THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Computer and Communication Sciences Department

ON BACKWARDS-DETERMINISTIC, ERASABLE,
AND GARDEN-OF-EDEN AUTOMATA

Arthur W. Burks

/

Technical Report No. 012520-4-T
September 1971

with assistance from: !'t{~
Department of Health, ﬁaucation, and Welfare
Natlonat Instltutes of- Health
Grant' No. GM- 12236
Bethesda, Marylahd‘

Natlonal'Scaence Edundat1on
Grant: No, GJ- 29989X
Washlng,ton i~D.C.

WM20%69

On Backwards-deterministic, ltrasable,

and Garden-of-Eden Automata

Arthur W. Burks

1. Introduction
2. Finite automata
3. Uniform cellular automata

4. Local concepts of erasability, Garden-of-Eden,
and constructibility

5. Some relations among these global and
local concepts

6. Some problems concerning computability and
constructibility in cellular automata

Appendix

10

15

19

Al

On Backwards-deterministic, Erasable,

and Garden-of-Eden Automata
1. Introduction

Moore (3] and Myhill (4] have shown some interesting relations between a
certain type of erasability in a cellular automaton and the existence of Garden-
of-Eden configurations. Their concepts of erasability and Garden-of-Eden
configuration are local concepts, but there are also corresponding global
or system concepts to which they are closely related, namely backwards-
indeterminism and the existence of Garden-of-Eden system states. Moreover,
these global concepts apply to finite automata as well as to (infinite) cellular
automata.

In the present chapter we will define various local and global concepts
of these sorts and explore their interrelations somewhat. We will then make
some conjectures about their relations to universal computability and
universal constructibility in cellular spaces.

2. Finite automata

Our building blocks for both finite and infinite systems will be finite
automata whose outputs are switching functions (projections) of the internal
states (delay output states) and for which any internal state may be an
initial state (the state at £ = 0). A finite automaton may be defined as a
state graph. Alternatively, it may be defined as a logical net such that
every path from input fo output goes through a delay, and with some designated
set of allowable initial states; the set of internal states then consists of
the given initial states and all states which can be reached from them.

A finite system of automata is any system of finite automata composed by
means of the operations (a) juxtaposition (b) identification of input wires

(c) series connections, in which an output wire drives an input wire,

provided the connection introduces no cycle, and (d) cyclic connections.
Cycles introduced by (d) can never be vicious, because all such cycles must
pass through delays. We will call a finite system built without (d) a
finite series-parallel system. It is clear that any finite system of finite
automata is a finite automaton.

The following symbolism will be used. Let S, I, and © be the sets of
internal (delay output), input, and output states respectively; lower case
letters will be used for the states themselves. [s](0,t) will mean a sequence
of internal states from t = 0 to t, [s](t') will mean an internal state at
t + 1, and similarly for [i](t), [6](0,t), etc. A finite automaton is
governed by a transition function [T: I x S + S) giving the next internal
state as a function of the present internal and input states and an output
function (L: S - 0) giving the output state as a projection of the internal
state. Clearly [s](0) and [i](0,t) determine [s](0,t') and hence [6](0,t').

Finite automata as just defined are deterministic, the present i € I
and s € S determining the next s' € S and 6 ¢ 0. This is forwards-going
determinism. Many deterministic systems of nature are also backwards-
deterministic, for example, Newtonian machanics. This motivates the following
definition.

A finite automaton is backwards-deterministic (BD) if and only if for
each i ¢ I and s' € S there is at most one s € S such that T(i, s) = s"'.
Alternatively, an automaton is BD if and only if for each [i](0,t) and [s](t')

there is at most one sequence [s](0,t) satisfying iterations of the transition

function T.

Burks and Wang, (2] p. 286.

Since the output state 6 is a projection of the internal state s, if an
automaton is BD each [1](0,t) and [s](t') will determine a unique [6](0,t'),

and in the input-free case there will be a unique [6](0,t'). A finite

automaton is said to be backwards-/ndeterministic (BD) if it is not backwards
deterministic,

The simple examples of Figure 1 illustrate these concepts. The question
mark in a delay indicates that the initial state (0 or 1) is unspecified.
The cyclic binary counter of Figure la is BD, since its initial state is the
same as its state at t just in case the number of ones received prior to t is
even. The automaton of Figure 1b is BD since bothi = 1, s = 0 and i = 1,
s =1 at t produce s =1 at t'. The juxtapose of tﬁe BD Figure la and the
BD Figure 1b is BD.

We next establish a theorem concerning finite systems of automata.
Theorem I: A finite series-parallel system of BD automata is BD. Proof:
We show that a compound of BD automata by any of the rules (a) juxtaposition,
(b) identification of inputs, or (c) series connection (without cycles)
produces a BD automaton. This is obvious for the first two cases, so we
prove it only for the third. See Figure 2a.

Since A1 is BD,
m [il](O,t), [sl](t') determines [sl](O,t').
Since A2 is BD, in both the connected and unconnected net
@) [i,i,]10,t), [s,](t") determines [s,10,t").
In the connected net,
(3 [i;100,8), [s;1(t') determines [i,](0,t").
Hence clearly)
(@) [i,,i,1(0,t), [s,](t") determines [i,,i](0,t").
Combining this with (2) gives
(5) [il,iz](O,t), [sl,sz](t') determines [52](O,t').
Combining this with (1) gives
6) [il,iz](o,t), [sl,szj(t') determines [sl,sz](o,t').

Q.E.D.

Theorem 1 does not hold for finite systems of automata generally, that
is, it does not hold if cycles are allowed in composition. This is shown in
Figure 2b. The automata A and A' ecach operate as follows. Each keeps its
internal state for all inputs except 11, which causes the internal state to
reverse (change from 0 to 1 or 1 to 0). A and A' are clearly BD. But the
cyclic compound of A and A' is BD, for the input 11 to Figure 2b produces
the state 00 whether the internal state is 00 or 11.

There are finite series-parallel and finite cyclic systems of BD
automata which are themselves BD. A cyclic example is shown in Figure 3.

The shift register of Figure 3a is BD, for with both the data and shift
inputs active (state one) at t, the internal (delay output) state at t' will
be one regardless of the internal state at zero. Yet the cyclic shift
register of Figure 3b is BD, as is clear from its state transition diagram.
Note that the result of juxtaposing two copies of Figure 3a is BD, but that
when these copies are interconnected as in Figure 3b certain internal state
histories previously possible (e.g., 00, 01, 11, 10, 00) are no longer
possible.

We next make some observations about closed (input-free) finite automata.
The state graph of a closed finite automaton consists either of ''pure cycles"
(in which a finite state sequence is indefinitely repeated) or '"prefixed
cycles" (in which one finite state sequence is followed by another which is
then repeated indefinitely), or both. See Figure 4. An open finite automaton
can be closed by means of a switch whereby a given input state i is repeated
indefinitely (iii...).

Theorem II: The state graph of a closed finite automaton consists of
pure cycles if and only if that automaton is BD. A finite automaton is BD
if and only if each of its closures with a constant input is a pure cycle.

If a finite automaton is BD, every internal state belongs to a cycle.

Proof: The first part is obvious, and the last part is a simple corollary
of the sccond part, so it will suffice to prove the second part. In the
forward direction, note that if an automaton is BD, its closure with a

constant input is also BD. In the backwards direction, assume that automaton

A has three internal states Sy S5 S such that
T(1,51) =S
T(i,sz) = s,

The closure of A with the constant input iii... will have the transition
1,8 and $5sS and hence will have a prefixed cycle. Q.E.D.

It is the theme of this paper that BD automata are less powerful and less
interesting than BD automata. This claim is substantiated in the finite case
by the following result: No BD finite automaton is behaviorally equivalent
to Figure 1b. Consider the closure of Figure 1b with the constant input
111...; this net produces the output 0111... . By Theorem II the constant
input closure of a BD net is a pure cycle. But 011l... can't be the
projection of any pure cycle, for the internal state that produces output
zero will be repeated indefinitely.

Roughly speaking, a BD automaton can never 'forget" its state, for the
internal state at t can be recovered from the input history and the present
internal state. This property of BD-ism is negatively correlated with the
following property. An internal state is a Garden-of-Eden (GOE) state if and
only if it can occur only at time zero. A finite automaton ie GOE if and only
if it has a GOE state. The concept of a GOE state is a global concept, to be
contrasted with the local concept of a GOE configuration introduced in
connection with cellular automata below.

The next theorem is a corollary of Theorem II. Corollary III: If a
finite automaton is BD, then it is GOE. A closed finite automaton is BD

if and only if it is GOE.

3. Uniform cellular automata

We consider next finite and infinite arrays of finite automata
which are regular in the following respects. Each array is a regular
geometric arrangement of copies of the same finite automaton. Without any
real loss of generality we can assume these arrays to be arranged in discrete
Cartesian n-dimensional space, each point being viewed as a cell. There is
defined a neighborhood relation N(c) which gives in sequence the m neighbors
that are directly connected to a cell c. Each automaton has m times as
many inputs as outputs so that in an infinite cellular automaton there will
be no free inputs or outputs. It is customary to view a cell as belonging
to its own neighborhood. Hence the local transition function maps from the
state of N(c) at t to the state of c at t'. Every infinite, closed system and
every finite system satisfying these conditions is a cellular automaton.

A finite cellular automaton is a finite automaton, so the concepts of
internal, input, and output states, transition and output functions,
backwards-determinism (BD), and Garden-of-Eden (GOE) states and automata
apply to it without further ado. An infinite cellular automaton is, in an
appropriate sense, closed, and does not have any outputs, so all these
concepts except those involving inputs and outputs can be made to apply to
it with an appropriate definition of internal state. The internal state
of an infinite cellular automaton is an array of its cell states which
includes a representation of the origin and the coordinate system. Note that
the result of shifting (translating) or rotating the internal state of an
infinite cellular automaton in space is generally a different state. In
many situations we will want to distinguish an infinite cellular automaton
system and its states from its cells and their states and from its finite

areas (subsystems) of cells and their states.

Closed Turing machines and von Neumann's cellular automata[S] are special
cases of infinite cellular automata. In both cases there is a particular
stable cell state called the "blank" state, and internal states with infinitely
many non-blank cell states are prohibited. The notion of an algorithm is
usually stated in terms of a blank state, since an algorithm must be finitely
expressible.

von Neumann's notion of construction in a cellular automaton further
presupposes a set of stable cell states which includes the blank state,
construction being defined with respect to these stable states rather than
with respect to the set of all cell states. Indeed, if one of our
conjectures is true (see Sec. 6 below), universal construction is not
possible in an infinite cellular automaton if it is defined with respect
to the set of all cell states.

We proceed now to define these notions more precisely. Let
S{N(e), t}, S{e, t'}, etc. describe the state of the region indicated at
the time indicated. A set o of cell states is stable (quiescent) when:
if every cell state of S{N(e), t} belongs to o, then S{c t} = S{e, t'}. A cell
stéte is stable if its unit set is stable.

A cellular automaton with no set of stable states will be called an
unstable cellular automaton. Note that an uﬁstable cellular automaton
may have stable configurations. An example.is afforded by any two-way
infinite linear cellular automaton whose cell transition function satisfies

these conditions:

T(00,0)

1 T(11,1)

0

T(00,1) = 1 T(11,0) = O.
The sets {0}, {1} and hence {0,1}, are all unstable, but the infinite internal
state ...01010101... is stable (is self-repeating). I am doubtful that

unstable cellular automata are of much interest, so we will consider mainly

(but not exclusively) stable cellular automata.

A stable cellular automaton has, by definition, at least one stable
state. If there is only one, it is called the blank state. If there is
more than one, we will assume that one has been designated as the blank
state. In all our examples, zero (0) will be used for the blank state.

Note that the blank state plays the role of free space in traditional
physics: nothing happens there. On the continuous creation theory things
happen in free space,'but this requires a probabilistic model anyhow. Since
computability and constructability are defined with respect to sets of stable
states, these notions presuppose a universe which is stable in certain
fundamental respects.

The internal (system) states of an infinite, stable cellular automaton
are of two kinds. A state is algorithmic or non-algorithmic according to
whether finitely many cells are non-blank. Note that the successor of an
algorithmic state is always algorithmic, but that a non-algorithmic state
may be succeeded by either a non-algorithmic state or an algorithmic state;
for an example of the latter see Example 47T of the Appendix A. An infinite
stable cellular automaton has two variants: an algorithmic variant, in
which the initial internal state (and hence all states) is algorithmic; and a
non-algorithmic variant, in which any state may be an initial internal state.

In von Neumann's cellular automaton system the set of ten states
W, Copr >3 45 <0 42 D, ff, «, W} is a stable set which plays an essential
role in universal construction. It is, moreover, the largest stable set of
the system. von Neumann called these states ''quiescent'" because of his
biological point of view; from the point of view of physical systems, they
are ''stable." The undecidable state U is designated as the blank state of
a von Neumann cellular system. Actually von Neumann's transition function

is defined so that, intuitively speaking, E_is the most stable of all the

29 states, but it is difficult to define this kind of stability formally.
This system is BD, and every finite subsystem of it is BD. The system is
GOE .

The set of tape characters of a Turing machine is a stable set, with zero
or a blank usually designated on the blank state. All input-free Turing
machines can be embedded in von Neumann cellular automata. Moreover, a Turing
machine with a single tape (and no inputs) can be defined as a one-dimensional
von Neumann automaton. Imagine that the finite control automaton moves along
the tape, instead of vice-versa. Let T be the tape alphabet and F the set
of finite automaton states. Let A mean that the finite automaton is not at
a tape square. The set of cell states is then T x (F U {A}) constitutes a
stable set. Note that exactly one cell is non-stable at any moment of time;
this is the cell consisting of the tape square under scan and the finite

automaton. Each different Turing machine has a different transition function.

10

4. Local concepts of erasability, Garden-of-Eden,

and constructibility

Backwards-indeterminism (BD) consists in two internal states having
the same successor. (If the automaton has inputs this must be so for some
fixed input state.) When two states merge into one, certain information
is lost, so backwards-indeterminism is a kind of "erasability." We will
next introduce two other closely related but distinct senses of erasability.
Backwards-indeterminism is local as well as global, applying to every
finite area of an infinite cellular automaton, including individual cells,
as well as to the whole automaton. The second kind of erasability is a
local variant of backwards-indeterminism, in which two configurations
agreeing on their borders have the same successor. This is Moore's concept

of erasability.

(3] [4]

Moore applied this only to algorithmic cellular automata, but Myhill
applied it to all infinite cellular automata. Both defined this concept for
the particular neighborhood relation in which a cell touches each of its
neighbors at at least a point, whereas we define it for any (finite)

neighborhood relation.

We will call it "configuration-erasability,'" to distinguish it from our third
kind of erasability, to be called ''cell-erasability."

A finite area is any finite, designated set of cells. Two areas are
stmilar if one can be converted into the other by a shift in each dimension.
A configuration is a state of an area, in the sense of an assignment of a
cell state to each cell of the area, the same assignment for similar
areas being called the same configuration, except that when we count
the number of subconfigurations included in a large configuration we

do not count overlapping subconfigurations. Since all cells have the same

11

transition function, what happens in any configuration happens in any
similar configuration, i.e., any configuration obtained by shifting each
cell a specified amount in each dimension. If s is an internal state and
A a (finite) area, {s|A} will be the configuration of A in state s. This
notation applies to finite as well as infinite cellular automata, but in
the former case we will assume that A is such that the neighborhood of the
neighborhood of A, i.e., NZ(A), exists.

Let $1 and S, be two internal states of a cellular automaton and A a
finite area. The pair of configurations {sllA} and {sz|A} erases if and
only if the following three conditions are satisfied:

(1) These configurations differ, i.e., {51|A} # {SZIA}

(2) They agree on N°(A) - A, i.e., (s, IN*(a) - A} = {s,IN°(8) - A}

(3) Their successors agree on N(A), i.e., {T(sl)lN(A)} = {T(sz)IN(A)}.

A pair of internal states Sy and s, erases if and only if there is an area
A such that the pair of configurations {s,|A} and {s,|A} erase. A cellular
automaton is configuration-erasable if and only if it has a pair of internal
states which erase.

Let A represent all of a cellular automaton other than the cells in A.
Myhill defines a concept of "indistinguishability" in terms of all environments,
i.e., in terms of all states of A. His concept can be proved equivalent to
Moore's by taking account of the delay in each cell.

The following theorem helps explain the concept of configuration-erasability.
Theorem IV: 1If an automaton is configuration-erasable then it has an area

(subsystem) which is BD. If an automaton is configuration-erasable, then it

is BD.

Proof: The BD area referred to in the first part is simply N2(A). Note that
the converse of the first part reads: if every finite area is BD, the automaton
is not configuration-erasable. The proof of the second part involves an

interesting and useful heuristic principle, which we will call the "insulation

12

principle." The proot proceeds by converting a confluence or merging ot two
local (area) states into a confluence or merging of two internal (system)

states, taking advantage of the fact that the border NZ(A) - A acts as an

insulator, preventing anything in the area NZ(A) from influencing anything
in the area A in one time step. Specifically, we are given the confluence

(s, IN®)} into
, TN [= T N

{sziN (A)} into

where {sl]Nz(A) - A} = {slez(A) - A}. From this we generate the internal

state confluence

51' into

T(s;") [=T(s,")]
. .
52 into

by the following definitions

s.' = s

1 1
s, = 1s,|N° () and s |N*(A))
2 2 1 '
Since 1 and s, agree on the border NZ(A) - A, T(sl') = T(sz'). QED

Note that the converse of the last part of Theorem IV fails, i.e., there
are automata which are BD but not configuration-erasable. A finite shift
register is an example; see the discussion under Example 5 of the Appendix.
Indeed, this fact motivates the definition of configuration-erasability, as
the example makes clear.

We proceed now to discuss the third kind of erasability, cell-erasability.
Hao Wang [6]showed that there is a universal Turing machine in which erasure
is not allowed on the tape. Specifically, on a two-state tape-square (cell)
system, once a tape-square is changed from 0 to 1 it can never be changed
again. The general technique of his proof was to use alternate squares for
markers. When the machine needed to change a message on the tape, it copied

that message into a blank region, putting a one in each marker square to

show that the old message was ''dead."”

13

Wang placed no restrictions on the finite control automaton for this
universal machine, which is probably BD. It is of interest to generalize
the notion of cell-erasability and consider whether a cellular automaton
lacking this property could be computation-universal. See the conjectures
in Section 6 below.

Consider stable automata only. Let O be the blank state, and consider
the cell transition function. An automaton is cell-erasable if and only if
for every ordering of the cell states with 0 as the initial element the state
of a cell may both increase and decrease. Thus a blank tape that can only
be marked, never erased, is not cell-erasable as far as the tape alone is
concerned.

Some examples will clarify the concept. An automaton with two states
(0,1) per cell in which 1 is not allowed to change is not cell-erasable.

The one-dimensional infinite automaton in which a cell becomes 1 if either
immediate neighbor becomes 1 is not cell-erasable and is BD, since 0010100
and 0011100 both produce 0111110. Example 2a of the Appendix is not cell-
erasable but is BD. Is there a non-cell-erasable BD automaton with a

symmetrical transition function? It is obvicus that a BD cell is erasable.

There are two further local concepts to be defined. A configuration is
locally GOE if it occurs in aﬁ internal staté only at time zero. An automaton
is locally GOE if it has a GOE configuration. These concepts are the local
versions of our concepts of a GOE internal state and a GOE automaton.

To define the negatively related notion of a constructible configuration
we consider stable automata only. Consider a particular cellular automaton
A and some configuration C of area A. Configuration C is constructible in A

if there is an internal state s and a time t such that

14

¢ = (T(s)|A} and t > O,
where Tl(s) = T(s) and Tn+1(s) = T{Tn(s)}.

As defined this concept applies to finite and non-algorithmic automata,
but it is of interest chiefly with respect to algorithmic automata. A GOE
configuration is clearly non-constructible, but not conversely. We will
argue later that the previous definition of constructibility constitutes only

a minimum condition (Sec. 6).

15

5. Some rclations among these global and local concepts

When introducing the local concepts of BD, GOE, configuration-erasability,
cell-erasability, and constructibility we mentioned a few relations. These
concepts, together with the global concepts of BD and GOE, constitute a set
of which we can ask in general: Which concepts are connected, and for what
types of cellular automata, unstable, algorithmic, and non-algorithmic? We
will answer part of this question in the present section.

The state graph of a BD closed automaton is composed of subgraphs of the
three types shown in Figure 5: pure cycle, one-way infinite, and two-way
infinite. Of course these subgraphs also occur in BD closed automata. All
three do in fact occur in BD algorithmic automata. Since the all blank state
is self-repeating, a unit cycle occurs in every BD algorithmic automaton.

A one-dimensional automaton which merely shifts left (or right) is BD,
though its cells are not. See Figure 3 and Example 5 of the Appendix. It is
GOE. If it is algorithmic, its state graph consists of a single unit cycle
and many two-way infinite subgraphs. If it is non-algorithmic it also contains
pure cycles of every integral length. Is there a symmetrical example of this?
See Example 3 of the Appendix.

Example 2 of the Appendix is a BD algorithmic automaton whose state graph
consists of a unit cycle andlone-way infinite subgraphs. It is GOE. Its
non-algorithmic extension is BD. This suggests the question: is there a
non-algorithmic BD automaton with one-way infinite subgraphs?

More generally, one can investigate the conditions under which the three
subgraphs of Figure 5 occur in BD automata, treating cycles of different
length as different, and raising the question separately for algorithmic and
non-algorithmic automata, and for symmetrical and non-symmetrical automata.

The infinite shift register of Example 5 shows that global BD-ism does

not entail local BD-ism (i.e., that every finite area is BD). What of the

16

converse: If every finite areca is BD, or cvery suftficiently large tinite
area is BD, is the automaton BD? The following theorem provides a partial
answer to this question,

Theorem V: 1If every finite area of an algorithmic automaton is BD, so
is the automaton.
Proof: Assume a BD automaton A is algorithmic and use RAA. There are two
system states 81 and S5 with the same direct descendant 84 Since these states
are algorithmic we can find a finite area A' of A which encompasses the trans-
formations S; to sg and s, to s, in the following states. A' has the

transitions si to sé and sé to s% under blank inputs, where each si agrees
with S5 (i = 1,2,3) on all non-blank cells. Then the area A' is BD. QED

Does this theorem hold for non-algorithmic automata?

We note that the simple relations which hold between BD and GOE finite
automata do not hold for cellular automata. A BD automaton may or may not
be GOE. We will see later that von Néumann's system is BD and GOE. Is there
a cellular automaton which is BD and GOE?

There are a number of relations between global and local concepts which
hold for algorithmic automata because these always have finite areas whose
inputs and border cells are blank. Theorem V above is an example, as is the
next theorem. |

Theorem VI: For algorithmic automata (A) An automaton is BD if and only
if it is configuration-erasable (B) An automaton is locally GOE if and only
if it is GOE.

It is a problem to investigate how many of these relations hold for non-
algorithmic automata. The following theorem only partly answers this. In
proving part of it we use the insulation principle of Section 4.

Theorem VII: (A) If an automaton is locally GOE, it is GOE. (B) If an
automaton is configuration-erasable, it is BD. (C) An algorithmic automaton

is configuration-erasable if and only if its non-algorithmic variant is.

17

Proo®: For (A), note that if a configuration is GOE, every state including

it is. The proof of (B) is: Let Sq and s, be an erasable pair of system

states and define

1 -
! 5101’1/\

S

on A.

=52

Then si and s, are different on A but have the same successor, since the
successors of $1 and s, agree on N(A). (C) is proved by the insulation
principle.

If a non-algorithmic automaton is GOE, then is it locally GOE? Example
4a refutes: If a (non-algorithmic) cellular automaton is BD then it is
configuration-erasable.

Moore and Myhill have proved some theorems for the particular neighborhood
relation defined by: the neighborhood of a cell consists of itself and all
cells having at least one point in common with it.

Moore's Theorem: 1If an automaton is configuration-erasable, then it is locally GOE.

Myhill's Theorem: 1f a non-algorithmic automaton is locally GOE, then it is
configuration-erasable.

Amoroso and Cooper (1] have shown that there is an algorithmic automaton which

is locally GOE but not configuration-erasable; Example 4a of the Appendix is

an example.

I conjecture that the Moore and Myhill theorems hold for arbitrary
neighborhood relations. I actually made this conjecture in June, 1962, and
discussed it with John Holland and John Myhill. The intuitive reasoning under-
lying this conjecture is as follows. A key idea in the proofs of these two theorems
is the following. Suppose there is an erasable pair of configurations of given
area. Then in this area two configurations merge into one. But then 2" of
these configurations (where n is the dimensionality), placed in a larger area

and protected from one another by insulating borders, will merge into one large

18

configuration. For a sufficiently large area it can be shown that there is

so much merging that at least one configuration has no predecessor and hence

is a GOE configuration. As a corollary of this, one would expect that as N

grows in size the smallest GOE configuration would tend to grow in size.

Another way of viewing the matter is in terms of how many different

configurations can be produced in a given area, starting from a given

configuration, by controlling the inputs on the border. There is a limited

amount of
number of
increases

Since
cell, one

There are

information that can be sent across the border. Moreover, as the
cells in a contiguous area increases, the number of input states
more slowly than the number of possible configurations.

our cellular automata have the same transition function for every
would expect further connections between local and global concepts.

clearly many relations to be worked out.

19

6. Some problems concerning computability and

constructibility in cellular automata

Both computability and constructibility are normally defined for stable
automata. An algorithm must be finitely expressible, and this requirement
is usually formulated by saying that only a finite number of squares of a
tape may be non-blank. Construction takes place in "empty space,'" which
in a cellular automaton is represented by a blank state.

In what follows we will sometimes refer to the stable set of states of
an automaton. For any given cellular automaton there may be alternatives
here, but we will require that the stable set always be maximal; that is,
if any other cell state is added, the resultant set of states will be
unstable. By definition the stable set includes the blank state.

We noted earlier that a Turing machine can be conceived as a one-dimen-
sional algorithmic linear automaton with the restriction that at each moment
only one cell is in an unstable state. We will call a one-dimensional linear
algorithmic automaton operating under the restriction that only one cell is
unstable at any moment a one-dimensional cellular Turing machine. Given an
appropriate initial state, and with suitable conventions fér representing
problems and answers, it realizes a Turing machine of the usual kind. This
leads to the following set ofvproblems. |

Problem set VIII: Can a universal Turing machine be realized by a one-
dimensional cellular Turing machine which (1) is BD, (2) has a BD cell,

(3) has a BD finite area, (4) is not cell-erasable, (5) is not GOE? Note
that by Theorem IV, condition (5) is equivalent to: (6) is not locally GOE;
also, condition (1) is equivalent to: (7) is not configuration-erasable.

Since a Turing machine may sometimes be embedded in a cellular automaton

of two or more dimensions, similar problems arise for these. Here we

20

establish the convention that a one-way infinite row of cells is designated
as the tape, on which problem and answer are stored. Note that with this
convention a non-algorithmic cellular automaton may not be computation
universal, despite the fact that all computable answers may be stored in it
initially. For it may lack the power to retrieve the correct answer for the
stated problem or the power to move it to the tape.

Problem set IX: Can a universal Turing machine be embedded in an
(a) algorithmic or (b) non-algorithmic cellular automaton which (1) is BD,
(2) has a BD cell, (3) has a BD finite area, (4) is not cell-erasable,

(5) is not GOE, (6) is not locally GOE, or (7) is not configuration-erasable.
Conditions (5) and (6) are equivalent by Theorem IV and also conditions

(1) and (7) for the algorithmic case. By Theorem V the answer to (7) is

the same for both the algorithmic and the non-algorithmic cases.

My own conjecture is that the answers to most of the problems in both
sets VIII and IX are negative. This opinion is based partly on the intuitive
feeling that erasability in each of these senses is a necessary condition
for universal computability, bartly on the fact that in the finite case BD
automata are more limited in bower than BD automata, and partly in the
constructibility considerations to be discussed next.

How should "constructible configuration'" and "universal constructibility"
be defined? The definition at the end of Section 4 is open to the objection
that everything is constructible in a shift-right (or shift-left) cellular
automaton. For this reason it should be regarded as only a minimal condition
on constructibility.

What other conditions should be imposed? We will discuss these first in
connection with constructibility per se, and next with respect to universal
constructibility. With respect to the first we might require that several
(or an arbitrary number) of copies be constructible, as Moore did. We might

also require that the constructed configuration remain in place forever,

21

once it is constructed. Another possibility is to require in a space of
dimension two or greater that the constructor be linear even when the
constructed configuration is not.

We turn next to reasonable requirements for universal constructibility.
von Neumann had two. First, that there be a single universal constructing
configuration which can construct any configuration composed of stable
states, and second that there be a universal Turing machine which is a
configuration of stable states. With these requirements, negative solutions
to problem set IX would imply negative to solutions to the corresponding
problems for universal construction. More than that, I'm inclined to believe
that no constructions in any interesting or reasonable sense can take place
in cellular automata which are non-erasable in any of the seven senses of
problem set IX.

We comment on a definition of universal constructibility in terms of all
finite configurations. If a cellular automaton has GOE configurations, it
is not universal in this strong sense. If a cellular automaton is not locally
GOE, then I conjecture that there is no interesting sense of constructible
such that every configurationzis constructible.

Actually, there is no more reason to expect complete constructibility
of configurations from within a system, than to expect complete predictability,
or definability of truth, within a system. It might seem that a GOE automaton
has limitations, e.g., that it cannot construct the GOE state. But universality
is defined with respect to computability and structure, rather than with
respect to behavior and real-time considerations.

It should be noted that when universal constructibility is defined as
requiring the construction of all configurations of stable cell states, with
the obvious requirement that there be at least two, then an automaton which

merely shifts to the right is not universal. This would also be so for the

22

following automaton: It behaves as von Neumann's does for even moments of
time, and at odd moments of time the contents of every cell is shifted to
the right.

Since sclf-reproduction follows on universal constructibility, we also
conjecture that no interesting form of self-reproduction can take place in
a cellular system which is non-erasable in any of the seven senses of problem
set IX.

If my conjectures about the weakness of non-erasable cellular systems
are true, they seem to mark a contrast between discrete and continuous
deterministic systems. The classical example of determinism is Newtonian
mechanics, which is BD. I doubt that Newtonian mechanics can be simulated
in a BD cellular system, in any strong sense of simulation. I don't know

of any BD closed deterministic systems in nature which are of interest.

Arthur W. Burks
8/12/70

(1]

(2]

(3]

(4]

(5]

(6]

References

Amoroso, S. and G. Cooper. "The Garden-of-Eden Theorem for Finite
Configurations'" Proceedings of the American Mathematical Society
44 (1970) 189-197.

Burks, A.W. and H. Wang. '"The Logic of Automata" J. Association for
Computing Machinery 4 (1957) 193-218, 279-297.

Moore, Edward F. 'Machine Models of Self-Reproduction', Proceedings
of Symposia in Applied Mathematics 14, Providence, Rhode Island,
American Mathematical Society, 1962. 17-33. Also pp. 187-203 of
Essays on Cellular Automata (edited by A.W. Burks), University of
Illinois Press, Urbana, 1970.

Myhill, John. '"The Converse of Moore's Garden-of-Eden Theorem'
Proceedings of the American Mathematical Soctiety 14 (August, 1963)
685-686. Also pp. 204-205 of Essays om Cellular Automata

(edited by A.W. Burks), University of Illinois Press, Urbana, 1970.

von Neumann, J. Theory of Self-Reproducing Automata (edited and
completed by A.W. Burks), University of Illinois Press, Urbana, 1966.

Wang, Hao, "A Variant to Turing's Theory of Computing Machines"
J. Assoctiation for Computing Machinery 4,1. (January, 1957), 63-92.

Al

Appendix

Examples of one-dimensional infinite cellular automata

Example la
Algorithmic automaton with 0 as a blank state defined by

t 000 010 001 011 100 110 101 111
t'" 0 1 1 0 1 0 1 0

The cell transition function is symmetrical and BD. Two adjacent cells are
not BD, since the following transitions occur

0000 0110
00 00

An enumeration of cases shows that every pattern consisting of ...000
followed by a finite number of repetitions of 10 followed by 000... (e.g.,
...0001000.., ...00010101000...) is GOE. Moreover, since both 001 and 100
produce 1, any pattern with 1's will produce a pattern with 1's further out.
Hence the state graph consists of a one unit cycle (the all blank state is
self-perpetuating) and denumerably many one-way infinite graphs (of the form

51525354...). Hence this automaton is BD.

Example 1@

This is the non-algorithmic;version of example la. The three non-algorithmic
states ...1110000..., ...0000111..., and ...1110111... produce ...0001000...,
so this automaton is BD.

An enumeration of cases shows that any pattern containing 10101 is GOE,

hence this automaton is GOE also.

Example 2a
Consider the algorithmic automaton defined by the cell transition function

t 000 010 o001 011 100 110 101 111
t! 0 1 1 1 0 1 0 1

A2

This cell transition function is BD, but it causes 1's to 'grow" to the
left to within one zero of a 1 on the left. The automaton is therefore BD,
with two kinds of subgraphs: a unit cycle (the all blank state is stable)

and one-way infinite subgraphs. It is therefore GOE.

Example 2a

The non-algorithmic variant of example 2a is BD but it is GOE.

Example 3
The following, partial, cell-transition-function is both symmetrical and
BD, and can be extended to a complete cell-transition-function which is

symmetrical and BD.

t 001 100 021 120 012 210 002 200

t' 1 1 0 0 2 2 0o o

t 000 020 121 212 222 122 221
t! 0 2 2 1 2 0 0

Any automaton with this partial transition function has a two-way infinite
subgraph, for the sequence 0210 travels to the right, 0120 to the left, and
when they meet at 2 they are reflected and travel out, thus

02100200120

00210201200

00021212000

00001210000

00012221000

00120202100

01200200210

Is the automaton so-far defined BD? What of its extensions to complete

transition functions?

Example 4a
This is the example Amoroso and Cooper use to show that the converse of
Myhill's theorem fails. I.e., the algorithmic version of this automaton has

GOE configurations but is not configuration-erasable.

A3

The cellular transition function is BD and is asymmetrical.

t 000 010 001 011 100 110 101 111
t! 0 1 1 0 1 1 0 0

For algorithmic internal states, the global transition function is 1-1 and
properly into, so there are GOE internal states, and hence GOE configurations.
Consequently this automaton is BD, with a unit cycle and one-way infinite

subgraphs. Are there are two-way infinite subgraphs?

Example 4@
The non-algorithmic version of this is BD, as the following transitions
show.

...11110111... ...00001111...
...00010000.00010000...

Note that these transitions do not involve any erasable configurations.
Since an algorithmic automaton is configuration-erasable if and only if
its non-algorithmic variant is, this example is a counter example to: If
a cellular automaton is BD then it is configuration-erasable.
Is this automaton GOE? If it is, we have a GOE automaton which is not

locally GOE.

Example &

A two-way infinite shift register, in which everything shifts to the
right one cell per time step, is BD, while every finite area is BD. It is
cell-erasable, but not configuration-erasable.

The following transitions motivate the definition of configuration-

erasability:

Cell 1 |213456789101 11 |12
t 0 0:11011011|o 0
t+1 o|011011o1:1

t! 0 0111011010|o 0
t'+l o"01101101:o

A3

The cellular transition function is BD and is asymmetrical.

t 000 010 o001 011 100 110 101 111
t! 0 1 1 0 1 1 0 0

For algorithmic internal states, the global transition function is 1-1 and
properly into, so there are GOE internal states, and hence GOE configurations.
Consequently this automaton is BD, with a unit cycle and one-way infinite

subgraphs. Are there are two-way infinite subgraphs?

Example 4@
The non-algorithmic version of this is BD, as the following transitions
show.

...11110111... ...00001111...
...00010000... ...00010000...

Note that these transitions do not involve any erasable cohfigurations.
Since an algorithmic automaton is configuration-erasable if and only if
its non-algorithmic variant is, this example is a counter example to: If
a cellular automaton is BD then it is configuration-erasable.
Is this automaton GOE? If it is, we have a GOE automaton which is not

locally GOE.

Example 5

A two-way infinite shift register, in which everything shifts to the
right one cell per time step, is BD, while every finite area is BD. It is
cell-erasable, but not configuration-erasable.

The following transitions motivate the definition of configuration-

erasability:

Cell 1|213456789101 11 |12
t 0 0:11011011'0 0
t+1 o|01101101:1

t! 0 0111011010|o 0
t'+1 0:01101101:0

A4

The information in cells 3-10 at t is coded so that the ends are identifiable;
11 is a period, and 01 and 10 represent 0 and 1 respectively. This information
is not lost after a unit shift, since a shift-register is not configuration-
erasable. But a finite area is BD, as may be seen by comparing the upper and

the lower transition.

(e

1
A1 s (=8) G’s

(a) Binary counter (BD)

0
? s (= 8) ;ii; 1

OV

(b) A BD automata

Examples of BD and BD automata

Figure 1

(a) If A1 and A2 are BD, their series connection is BD also

(b) A and A1 are BD, but their cyclic connection is BD

Finite systems of finite automata

Figure 2

Data -
—(Vo>
Shift &

(a) Shift register

Output
L

(BD)

(b) Cyclic shift
register

A finite system of BD automata which is BD

Figure 3

K
Shift
Register
Shift
Shift
~ Register
\

(c) State diagram of cyclic shift register(b)

(b) Cycle with prefixes

Components of state graphs

of closed finite automata

Figure 4

PO

g (5:)
AN

(o)

(a) Pure-cycle

(b) One-way infinite

T

(c) Two-way infinite

Subgraphs of state diagrams

for closed BD automata

Figure 5

Jn

9015 02

