite idealized automata > (Turing machines)
have the same (behavior) [computation]? There is an algorithm for deciding
whether any two finite automata have the same behavior ([2], [3], [T]), but
there is no algorithm for deciding whether any two Turing machines produce the

same computation.

It can be shown that if there were there would be an algorithm for deciding

"

whether or not an arbitrarily given Turing machine will "halt," and Turing [1]
showed that there is no such algorithm. In our terminology a machine which halts

is a machine which records only a finite number of output characters on the out-

put tape.

The solutions to the other two problems are unknown.

Friedman [8] gives a solution for the case of finite automata in which the
read control wire is always active (i.e., the input tape advances one square

every unit of time). See also Burks and Wright [9].

4, Slow Automata

The automata we consider next are intended to reflect, to some degree, the
physical facts that time is required for switching and that the number of wires
a single component can drive is limited by power and time requirements. The

primitives we will use are shown in Fig. 5. Every '"nan" switch is added fol-



lowed by n units of delay. An "and" switch is added which has a units of
delay. The output wire cf an element can bs connected to at most one inpu
wire. Hence wnen information is to be sent to two or more places a branch-

ing or fan-out element must be used; this element has b units of delay.

The output of the (nan) {and} (branching] element is iractive for the

first (n) {a} [b] units of time.

It is stipulated that an elemen®t output wire which is designated as the out-
put of the autcmatcn can be connected to nothing within the automaton itself,
but is to be reserved to operate something else, e.g., a tape writer. Any
automaton constructed from a finite number of slow elements by these rules

is called a finite slow autcmaton.

While the slow primitives of Fig. 5 are more realistic than the ideal-
ized primitives cf Fig, 1, we could have chosen an even more realistic set
of primitives. For example, we might have chosen four switching primitives
realizing pg, pq, pq, and Ppq, each followed by a unit delay, and a branching
element with four outputs and a unit delay. The reason for our less realistic
choice is as focllows. When one is interested in a particular type of equip-
ment he should choose a set of slow primitives which mirrors the properties
of this equipment. But we are interested in the general computational powers
of automata compossd of slow elements, and have chosen the primitives of Fig.
5 because they can be made arbitrarily slow by choosing n, a, and b to be

large. It will be seen that the resulis we give below are easily extended

to cover faster sets of primitives.



We will now compare finite slow automata with finite idealized automata.
It is clear that corresponding to each slow automaton there is a behaviorally
equivalent idealized automaton. The converse is not the case, however. Given
a finite idealized automaton, in general there is no slow automaton behav-
iorally equivalent to it, because the switching done instantaneously in the
idealized automaton takes time in the slow automaton. But for each idealized
automaton one can construct a computationally equivalent slow automaton. More
particularly, there is an algorithm which, when supplied with the design of
a finite idealized automaton Aj, will design a finite slow automaton Ag com-

putationally equal to Aj. We will call this our first algorithm. There is

not time to present this algorithm in detail, but we will sketch the essential
parts of 1it.

It contains a subalgorithm which operates on an idealized finite switch
S to produce a slow switch S' which realizes the same truth-function as S
but with a fixed delay d, the length of the delay depending on the switching
function. 8' is constructed from S as follows. Fach "nan" element of S is
replaced by a slow "nan" element with n units of delay. Then each branch of

S is replaced by a tree of branching elements.

This must also be done where a wire of S is used both as an output wire

for the whole switch and to drive another wire within the switch.

Finally sequences of delays are introduced into the lines so that the timing
is correct, i.e., so that for each point of switch S' the transit times over
all paths from the inputs to this point are equal, and so that the transit

times through the switch from inputs to outputs are all the same integer d.
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Let @ =nd B be finite binary sequences and let 7° be a sequence cof c
zeros. Cur first algeritim alsc contains a subalgoritiom which when given o,B
designs & siow sutcmatcon {without inputs) whose beshavicral output is the inf-
inite sequence ZCuRBB .-+, where the index c s a function of @ and B. Each
finite binary sequence &,B is formed by generating a single pulse, sending
it along paths of different lengtihs, and merging these paths. £ 1s repeated
indefinitely by means of a cycle., Hence any ultimately periodic sequence
opBR «+- can be produced vy a slow automaton after some fixed delay c.

ur first algorithm now operates on the given idealized automaton A5 as
follows. 1% puts A{ in the normal form of Fig. 6, where the switch S; is
instantaneous. I% then replaces this switch S{ with a szlow switch Sg which
does the following. First, Sgq realizes the same switching function as Si but
with delay e. Second, Sg receives the initial state o Aj at some appropriate
time t when signaled <o do so by a control pulse. Third, under the direction
of an ultimately periodic control sequence the slow switch Sg only allows the
tape read and “ape write control wires to be active at time t + (e+l) - 1,

t +2

~
)
+
)_l
p -2
1
[
N
t
poal
D
-
p—
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As a final step the first algorithm
adds the ultimately periodic circuits needed for controlling Sg and to supply
the initiel state of Aj to Sg.

The resul® cof the first aigoritkm is a slow autcmaton Ag which mimics
the behavior of Ai at a slow rate, Aj; starts in some internal state at time
zero; Ag starts in this state at a later time. Aj makes a transition from
one internal state tc the nex' in one unit of time; Ag makes the same transi-

tion in e+l units of time. What Ag does in cetween these times does not
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matter, because the control signals prevent these intermediate actions from
affecting the operation of the input and output tapes. Consequently, Ag pro-
duces the same computation as Aj.

Clearly the rate of computation of Ag is only a fraction (e~i-l)"l of the
rate of computation of A;. The question naturally arises: Is there a slow
automaton which computes as fast as any given idealized automaton? In gen-
eral there is not, because the decision as to whether or not to advance the
input tape may depend on the tape symbol being scanned, and while this deci-
sion can be made instantaneously in an idealized automaton, it takes time in
a slow automaton. This argument does not apply when the read control output
from the idealized automaton is input-independent. In this case the read con-
trol signal is ultimately periodic and can be produced by a slow automaton
(see the first algorithm). Moreover, there is an algorithm which, when given
an idealized automaton Aj, will synthesize a finite slow automaton Ag* whose
behavior is the same as that of Aj except that the outputs of Ag* are delayed

by some fixed amount g.

This algorithm is given in [10]. According to this reference the

algorithm was discovered by a number of different people.

A control circuit and gate may be added so that the write control wire cannot
be activated before time g. Combining all this we get our second algorithm.
When given the design of an idealized finite automaton Aj whose read control
output is ultimately periodic, this second algorithm designs a computationally

equivalent finite slow automaton Ag* which computes at the same rate as Aj

11



after an initial delay g.

The slow automaton Ag* produced by the second algorithm will generally
have many more primitive elements than the slow automaton Ag produced by the
first algorithlm. Hence the greater speed of As* is obtained at the cost of
additional equipment. It would be of interest to automata theory to have
some general theorems governing interchanges of speed and equipment of this

sort.

There is an extended concept of computation which is of interest. Let
the <input tape reader scan> [output tape writer print] up to h squares at
once and allow it to be advanced from 1 to h squares in a time step. Then
for each idealized finite automata A and each integer h there is a finite
idealized automaton A" which is computationally equivalent to A but computes

h times as fas%.

We can consider Turing machines only briefly. A Turing machine consists
of a finite contrcl automaton connected to an infinite shift register, and in
our original definition these were both constructed from idealized primitive
elements. Both the finite control automaton and the infinite shift register
can also be constructed from slow primitive elements so that for each Turing
machine made of idealized primitives there is a computatiornally equivalent
Turing machine made of slow primitives. There is not time to give the con-

struction here.
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5. Probabilistic Automata

The automata we have discussed so far are all deterministic. Actual com-
puters make errors, and natural systems often function in non-deterministic,
statistical ways. Probabilistic automata are intended as models which mimic,
to a first approximation, the statistical characteristics of real systems.
Each primitive element of a probabilistic automaton produces the "correct" out-
put with probebility l-e¢ and the "incorrect" output with probability e. For
example, a probabilistic "nan" element has the probabilistic truth-table of
Fig. 7: it produces the "nan" function with probability l-e¢ and the "and"
function with probability €.

The matter of whether a primitive element is probabilistic or not is in-
dependent of whether it is slow or not. However, for the sake of simplicity
we will consider only finite automata made from either of two sets of proba-
bilistic primitives: the probabilistic version of the idealized primitives
of Fig. 1, and the slow probabilistic primitives of Fig. 8. In each case the
probabilistic operation of the primitives is defined with respect to a spec-
ified deterministic operation. The deterministic definition gives the de-
sired or "correct'" answer, and in discussing probabilistic automata it is
often convenient to refer to this deterministic norm. Probabilistically the
element gives the correct answer with probability l-e, the incorrect answer
with probability €. In view of what has just been said, the probabilistic
elements of Fig. 8 may be defined by specifying their deterministic behavior.
The second primitive is a "majority element" whose initial output is zero

and whose output at time t+1 is one (active) if and only if two or more of



its inputs are active at time t. The third primitive of Fig. 8 produces a
constant zero (inactive) output. For simplicity we will allow unlimited
branching with each set of primitives.

A great deal may be learned about probabilistic automata by studying the
input-free case. Consider the simple example of Fig. 9, where the initial
state of the delay is left unspecified. TIts deterministic state diagram is
given in Fig. 10; whatever its starting state, it remains in that state for
ever., Hence, as a deterministic system its memory span is infinite, though
of course its memory capacity is finite. But probabilistically it behaves
differently, as its probabilistic state diagram (Fig. 11) shows. Probabi-
listically it can make a transition from either state to either state. Con-
sequently a finite probabilistic automaton has only a finite memory span, as
we shall now show.

Consider the state diagram of an arbitrary input-free finite probabi-
listic automaton. When the automaton is in a given internal state o it may
pass from this to any other state 0 with a non-zero probability Pij- Let n
be the number of internal states of the automaton. Then for each internal

n
state oi we have 2,

2y = 1, and there is an n by n probabilistic transition
J:

Pij
matrix M governing the transitions between states, with every element of M
being non-zero. let w = [p;, P2, *+, Pn] be the probability vector of the
initial state, where p; is the probability that the automaton will start in
state oj. It is clear from all this that the sequence of states of the
automaton is a Markov chain, starting in some state at time zero in accordance

with the probability vector m and making transitions according to the Matrix

M.
14



A regular Markov chain is one in which some finite power of the transi-
tion matrix has only positive elements. Since all elements of M itself are
positive, the sequence of internal states of a finite, probabilistic, input-
free automaton is a regular Markov chain. For any regular transition matrix
M there is a unique probability vector @ such that for any probability vector

L§’

(1) Limit = - M* = @

t > o
Note now that as we vary the unit delays of the automaton between those whose
initial outputs are zero and those whose initial outputs are one, while leav-
ing the rest of the automaton unchanged, we are varying the initial vector =
but leaving the transition matrix M unchanged. Hence this theorem tells us
that the ultimate statistical character of the sequence of internal states of
a probabilistic automaton is independent of the initial state. For example,
whether the question mark of Fig. 9 is replaced by a zero or a one, in the
limit the output is as likely to be a one as a zero. Hence the initial state
of a probabilistic automaton has less and less influence on its behavior as
time increases,

We can study the memory properties of a probabilistic automaton by in-
vestigating how fast an input-free probabilistic automaton forgets its initial
state. ©Specifically, we ask how much information its present internal state
gives us about its initial state. Without any essential loss of generality
we may confine our attention to Fig. 9. Iet O(t) mean that the output is

one (active) at time t. Imagine that Fig. 9 is a black box, so that we do
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not know which delay element of Fig. 1 is there. There are two hypotheses:
h says that the question mark is to be filled in with a one, T that it is to
be filled in with a zero. That is, pl[0(0) |h] = 1-¢ and p[0(0) |h] = . 1If
Fig. 9 were deterministic, 0(t) for any t would give us perfect information
about the box: O(t) implies h, O(t) implies h. Since Fig. 9 is probabi-
listic, O(t) gives us only statistical information about h and h. To see
exactly how much information it gives we will apply Bayes' theorem of inverse
probabilities.

Iet P[h|O(t) ] be the probability of hypothesis h conditionally on the

observation 0(t), and similarly for P[h|O(t)]. By Bayes' theorem

(2) Plhlo(t)] P(n) Plo(t)]|n]
plhlo(t)] P(h) Plo(t)|n]

i.e., the ratio of the posterior probabilities equals the ratio of the prior
probabilities times the ratio of the degrees of prediction. The ratio of the
posterior probabilities divided by the ratio of the prior probabilities is a
measure of the amount of information the observation O(t) gives us about the
hypothesis h. This amount of information can be computed as a function of x,

M, and t. We will not make the calculation here, but will instead look at

what happens in the limit. By (1)

(%) Limit P{O(t) [h] _ 1
t + o PLO(t) |h]
Hence
(1) Limit P[hlo(t)] _, B(h) _ ;
t » o P[h|O(t) ] P(h)

In other words, as t increases the observation O(t) gives us less and less

information about the contents of the black box, and in the limit it gives us
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no information. Hence a probabilistic automaton forgets more and more as
time continues and in the limit remembers nothing.

The forgetting of an input-free finite probabilistic automaton can also
be aralyzed in terms of Shannon's information theory [11]. For this purpose
we can think of the automaton (cf. Fig. 6) as being stretched out in space,
so that it consists of noisy unit delays alternating with a perfect switch
ad infinitum. The initial state of the automaton is then transmitted through
this infinitely long channel. At time t it will have passed through t delay-
switch combinations, i.e., through t noisy delays and through t deterministic
recodings. The loss of information as a function of time can be calculated
by means of information theory. The result will be the same as we obtained
by means of Bayes' theorem: as t increases indefinitely the amount of infor-
mation transmitted approaches zero.

The result just given is for memory in input-free probabilistic automata.
But remembering is a special kind of computation (as we defined the term) and
input-free automata are a special kind of automata, so one can see by analogy
that a similar result holds for the computation of probabilistic automata gen-
erally: as time passes the probability of a mistake in computation rises, and
in the infinite limit the computed answer is mere noise. Fortunately, from
a practical point of view we are interested only in finite computations, that
is, in computations which take a finite amount of time. With respect to finite
computations the actual rate of degeneration of information is of interest, as
well as techniques for retarding this loss of information and rendering errors

less likely.
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The late John von Neumann developed a method for synthesizing reliable
automata from unreliable elements [12]. His method is for slow switches only,
but by means of the algorithms of Section 4 we will extend it to cover arbi-
trary finite automata. Von Neumann's method involves replacing single lines
driving single elements by multiplexed cables driving arrays of elements. As
extended, it accomplishes roughly the following: given a probabilistic ide-
alized automaton Aj it produces a multiplexed automaton Ay related to A; as
follows: deterministically, Ay is much more reliable than Aj.

We will build the multiplexed automaton from the primitives of Fig. 8,

but these are first made into multiplexed organs: a restoring organ (Fig.

12) and a multiplexed-and-restored nan organ (Fig. 13). The inputs and out-

puts of these multiplexed organs are cables of N wires rather than single

wires; N is called the multiplexing factor. For simplicity we have used a

multiplexing factor of only three in Figs. 13 and 14, but in practice the
multiplexing factor must be much larger; the multiplexing factor N must be
sufficiently large to give the reliability desired and to warrant the use of
statistical methods in analyzing the behavior and computation of the multi-
plexed automaton.

A finite automaton constructed from these two kinds of organs is called

a finite multiplexed automaton. Its inputs and outputs are cables of size

N. In the sequel we will compare the computation of idealized automata with
the computation of multiplexed automata; in this comparison single wires of

idealized automata are to be compared with cables of multiplexed automata.

18



A multiplexed automaton is so constructed that if it were deterministic
all the wiresg of a given cable would be in the same state at the same moment
of time, Since the automaton is probabilistic this will not be so, but if N
is sufficiently large compared to € and the design is suitable then it will
be nearly so; more precisely, under these conditions the probability will be
high that most of the wires of a given cable will be in the same state at any
given moment. The activity level of a multiplexed cable is interpreted rel-
ative to a statistical fiduciary parameter A as follows. If (1-A)N or more
wires are active (in state one), the cable is taken to represent a one; if
AN wires or less are active, the cable is taken to symbolize a zero; and if
the activity level falls between A and (1-A) the signal on the cable is not
interpreted (i.e., is '"nonsense").

A restoring organ consists of a randomizer driving a parallel array of
N majority elements (Fig. 12). Each of the N wires of the input cable is
split irnto three wires before entering the randomizer; the randomizer permutes
these wires before they drive the majority elements. Deterministically a re-
storing organ merely delays the pulses of the input cable one unit of time.
Probabilistically a restoring organ operates as follows. Let (B){y} be the
probapbility that an (input wire) {output wire} is in error at any given time
t. Since the randomizer only permutes wires, P is also the error probability
of a single input wire of a majority element. If the randomizer rearranges
the wires in a sufficiently random fashion the error probabilities of the
three wires going into a single majority element will be independent. A de-

tailed analysis of cases shows that
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(5) y < e + 38°

For suitable ¢ and B we will have y < B, i.e., the probability of output error
is less than the probability of an input error.

An important use of the restoring organ is as part of the multiplexed-
and-restored nan organ (Fig. 13). This consists of a parallel array of nan-
elements followed by a restoring organ. Deterministically, the multiplexed-
and-restored nan organ performs the nan switching function on two input cables
and then delays the output two units of time. Probabilistically it operates
as follows. Let (o) {Q2) be the probability that a wire of the (first) ({sec-
ond} input cable is in error at time t, and let o = Max (01, G2). We consider
how the error probability B of the input to the restoring organ depends on Q.
There are two main cases to consider.

First, the two input cables may come from the same source (i.e., the nan

organ negates the input), in which case

(6) B<e+a.

Second, the two input cables may come from separate sources; these will be
either constant sources (e.g., all zeros) or other organs. In the former
case the errors on wires of different cables are assumed to be independent;
in the latter case the input cables came from restoring organs, so that the
error probabilities &1, 0o for the two input cables operate independently.

Considering the different possible input states we get

20



(7) B<e + 02 (for the zero-zero input state)
(8) P<e + 0 (for zero-one or one-zero inputs)

(9) B<e+ 2x (for one-one input)

Of the formulas (6) through (9) the last gives the greatest error. Combining
(9) with (5) we have, for the multiplexed-and-restored nan organ, in the worst

case,

(10) y < e + 3(et2q)®

So, for suitable € and @ it is the case that y < «, i.e., the probability of
an output error is less than the probability of an input error.

A comparison of formulas (5) and (10) shows that the latter sets a bound
on the output error probability of a single wire as a function of the input
error probability, for any organ in a finite multiplexed automaton. Hence it
is relevant to examine the effect of iterating formula (10) on itself, start-
ing with the initial case of @ = €. It turns out that for sufficiently small
€ the output error probability y is always bounded. For example, if € < .0l
the output error probability of any multiplexed organ is bounded by 1l.5¢, and
if € < 001 the output error probability is bounded by 1.03€.

A full statistical analysis requires a consideration of the distribution
of errors on the cables. There is not space for this here, but von Neumann
{12] has done it for the (in general) worst case of a restoring organ com-

posed of nan elements.

Von Neumann considered only slow switches, and hence did not study nets

with cycles. Since the randomizing networks are fixed throughout time and
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are only pseudo-random, it is possible that higher-order errors will be amp-
lified when signals go around cycles repeatedly. This problem needs inves-
tigation. To reduce such errors one can vary the structure of the randomizer
from one part of the net to the other and one can also use more restoring

organs than our design algorithms use.

To see intuitively what happens we focus attention on a single finite multi-
plexed automaton and consider the effect of varying the multiplexing factor

N or this automaton. Let © be the probability that the signal level in a
given cable will fall inside the "nonsense" band A to (1-A). By increasing
N indefinitely we can bring © arbitrarily close to zero. Since every finite
multiplexed automaton contains a finite number of organs it follows that by
increasing N indefinitely we can increase indefinitely the mean free path be-
tween errors in the automaton and hence increase indefinitely the reliability
of the automaton.

This increase in reliability is purchased, of course, at the cost of
more equipment. For the cases he considered, von Neumann [12] found large
multiplexing factors (e.g., 20,000) to be necessary, but two points should
be noted in this connection. First, in order to treat an extreme case we
have deliberately chosen a restoring primitive which requires large multi-
plexing factors for reasonable reliability. (Compare in this respect our
choice of the slow primitives of Section 4.) There are restoring primitives

which give much better results.

For example, a generalized majority element with 2n+l inputs, whose out-
put is active if and only if n+l or more inputs are active. As n increases
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this becomes a better restoring primitive [13].

Second, the algorithms to be given next apply to arbitrary finite automata
and for this reason will not give as good results as a procedure designed for
a special class of automata (e.g., a computer organized into memories, arith-
metic units, transmission lines, etc.).

We will now adapt our earlier algorithms for slow automata {Section L)
to finite multiplexed automata. To begin with, look at the multiplexed organs
deterministically and in terms of operations on cables (rather than on single
wires). Looked at this way the restoring organ is a unit delay and the multi-
plexed-and-restored nan organ is a nan-switch followed by two units of delay.
There is also available the constant zero (i.e., a cable all of whose wires
are inactive). From these logical elements we can synthesize all the slow
primitives of Fig. 5, with the cables of the multiplexed automaton doing the
Job performed by the wires of the slow automaton.

In this manner we obtain two more algorithms. When given a finite ide-
alized automaton Ai and a desired mean free path between errors r, our third
algorithm designs a finite multiplexed automaton Ap with these properties:
deterministically Ay is computationally equivalent to Ai, probabilistically
the mean free path between errors in Ap is r. When given a finite idealized
automaton Ay whose read control output is ultimately periodic and a desired

mean free path between errors r, our fourth algorithm designs a multiplexed

automaton Ap* with these properties: deterministically Ap* produces the same
computation as Ai and at the same rate (after an initial delay), probabi-

listically the mean free path between errors in Ap* is r.
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It is of interest to compare A;, Ap, and Ap¥, since deterministically
they are all computaticnally equal. Ay has many more primitive elements
than Aj and computes more slowly than A;, but probabilistically it is more
reliable than Aj. Here reliability is bought at the cost of speed and equip-
ment. Am* is even larger than Ay, but computes at the same rate as Aj. Here
reliability is bought at the cost of equipment (and a fixed initial delay).
As in the case of slow automata, it is desirable to have some general theo-
rems governing interchanges of speed, equipment, and reliability of the kind

Just illustrated.

6. Cellular Automata

Slow automata (Section L) take account of the time required for switch-
ing and the limit on the number of wires that a single component can drive.
In actual computers there are also limits on the length of wires and there
are design problems which arise in connection with the geometrical arrange-
ment of components. These factors are partially taken account of on a the-
oretical level by means of cellular automata. A cellular automaton is a fi-
nite or infinite array of cells, each cell containing a finite automaton which
is connected to certain "neighbors." The infinite shift register (tape) of
a Turing machine (Sections 2, L) is a one-dimensional infinite cellular
automaton.

In an unfinished manuscript von Neumann [1L4] developed an infinite two-

dimensional cellular model with square cells. FEach cell is occupied by the
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same 29 state finite automaton

There i1s a fiducial initial state U. Initially all but a finite number

of cells must be in this state.

which communicates directly with its four immediate neighbors with a delay of
one unit or more. Though von Neumann did not finish the construction, he
carried it far enough to show that both a Universal Turing machine and a self-
reproducing automaton can be embedded in this model.

One can also study finite cellular automata by considering some finite
set of cells and taking the inputs and outputs from along the edges. The
problems of Section L4 ("Slow Automata") and, if probability is introduced, of
Section 5 ("Probabilistic Automata") then arise. There is time to mention
only one result here. There is an algorithm, analogous to our first algorithm,
which does the following: given a finite idealized automaton Aj, this al-
gorithm produces a finite von Neumann cellular automaton Ac which is computa-

tionally equivalent to A; [15].
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This quarter was devoted to completing the adaptation of the nerve net
program to The University of Michigan Computing Center's IBM 709 (and later,
IBM 7090) system. The program had been written originally in the SCAT lan-
guage for The University of Michigan Willow Run Laboratories IBM 709 system
and debugged to the point where some vital changes in the underlying statis-
tical analysis were found to be necessary and some experiments on sustained
activity were carried out with positive results. From the time of the trans-
fer of the IBM 709 from the Willow Run Laboratories to the Computing Center un-
til August 1962, the main efforts were directed towards adapting the program
to the University of Michigan system. The authors were forced to write their
own assembly program, called SCALP, which is specially adapted to the needs
of the simulation program, and yet operates within the procedures of The Uni-
versity of Michigan Computing Center's system. After converting the simula-
tion program to SCALP, success was immediately obtained in debugging the input-
output and tape handling routines and simultaneously runs on the three-neuron
correlation experiment and a "shake-down" test of the central net program were
begun. There was a gap in computer operation from August 28 until September
24 during which period the Computing Center was closed to replace the IBM 709
with the IBM 7090. This period was used by the authors to do additional prep-
aration for future runs. After installation of the IBM 7090 was completed
(which caused only minor changes in the simulation program), the runs above
were continued. In early October, a complete interpretive trace routine with

a monitoring option was written and debugged to allow detailed examination of
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the net program as an aid in tracking down the scurce of any anomalous behavior.

The writing and debuggirg of the SCALP rcutine mentioned abcve took place

in July and August. A write-up cn SCALP is aveilab.e (¢

ressed Ascembly and Loading Program by the same authors); a brief description
P y g .

The SCALP svetem performs a minimal azsembly and lcading function. It

does not produce a new deck of zards of any kind. It does not possess any

powerful transiation features such as macrc transiation. It does nct produce

the kind of detailed listing produced by the S0S assembier of The University

of Michigan ascembliy program (UMAP). It does not make automatic provision for

multiple core-load programs. However, Ior those who are cbliged to write

rather complex programs in machine language, 1t does possecs the following ad-

vantageous features:

it is zimple tc iearn and has few pitfalls.
(21 It performs a very fast assembly relative to more
eilaborate systems.

(%) It aliows the writing cf several instructions per
card, thus permitting a long program to be con-
tained in a rather small symbolic deck.

(k) It does not require a strict card format, in the
sense that certain things must be punched in cer-
tain columns. The format requirementse are con=-
textual rather than absclute.

(5) It provides optional linkage with The University
of Michigan Executive System and I-0 Superviscr.

{6) It provides for the inciusion of relocatable Dbi-
nary subroutines,
The aim of SCALP is to make it convenient, and also feasible from the

standpoint of machine time, tc use the original symbolic deck as the per-

manent form in which a program is handled.
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PERSONNEL

The following is a summary of the hours worked under this contract for the
period 15 July to 15 October 1962.

A. W. Burks 205
J. H. Holland 368
J. W. Crichton 3%6
M. R. Finley 496
J. W. Thatcher 96
R. A. Laing __96

Total man hours 1597
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OBJECTIVES FOR NEXT QUARTERLY PERIOD

The research in environmental regularities (opportunities for the adaptive
system to depart from random or enumerative behavior) which was begun in this
last quarter, will be continued. This research topic will be developed in de=-
tail for the more particular "tree-search" case (an environment, specified by
a tree with assigned utilities, which also includes games, search procedures,
etc.). Specific theorems relating the limiting adaptive efficiency to the
regularities present will be the longer range goal, with the immediate objec-
tive being to establish the maximum possible rate of adaptation when the util-
ities are assigned to the tree at random (the "absence of regularities" case).
(Holland).

In the nerve-net simulation experiments, the next quarterly period will
be devoted to completion of the debugging of the main program, and initiating
the planned series of experiments. A simple macro-instruction feature will
be incorporated into the SCALP system, with a view to reducing the rate of
errors in the programming of experiments (Finley and Crichton).
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