THE UNIVERSITY OF MICHIGAN

COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS
Department of Philosophy

Technical Report

SEQUENCE GENERATORS AND DIGITAL COMPUTERS

-
&+
A. W, Burks -

. =

J. B, Wright

.4

ORA Project’ 03105

under contract with:
DEPARTMENT OF THE NAVY
OFFICE OF NAVAIL RESEARCH

CONTRACT NO. Nonr 1224(21)
WASHINGTON, D. C.

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

February 1961

e?r\%qq

o o o A ey

UM K@I96"

In addition to support received from the Office of Naval Research, this
research was supported by the U. S. Army Signal Corps through Project MICHIGAN
(Contract No. DA-36-039-SC-52654) and by the U. S. Army Office of Ordnance Re-
search (Contract No. DA-20-018-ORD-16971).

Some of the material in this paper was presented at the International Con-
ference on Information Processing, UNESCO, Paris, 15-20 June 1959. An abstract
and report of the discussion was published in the Proceedings, UNESCO, Paris,

1960, p. k425,

This paper grew out of some researches on well-behaved nets (see Sec. 3.1);
Hao Wang participated in these early investigations and supplied an essential
part of the proof of Lemma 3.3-1 for the case of well-behaved nets.

J. Richard Buchi has made many helpful suggestions during the course of
our work.

TABLE OF CONTENTS

LIST OF FIGURES

1. INTRODUCTION
1.1. Sequence Generators
1.2. Special Cases of Sequence Generators
1.3. Reduced Form Algorithm

2. SEQUENCE GENERATORS WITH ONE PROJECTION
2.1. Definitions
2.2. Subset Sequence Generator Operation
2.3. Decision Procedures

5. SEQUENCE GENERATIONS WITH TWO PROJECTIONS
3.1, Definitions
3.2. The Displacement Operator and the f-shift Operation
3.3. Time-shift Theorem

L. GENERALIZATIONS AND APPLICATIONS

L.1. Computation

k.2, Formulas and Sequence Generators

L.3. Sequence Generators and Conditions

L.k, Sequence Generators and Regularity

L.5. Infinite-sequence (énerators

L.6. Probabilistic Sequence Generators
BIBLIOGRAPHY

DISTRIBUTION LIST

-

Page

o\ H

12

19
19
28
3l

39
39

54

29
29
66
15
80
85
88

93

or1

Fig.

LIST OF FIGURES

Page

(a) Binary counter; (b) Three-projection sequence
generator I' = (S, G, R, I, @, D) associated with
the binary counter (a). ' 2

(a) TIll-formed net with behavior F(t) = ~ E(t + 1);
(b) Sequence generator I' = (S, G, R, I, ©) associated
with net (a). 3

(a) Sequence generator T' = (s, @, R); (b) TIT, the
reduced form of T. » L

(a) Semi-deterministic non-solvable sequence generator;
(b) Sequence generator neither solvable nor semi-
deterministic. _ 23

(a) Deterministic sequence generator T' = (8, G, R, I, 9)
(b) 1Internal state sequence generator I = (S, G, R I G, D)
corresponding to (a). 26

The construction of a subset sequence generétor.
(a) T'=(S, G, R, P); (b) TI*, the subset sequence
generator of T. 29

Examples which illustrate Lemma 2.2-1: For any sequence
generator I' = (S, G, R, P),['* is semi-deterministic.

(a) Sequence generator I' = (8, Gy R, P). T is semi-deter-
ministic. (a') TI¥, the subset sequence generator of T.

[* is semi-deterministic. (b) Sequence generator

I=(S, G R, P). T is not semi- deterministic. (b') f*,
the subset Ssequence generator of I'. I'* is semi-deterministic.
(c) = (S, G, R, P). T is not semi-deterministic.

(c') F* the subset sequence generator of T. T% is semi-
deterministic. (d) F = (S, G, R,). T is not semi-
determinlstlc. (a') F* the subset sequence generator of T.
T* is semi- deterministic. 3l

Tllustration of Lemma 3.1-4: T is zero-univalent if and

only if (8, G, R, P) is semi-deterministic. (a)

r=(s, G, R, P, Q. I is zero-univalent and uniquely

solvable, but (S G, R, P) 1s not semi-deterministic.

(b) ™™t =T=(S, G R P, . (5, G R, P) is deter-

ministic, and a fortiori semi-deterministic. 43

9.

10.

11.

12,

13.

1L,

15.

16.

17.

18.

LIST OF FIGURES (Continued)

Illustration of the f-shift construction, for £ =
In accordance with Lemma 3.2-1, £/1[B(I)] = B(IY).
() T=(S,G R, P, Q; (b) I (unit-shifted
sequence generator of T).

Illustration of Corollary 3.2-2. [I' is l-univalent]
{I'y less its last projection, is solvable} (T is uniquely
solvable) if and only if [I* is O-univalent] {Fl, less

its last projection, is solvable} (Fl is uniquely solvable).

(a) T =(s,G, R, P, Q. (S, G R, P) is solvable but
not deterministic. I is unit-univalent and uniquely
solvable. (b) TI'!, the unit-shifted sequence generator
of I'. TI'', less its last projection, is solvable, but not

deterministic. [I?', is zero-univalent and uniquely solvable.

r**t, where I is Figure 10(a). T and I'* (less their last
projections) are not deterministic, but r¥*t (less its last
projection) is deterministic. &) [g(r)] = @(r**t). This
illustrates Lemma %.2-3.

= (S,G,R,P,Q,0). No sequence generator can have
(3() as its infinite behavior.

(a) T =(8,6,R,P,Q, which results from I'**T of Fig. 11

by identifying and re-naming behaviorally equlvalent states.
r, less its last projection, is deterministic. B/(r) =@(r).
(b) = (S,G,R,P,Q,C), which results from I by addlng a
control projection C(sy) = C(81) =0, C(sz) = C(83) = 1.
C(r) =@™(T), where I is Fig. 10(a). (c) A net which has
the computation ((F)

r = (S,G,R).

r = (s,G,R,P).

1l

Normal form of the well-behaved net of Fig. 2(a).
F(t) = ~ E(t').

Final-state sequence generator T
= {s1]. @®(I') is not open.

(8,6,F,R,P).

Final-state sequence generator I' = (S,G,F,R,P).
F = {(s1}. @(I) is open, but it is not the behavior of
any sequence generator without final states.

vi

Page

L8

51

53

62

65
68

71

Th

81

82

Fig.

19.

20.

21.

22.

LIST OF FIGURES (Concluded)

r = (s,G,R,P). No sequence generator without final
states has ~ @(T), ~ @5(r), or ~ E®(I) as its behavior.

(a) T = (8,G,F,R,P).

8(r) N g(D).

F e {Sl}.

(o)

I = (s,q,F,R,P).
F = {so}. No sequence generator has the behavior

Probabilistic sequence generator (S,G,R,W,P).

(a) Binary counter (probabilistic).
sequence generator (S,G,R,W,I,6) for binary counter (a).
Solid lines represent transitions with probability
(L - e)/2. Dotted lines represent transitions with

probability ¢/2.

vii

(o)

Probabilistic

Page

83

85

91

92

1. INTRODUCTION

1.1. SEQUENCE GENERATORS

The basic concept of this paper, that of sequence generator, is a generali-
zation of the concepts of digital computer, finite automaton, logical net, and
other information-processing systems, In this subsection, we will define se-
quence generstor and some related concepts and will illustrate them immediate-
ly thereafter,

Definitions: A sequence generator I' = (S, G, R, Pi,..., Pn) consists of

a set S (whose elements are called complete states), a set G (whose elements

are called generators), a binary relation R (called the direct transition

relation), and functions Pl,.,,, Pt (called projections), for some

n=0,1, 2, 3..., satisfying the conditions: (1) s is finite, (2) G is a
subset of S, (3) R is defined on S, and each p (for i =1, 2,.,., n) is also
defined on S. The values of the function Pi, which may be entities of any
kind, are called Pi-staies.

A sequence generstor mey be represented by a finite-directed graph whose
vertices denote complete states and whose arrows indicate when the direct transi-
tion relation holds between two states. In our diagrems,we will use rectangles
at those vertices which represent generastor states and circles at vertices re-
presenting complete states which are not also generators; the names of complete
states and of P-states are written in the circles and rectangles (see Figs.
1(v), 2(b), 3, etc.). Though our diagrams are closely related to the usual
state diagrams (transition diagrams) employed to represent automate (see, for
example, Moore, 1956, p. 134), there are very significant differences. The
vertices (nodes) of our diagrams represent complete states, while in the usual

state diagrams, the nodes represent internal states., This difference results

from the fact that in sequence generators complete states are basic and in-
put and output states are derived from complete states by means of projections,
while in the usual approach complete states are derived by compounding in-
ternal states and input states. (The latter process is explained in Section

1.2; we will discuss the relation of the two approaches further in Section

2.1.)
500 501
Ly 9 1oy 9
dy d,
* 4
A 0 B
¢
510 511
i, 6 } i), o-
dg 4,

(a) (v)

Fig. 1. (a) Binary counter; (b) Three-projection se-
quence generator I' = (S, G, R, I, ©, D) associated with
the binary counter (a).

A B
‘E'P A
9, 541
Rt 17,0,
Fig. 2. (a)

n
o &) o]
(a)
S1 ®37
io, Ol 11)91
5o | °8
iO,QO llJ 90
(b)
T11-formed net with behavior F(t) = ~ E(t + 1);

Sho
11,9

10,99

(b) Sequence generator I' = (S, G, R, I, ©) associated

with net (a).

56

)

Fig. 3. (a) Sequence generator I' = (S, G, R); (b) FT
the reduced form of T.

)

Some comments and explanations concerning the definition of sequence
generator may be helpful. If n =0, then I = (S, G, R) is a sequence generator
with no projections. Though our definition of sequence generator permits any
number of projections, in this paper we will be mainly interested in sequence
generators with zero, one or two projections. Furthermore, the set of com-
plete states S of a sequence generator may be a null set; in this case the
domain of definition of each function Pi will be empty. It is worth noting
that essentially (but not quite) the same concept of sequence generator can

be obtained without using the set S of complete states in the definition and

then defining S to be the union of G and the field of R.

We will use [a](Jj,k) (where j is a non-negative integer, k is a non-negative
integer or k = w; J = k) to denote the sequence < a(J), a(J + 1),..., alk) >
when k is finite and the sequence < a(J), a(j + 1), a(j + 2),...> when k = w,

If P is a projection P([x](j,k)) abbreviates the sequence
< Pla(d)), Plafd +1)),...,P(c(k)) > when k is finite and the sequence
<Plafd)), Pla(g + 1)), P(af(+2)),...> when k = w,

Definitions: Let I = (8,G,R,P',...,P") be a sequence generator and let
k be a non-negative integer or w. [s](0,k) is a I'-sequence if (1) s(0)eG and
(2) for each j, j <k, R(s(J), é(j +1)). A complete state s is {['-accessible)
[-admissible] if s occurs in some {----- } [infinite] I'-sequence. |

These concepts may be illuétrated by reference to the direct transition
diagram of Fig. 3(a). The sequence < s7,sg > is a l-sequence, while the se-
quence < $3,54,55,56,84,56,54,56,54,58,... > 158 an infinite I'-sequence. Com-
plete states s7,sg, and sg are I'-accessible but not '-admissible; complete states
53,584,585, and sg are ['-accessible and I'-admissible, while states sg,s;,ss, and
s10 are inaccessible (and hence inadmissable).

Definitions: Let p be a binary relation and o a set; we define

p(a) = (y] (@Zx)p(x,y) & x e).

") is a terminal state of I if

1
A complete state s of I' = (S, G, R, P™,..., P

R({s}) is null,

A terminal state of I' is a complete state for which there is no succes-
sor by the direct transition relation R. Complete states sg and s;, are the
terminal states of Fig. 3(a). Note that if I' has no terminal states, every

['-accessible state is I'-admissible and vice versa.

110 Burks and Wright, 1953, p. 1364, we defined the concept of an admissible
state of a net. When a net is converted into a sequence generator (see Sec-
tion 1.2 below), these states will be accessible rather than admissible in
the senses of these terms defined above.

We will sometimes need to combine geveral projections to make a composite

projection of them. For this we will use the notation
1 2 .n
P xP x...XxXP
which is defined by

P x P® x...x P l(s) = <Ps), P(s),..., P(s) >

1.2, §SPECTAL CASES OF SEQUENCE GENERATORS

Maﬁy concepts in the theory of information processing turn out to be
special cases of the concept of sequence generator or are closely related to
this concept. We will discuss & number of these in the present subsection.
Since digital computers (automata) and logical nets are of special interest to
us, we will show in detail how the concept of sequence generator applieé to
them. In later sec%&ons we will derive both new and old results about auto-
meta and nets from our new theory of sequence generators.

We will begin with well-formed nets, review the method of deriving a finite
automaton from a well-formed net, and then show how to derive a sequence gen-
erator from a finite automaton. We will use the definition of well=-formed net
of Burks and Wright, 1953, p. 1361, modified to allow arbitrary switching ele-
ments and delay elements whose initial output states are one, as well as de-
lays whose initial output states are zero.2 In net diagrams, certain nodes
(junctions) are designated as net outputs and are distinguished by stars
[see Fig. 1(a)].

A well-formed net (w.f.n.) may be analyzed in terms of its input states,

delay output states, and net output states. A digital computer represented

2Sequence generators may also be derived from automata containing delays whose
initial output states are unspecified; these are called "abstract delays" in
Burks and Wang, 1953, p. 201, and Burks, 1959, Section 3. But we will not
complicate the present discussion by considering automata with such delay
elements.

6

by a w.f.n, operates as follows, The "state" of a net at a given time is
determined by its input state i and its delay output state d at that time; these
pairs < i,d > are called the complete states of the net, For each time

t (t = 0,1,2,...) the complete state < i,d > determines the net output state

e at the same time (1) in accordance with an output function A, i.e.,

e = A(i,d). At time O the delay output state d, is uniquely determined by

the initial delay output states of the delay eléments. For each time t the
complete state < i,d > determines the delay output state d, at the next moment
of time (t + 1) in accordance with a direct transition function T, i.e.,

d; = 7(i,d). The net of Fig. 1(a) is a well-formed net which represents a
binary counter. A is the input node, the starred node C is its net output
node, and B its delay output node (the initial state of B is zero). The

state of C at t indicates the binary count, i.e., the number modulo 2 of 1's
which have appeared (during the interval of time O,...,t) on the input node A,
The state analysis is given by the following table, where O is the initial

delay output state.

i(t) alt) a(t + 1) e(t)
= 7(i,4d) = \(i,d)

A B B C

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 0

Definition: A finite automaton is a sextuple < (i}, (d}, (e}, dO, T, N>

where {i}, {4}, {e} are finite non-empty sets (whose elements are called input
states, internal states, and output states, respectively) , dO e (4} (dO is
called the initial internal state), T is a function from the Cartesian product

(i} x {d) into (4} (called the direct transition function), and A is a function

from the Cartesian product (i} x {d) onto {e} (called the output function).

(This is essentially the definition of Burks and Wang, 1956, p. 203; see also
Moore, 1956, Pe 133.) The procedure for analyzing a well-formed net which

is described in the preceding paragraph clearly converts a well-formed net
into a finite automaton. This procedure is reversible; that is, given a
finite automaton, one can construct a well-formed net which realizes it. Thus
the concepts of well-formed net and finite automaton are basically equivalent
and either can be taken as a formal definition of the concept "finite digital
‘computer," (See Church, 1955, Kleene, 1956, p. 5, and Burks, 1959, Section

3, for other definitions of these concepts.)

A three-projection sequence generator I' = (S, G, R, I, 6, D) may be as-
socigted with a finite automaton as follows. The elements of S are the com-
plete states < 1,d > and the elements of G are the complete states < i,do >,
The direct transition relation is defined by
R(< i1,dy >, < i, >) = [ds = 7(i,,d,)] and the input, output, and internal
state projéétions by I(< i,d >) =1, 6(<i,d>) = A(i,d), and D(< 1,d >) =4,
respectively, The sequence generator associated with the binary counter of
Fig. 1(a) is represented by Fig. 1(b). As before, the rectangles represent
elements of G. The subscripts on the coﬁplete states correspond to the nodes
of the counter in the order A, B. < 800,5105511,5005510,501 > 18 an example
of a finite I'-sequence; in it the input sequence ig,i;,1i;,i0,13,ip produces
"the output sequence ey,01,60,00,01,0; (and thus three "ones" on the input
leave the counter recording "one"). Note that, though the internal states
do,d, are represented in Fig. 1(b), the nodes of the graph correspond to com-
plete states and not to internal states, as is the case with the usual state
diagrams used to represent automata.

We have shown how to transform a well-formed net into a finite automaton
and vice-versa. We have also shown how to derive a sequence generator from

a finite automaton. The latter process is not in general reversible. Only

certain sequence generators (those which are deterministic) may be realized
by finite automata (see Section 2.1).

Our next application of sequence generators is to arbitrary ”ﬁets," in-
cluding nets that are not well-formed. We will use the concept of Burks and
Wright, 1953, p. 1353, modified to allow arbitrary switching elements and
both kinds of concrete delays. Each switch element translates into a switch
equivalence which gives the state of the switch output as a truth function
of the switch input, and each delay element translates into two aelay equiva-
lences, called the "initial delay equivalence" and the "recursive delay
equivalence." The initial delay equivalence gives the initial state of the
delay output and the recursive delay equivalence equates the delay output
at any time other than O to the delay input at the previous time. Hence, each
net translates into a conjunction of equivalences, If the net is not well-
formed, this conjunction will not directly correspond to (will not give the
structure of) a digital computer, but it may specify a computation or behavior
condition on a digital computer (see Section 4), and on this account is of
interest. Figure 2(a) shows a net with input node E and output node F. The
non-input switch element driving node A represents the contradictory or "al-
ways false" truth function. The initial state of the delay AB is "true,"
which for coding reasons we represent by "1"; the initial state of the delay
GC is 0. The switch equivalences for this net are A(t) = 0, F(t) = F(t),
and C(t) = [E(t) & B(t)]. B(0) =1 and C(0) = O are the initial delay equiva-
lences, while B(t + 1) = A(t) and C(t + 1) = F(t) are the recursive delay
equivalences,

A two-projection sequence generator I' = (S, G, R, I, 6) may be associated

with an arbitrary net in the following Way:5 A complete state s is an assign-

3If the net is well-formed either the procedure about to be described or the
procedure described earlier may be used., The resultant sequence generator
will, of course, be different in the two cases.

ment of a truth value to each node of the net which makes the switch equiva-
lences of the net true, An element s of S is a generator (element of G) if

s assigns to the delay output nodes truth values which make the initial de-
lay equivalences true. R(s,,ss), where s,, so ¢ S, if and only if the truth
values which s; assigns to the delay input nodes and the truth values which

so assigns to the delay output nodes satisfy the recursive delay equivalences.
For each complete state s, {I(s)} [6(s)] is s cut down to the {input} [output]
nodes [i.e,, {I(s)}[e(s)] is the net {input} [output] state contained in é];
the input projection will not exist if there are no input nodes.

The sequence generator I' = (S, G, R, I, ©) associated with Fig. 2(a) is
represented by Fig. 2(b). Though there are 6 nodes in the net, there are
only 8 complete states. The subscripts on the state symbols s,, sas7, etc.,
are the decimal codings of the binary representations of the states of the
nodes taken in the order E, A, B, C, F, G; e.g., the subscript on sg decodes
into 001001, showing that in this state nodes B and G are active while the
remaining nodes are inactive. The subscript of the input state i is the state
of node E and the subscript on the output state e is the state of node F.
< S10, Sa37s; So, Sa3g, Sa7 > 1s a I'-sequence which has a derived input sequence
< ig, 14, 10, iy, i; > and a derived output sequence < ey, ©;1, 89, €9, ©1 >
It can be proved that F(t) = ~ E(t + 1); such behavior would not, of course,
be possible in a well-formed net.

Our process for associsting a sequence generator with an arbitrary net
is different from our process for associating a sequence generator with a well-
formed net in the following basic respect. In the latter case we first de-
fined input states, delay output states (internal states), and output states
for the net, and then compounded complete states from input states and in-
ternal states, On the other hand, in aséociating a sequence generstor with

an arbitrary net, we first defined states (complete states) over every node,

10

and then derived input and output states by means of projections. It turns

out that in general not every assignment of truth values to the input nodes

- of an arbitrary net is an input state. 1In fact, we know of no way of defining
states for parts of a net (input, internal, and output states) without pre-
supposing states for the whole net (complete states). Indeed,. it was our

work with arbitrary nets which led us to consider sequence generators (in which
complete states are basic; input, internal, and output states derivative),

This completes our discussion of the method of transforming an arbitrary
net into a two-projection sequence generator. This process may be reversed;
that is, given any sequence generator with two projections, one can find a
corresponding net. It is not difficult to construct this procedure (for going
from a sequence generator to a net) from the information to be given in Section
h,2, so we will not describe it here.

There are other éntities besides nets and well-formed nets (digital com-
puters) which are either sequence generators or are cloéely related to sequence
generators. The concept of a non-deterministic automaton of Rabin and Scott,
1959, Definition 9, is quite similar to our concept of a sequence generstor.
Sequence generstors are in a certain sense equivalent to formulas constructed
from truth functional connectives, monadic predicates, one individual variable
"t" (which ranges over discrete times), the successor function, and zero (see
Sections 4.2 and 4.3). The following are special cases of sequence generators:
a finite state grammar (Chomsky and Miller, 1958, p. 95); sequential circuits
representable in combinatory logic (Fitch, 1958, p. 263); incompletely speci-
fied automata, i.e., automata in which certain sequences of input states are
proscribed (Aufenkamp and Hohn, 1957, Section IV); automata with terminal states
(ibid., Section VII); and the flow diagrams used in programming a digital com-
puter. A sequence generator may be used to characterize a class of finite se-

quences defined by a regular expression (see Section L4.l4). Finite graphs may

11

be used to analyze certain games (Konig, 19%6; and McKinsey, 1952, Chapter 6).
There is an obvious relation between finite graphs and sequence generators,

and hence some problems concerning games may be studied by means of sequence
generators; we will give an example in the next subsection. Though he makes

no reference to automata theory, Putnam, 1957, pp. LL-49, uses sequence genera-
tors to establish some results about satisfiability; he uses the concept of
admissibility in connection with "I'-sequences" which are infinite in both
directions. We remark finally that Harary and Paper, 1957, in applying relational
logic to lingﬁistics use ideas closely related to the concept of sequence genera-
tor.

Though we have noted a number of applications of the concept of sequence
generator, we wish to make it clear that we are not attempting in the present
paper to solve all the problems that have been considered for these applications.
In the next subsection we will establish some results concerning infinite
I'-sequences for sequence generators without projections. In Section 2 we will
treat some concepts in which a single projection plays an essential role, and
in Section 3 we will work with concepts in which two projections play a special
role, In Section 4 we will present some generalizations and further applica-

tions of sequence generators.,

1.3, REDUCED FORM ALGORITHM

Algorithms play a fundamental role in this paper, so we will make a few
informal comments about them. An algorithm presupposes a well-defined set of
entities, called "the domain of the algorithm.” An algorithm is a finite sys-
tem of rules which may be mechanically applied to any entity of its domain.
An algorithm which terminates in a finite number of steps when apflied to any
entity of its domain is called a "terminating algorithm." The Reduced Forﬁ

Algorithm to be described soon is a terminating algorithm, since, when it is

12

applied to any sequence genersator, it will eventually terminate in a sequence

generator. An algorithm with a domain D is called a decision procedure for

a class A which is a subset of D, if for every element of D which belongs to

A, the algorithm terminates in "yes," and for every element of D which does not

belong to A, the algorithm terminates in "no," The truth table procedure is

a decision procedure for the class of tautologies of the propositional calculus.
Before formulating the Reduced Form Algorithm, we will describe informal-

ly what it does. Let us call a state s of a sequence generator

r=(s, G, R, Pl,.,.,Pn) "extendable" if there is an infinite sequence of com-

plete states < s(0), s(1), s(2),... > such that s(0) is s and R[s(i), s(i + 1)]

for i = 0, 1, 2,... . (Note that s is not necessarily a generator, and so the

infinite sequence of cémplete states is not necessarily a I'-sequence.) In

Fig. 3 states sy and s; are extendable, while states s, and s,5 are not. The

Reduced Form Algoriéhm may be applied to any sequence generator I'. In part 1

of the algorithm the operation of deleting terminal states is iterated until

we arrive at a sequence generator f with no terminal states. Since a sequence

generator has non-extendable states if and only if it has terminal states, ¥

is essentially the result of deleting all non-extendable states from I'n In

part 2 of the algorithm, one begins with the generators of r (and hence of TI),

and by a succession of steps obtains the accessible states of F. A new se-

quence generator I'f, called the reduced form of I'y is defined on the basis.

of the states so obtained. Since a state is admissible if and only if it is

both extendable and accessible, It is just T' cut down to its admissible states

(see Theorem 1.3-1).

Megorithm (Reduced Form Algorithm): Consider any sequence generator
r = (8,6,R,PY,...,P").
(1) Form a new sequence generator by deleting all the terminal states of I.

Tterate this process until you arrive at a sequence generator with no terminal

13

states. Call this final sequence generator I = (8,G,R,B%,...,B).

(2) Define A; inductively by

5

1l

Ay

Ajqa = R(By)

Form the sequence Ay,A;,As..., stopping when Am+1C:U?=oAi- (Note: "acCpg"
means that o is either included in B or equals B.) Let S = U?zo Ay, G = @,
and let {R}[Pi] be the {relation R} [projection Pi] cut down to 8. Define
rf =t = (5,6,R,,...,PY).

We will illustrate the Reduced Form Algorithm. Iet I' = (S,G,R) be the
sequence generator represented by Fig. 3(a), with those complete states which
belong to G being designated by rectangles. In part 1 of the algorithm we
delete states sg'and s;p, then state s-~, and then state sg. S consists of
the remaining complete states, § contains s; and sg, and R is R cut down to S.
We ‘have at the end of part 1 the sequence generator r represented by the re-
sult of deleting everything to the right of statess in Fig. 3(a). In part 2
of the algorithm we form the sequence {ss,sg}[=Ag], (s84)}[=A1], {ss,88}[=A2],
(84,86} [=A3]. Simultaneously we form the sequence {33,86}[=U?=OA1],
{83;84,85}[=U%=o Az, (83,84,85,86}[=U§=O A;], stopping at this point since
{s4,88)C {sg,s4,§5,s6}, i.e., A3¢U§=OA1. Hence S = {ss,s4,5s5,5¢)} and I'T,
~ the reduced form of I', is represented by Fig. 3(b).

Theorem 1,3-1: The Reduced Form Algorithm, when epplied to any sequence

generator I', always terminates in a sequence generator rt, The set of com-
plete states of I'T equals the set of I'-admissible complete states.
As a step toward proving this theorem, we first establish

Lemma 1.3-2: Let p be a binary relation and &, a set. Define 8; for

OmC———c—

i=1,2.., inductively by &i4+1 = p(81i) and let oy = Uﬁ=o 83 for 4 = 0,1,2,... .

If, for some Jj, Q3 = Qj41 then for all £,0CQj.

1k

Proof: We note first that since the operator p may be distributed over the

union, 041 = gup(Qy). We now assume O/j = Qj4+; and prove that ayC Q5, prov-

ing first by induction that for all /

[\

Js Q, = aj. The initial step is
covered by the hypothesis that Qj4+1 = @j. For the general step assume ok = Qj,
where k > j. By the fact noted above, Oki1 = Ogup(0k) and a54 = QU p(0j).
Combining the four preceding equalities, we get Qj4y = Oj. To conclude the

proof, we note that it follows directly from the definition of «

4 that for

L <3, ozECaJ.,

We turn now to the proof of Theorem 1.3-1. We will use freely the nota-
~tion of the algorithm, (I) We prove first that the Reduced Form Algorithm,
when applied to any sequence generator I', always terminates in a sequence
generator I'f, Since S is a finite set, the first part of the algorithm termi-
nates in a sequence generator I'. The criterion for stopping in part 2 of the
algorithm is based on a monotonically increasing sequence of subsets, of‘g,
which is a finite set, so the second part of the algorithm will always termi-
nate., Finally, it is clear that a sequence generator I't is defined in part 2
of the algorithm.

(II) We prove next that the set of complete states of I'f equals the
set of I'-admissible complete states. (IIA) We consider a I'-admissible com-
plete state s; and show that s; ¢ S. since s, 1s I'-admissible, there is an
infinite sequence [s](0,w) of I'-admissible states such that for some Xk,

[s](k) = s;. A complete state of I' is deleted by part 1 of the algorithm
only if it cannot belong to an infinite I'-sequence, and so [s](0,k) is a
f-sequence. Hence by the definition of Ay in the algorithm, s; € A and

s, € U§=OA-. We now apply Lemma 1.3-2, letting p = R and 8, = G, By (I)
above, part 2 of the algoriﬁhm terminates; in the notation of the algorithm
Ap+aC U?zo Ai. The result of Lemma 1,3-2, put in this notation, is that for

all 4, Uﬁ:o A U?zo A;. We have already shown that s; € U?=o A;, and

15

SO 89 € U?zo A;. But in the algorithm S is defined to be U?:o A; and so
81 € S.

(IIB) We next consider a complete state s; ¢ S and show that s, is
r-sdmissible. In the notation of the algorithm § = U?zo A; and so
S1 € U?=O Aj. Hence s; is T-accessible. Part 1 of the algorithm terminates
in a sequence generator I' with no terminal states. As remarked in Section
1.1, every accessible state of a sequence generator with no terminal states
is an admissible state. Consequently, there exists an infinite I'-sequence
[s](0,w) such that for some k, s; = [s](k). By the nature of part 1 of the

algorithm, [s](O,w) is also an infinite I'-sequence, and so s; is I-admissible,

Corollary 1.3-3:. (a) Every complete state of I'f is I'f-admissible.

(b) The set of infinite I'-sequences equals the set of infinite PT-sequences,
(¢) Every finite I'f-sequence is an initial -segment of an infinite I'-sequence.
We will next discuss the Reduced Form Algorithm and some alternatives

to it. Applied to an arbitrary sequence generator I', part 1 of the Reduced
Form Algorithm produces the set of extendable states of‘F, Applied to an
arbitrary sequence generator I', part 2 of the algorithm produces the set of
I'-accessible states, Since a complete state is admissible if and only if it
is both extendable and accessible, the two parts of the Reduced Form Algorithm
applied to a sequence generator I' in either order produce the same sequence
generator rt, a sequence generator I' derived from a well-formed net in the
way indicated in Section 1.2 has no terminal states; consequently, when part 2
of the Reduced Form Algorithm is applied to I', it produces I'T.

There is an alternative procedure for finding the I'-admissible complete
states of a sequence generstor. Let x be the number of complete states of I.
Form all I'-sequences of length x + 1; it can be proved that a state is I'-acces-
sible if and only if it occurs in one of these sequences. To find the I'-admis-

sible states, we operate on each sequence as follows: proceeding through the

16

sequence < s(0), s(1),...,s(x) > check an occurrence of a state whenever that
state has occurred earlier in the same sequence; then delete all states which
follow the last checked state. It can be shown that a state is I'-admissible

if and only if it occurs in one of the resultant sequences., This method of
finding the I'-admissible states can be made the essence of an alternative re-
duced form algorithm which is simpler to formulate and easier to prove adequate
than our Reduced Form Algorithm. It is less efficient, however: in the example
given earlier, m = 2 while x = 11. These differences seem to result from the
following fundamental difference between these two algorithms. In the Re-
duced Form Algorithm the length of the computation is not specified in advance;
rather, parts 1 and 2 each contain an internal "stop criterion": one proceeds
until he is stopped by these criteria. In contrast, the alternative algorithm
first establishes the length of the computation.on the basis of a general property
of the sequence genetrator (the number of complete‘states); since this length is
established a priori, it is of course determined by the worst case, even though
in most cases far fewer steps would have sufficed, This is analogous to the
contrast between asynchronous circuits, in which completion of an operation

is sensed and the next operation begun immediately, and synchronous circuits,
in which the same amount of time is allowed for a given operation in every
case, and this is, of course the time required for the worst case (plus a
"safety factor"!). We have presented the more efficient of these two algo-
rithms, although it is more difficult to formulate and prove adequate, because
finding the reduced form is basic to so many automata algorithms; see, for
example, Sections 2.3 and 3.L. But though in many later cases we know of more
efficient algorithms (see, for example, the alternative to the h-univalence
Decision Procedure in Section 3.4), we will not present them because we feel
that perspicuity of theory and simplicity of exposition are more important

there,

17

We mentioned in Section 1.2 that certain puzzles give rise to sequence
generators. The so-called "15 puzzle" is a good example since it may be
solved by means of our Reduced Form Algorithm., The puzzle consists of a L x L
array of 15 movable blocks (numbered 1 through 15) and one empty positiomn.

A "move" consists in changing a pattern into any one of the (at most) four
patterns obtained by shifting a block into the (neighboring) empty space.

The problem is to achieve a stipulated pattern by a succession of moves start-
ing from a given pattern. A sequence generator I' = (S,G,R,P) corresponding

to the puzzle may be defined as follows, The 4 x 4 matrices whose entries

are the numbers O through 15 are the complete states of I'; there are 16! of
these. The starting pattern is the sole generator of I'. Two states s; and

so stand in the direct transition relation R if there is a move taking the
pattern corresponding to s; into the pattern corresponding to ss. The pro-
jection P has the value 1 on the single pattern stipulated to be the goal and
O otherwise. The problem is solved by constructing a finite I'-sequence

< s(0), s(1), s(2),...,s(t) > such that P[s(t)] = 1, if such a sequence exists,
Clearly this sequence exists if and only if the complete state with a projection
of 1 is I'-accessible. Whether or not this is the case can be determined by
applying part 2 of the Reduced Form Algorithm to I': if such a sequence exists,
it will be found in the course of carrying out the algorithm.h It turns out
that exactly half of the complete states of I' are I'-accessible and that each

of these I'-accessible states is also I'-admissible.

lLThere is a much simpler algorithm for finding the I'-accessible states of this
particular sequence generator. See W. W, R, Ball, Mathematical Recreations
and Essays, Macmillan, 1940, pp. 299-303.

18

2. SEQUENCE GENERATORS WITH ONE PROJECTION

2.1. DEFINITIONS

In the last sub-section we made no particular use of the projections of
a sequence generator, In this section we shall define some concepts which
apply primarily to sequence generators with one projection and will prove some
theorems about these concepts. >In most applications this single projection
is an input projection, an output projection, or a combined input-output pro-
jection. In the next section we will work with sequence generators having
two projections. These two projections will usually be an input and an out-
put projection.

Definition: The behavior of I' = (S, G, R, P, P, . . . , P"), where
n >0, is the set P(Es](o,k)), where P = P'x P°x . . . P" and [s](0,k) is a
f-sequence’(finite or infinite). "@(T)" denotes the behavior of I'. The

infinite behavior of I', denoted by 0 ", is the set of infinite sequences
))

in @(r). Corollary 1.3-3b can now be reformulated as follows.

Corollary 2.1-1: e“r) = erh.

It is worth noting that in general it is not true that for a sequence
generator I' = (S, G, R, P) there exists a sequence generator I' such that the
set of f-sequences equals the behavior of I This may be shown by a simple
example. .Let S = {sg,s1,82}, G = {sg}, R = (< sgys1 >, < 81,82 >, < 8p, Sp >},
and P(sy) = P(sy) = pg, P(sz) = py. There is one infinite I'-sequence
< 85,51,52550,51,52,50,51,52... > and the behavior of I' consists of the se-
quence < Py,PysP1sPgsPosP1ses» > a0d all its initial segments, and does not
include the infinite sequence < p,,Py;Pgs-«+ > . Consider a sequence generator
I = (8, G, R) such that {po,pl}c:é and such that < Py,00,P1,PgsPosP1ssos >

is an infinite f-sequence, It follows from the existence of this sequence

19

that ﬁ(po,po) and p, € G, and hence that < PosPosPgs-«» > is an infinite
f-sequence.

Some remarks about the application of the concept of behavior to nets
will be appropriate. By the methods of Section 1.2, we can associate with'
every net (well-formed or not) a sequence generator I' = (S, G, R, I, 9),
where I is the input projection and © is the output projection. The be-
havior of a digital computer (w.f.n.) consists of the relationship between
its inputs and its outputs, and similarly for an arbitrary net. The be-
havior of a net may be regarded as the set of sequences (finite and infinite)
of pairs < i(0), e(0) >, < i(1), (1) >, < i(2), e(2) >,... for which
there is a I'-sequence [s](0,k) such that i(t) = I{s(t)) and e(t) = o{s(t))
for every t. This is clearly @B(T), the behavior of the sequence generator
r=(s, G, R, I,). In Section 2.3 we present a Behavior Inclusion Pro-
cedure to be applied to a pair < I, ' > to decide whether the behavior of T
is included in the behavior of f; when applied to the pair < f, I' > as well
as to the pair < T, T >, this tells us whether the behaviors of I' and [are
equal. Thus, through these considerations, the Behavior Inclusion Procedure
can be used to decide whether the behavior of an arbitrary net N is included
in or equal to the behavior of a net N. In the case of well-formed nets,
however, a much more efficient algorithm for deciding equality of behaviors
is known (Burks, Wang, 1956, Section 2.2); a basic part of this algorithm
consists essentially of finding the reduced form (Section 1.3) of a sequence
generator associated with the combined nets. Actually this algorithm applies
to any deterministic sequence generator (this concept is defined below);
moreover, if I and [are both deterministic and B(I)C@(T), then
e(I)CE(r), so this algoritim also answers the question as to whether
B(I)CH(T) for the case of deterministic sequence generators.

The following lemma will be needed in subsequent proofs. It is a classical

20

interpretation of Brouwer's Fan theorem (Heyting, 1956, pp. 42-43) and is
closely related to Konig's Infinity Lemma concerning infinite graphs (Konig,
1936, p. 81). Our lemma, however, is stronger than Konig's Infinity Lemma

in that it does not require that the O's be pairwise disjoint; because of this
difference, we present a proof of it here,

Lemma 2.1-2: Let < 04,0;,02,... > be an w-sequence of finite non-empty sets

and let p be a binary relation. If for every x e 0j4; there is a y € ; such
that p(y,x), then there is an infinite sequence < z,,%1,%3,... > such that for
each 1, z; ¢ a; and p(24,2i41).

Proof: Let B; consist of all finite sequences < Xj,Xji1,.s.,Xj4x > Where

k = 0,1,2,,..,xj € 0 for i = jJs=s1i+k,and p(Xj, Xj+1) for 1 = j>< i+ k.

Tt follows from the requirement on p in the hypothesis of the lemma that for
each i,k, and element V3% of Q4 43 there is an element of Bs

< Vis Ti41lseoes y;+k >, Since this is so for any k, each B; is infinite. We
will now define by induction the desired sequence < Zn,Z1,Z2j;ess o

Initial step: Since Bo is infinite while o’ is finite there will be some
element z, of G such that an infinite number of elements of B, begin with z.
Let &, be the subset of B, all of whose elements begin with z.

General step: Assume given a sequence < Zg,Z1,..., zj > (where 1 = 0,1,2,...)
which belongs to Bo and satisfies the condition that the set oh of elements
of B; which begin with z; is infinite. The result 5i+l of deleting the first
element of each memberiof B; is an infinite subset of Bj4;. Since 0441 is
finite, there will be some element zi4; of Oj4+; such that p(zi, 2i4+,) and an
infinite number of elements of 8£+1 begin with z34,. Let &i4, be the subset
of 6£+l, all of whose elements begin with z4.;; 6£+1 is a subset of Bi4+; and
hence &;,, is also. Hence < 2z5,21,...,2i,2i+1 > belongs to B, and satisfies
the condition that the set &j4+; of elements of Bj4+; which begin with zi4+; is

infinite. Thus the inductive hypothesis has been established for the

21

sequence < Zg,Z1,...,%29, Zi41 >. This completes the proof of Lemma 2.1-2.
It may be shown by means of this lemma that a sequence of P-states is
an element of the behavior of a sequence generator if and only if every

initial segment is,

Theorem 2,1-3 (Infinity Theorem): ILet I' = (S,G,R,P) be a sequence generator
with behavior @(I) and let [p](0,k), k = 0,1,2,...,n, be a sequence of ?-states.
[p1(0,k) € B(T) if and only if for every finite i s k, [p](0,i) e &(I).
Proof: The proof of the theorem for finite k is obvious. It is also obvious
that [p](0,w) ¢ @(I) implies that for every finite i, [p](0,i) e ®(I). It
remains to be proved that if [p](0,i) e B(I) for every finite i, then
[p](0,w) € @®(T). We define a4 by s, ¢ 0 if there exists a I'-sequence
[s](0,1) such that [p](0,i) = P{[s](0,i)} and s; = s(i). It is clear that each
Q; is finite and non-empty. We let p = R and show that the hypothesis of Lemma
2,1-2 is satisfied. - Suppose sp € Qj41. By definition of ¢/j4; there exists
a I'-sequence [s3](0, i + 1) such that [p](0,i + 1) = P{[sg](0, 1 + 1)} and
so = [s3](i +1). Let s; = sg(i). By the definition of a4, s, € O and by
the definition of a I'-sequence, R(s1,S5). By Lemma 2,1-2 there is an infinite
r-sequence [ss5](0,w) and by the definition of a4 we have P{[s5](0,w)]} = [p](0,w).
Hence [p](0,w)e @B(T).

The following is a corollary of the Infinity Theorem. Let
r = (s, @, R, P) and I = (é, é, E, ?) be two sequence generators and suppose
that for every finite k, if [p](0,k)e @(I) then [p](0,k)e @(I); then B(T)CE(D).
For consider any infinite sequence [p](0,w)e @(T). By the Infinity Theorem,
for each k [p](0,k)e B(I'). Then by hypothesis, for each k [p1(0,k) e @(T).
Finally, by the Infinity Theorem [p](0,w)e (). This result holds for I' and
[interchanged, of course, so we have: if for every finite k [p](0,k)e B(T) =
[p1(0,k) e B(T), then @(I) =@(I). Thus the Infinity Theorem shows that the

"finite" behavior of a sequence generstor determines its (complete) behavior.

22

Definitions: ILet I' = (S, G, R, P) be a sequence generstor. T is
solvable if every infinite sequence of P-states belongs to its behavior. T

is {semi-deterministic) [deterministic] if it satisfies the conditions:

(1) TFor any P-state p, there is (at most one) [exactly one] complete state

s of I' such that seG and P(s) = p.

(2) TFor any complete state s, and any P-state p of I', there is {at most one}
[exactly one] complete state ss such that R(s;,ss) and P(ss) = p.

It is obvious from the definition of {semi-determinism} [determinism]
that there is a decision procedure for the class of {semi-deterministic}
[deterministic] sequence generators. The problem of solvability is not so

- simple, but we will later develop a decision procedure for solvability (see
Theorem 2.3-2).

Let us illustrate these concepts. The sequence generator of Fig. 1(b)
less its last two projections, is clearly deterministic. The sequence genera-
tor of Fig. 4(a) is semi-deterministic but not solvable, while the sequence

generator of Fig. 4(b) is neither semi-deterministic nor solvable.

So <4

(a) (b)
Fig. 4. (a) Semi-deterministic non-solvable sequence
generator; (b) Sequence generator neither solvable nor
semi-deterministic.
By simple inspection it can be ascertained that the sequence generator
(s, ¢, R, P) of Fig. 10(a) is neither semi-deterministic nor deterministic.
It is, however, solvable, as the following considerations show. Given any

sequence of P-states, divide it into a sequence (finite or infinite) of

23

subsequences (finite or infinite), where each subsequence is either an itera-
tion of p, or an iteration of pi and the two types of subsequences alternate.
Now a I'-sequence sy, Sg, . . . , S5, S; produces a P-state sequence

Pos Pos + + « 5 Pgs Pg Tollowed by at least one occurrence of p,, while a
['-sequence sz, 83, . . . , S3, Sp produces a P-state sequence

Pi, P1y + + - , P1, P1 followed by at least one occurrence of p,. Hence for
any sequence of P-states [p](0,k) one can construct a I'-sequence [s](0,k) such
that [p](0,k) = P([s](0,k)), and so (S, G, R, P) is solvable. Consider next
(s, G, R, I) of Fig. 2(b). (S, G, R, I) is not semi-deterministic, since

the input sequence < i i, > is the projection of both < sg, s;, s; >

o1 tos
and < sg, Sy, S > But (S, G, R, I) is solvable, as may be shown by an
analysis like that Jjust given for Fig. 10(a); indeed, except for labeling,
the behavior of Fig. 2(b) is the same as the behavior of Fig. 10(a).

The following Jlemma may be established by simple mathematical inductions

with reference to the appropriate definitions.

Lemma 2.1-4: ILet I' = (S, G, R, P).

(a) If I is (semi-deterministic} [deterministic] (solvable), then I'f is
{semi-deterministic} [deterministic] (solvable).
(b) If every complete state of I' is '-accessible, then
I' is {semi-deterministic} [deterministic] if and only if for every finite se-
quence of P-states [p](0,t) there exists {at most one} [exactly one]
r-sequence [s](0,t) such that P{[s](0,t)]} = [p](0,t).
(¢) If I is deterministic, then I' is solvable.

Other senses of semi-determinism and of determinism may be obtained by
replacing every occurrence of "complete state" in the above definition of

j

semi-determinism and determinism either by "admissible complete state" or by

"accessible complete state." We will call the concepts obtained by making

" !

the latter substitution "semi-determinism," and "determinism,." It may be

2L

shown that these two concepts are equivalent to the conditions stated in the
consequent of part (b) of Lemma 2,1-4, In the case of arbitrary nets
determinism; becomes the determinism of Burks and Wright, 1953, p. 1359.

The process deécribed in Section 1.2 associates with a finite automaton
a sequence generator I' = (S, G, R, I, ®, D) such that (S, G, R, I) is determi-
nistic. Conversely, given a sequence generator I' = (S, G, R, I, ©), where
(s, G, R, I) is deterministic, we can define a corresponding finite automaton.
Let the set of input states (i} and the set of output states {e] be the
ranges of the projections I and ©, respectively. The set of internal states
{d) of the automaton is a set of sets of complete states of I' defined as

follows:

e {d) .= « G V. (@s)(ax = R(s)),

where o ranges over non-null subsets of S. Let the initial internal state

d, = G. The direct transition function 7 is given by
t(i,d) = R(s| s ed & I(s) = 1),
where "1s| ..." means "the complete state s satisfying the condition "...".

Finally, the output function A of the net is defined Dby
AMi,d) = o(as]| s ed & I(s) = i),

We will give an example. Figure 5(a) is a deterministic sequence generator.
The set of input states for the associated automaton is {i,,i1,} and the set

of output states is {e,,e;,85,65,6,}. The set of internal states consists

of the sets {sq,s1}, (s2,s3}, and (ss,s,}, which we will call do,d;, and dp,
respectively. dg is the initial internal state since {sy,s;} = G. The direct

transition and output functions are given by the table below.

25

hm h@ «H Nm K.U ¢

£(6 ‘L 4 D “S)

(a)

S

-

*(B) 03 Surpwodsagieo
) = I J0qBJI3US8 dousnbds 99BAS TBWISFUL (9)

J J0gexaus8 sousnbas ITISTUTULISAST

‘¢ ST1d

)

ToTr

26

i(t) alt) a(t + 1) e(t)
= T(lyd) = }‘-(i;d)
1o dO dl 0
14 dO dg 67
io dy do eo
14 dl dO 63
1o d2 dO ©4
14 d2 dO 63

In Section 1.2 we gave a process for converting a finite automaton into a
three-projection sequence generator, When this process is applied to the
finite automaton just described, the result is the sequence generator

°

r=(S @G R, I, 8, D) of Fig. 5(b). It should be noted that

e(r) =@(s, G, R, I, 8). Hence when the two procedures just described are ap-
plied successively to a sequence generator I' = (S, G, R, I, ©), where

(s, G, R, I) is determ}nistic, the result is a sequence generator

r=(5 G, R, I, 6, D) with an internal state projection D and such that the
behavior of (S, G, R, I, 6) is the same as the behavior of T.

This is an opportune time to compare the state diagrams that we have been

1

using, which may be called "complete state graphs,” with those ordinarily

used in discussing automata, which may be called "internal state graphs." The
nodes of a complete state graph represent complete states and the lines repre-
sent transitions between complete states; these lines are unlabeled since the
input states, output states, etc., are derived from the complete states by
means of the projections. The nodes of an internal state graph represent in-
ternal states; the labeled lines represent transitions between internal states,
with the labels indicating the inputs that cause the transitions and the out-
puts which are produced by the transitions. Since the definition of sequence

generator (Section 1.1) is in terms of complete states, complete state graphs

give a more direct representation of sequence generators than do internal

27

state graphs, We have considered definitions of sequence generators in terms
of internal states, but none of these is both as general and as simple to formulate
and work with as the definition we have given., However, certain kinds of
sequence generators can best be analyzed in terms of internal states and are
more simply represented by internal state graphs than by complete state graphs.
For example, deterministic sequence generators can be analyzed in terms of in-
ternal states in the way we have just shown; moreover, the resulting internal
state diagram is always simpler than the corresponding complete state diagram.
Whenever the practicality of a technique of analysis is of interest and the in-
ternal state diagram is simpler than the complete state diagram, the former
should, of course, be used.

Any property of a one-projection sequence generator and any operation
applicable to a one-projection sequence generator can be extended to a sequence
generator I' = (S, G,*R) without projections by adjoining to it a constant
projection P (i.e., a projection with only one P-state); I' is solvable, determi-
nistic, ete., if (S, G, R, P) is solvable, deterministic, etc, For example,

a well-formed net without input nodes has associated with it (by either of the
techniques of Section 1.2) a sequence generator (S, G, R) with one infinite
(periodic) I'-sequence. For constant P, (S, G, R, P) is solvable and semi-
deterministic, and hence deterministic, and so is (S, G, R); see, for example,

Fig. 6(a).

2.2. SUBSET SEQUENCE GENERATOR OPERATION

We will next define an operation, denoted by "*," called "the subset se-
quence generator operation.” This operation may be applied to any sequence
generator I' to obtain its subset sequence generator I'*., The complete states
of I'* are sets of complete states of I'. The generators, the direct transition

relation, and the projections of I'* are defined in terms of I' in such a way

28

{s }

“

(&) (b)
Fig. 6. The construction of a subset sequence generator,
(a) I''=(S, G, R, P); (b) TI*, the subset sequence
generator of T.
that I'* has the same behavior as T (Theorem 2.2-3 below) and I'* is always

semi-deterministic; even though I' may not be (Lemma 2.2-1 below).

Definition: The subset sequence generator operation, denoted by ","

applies to any sequence generator I' = (S, G, R, Pl,Pg,...,Pn), where n > O,
and produces a sequence generator I'* = I = (§, ¢, R, P4,P5,...,PY).

Let P = P'x P°x...x P%.

(1) A subset x of S is an element of § if and only if x is non-null and

P has the same value for all elements of x. This definition can be expressed

symbolically as follows, where f\ is the null set, and the variable x ranges

over subsets of S:

xe S = x # Ae (s1,82) ([(s1 €8) & (s2€8) & (57 €x) & (55 € x) D

[P(s1) = P(s»)]}

(2) The elements of G are maximal subsets of G which are elements of &.

Formally, s € Gi=: 8 eS&bcC (s1) ([5; € S & (scs1cG)]12(8 = 81))

29

(3) Two complete states 5, and $5 of S stand in the direct transition rela-
tion R if and only if s, is a maximal set of direct successors (by R) of ele-

- ments of §,. Formally,
R(él,éz) = él €S & S2CR(£‘>1) & (és) {[és e S & (éECéS CR(él))]D(ég = éB)}

(4) ALl the elements of a state & of S have the same DT state (for
i=1,2,...,n), and we take this common-value to be the Pl-state of &.
Formally, ?i(é) = Pi(s) where s € s, s ¢ S.

(r* is called ”thé subset sequence generator" of I'. Our concept of a subset
sequence generator is similar to concepts used by Myhill, 1957, p. 122, Medvedev,
1958, p. 13, and Rabin and>Scott, 1959, Definition 11.)

Tt should be noted that the concepts of behavior (Section 2.1) and sub-
set sequence generator are essentially one projection concepts in'the sense
that when many projections jPl,Pg,..,.,Pn are given, the composite projection
P'x P°x...x P" is used in the definitions of the concepts. In subsequent
theorems and algorithms we will, for the sake of simplicity, usually state
our results for sequence generators with one projection, since it is obvious
how to extend them to the many-projection case.

The construction of subset sequence generators is illustrated in Figs. 6
and (. Note that the generators and complete states of the subset sequence gener-
ator I'* are determined without reference to the direct transition relation of TI.
Figure 6 shows that even though I' is in reduced form, I'* may not be, though
in fact, if I' is in reduced form, then I'* has no terminal states and so
B(r*) = @(r*t). 1In Fig. 7 we begin with a semi-deterministic sequence generator,
add to it in various ways to obtain three sequence generators, f, ?,‘f which
are not semi-deterministic, and then derive the subset sequence generator of

each of these. All the subset sequence generators ¥, f*, f*,'ﬁ* are semi-

deterministic, as they must be by the next lemma. None of the sequence

30

(a) (dv)

Fig. 7. Examples which illustrate Lemma 2.2-1: TFor any se-
quence generator I' = (S, G, R, P),I'* is semi-deterministic.

(a) Sequence generator I' = (S, G, R, P). T is semi-deterministic.
(a') TI'*, the subset sequence generator of I'. I'* 1s semi-deter-
ministic. (b) Sequence generator I' = (8, G, R, P). I is not
semi-deterministic. (Db') TI¥%, the subset sequence generator of T.

[* is semi-deterministic. (c) F=(S,G R, P). T is not semi-
deterministic. (c') T*, the subset sequence generaﬁor of T.
I'* is semi-deterministic. (d) =(§, G R, P). T is not semi-

deterministic. (ar) F* the subset sequence generator of T.
['* is semi-deterministic.

31

generators T, f, f, T is solvable; I'*, f*, ?*, and T* are not solvable either
(cf. corollary 2.2-4).

Lemma 2,2-1: For any sequence generator I' = (S, G, R, P), I'* is semi-determi-

nistic.
Proof: Let I'* = I = (é, é, ﬁ, é). It follows from the construction of é that
for any §y,5z, if 81 € G, 2 € G, and P(5;) = P(s), then 3, = 55, and it fol-
lows frbm the definition of R that for any §,5162, if R(8,81), R(S,85), and
P(81) = B(32), then 5, = &2

Given a sequence generator I' = (S, G, R, P), by the above lemmsa its sub-
set sequence generator I'* = = (é, é, ﬁ, ?) is semi-deterministic. Hence for
any given finite sequence of P-states [p](0,t) there is at most one complete
state S, satisfying the condition that there exists a f-sequence
[s1(0,t - 1), s, such that P{[5](0,t - 1), §;) = [p](0,t). Moreover, this
state 5, is a set of-states of I'. We will use the locution "the state 51 € S
corresponding to [p](0,t)" to refer to this set of states &, if it exists,
otherwise to the null get,

Lemma 2,2-2: Let I'* = I = (S, G, R, P) be the subset sequence generator of

r=(s, G, R, P), let [p](0,t) be any finite sequence of P-states, and let

O be the set of states sy for which there exists a I'-sequence [s](0,t - 1), s;
such that P{[s](0,t - 1), s1) = [p](0,t). Then o is the state &, e §
corresponding to [p](0,t).

Proof: (I) We first prove by an induction on t that for any finite

r-sequence [s](0,t) there is a I'-sequence [s](0,t) satisfying the conditions

(a) P([s](0,t)} = P([8](0,t))

(0) s(t) e &(t).

Initial step: given the I'-sequence s(0), it follows by the definition of G

that there exists a complete state $(0) such that s(0) e $(0) and §(0) e G.

32

General step: The inductive hypothesis is that for every I'-sequence [s](0,k)
there is a P-sequence [§](0,k) satisfying the conditions (a) and (b). Consider
any I'-sequence [s](0,k + 1). By the inductive hypothesis there exists a
P-sequence [5](0,k) such that [s](0,k) and [8](0,k) satisfy (a) and (b). Since
R(s(k), s(k + 1)) it follows by the definition of R that there exists a complete
state &, such that s(k + 1) e &, and R(8(k), 5,). Hence P(s(k + 1)} = P(%,)
and [8](0,k), 8; is a I'-sequence, and so [s](0,k + 1) and [s](0,k), s, satisfy
conditions (a) and (Db).

(II) We next prove by an induction on t that for any finite
I-sequence [8](0,t) and complete state s, ¢ 5(t) there is a I'-sequence [s](0,t)

satisfying the conditions

() P(Is)(0,8)) = P([8](0,%))

(d) s(t) = s;.
Initial step: given‘a M-sequence 5(0) and a state s, e 5(0), it follows by
the definition of ¢ that s; is the desired I'-sequence. General step: the in-
ductive hypothesis is that for every [-sequence [s](0,k) and state s; ¢ s(k)
there is a I'-sequence [s](0,k) satisfying conditions (c) and (d). Consider any
P-sequence [8](0,k + 1) and a state so ¢ 8(k + 1). By the definition R there
exists a state s; satisfying the conditions s1 ¢ s(k) and R(sy,ss). By the
inductive hypothesis there is a I'-sequence [s](0,k) such that
P([s](0,k)} = P{[8](0,k)} and s(k) = s;. [s](0,k), so is the desired I'-sequence.

This completes the proof of Lemma 2.2-2.

Theorem 2,2-3: For any sequence generator [' = (S, G, R, R) with behavior

B(r), (r) = @(r*).
Proof: By the preceding Lemma 2,2-2, for every finite t[p](0,t) ¢ ®(T) if
and only if [p](0,t) € @(I'*). The theorem to be proved now follows by the

Infinity Theorem (2.1-3). Tt should be noted in this connection that the

33

proof of the Infinity Theorem makes implicit use of I'*, the subset sequence
generator of I' In fact, the sequence < 0y,Q;,02,... > employed in the proof
is an infinite T'*-sequence,

Corollary 2,2-4: For any sequence generator I' = (S, G, R, P), I' is solvable

if and only if I'* 1s solvable.

2.5, DECISION PROCEDURES

Behavior Inclusion Procedure: Consider two sequence generators

r=(s,G R, P) and ' = (S, G, R, P), and let {a) [a] be the number of states
in {8} [8]. Form all {r-sequences) [F-sequences] of length 1 + a2é‘ or less and
form the set {Q) ‘[(’1‘] of their (P-projections) [P-projections]. Write "yes"

or "no" as o€ or not.

Theorem 2.%-1: Let A be the class of pairs of one-projection sequence

generators < I, I' > such that B(r)Ce(r), i.e., such that the behavior of T
is included in that of i“. The Behavior Inclusion Procedure is a decision pro-
cedure for A.

Proof: (I) It is obvious that if @(I)C@(I) then aCQ, i.e., that the algo-

rithm yields "yes."

(II) We assume that acd, i.e., that the algorithm yields "yes," and
prove that B(r)c @(I). Let I = (S, G, R, P) = I'* and let & be the set of
§-projections of f-sequences of length 1 + a2é or less. By Theorem 2,2-3%
Q =0 and (B(i“) = (B(i“.), so we will assume that o/c(and prove that
B(N< e(D).

(IIA) Let {Ott] [&t] be the subset of sequences of (B(I)} [B(T)] of
length t + 1 or less. We will now establish by induction that for every
t, Qe Oy
Initial step: since by assumption aC ¢ and by definition o = Oéa.gé' and

e e . 8
O =0g.2% soag @ fork =a.2,

3L

General step: we assume that ogcC &k for k = a.2% and prove that ak+f:'&k+1.

Consider an arbitrary I'-sequence [s](0,k + 1) for k 2 a.2%, ILet
[p1(0,k +1) = P{[s](0, k +1)]).
By the inductive hypothesis there exists a I-sequence [s](0,k) such that
B([8)(0,K)) = I[pl(0,k).
We will show that there exists a complete state Eo satisfying the conditions

(1) R(3(x), 5,

(2) P(sy) = p(k+1),

i.e., that there exists a I'-sequence < [5](0,k), §, > such that
P([81(0,k), So} = I[pl(0,k +1). Tt follows from the nature of the subset
sequence generator construction that T has no more than 22 complete states,

and hence the number of pairs of complete states < s,§ > is no more than

a-2%, Since k = a.2% there exist ty,t> such that 0 s t; < tp s 82% < k,

s(ty) = s(ts) and S(tq,) = s(ts). Let

(3) [s11(0,£ + 1)
(%) [511(0,4)

(5) [p11(0,4 +1)

1

{([s1(0,t1), [s](ts + 1,k + 1))

1]

([81(0,t1), [81(ts + 1,k))

{[P](O;tl): [P]<t2 +1, k + l)}

where 4 = k = (t5 = t1). Note that

(6) P{ls1](0,2 + 1))
(7) P{[s1](0,4))

[Pl](oyz + 1)

[Pl](oyz)

Because {s(t,) = s(ts)) [s(t,) = s(ts)] we have that
{[s1](0,4 + 1) is a I'-sequence} [}éﬁ](o,z) is a f-sequenc%], And since

4 + 1 < k there exists by the inductive hypothesis a I'-sequence [£5](0,£ + 1)

35

such that

(8) P([821(0,6 +1)) = I[p1](0,4 +1).

(
It follows from (7) and (8) that

(9) P([821(0,8)) = B([£,1(0,8)) = [p11(0,4)

and since [' is semi-deterministic (Lemmas 2.1-4 and 2.2-1) we have that

(10) [821(0,4) = [8511(0,4).

Tt follows from (4) that

(11) s.(8) = 8(k)
and hence by (10)
(12) 8a(4) = 's(k)

Since [s5](0,f + 1) is a [-sequence we have that ﬁ{gg(ﬂ), so(f + 1))

and hence by (12) that
(13) R(8(k), $2(2 + 1)).
Now by (8) and (5)
(14) P(8s(4 + 1)) = p(k +1).

Conditions (13) and (14) show that so(£ + 1) satisfies conditions (1) and (2)
and hence that s5(4 + 1) is the desired state §o.
(IIB) We have shown that if qC o then for every t, O%Cja%. Tt follows

by the Infinity Theorem (Theorem 2.1-3) that if acCQ, thentﬁ(F)C:@(f). As re-
marked earlier, this is equivalent to: if Q@Cq then @(I)C@(I). This completes

the proof of Theorem 2.3-1.

36

In formulating the Behavior Inclusion Procedure we have not attempted
to minimize the computation required. Many simplifications will occur to any-
one who uses this algorithm. For example, since any two elements of a com-
plete state s ¢ S must have the same projection,the bound 1 + a-Qé may be
greatly reduced. Note also that if I is already semi-deterministic, it is
not necessary to make use of ['* in the proof, and the bound 1 + a-Eé may be
replaced by 1 + aa.

The Behavior Inclusion Procedure may be used as the basis of a decision
procedure for solvebility. ILet I' = (S, G, R, P) be given. By definition I
is solvable if every infinite sequence of P-states belongs to its behavior
(Section 2.1). T = (8, S, R, P), where R(s;,ss) for all s;,ss € S,has as its
behavior the set of all sequences.of P-states. Hence the behavior of f in=-
cludes all infinite sequences of P-states, so I' is solvable if and only if
®(I) € @(r). By Theorem 2.3-1 the Behavior Inclusion Procedure is & decision

procedure for behavior inclusion, so we have proved the following theorem.

Theorem 2,3-2: ILet I' = (S, G, R, P) be a sequence generator and let

ﬁ(sl,sg) for all si,85 € S. The Behavior Inclusion Procedure applied to the
pair < (S, S, R, P), I' > is a decision procedure for the solvability of TI.
When the Behavior Inclusion Procedure is applied first to the pair

< T, [>and then to the pair < f, ' > the result is "yes" in both cases

if and only if @(I) =@(I). This "behavior equivalence procedure" may be
used to reduce the number of complete states of a sequence generator so as
to obtain a behaviorally equivalent sequence generator with fewer states,
Consider I' = (S, G, R, P). We will say that two complete states s; and so

are "behaviorally equivalent" if

@[(SJ {Sl}; R, P)] = @[(S; {32}) R, P)]'
Let ' be the result of identifying all behaviorally equivalent states of T.

37

[will in general have fewer states than I and yet ®(I) =@(I). Moore's con-
cept of two sequential machines being indistinguishable by any experiment is
a special case of our concept of behavioral equivalence, and the above process
of identifying behaviorally equivalent states is analogous to the "reduction
procedure" of Moore, 1956, and Mealy, 1955. We have examples to show that

the procedure we described does not always lead to a behaviorally equivalent
sequence generator with a minimal number of complete states and that the pro-
cedure of Moore and Mealy does not always lead to a behaviorally equivalent

sequential machine with a minimum number of internal states.*

* Moore and Mealy showed that identifying behaviorally equivalent states of a se-
quential machine does lead to a minimum number of internal states if either the
sequential machine is "strongly connected" (Moore) or it has exactly one generator
(Mealy). The counter-examples mentioned above are not strongly connected and
have more than one generator.

38

3, SEQUENCE GENERATORS WITH TWO PROJECTIONS

3,1. DEFINITIONS

The results of the last section concern primarily one projection of a
sequence generator. In the present section we will work mainly with two-
projection sequence generators.

Definition: I = (S, G, R, P, Q is h-univalent (h =0, 1,2, .. . ;
if for every two infinite I'-sequences [s,](0,w), [s2](0,w) and any time t,
if P([s1](0,t + h)) = P([s2](0,t + h)) then Q(s1(t)) = Q(s=(t)). (By defini-
tion, t + w = w.)

Note that h-univalence is essentially a property of a set of infinite
sequences of pairs < p,q >, and hence a property of‘@gkfﬁ, the infinite be-
havior of I'. As a consequence the following lemma holds.

Lemme 3.1-1: Let I = (S, G, R, P, @ and I' = (5, G, R, P, Q). If

L

€2(r) = @™(I), then I is h-univalent if and only if I' is h-univalent. This
lemma, together with Corollary 2.1-1 and Theorem 2.2-3, immediately yields
Lemma 3.1-2: Let I' = (8, G, R, P, Q). The following three conditiqns are
equivalent: (1) T is h-univalent, (2) I'* is h-univalent, and (3) rt is
h-univalent.

There is a close connection between zero-univalence and semi-determinism
which is brought out by the following lemma. |
Lemma 3.1-3: (a) ILet I' = (S,G,R,P,Q) and I' = I'f. T is Q-univalent if and
only if for any two finite I-sequences [s,](0,t) and
[s21(0,t), if P([s11(0,t)) = P([s2](0,t)) then Q([s,](0,t)) = Q([s2](0,t)).
(b) Let T = (S,G,R,P) and I' = I'f. T is semi-deterministic if and only if

for any two finite I'-sequences, [s,](0,t) and [s5](0,t), if

P([s11(0,t)) = P([s21(0,t)) then [s,1(0,t) = [s2](0,t).

39

Note that the sequence generator of part (a) of the lemma has two projections,
while that of part (b) has one projection. Part (a) may be established by

using Corollary 1.3%-3 and the definition of univalence; part (b) follows from
Corollary 1.3%-3 and Lemma 2.1-4b. Tt follows from Lemma 3.1-3 that for any
projection Q, if (S,G,R,P) is semi-deterministic then (S,G,R,P,Q) is O-univalent,
The converse is not in general true, but the following lemma asserts a connection
between the O-univalence of a sequence generator and the semi-determinism of

a related sequence generator.

Lemma 3.1-4: Let I = (S,G,R,P,Q) and let I'*t = = (5, G,R,P,Q). T is zero-

univalent if and only if (8,G,R,P) is semi-deterministic.

It might seem that since [is the reduced form of the subset sequence generator
of ', it would follow immediately by Lemma 2.2-1 that if I' is O-univalent

then (é,é,ﬁ,?) is semi-deterministic. This is by no means the case. It can

be shown from Lemma 2.2-1 by means of the definition of the subset sequence
generator operation that (S,é,ﬁ,PxQ) is semi-deterministic, while the conclusion
of Lemma 3.1-4 is that (S,G,R,P), which is a different sequence generator,

is semi-deterministic. For any projection Q, if a sequence generator (S,G,R,P)
i semi-deterministic, then (S,G,R,PxQ) is semi-deterministic, but the con-
verse is not in general true.

Proof of Lemma 3.1-L4 ("Only if" part): We assume that I' is O-univalent and

prove that (§,G,R,P) is semi-deterministic.

(I) We will use three sequence generators in the proof besides I'. These are
I = (8,6,R,P,Q, T = (S,G,R,PxQ), and T = (§,G,R,P). We will first establish
some results that will enable us to use Lemma 3,1-%a on [and Lemma 3,1-3b

o0

on T and'f. (A) By construction I = fT and by Lemma 3.1-2 I is O-univalent.

(B) By construction E = %T and by Lemma 2.1~1 F is semi-deterministic.
(c) By constructiongf = Tt. Our task is to prove that T is semi-deterministic.

(II) Since f, E: anduf have é, é, R in common, the sets of~f-sequences,

Lo

?-sequences, and‘f—sequences are identical with one another. Consider now
any two finite T-sequences [57](0,t) and [55](0,t); these are also arbitrary

I-sequences and arbitrary I'-sequences. Using (IA) and applying Lemma 3,1-3a

to I', we obtain

(1) 1f P([s,1(0,8)) = P([s2](0,t)), then Q([5,1(0,8)) = @&([s21(0,t)).

Using (IB) and applying Lemma 3.1-3b to f, we obtain

(2) 1f P([s,1(0,8)) = P([s2](0,%)) and Q([5,1(0,%)) = a([s21(0,t)),

then [s,](0,t) = [s51(0,t).

Combining (1) and (2) and noting that [s,](0,t) and [851(0,t) are arbitrary

ese

I'-sequences, we get

(3) For any two finite I-sequences [$:1(0,%) and [821(0,t),

if B([6:1(0,)) = B([521(0,8)), then [5,1(0,8) = [521(0,%).

Using (3) and (IC) and applying Lemms 3.1-3b to I', we obtain

() T 1is semi-deterministic,

which completes the proof of the "only if" part of the Lemma,

("If" part): We assume that (S5,G,R,P) is semi-deterministic and prove
that ' is O-univalent. Since every complete state of [is f-accessible, by
Lemma 2.1-Ub we have that for every finite sequence of P-states [p](0,t)
there exists at most one I'-sequence [8](0,t) such that P([s](0,t)} = [p1(0,t).
Hence for any two I'-sequences [81](0,0), [$-](0,w) and any time %,
if P([8,1(0,t)) = P([s2](0,t)), then s1(t) = s5(t). Since a projection is a
(single-valued) function, we have that if P([5,](0, t+ + 0)) = P([82](0,t + 0))
then Q(s1(t)) = Q(ss(t)), so ' is O-univalent. T© = I'*t, and by Lemma 3.1-2

I' is O-univalent. [This completes the proof of Lemma 3.1-k,

b1

We next apply this lemma to an example. Consider I' = (S,G,R,P,Q) of
Fig. 8(a). Note that the complete states s, and s, have the same projections
(po and qo) and stand in the same relation to state s,. Thus the two

¢)

I'-sequences
S0s S45 So

Sosy 825 8o

have the same sequence of P-projections

PO: PO; Po

and hence (S,G,R,P) is not semi-deterministic. These two I'-sequences do have

the same sequence of Q-Projections

Aoy d2,9p0

and in fact I' is O-univalent, By Lemms 3.1-L (8, G, R, P) of Fig. 8(b) must
be semi-deterministic. An examination of the states (S, G, R, P) shows that

it is deterministic, so a fortiori it is semi-deterministic. (The determinism
of (S, G, R, P) will be discussed after Lemma 3.2-3 below.) Note that the main
difference between I' and I'*} in Fig. 8 is that the two states s5, s, of I' have
become a single state {sp, s4} of I'*t,

Definition: I = (S, G, R, P, Q) is uniquely solvable if (1) (S,G, R, P)

is solvable and (2) (S, G, R, P, Q is w-univalent. We remarked earlier that
h-univalence is essentially a property of the infinite behavior of a sequence
generator, and this remark applies to uniqﬁe solvability as well., Thus I' is
uniquely solvable if and only if for any infinite sequence of P-states [p](0,w)

there is exactly one‘sequence of Q-states [q](0,w) such that the sequence

< p(0), q(0) >, <p(l): o) > ...

L2

Sk
DPosdo

(o)

Fig. 8. Illustration of Lemma 3.1-L: T is zero-univalent
if and only if (5, G, R, P)is semi-deterministic. (a)
r=(s, G, R, P, Q. T is zero-univalent and uniquely
solvable, but (S,G,R,P) is not semi-deterministic.

() I'*t=T=(S,G, R, P, Q. (8, G, & P) is deter-
ministic, and a fortiori semi-deterministic.

L3

belongs to B(I'). To put the point in another way: a sequence generator

r =(s, G, R, P, Q is uniquely solvable if and only if its behavior defines

a single-valued function (transformation) from the set of all infinite se-
quences of P-states into the set of all infinite sequences of Q-states,
Various consequences follow from this fact. The result of replacing
"h-univalence" by "uniquely solvable" in Lemma 3.1-1 is also a lemma. A simi-
lar remark holds for Lemma 3.1-2 except that I't may have fewer P-states
(values of p) than T.

It was shown in Section 2.1 that well-formed nets and deterministic se-
quence generétors are equivalent in a certain sense: for every w.f.n. there
is a corresponding deterministic sequence generator and vice-versa, The w.f.n,
gives the structure of an automaton while the associated deterministic sequence
generator gives the corresponding complete state diagram. An analogous rela-
tion holds between the well-behaved nets of Burks and Wright, 1953, p. 1358,
and uniquely solvable sequence generators. Consider any net and label all its
non-input nodes as output nodes. The procedure of Section 1.2 will associate
with this net a sequence generator which is uniquely solvable if and only if

the original net is well-behaved.

3,2, THE DIéPIACEMENT OPERATOR AND THE £-SHIFT OPERATION

We will first define a displacement operator JDK which applies to sets
composed of finite sequencés of pairs and/or w-sequences of pairs. Roughly
speaking,og K has the effect of leaving the first element of each pair where
it is and displacing the second element of each pair k places to the right.
Displacing the second element of the first pair k places to the right will
leave k gaps, since the first pair is not preceded by any pair. It will be
convenient always to fill these gaps with the same element; we will use the

null set A for this purpose.

L

Definition: Let the universe of discourse V consist of all finite se-
quences of pairs and all w-sequences of pairs and let A be the null set. The
operator(X)(Without superscript) is defined to apply to any sequence of V as

follows:

ﬂg) (< X0y Yo >y < X1, Y1 >, <Xz, Y2 >, <Xz, ¥3>, « . .) =
(< Xoy A >y < X3, Yo >y <Xz, Y1 2, <Xz, Y2 >, . . .)
00 (< XO) Jo >) < X1, V2 >)- ° s < Xn-15 Yn-1 >; < Xns ¥n >) =

<< X0 A >) < Xj, Yo >: L < Xn-1; Yn-2 >J < Xny Yn-1 >)-
The operatorac)is extended to apply to an arbitrary set o of V by
D@ = @) mweatv =W,

where v and u range over elements of V. Finally, we definecz7k, k =0,1,2...,

to apply to an arbitrary set o of V by the induction

A °(a)
AO i+l(a)

a

L) (D))

£9Z is called the displacement operator.

We next define a shifting operator which may be applied to an arbitrary
sequence generator I' = (S, G, R, P, Q) to produce the /-shifted sequence

ﬁ . o 3 o I3 a)

generator I =T' = (S, G, R, P, Q The effect of this operation is to dis-

z, i.e., ;B(Fz), equals the

place the behavior of I', so that the behavior of T
displaced behavior of T, i.e.,¢{>£QB(F)], as is shown in Lemma 3.2-1 below.
To help make clear the definition of Fﬂ, we will make some remarks about I',

Extend Q to apply to A, so that Q(A) = A. The generators of I'' are the pairs

< A, s >, where s belongs to G. Suppose

Sos S1, S2, S35, S4

L5

is a I'-sequence with the resulting behavior element

< DPos 9% >y <P1s; 91 >, < P2, 2 >, < P3, A3 >, < Pg, da >

Then

<A, 8g >y < 8g, 81 >, <831, 82 >, < 8p, S3 >, < 83, Sg >
is the corresponding Fl-sequence with the resulting behavior element

< DPoy A>, <Pi1, 9o >, < P2y 91 >, <DPs, A3 >, < Py, d3 >

Pﬂ may be obtained by shifting I' 4 times in this way.

Definition: The unit-shift operation, denoted by "<>," applies to any
sequence generator I' = (S,G,R,P,Q) and produces a sequence generator
r =T = (§,8,R,P,Q) defined as follows. (We wish to assume throughout that
A 1s not an element of S; if it is, S should first be redefined so it is not.)

o

The elements of G are all the pairs < A, s > where s belongs to G:
<A, 8>c¢€ G = seG.

(2) The elements of S are all the pairs < sy, so > which either belong to

& or are connected by the direct transition relation R:
S = (< sy, s> \< S1, S2 > € G v R(sy, s2))

(3) Two complete states < s;, so > and < s, s; > of S stand in the direct

transition relation R if and only if ss = sa:

°

R(< sy, 82>, <83, 84> = [<s1, 82> <83, 84>e8&s2 = szl

(4) The P-projection of a complete state < s;, s» > of 8 is the P-projection

of its second element ss:
P(< 81, 82 >) = P(sp), where < s1, 82 > ¢ 5.

L6

(5) Extend Q to apply to A, stipulating that Q(A) = A. The Q-projection

of the complete state < s;, so > of S is the Q-projection of its first element:

Q(< 81, 82 > = Q(s1), where < s;, sz > ¢ s.

The f-shift operation, denoted by "#4," applies to any sequence generator

Y4

r = (s,6,R,P,Q and produces a sequence generator I''; it is defined in terms

of the unit-shift operation by means of an induction:

r = T
F.g+l (F,@)O .

]

The f-shift construction is illustrated in Fig. 9. Part (a) shows a se-
quence generator I' with two projections, while part (b) shows Pl, the result
of shifting I' one unit of time., Note that both I' and I't are in reduced form;
this is a special case of the general fact that if I' is in reduced form then
Fh is in reduced form., Note next that the generator < A, s, > can only occur
as the first state of a Fl-sequence. Since Pﬂ is defined by induction on F<>,
it follows by induction that if a Fg-admissible complete state occurs in some
Fz-sequence at a time T < £ then all occurrences of this state are at time T.
Thus the M?-admissible complete states are partitioned into two sets, those
that occur only before time £, and those that occur only at time £ or later.

The 4-shift operation is of interest because it shifts behavior in the

same way the displacement operatora@'z does. Compare the behaviors of

I and T'Y., The behavior element [an element of B(T)]

(l) <DPgs B > <Pgos 9o > <P1y, A1 > <Pg, Yo >

is derived from the I'-sequence

So, SO, S1, 81, SO.

b7

So ¢ Sl
Pos qO le a4,

<A,So>

Po,)A

(o)

Fig. 9. TIllustration of the £-shift construction,
for / = 1. 1In accordance w1th Lemma 3.2-1,

ﬂlurs(r] 8r). (a) r=(S,0C R, P, Q;

(b) Il (unit-shifted sequepce generator of F)

48

The corresponding I'l-sequence is
<Ay, 85 >y, < 8gy Sg >y < 8gy 81 >, <81, 81 >, <83, 85 >,
which gives rise to the behavior element [an element of @(I')]
(2) <pg, A>, <Dy, 4o > <P1, 9 >, <DP1y U > < Dy, d1 >

Note that this last sequence (2) is the result of displacing sequence (1)
by one unit. This is an example of the general fact that @(Fl) = A?lkB(F)],
which is a special case of the following lemma.

Lemms 3.2-1: Let I = (S,G,R,P,Q). Then

(a) P'le(m1 = @’
) 2PN = g%,

Proof: (IA) We prove first that f) ()] = @%(r<). Let I< =T = (§,6,R,P,Q).
It follows from the definition of the unit shift operator : that there is a
one-one correspondence between the set of infinite I'-sequences and the set of

infinite f-sequences with corresponding sequences being of the form
(1) 8gy 51, 825 B3y e u. s
(2) <A, 85>, <589, 81 >, €81, 852>, <62, 853> « & »
When P x Q is applied to (1), we get
(3) <Po:%>,<P1;Q1>;<P2:92>;<P3;%>;-s-
as an element of E®(T), and when P x Q is epplied to (2), we get
() <Dpoy, A>, <Py, 9o >, < P2y, 91 >, <P3y 92 >, + . .

as an element of 8(T'). By definition of AO,

49

DI = ().

Hence

1

™

/\8
=

D)]
(1B) Applying mathematical induction to result (IA), we get
D1 = e

(IIA) An argument similar to that of (IA) may be given for finite I'-sequences
and finite I“-sequences. When the result is combined with result (14), we

get

Dle(n)1 = g(r).

(IIB) Applying mathematical induction to (II), we get

Dlem1 = grh.

Corollary 3.2-2: Let I = (S,G,R,P,Q and T¥ =T = (§,8,R,7,0).

[l is (4 + h)-univalent] {(S,G,R,P) is solvable]) (I is uniquely solvable) if

L is h-univalent] {(é,é,ﬁ,?) is solvable) (Pﬂ is uniquely solvable).

and only if [T
This corollary is illustrated by Fig. 10. Consider T' of this figure.

Tt was shown in Section 2,1 (in the paragraph preceding Lemma 2,1-L4) that

(s, G, R, P) is solveble. Also, I' is unit-univalent. To see this, observe

that every immediate successor (by the direct transition relation R) of a

given complete state s has the same P-projection; e.g., R(sy) = (sq,s1)

and P(sy) = P(s;) = py. Since (S, G, R, P) is solvable and I' is unit-univalent,

I' is uniquely solvable. Turn now to Fl, the unit-shifted sequence generator

of I'. Since (S, G, R, P) is solvable and I' is unit-univalent and uniquely

solvable, by Corollary 5.2-2 rt (less its last projection) must be solvable,

and I'" must be zero-univalent and also uniquely solvable,

50

50 55
Pos q’l P1,qy
1 53
Pgr9g o P54y

_/

<sp,8¢> <s3,s0>

Porqy X 1,90

<4, 53>
A
<A, 82> pl)
P]_IA
<s0,80> <s1,82> <sp,s1> <83,53>
Ppyqy P19 Posdy P15
<A, sl>
<A, So> pO,A
po,A 4
<so,sl> <sl’sj>
DPosdy P1,qp

(o)

Fig. 10. TIllustration of Corollary 3.2-2, [I' is l-univalent]

(r, less its last projection, is solvable} (T is uniquely solvable)
if and only if [I'! is O-univalent] (I}, less its last projection,

is solvable} (I'* is uniquely solvable). (a) I = (S, G, R, P, Q).
(s, G, R, P) is solvable but not deterministic. T is unit-univalent
and uniquely solvable. (b) TT, the unit-shifted sequence generator
of I'. TIl, less its last projection, is solvable, but not deter-
ministic, T, is zero-univalent and uniquely solvable.

51

Bet _ ¢

Lemma 3.2-3: Let I = (S,Q,R,P,Q) and T r = (S,G,R,P,Q). Then (a) if T

is h-univalent for some finite h and (S,G,R,P) is solvable, then (é,G,

LI}

R,P)
is deterministic (b) ,,z")h[@“)(n] =™,

Proof: (IA) We will prove first that (S,G,R,P) is solvable. It is given that

(s,G,R,P) is solvable. By Corollary 3.2-2, Lemma 2,2-4, and Lemma 2,1-ka,
(§,G,R,P) is solvable. (IB) We prove next that (5,G,R,P) is semi-deterministic.
It is given that I' is h-univalent. By Corollary 3.2-2, b ig O-univalent.
By Lemma 3.1-4, (S,G,R,P) is semi-deterministic. (IC) Tt follows from Lemma
2.1-4b and the definition of solvable that if every complete state of any
sequence generator I' = (S,G,R,P) is I'-accessible, then I' is deterministic if
and only if I' is both semi-deterministic and solvable. Applying this prineci-
ple to (8,G,R,P) and using (TIA) and (IB), we conclude that (5,0,R,P) is
deterministic., This proves part (a) of the lemma.

(II) By Lemma 3.2-1b

(1) HUEADT = @,

By Theorem 2.2-3 @(I'Y) = @(Fh*). and hence
(2) e = @™,

But by Corollary 2.1-1
(3) @(r™) = ().

Combining (1), (2),\and (3) gives part (b) of Lemma 3.2-3 and completes the
proof of the present lemma,

We may apply this lemma to Fig. 8. As noted in Section 3.1, (S,G,R,P)
is not semi-deterministic but (S,G,R,P,Q) is O-univalent. It is easy to see
that (S,G,R,P) is solvable. Applying Lemma 3.2-3 with h = 0, we conclude

¢ & &

that (§,G,R,P) is deterministic and that @(I) = @(I). These two facts may

52

be confirmed by inspection of Fig. 8(b).

Actually @(T) = @(I) in Fig. 8, i.e., the finite behaviors of I and T
are equal as well as the infinite behaviors., There is a variant of Lemma
3.2-3 which covers this point. Since our main interest in the present section
is in infinite behavior, we will merely state this result without proof.

Iet ' = (S,G,R,P,Q) be h-univalent and (S,G,R,P) solvable; then I'Y less its
Q-projection is deterministic,) R[g(T)] =@(Fh*), and if ' is in reduced
form then @(I‘h*) = @(Fh*t) .

Figure 11 also illustrates Lemma 3.2-3. We begin with I' = (S, G, R, P, Q,

{<A,52>}
<A, 555

p1,A
<52,so> <53,52>
<sp,s1> P <s5155>
Posd71 P1,99

{<so,so>} {<sl, s2~>}
<s0y81> <Sl’55>

Pps4y

ISERT)

<A,So>
<A,s1>

posA

Fig. 11. 1~ ¥, where I is Figure 10(a). P and I'" (less their last
projections) are not deterministic, but P J‘ less its last pro-

jection) is deterministic. H[E(T) 1). This illustrates
Lemma 3.2-3.

>3

where T' is unit-univalent and (S, G, R, P) is solvable. Lemma 3.2-5 tells us
that 0¥t (less its last projection) is deterministic, and also that
DEENT)] = @@(FI*T). ! is shown in Fig. 10(b); it has 12 complete states.
r** has 28 states, but only 6 of these are Fl*-admissible, so I'**T has only

6 states,]

3+3. TIME-SHIFT THEOREM
We will prove now a lemma which is used in proving one of our main theorems
(the Time-shift Theorem) and in validating a procedure for h-univalence,

Lemme 3.3%-1 (Fixed Bound Lemma): ILet I' = (S,G,R,P,Q) be a sequence generator

with k TI'-admissible complete states. Then I' is w-univalent if and only if
it is k®-univalent.

Proof': The proof in one direction is obvious. To prove that if T is
w-univalent it is kz-univalent, we consider any two I'-sequences [s1](0,w),
[s2](0,w) and any bime t such that P([s1](0,t + k) = P([s21(0,t + k°)).
Since there are k~ distinct pairs of complete states, there are two times
t1, to such that t S t; < to st + k5, s1(t1) = s1(ta), and so(ty) = so(ts).

Form the sequences

[s51(0,w) [811(0,t2 = 1), [s1](t1,t2 - 1), [s1](t1,t2 - 1),. .

1]

]

[54](0105) [52](o)t2 = l)} [52](t’1;t2 = l), [52}(t1,~t2 - l);- o e

These are both I'-sequences since they are composed of segments of ['-sequences
linked by the direct transition relation. Since

P([s,](0,t + k2)) = P([s2](0,t + kz)) we have by construction

P([s51(0,w)) = P([s4](0,w)). Because I' is w-univalent, Q([s3](0,w)) = Q([s4](0,w)).
Then by construction Q(si(t)) = Q(ss(t)) and Q(sa(t)) = Q(ss(t)), and so
Q(s1(t)) = Q(sa(t)). Hence I' is k°-univalent.

Consider a sequence generator I' = (S,G,R,P,Q). If (S,G,R,P) is deterministic

5,

then (S,G,R,P,Q) is uniquely solvable, but the converse does not in general
hold [see Fig. 8(a)]. We noted earlier (Section 3.1) that unique solvability
is essentially a property of the infinite behavior of a sequence generator.
This suggests the dquestion: what is the relation of the behaviors of unique-
1y solvable sequence generators to the behaviors of deterministic ones?

This question is answered by the following theorem, which shows that for every
uniquely solvable sequence generator there is a deterministic sequence genera-
tor whose infinite behavior is a displacement of the infinite behavior of the
given sequence generator. In Section 4 we will introduce a concept of
"computation." Using this concept, the result may be expressed: the behavior
of every uniquely solvable sequence generator can be computed by a finite
automaton,

Theorem 3.3%-2 (Time-shift Theorem): Let I' = (S,G,R,P,Q) have k I'-admissible

kE*T

complete states and-let TI' =T = (8,6,R,P,Q). Then

(a) 1if I' is uniquely solvable, then (é,é,ﬁ,f) is deterministic

(0 f5 1 (D] - 6.

Proof: This follows immediately from the definition of uniqueli solvable
(Section 3.1) Lemma 3.2-3, and the Fixed Bound Lemma (3.3-1).

Consider the Time-shift Theorem in relation to I' of Fig. 10(a) and the
derived r**t of Fig.‘ll. I' is uniquely solvable and has Lt I'-admissible com-
plete states. Then the Time-shift Theorem tells us that P16*+, less its
last projection, is deterministiec. This is clearly so, for PI*T, less its
last projection, is deterministic, and further applications of the f£-shift
operation will obviously not destroy this property.

We pause to note an analogue of the Time-shift Theorem in which the
shifting takes place in the opposite direction. The displacement operator

%?ﬂ was defined to produce a right-shift of the Q-projections of a I'-sequence;

that is, it shifts the Q-projections £/ steps later in time, leaving the

55

P-projections as they were. One could easily extend this operator to cover
shifts in the opposite direction (i.e., with the Q-projections moved earlier
in time); this could be symbolized by using the same operator o@ﬂ, allowing
negative as well as positive integer values for #4. Similarly, the /-shift
operator can be extended to produce shifts of the Q-projections to the left;
again, we can use the same symbolism 4 and signify left-shifts by negative
values of £. We then get the following partial analogue to the Time-shift
Theorem. Let I' = (S,G,R,P,Q) be a sequence generator, with (S,G,R,P) deter-
ministic., Iet I = Fﬂ, where £ is negative. Then I is uniquely solvable, and
DPEN(r)] = g(I). Combining this with the Time-shift Theorem, we obtain
the follbwing result: the set of infinite behaviors of uniquely solvable se-
quence generators 1s exactly the set of displaced infinite behaviors of de-
terministic sequence generators.

It is not obvieus from the definition that the class of h-univalent se-
quence generators is decidable. However, this is in fact the case, as we will
now show.

h-univalence Procedure (where h is any non-negative integer of w):

Let I' = (S,G,R,P,Q) be the given sequence generator. Find k, the number of

admissible complete states, by the Reduced Form Algorithm. Let £ = min (h,k%).
Lxt

Form T =T =(§,6,R,P,Q). Answer "yes" or "no" as (5,G,R,P) is semi-

deterministic or not.

Theorem 3.3-3: The h-univalence procedure is a decision procedure for the

class of h-univalent sequence generators.

Proof: We will use the notation of the algorithm. By the Fixed Bound Lemma

[' is h-univalent if and only if I' is f-univalent. By Corollary %.2-2 T is

£ is O-univalent

fL-univalent if and only if Pﬂ is O-univalent. By Lemma 3.1-4 T
if and only if (S,G,R,P) is semi-deterministic. As noted in Section 2.1, it is

obvious from the definition of semi-determinism that there is a decision

56

procedure for the class of semi-deterministic sequence generators. This com-
pletes the proof of the theoren.

It can be shown that the following is a characterization of h-univalence,
let I' = (8,G,R,P,Q), k the number of I'-admissible complete states, and
b = min(h,kz). Then T' is h-univalent, if and only if, for any two '-sequences
[s;](0,w) and [s5](0,w) and any time t < k2, if P([s,1(0,t + £)) = P([s2](0,t + 4)),
fhen Q(s1(t)) = Q(sao(t)). This characterization can be made the basis of a
decision procedure for h-univalence which is more efficient than the one we
have given.

Since unique solvability is defined in terms of solvability and w-univalence
(Section 3.1), by combining the w-univalence Procedure with the decision pro-
cedure for solvability of Theorem 2.3-2, we obtain a decision procedure for

unique solvability.

57

L, GENERALIZATIONS AND APPLICATIONS

| 4.1, COMPUTATION

We will next define a concept of "computation" which corresponds more
closely to the way a digital computer is used than does the concept of be-
havior; essentially the same concept is defined in Burks, 1960. Computers
are employed to produce answers to questions; the questions go in as inputs,
the answers appear as outputs. Generally speaking, the answer is not pro-
duced immediately, but only after a time delay. Moreover, except in real-
time computation, the answer will not appear at the same rate as the input
information is received. In contrast, all outputs of a computer are part
of its behawior, whether they contribute to tﬁe answer or not. For these
reasons the concept of behavior does not fit the question-answer mode of us-
ing a computer as closely as the concept of computation to be defined. Com-
putation differs from behavior in that in the case of computation not all
"output states" are interpreted as part of the answer, but only those se-
lected as the "computed output states" by the sequence generator itself.
The concept of computation reflects the fact that in our theory the internal
operations of a sequence generator are strictly correlated to the basic time
séale, while the computed outputs are not.

In the definition of computation we will need the p-operator (selection
operator). Suppose ¢x expresses some condition on the natural numbers.
"(ux) px" designates the smallest number satisfying the condition ¢x if there
is one; if no number satisfies gx,then "(ux)@#x" is undefined. For example,
(ux) (x > 3°) = 10, while "(ux)(x° = 2)" is undefined.

Definition: Let I = (S,G,R,P,Q,C) be a sequence generator with the pro-

Jection C having only the two values O, 1. ILet [s](0O,w) be an arbitrary

29

infinite T'-sequence and define

X
y(t) = Q{S(uX){ZOC[S(y)] =t +1)));
y:

[0}
note that if Zoc(s(y)} is finite then y(t) is undefined for any
y:

[e¢] [ole]
t 2 yZbC[s(y)}. If yZ.OC[s(y)] is unbounded, then the sequence

< P{s(0)], 7(0) >, <P(s(1)}, 7(1) >,

o0
is an infinite computation element of I'. If ZbC{s(y)] = k (k being finite),
y:
then the sequence
<P(s(0)}, 7(0) >, . . . ,<P(s(k -1)}, 7(k - 1) > <P{s(k)} >, <Ps(k +1)}>, .

is a finite computaﬁionielement of I'. The computation of I', denoted by ((TI),
1s the set composed of all infinite computation elements and all finite compu-
tation elements of I

An example will help make the concept of computation clear. Consider a
sequence generator I' which has only two infinite I'-sequences. These are shown

below, together with the projections of each and the derived sequences [7](0,k).

[s11(0,0) = sg, 81, S5, S3, Sz, S3, « .
P([1](0,0)) = Do, P1, P1, D3, D3, D3, -
Q[s11(0,0)) = qg, Qs 91, 91, 91, 91, -
c(lsyl(0,@)) = 0, 1, 1, 0, 0, O,

[711(0,1) = a5, a4

[s21(0,0) = sg, s1, Sz, S4, S5, S4, S5, Sa, s5,‘.
P([s2](0,0)) = Do, P1, P, P, Ps, Pa, Ps, Pay Ps, -
Q([s21(0,w)) = 4o, 9oy 91, 92, 93, U2, A3, o, Qs - o
c([s;1(0)®)) = 0, 1, 1, O, 1, O, 1, O, 1,

[721(0,0) = 4o, A1, 93, 43, Q3, -

60

Hence the computation ((I') is the set consisting of the two sequences

< Pos Po >y <P1;, 41 > <P1 >, <Pz >, <Pz >, <P3z> .

< Doy 9 >y <P1y; 91 >y < P1, d3 >, < P3y; d3 >, < Ps, 43 >, .

Note that the first of these is a finite computation element of I' while the
second is an infinite computation element of T.

We will now show that the concept of computation is a bona fide general-
ization of the concept of behavior. Let a be the class of all two-projection
sequence generators. Let B be the class of all three-projectioﬁ sequence
generators I' = (S,G,R,P,Q,C) such that C has the values O} liand every element
of C(I) is infinite. Then the class {B®(T) |Tea} of infinite behaviors of
elements of o is a proper subclass of the class {0(F)|FGB} of the computations

of elements of B. To see that
@°(r) [rea) € (C(T) |TeB),

note that for each element I = (S,G,R,P,Q) of ¢ there is an element

r = (s,G,R,P,Q,C) of B8 in which C(s) = 1 for every seS, so that () = O(r).
That the inclusion of {@®(I) |Fex) in {C(T)|TeB) is a proper one is shown by
Fig. 12. 1In Fig. 12, P(8,) = P(85) = 0, P(8;) = P(85) = 1, P(8) = Q(8) for
every § ¢ é, C(sy) = C(81) =1, and C(8p) = C(8g) = 0. The sequence generator

I' of this figure has the property that
C(r) & (@X(r) |rea).

To see this, note that since ﬁ(é) = Q(é) for every éeé, the computation C(f)

consists of all infinite sequences of the form
< P(5(0)), P(5(0)) >, <P(s(1), P(s(2)) >, . . . ,<P(s(t)), P(5(2t)), . . .,

where P(8) is either zero or one. By the Fixed Bound Lemma (3.3%-1) no uniquely

61

solvable sequence generator can haveC (T) as its behavior, and since, as we
remarked in Section 3.1, unique solvability is essentially a property of the
infinite behavior of a sequence generator, no sequence generator can have
C(f) as its infinite behavior. Since w-univalence and unique solvability
apply to sequences of pairs (Section 3.1), these concepts may be extended
to cover the computation of a sequence generator; the computation (T) of

the sequence generator of Fig. 12 is uniquely solvable,

Fig. 12, r = ($,G,R,P,q,C). No sequence generator can
have G(I') as its infinite behavior.

Since computation is a bona fide generalization of behavior, the existence
of certain algorithms for behavior (Section 2.3) does not guarantee the exist-
ence of corresponding algorithms for computation. It is not known whether
either of these two algorithms exist: an algorithm to decide whether the com-
putation of one sequence generator is included in the computation of asnother,

a decision procedure for the computational equivalence of two sequence generators.
We do have an algorithm to decide of any pair of sequence generators
r = (8,6,R,P,Q,C) and T = (8,G,R,P,Q,C) such that ((T) is w-univalent, whether

the computation &(T) is included in the computation ((T) or not, but this

62

algorithm and its Jjustification are too long and involved to be included
here.

There is a procedure for deciding of a sequence generator I' = (S,G,R,P,Q,C),
where C has only the values O, 1, whether all, some but not all, or none of the
elements of {(I') are infinite. One first finds the reduced form I't. Note
that {(rt) = ((I) for any I'. Then each non-repetitive cycle of complete
states of I't is examined to determine whether C(si) = 1 for any state s; of
this cycle. If C(si) = 1 for some state sy of this cycle, there will be an
infinite I't-sequence made of iterations of the cycle, which I'f-sequence will
give rise to an infinite computation element of 0(PT) and hence of ((I). On
the other hand, if for every state s; of a cycle C(si) = 0, then there is an
infinite I'f-sequence made of repetitions of this cycle which will give rise
to a finite computation element of ((T).

Let us now return to the Time-shift Theorem (3.3-2) and extend it to
cover the case of computation. Let I' = (S,G,R,P,Q,C) have k I'-admissible
complete states and let C have only the values 0, 1. The £-shift operator
was defined for two-projection sequence generators, but it may easily be ex-
tended to cover sequence generators with a computation projection C in the
following way. Form (S,G,R,P,QxC); apply the k -shift operator to it with
the modification that < A, 0 > is the QxC projection of those admissible com-
plete states that occur before time 'S (cf. Section 3.2). Call the result
(S,G,R,P,QxC). Then form (é,é,ﬁ,f,@,é)*T =T = (é,é,ﬁ,ﬁ,é,é). Now apply
Lemma 3.2-3% and 3.3-1, noting that a displacement of the infinite behavior
of a sequence generator with a computation projection does not alter its com-
putation, since the behavior includes the computed output. The net result of
all this is as follows. Given a sequence generator I' = (S,G,R,P,Q,C) with C
having the values O, 1, there is an effective procedure for constructing

T = (g,a,R,P,é,E) such that:

63

(a) 1If (S,G,R,P,QxC) is uniquely solvable, then (S,G,R,P) is deterministic,
(v) (1) = ((T).

When the foregoing statement is applied to the case where C is always
one, it implies that the infinite behavior of any uniquely solvable sequence
generator is the computation of a deterministic sequence generator. This
Justifies the statement made prior to the Time-shift Theorem (3.3-2) that the
infinite behavior of any uniquely solvable sequence generator can be com-
puted by a finite automaton. We will illustrate this with an example (Fig. 13) i.
We begin with I' of Fig. 10(a), which is uniquely solvable (but not deterministic).
In this case a unit-shift, followed by an application of the * and t, suffices
to produce a deterministic sequence generator Fl*T, shown in Fig. 11. T of
Fig. 13(a) is a simplification of this. To f we now add a projection C which
is 0 for the generators, 1 otherwise, obtaining I of Fig. 13(b). T is a deter-
ministic sequence generator which computes the infinite behavior of the original
r, i.e., ((T) =@™r). By a slight generalization of the process described in
Section 2.1, we can pass from the deterministic sequence generator T to a finite
automaton and to a w.f.n. The w.f.n. which produces the computation ﬁ(f) is
shown in Fig. 13(c). It is perhaps worth noting that the computation of this
net [Fig. 13(c)] is the infinite behavior of the net of Fig. 2(a).

The concept of unique solvability may be generalized to cover computation.
Let I = (S,G,R,P,Q,C) be a sequence generator, C having the values O, 1. The
computation ((I) is "uniquely solvable" if for each infinite sequence of
P-states [p](0,w) there is exactly one element of ((I') which contains [p](0,w)
(i.e., which is composed of this sequence of P-states together with zero or
more Q-states). The motivation behind the concept of a computation being
uniquely solvable is this. We may think of a sequence generator with an input
projection P, an output projection Q, and a control projection C as specify-

ing a computational relation between infinite input sequences and computed

6L

(G

qndqno
“1110) Toajuo)

*(J
uorgeqndwod SY3 SBY YOTUYM PBU Y (2) *(B)0OT *STd ST J mﬁmwmk
(e = ()T T = (¥8)0 = (¥8)0 ‘0 = (T2)D = (99)D goﬁo%oa
,mo.HPQoo e Sutppe £q J WOXJ S3TNSSI YOTYM ‘(0 RG r.o wv Qrv
") = (1)F- OTASTUTULISLSD ST «GOHPowno.HQ 15eT ST mww.m ‘1
*s29eqs jquaTealnbs LTTBIOTABYSQ SUTWBU-9I pue JUTAITAUSPT £q TT
*81d Jo fxpd WOLF SFTNSSI YOTUM “@ m U wv J (8) °¢T "Std

(@) (a)

o‘véod

Ts

-«

—(

v ‘od

Ts

T ‘% ‘1q A1 e obetg ™

N

€g Zs

(3nd3no gamsuy) I All@“ a

o‘vetd

o

g

v ‘td

Thfog

65

output sequences, and the sequence generator does it uniquely if each input
sequence determines exactly one computed output sequence. It is easy to
construct examples of sequence generators I' = (S,G,R,P,Q,C) such that (S,G,R,P,Q)
is not uniquely solvable, though the computation C(F) is. Thus we are led
naturally to the question: Is there a decision procedure which will tell
whether the computation {(I') of a sequence generator I' = (S,G,R,P,Q,C) is
uniquely solvable? It is also of interest to know whether the analogue of

the Time-shift Theorem (3.3-2) holds for uniquely solvable computations,

i.e., whether or not the following is true of a sequence generator

r = (s,G,R,P,Q,C), with C having the values 0, 1: if /(TI) is uniquely solvable,
then there is a sequence generator I' = (S,G,R,P,Q,C) such that (é,é,ﬁ,f) is
deterministic and ((T) = ((I). We do not know the answer to either of these

questions.

L.2. TFORMULAS AND SEQUENCE GENERATORS

We will now discuss the relation of some formulas of symbolic logic to
sequence generators. Because of limitations of space we will not give a de-
tailed or rigorous treatment of the subject but will rely heavily on examples
and will present theorems without proofs.

The language L being considered here is a first-order monadic predicate
calculus with a successor function and zero. The symbols of L are; an in-
finite list of monadic predicate variables A, B, C, . . . ; an infinite list
of individual variables t, t;, to, . . . ; the successor function ' ; the in-
dividual constant 0; all truth-functional connectives; and parentheses. The
individual variables range over natural numbers O, O', 0", The predi-
cate variables range over predicates of natural numbers, i.e., over sets of
natural numbers.

Consider an arbitrary w.f.f. of L; the result of universally quantifying

66

all the individual variables of L is called an A-formula (arbitrary-formula).

B(t5')] is an

B(ty) = B(t2) is a w.f.f. of L, and so (t1)(ts) [B(t,)
A-formula. (ti)(tz) [B(ty) = B(t2')] means that for all times t,, ts, B is

true at time t; if and only if B is true at time t- + 3. Note that since
language L does not contain quantifiers, an A-formula is not a w.f.f. of L;

this does not matter for our purposes.

The extension of an A-formula with predicate variables By, B, . . . , Bx
is the set of all k-tuples of predicates which satisfy the formula, i.e., for
which the formuls is true of the natural numbers when B; 1s interpreted as
the i1'th predicate of the k-tuple. We will regard a predicate, e.g., Bj, as
an infinite binary sequence [s](0,w) in which s(t) is 1 or O according to
whether Bi(t) is true or false. When predicates are viewed in this way, a
k-tuple of predicates becomes an w-sequence of k-tuples or column vectors,

i.e., a k by w binary matrix.

We will give some examples. (ti)(ts)[B(t,) = B(ts)] is satisfied by

1111... but not by 1010... , for in the later case B(0) # B(0''). The extension

of (t)[B(0") & (B(t) = B(t"))] consists of all sequences of the form
1, X3, 1, %2, 1, X3, 1, x4, . . .

The extension of (t){B2(0) & [B1(t) = Bo(t')]) consists of all two by omega
matrices of the form
X9 X1 X2 X3

0 X7 Xo Xsa

Sequence genergtors without projections may be translated into a particu-
lar kind of A-formula, called an M-formula. For example, the sequence generator

of Fig. 14 may be translated into

67

(t) [(B1(0) & Bo(0)) v (B1(0) & Bo(0))] & ((By(t) & Bo(t) & Bi(t')

& Bo(t')) v (Bi(t) & Bo(t) & By(t') & Bx(t'))).

The bracketed conjunct of this A-formula contains no individual symbol other
than the constant zero; it tells us what the generators are. The braced con-
Jjunct contains no individual symbols other than t and t'; it tells what direct

transitions are possible. C(Clearly, the set of infinite I'-sequences of Fig. 1k

[N

0 0 |e 0 1
By B2 B1 Bs
1 1 1 0
By B> By Bo

Fig. 1k. T = (8,G,R).

equals the extension of the formula given above. Any A-formula consisting

of a universal individual quantifier operating on a conjunction, the first
conjunct having only zero as argument, the second conjunct having only one
variable with at mosf one prime as argument, is called an M-formula (minimal
formula). Our previous example illustrates the fact that any sequence

generator I' = (S,G,R) can be translated into an M-formula & with k predicates
by coding its states into binary k-tuples, the extension of?ybeing the éet

of I'-sequences. Conversely, any M-formula.szmay be translated into a sequence
generator I' = (S,G,R) such that the set of infinite I'-sequences is the extension

of ;{

We will consider next two types of A-formulas more general than M-formulas.

68

Any A-formula of the form (t) #1(0, 0%, . . . , t9%) & Zult, t*, . . . , £99),
where J;, Jo, indicate the maximum number of primes of arguments of zz; and ?i;,
respectively, is a D-formula (decomposable-formula).

”[B(O) & B(1) & {(B(%) & B(t")) = B(t"))]"is a D-formula whose extension is the
single infinite sequence 00100l... . In Section 2.1 (immediately‘after corol-
lary 2.1-1) we proved that there is no sequence generator [= (é,é,ﬁ) whose

set of infinite I'-sequences consist$ of the single sequence 00100l... . It
follows by the results described in the preceding paragraph that there is no
M-formula whose extension consists of this sequence, i.e., there is no M-formula
logically equivalent to the D-formula given above.

Any A-formula with at most one individual variable is an O-formula (one-
variable formula). (t)[B(0)>(B(t) = B(t'))] is an O-formula whose extension
consists of 111... together with all binary sequences beginning with zero.

It can be proved that there is no D-formule with this extension, i.e.,

(t) [B(0)>(B(t) = B(t'))] cannot be decomposed into a D-formula

t)(%f; & 5;;) logically equivalent to it. Thus O-formulas are stronger than
D-formulas, Jjust as D-formulas are stronger than M-formulas. A-formulas aré

stronger than all these, for it can be proved that there is no O-formula with

the extension of the A-formula [B(t;) v B(t])] v [B(ts) v B(t4)]. This formula
is equivalent to the condition that a binary sequence cannot have both con-
secutive ones and consecutive zeros.

There is thus a hierarchy of A-formulas, with sequence generators corres-
ponding to the formulas of lowest level, i.e., the M-formulas. This suggests
generalizing the concept of sequence generator so there is a kind of sequence
generator corresponding to each level of the hierarchy. This could be done,
as an example will make clear. The generalized sequence generator I' = (8, Rg)
is defined as follows. S is the set {0,1}. R3 is the triadic relation

G
{< 100 >, < 111 >, < 000 >, < 001 >, < 010 >, < 011 >}. An infinite I'-sequence

69

of this generalized sequence generator is any binary sequence [s](0,w) such that all

3,
t, RG(S(O), s(t), s(t')). Note that generators and the direct transition re-

3
lation are not defined separately in I' = (S,RG). The set of I'-sequences of

(s, Ry

(t+) [B(0)D (B(t) = B(t'))]. 1In this example the states of the sequence generator

is equivalent to the extension of the O-formula

are zero and one, with the associated A-formula having one predicate (B). In
general, of course, the states will be k-tuples of zeros and ones and the
associated A-formulas will have k predicates. Proceeding in a similar manner

one can define generalized sequence generators corresponding to D-formulas

and to A-formulas, with the result that for each formula é’gf a given type there
is a corresponding generalized sequence generator I' such that the extension

of Z;equals the set of infinite I'-sequences of T.

While these generalizations are of interest in showing the relations of
formulas to sequence. generators, they are not as easy to work with as the
corresponding D-formulas, O-formulas, and A-formulas. In contrast, sequence
generators are easier to work with than the corresponding M-formulas. More-
over, by employing projections it is possible to reduce any A-formula :zr%o
a sequence generator I' = (S,G,R,P) so that the infinite behavior BX(I') equals
the extension of Z;j and in this way to investigate A-formulas of all kinds
by means of sequence generators with projections. After defin-
ing some terms we will explain this process in more detail.

A YA-formula is the result of prefixing a sequence of existential predi-
cate quantifiers to an A-formula; "Y0-formula," "JD-formula," and "YM-formula"
are similarly defined. We will call the set of k-tuples of predicates which
satisfy a LA-formula the behavior of the formula. For example, the binary

sequence 0011001ll... is the behavior of the M-formula

(2c) (t) ([B(0) & TMO)] & [c(t) # c(t')] & (B(t') # (B(t) = c(t)))).

0

0 0 0 1
B C B C
0 0
1 0
B C
1

Fig. 15. T = (S,G,R,P).

Our preceding examples show that the sets of extensions of M-formulas, D-formu-
las, O-formulas, and .A-formulas get progressively larger. In contrast, the

set of behaviors of 2A-formulas equals the set of behaviors of)M-formulas.
Given any ZArformula, one can, by a procedure of Church, 1960, p. 36 ff.,
construct a behaviorally equivalent 20-formula. There is, moreover, a process
for reducing a)0-formula to a behaviorally equivalent)M-formula. A descrip-
tion of the process is too long to include here, but the essential steps are

illustrated in the following example. Consider the O-formula

(t) [B(0")D {B(t") = B(t)]].

We introduce a predicate C; which is defined by the conditions

Cy(t') = Cy(t) and B(0') = C1(0), so that C4(t) = B(0') for all t. Since

these conditions imply that C;(t) = B(0'), we may substitute Cy(t) for B(0')
in the original O-formula and conjoin the two conditions to obtain a

YD-formula (2C;)(t) [B(O')

€1(0)] & [{C1(t)D(B(t") = B(t))} & (Ca(t') = Cy(t))]

which has the same behavior as the given O-formula. We next introduce a

1

predicate Cp, defined by the condition B(t') = Cs(t), which implies that

B(t") = Co(t') and B(0') = C5(0). Finally, we substitute Co(t') for B(t")
and Co(0) for B(0') in the)D-formula just obtained and conjoin the condition

B(t') = Co(t), thereby obtaining a 2M-formula

(Xe2) (Zey) (1) [C2(0) = €1(0)] & [{Ci(t)D(Ca(t') = B(t))])
(B(t") =

&
~
Q
—
ct
]
Q

-
—~
&
N
&

Il
Q
N
—
t+
~—
——

which has the same behavior as the)D-formula and hence as the original O-
formula.

Each ZM-formula,grmay be converted into a one-projection sequence generator
r = (8,6,R,P) such that B°(I') is the behavior of Zza and conversely. Again
we will not state the aléorithm for this conversion but will illustrate it.

Consider the)M-formula

(%2) (+) ([B70) & 6(0)] & [(c(t) # c(t7) & (B(t') # (B(t) = () 1]

Drop the existential quantifier and convert the resultant M-formula into a
sequence generator (S,G,R) in the way indicated before; see Fig. 15. Next,
add a projection P defined so that P(B(t) & C(t)) = B(t), obtaining
r = (8,6,R,P). @) is the behavior of the original M-formula. The reverse
procedure of going from an arbitrary one-projection sequence generator to a
YM-formula with the same behavior is only slightly more difficult.

To sum up: given a ZA-formula, one can effectively construct a
YM-formula which has the same behavior. Given a 2M-formula sz one can effective-
ly construct T' = (S,G,R,P) such that $®(I') equals the behavior of‘ng Converse-
ly, given I' = (S,G,R,P) one can effectively find a XM-formula ?7%hose behavior
is ¢¥D(F). Hence the class of infinite behaviors of one-projection sequence
generators equals the class of behaviors of ZA-formulas, and so JA-formulas

may be investigated by means of sequence generators with one projection.

12

One can go further than this by classifying the free predicate variables
of a YA-formula so as to correspond to several projections. For example, one
can divide the free predicate variables of a YA-formula into two categories,
the first corresponding to a projection P, the second to a projection Q. When
this is done, the two-projection concepts and theorems of Section 3 applyvto
YA-formulas. Tt is worth noting what the Time-shift Theorem (3.3-2) becomes
when looked at in this way. ‘A.deterministic sequence generator corresponds
to a)M-formula in which the Q-predicates (outputs) and bound predicates at
time t +1 aré defined recursively in terms of themselves at time t and of
the P-predicates (inputs) at times t and t + 1; this is essentially what Church,
1960, p. 11, calls a system of "restricted recursions.” One may also consider
recursive définitions in which the values of the Q-predicates and-bound predi-
cates at time t depends on the values of the P-ﬁredicates at later times; these
recursions are essentially what Chdrch, 1960, p. 12, calls “unrestnicted
singulary reéursions,” and can be expressed by a special type of ZD-formula.

Put in these terms, the Time-shift Theorem becomes: for every uniquely
solvable 2A-formula there is a logically equivalent YD-formula which is com-
posed of unrestricted singulary recursions. This YD-formula is of a special
form which may be thought of as a normal form for uniquely solvable ZArfofmulas.
A normal form)D-formula translates into a well-behaved net (see the last para-
graph of Section 3.1) which consists of a well-formed part (corresponding to
a déterministic sequence generator) together with a sequence of delays (which
shifts the inputs earlier in time), and so the Time-shift Theorem can also
be interpreted as saying that every well-behaved net has a normal form.

Figure 16 gives the normal form for the well-behaved net of Fig. 2(a). The
upper pert produces the time-shift H(t) = E(t') while the lower part, which

is well-formed, produces F(t) = ~ H(t); hence F(t) = ~ E(t'), as in Fig. 2(a).

3

Fig. 16. Normal form of the well-behaved net of Fig.
2(a). F(t) =~ E(t').

One can think of a uniquely solvable 2A-formuls whose free predicate
variables are divided into P-predicates and Q-predicates as giving an implicit
definition of the Q-predicates in terms of the P-predicates. Looked at in
this way the Time-shift Theorem tells us that for every Y.A-formula which im-
plicitly defines the Q-predicates in terms of the P-predicates, there is a

YD-formula which recursively defines the Q-predicates in terms of the P-predicates.

i

L.3. SEQUENCE GENERATORS AND CONDITIONS

Suppose one wishes to design an automaton or other deterministic
information-processing system. Using a formula, a diagram, or a set of tables,
one may specify the output of the system as a deterministic function of the
inputs of the system. Sometimes, however, the designer has in mind only a
condition or requirement which he wishes the behavior of the device to satisfy,
there being many different behaviors which satisfy this condition. The de-
signer may wish to consider all systems whose behaviors satisfy the given cbn—
dition and select from among these by some criterion, such as minimality of
components. A well-known example of this is the use of "don't care" cases
in formulating a switch requirement. Because the requirement imposes no re-
strictions on the switch behavior for the "don't care" inputs, it may be satis-
fied by different switching functions. The designer wishes to select from all
switches which satisfy this requirement one with a minimal number of switching
elements.

Meny different languages may be used for expressing conditions on informa-
tion-processing systems and for describing such systems. Consider first the
language of YA-formulas (Section L4.2). Suppose Zzland ijrare Y.A-formulas
whose free predicate variables are divided into input variables and output
variables. g;may describe a computer system and izlmay express some relation
between inputs and outpufs which a designer would like the digital system to
satisfy., The idea of a system jggatisfying condition . can be formulated
in logical terms by saying, first, that ;zrand ;zrhave the same input variables
and the same output variables, and second, that ;E;:D:zrés valid. Whenever the
pair: ;;} g?satiSfies these two conditions we will speak of formula ;Z:being
"a solution of" formulas fiil

Let us see next how to formulate these ideas in sequence-generastor terms.

In passing between formulas and sequence generators, one must do some coding

15

or decoding, since the predicates of the formulas are two-valued, whereas a
sequence generator has, in general, more than two states. If this coding is
handled properly, the following definition of "I' is a solution of " is es-
sentially the same as the definition of ";z}s a solution of 2%” Jjust given.
Iet T = (S,G,R,P,Q) describe some digital system and let I' = (§,G,R,P,Q)
express a condition. P and P are interpreted as input projections and Q and
Q as output projections. I is a solution of r whenever, first, (1) <@%(1),
and second, every P-state occurring in B®(T) occurs in BY(T).

There are several kinds of design algorithms which make use of conditions.
Blchi, Elgot, and Wright, 1958, define three kinds of algorithms for sets of
formulas whose free predicate variables are divided into input variables and
output variables. We will define analogous kinds of algorithms for sequence
generators. Let o and B be two classes of two-projection sequence generators.

A solution algorithm for < a,B > is a decision procedure which applies to any

pair < F,f > such that T'ex and feB and answers the question: is I' a solution

of '? A solvability algorithm for < Q,B > applies to any feB and is a decision pro-
cedure for the question: does thére exis£:awfax such ﬁhat f is a solution of f? A
synthesis algorithm for < ¢,B > applies to any feB and produces a ['ed such that

I' is a solution of f, if there is one.

Note that as a synthesis algorithm is here defined it may be non-terminating,
but that a synthesis algorithm combined with a solvability algorithm is termi-
nating, producing a sequence generstor of the desired kind if one exists,
terminating in a "no" otherwise. DNote also that, if o can be recursively
enumerated, the existence of a synthesis algorithm for < ¢,8 > follows from
the existence of a solution algorithm for < o,B >, since the elements of O
can be enumerated and each compared with the given element of B by the solu-
tion algorithm.

Clearly the Behavior Inclusion Procedure of Section 2.3 constitutes the

76

basis of a solution algorithm for any classes of sequence generators Q,f.

Now there are decision procedures for the sets of deterministic and semi-
deterministic (Section 2.2), solvable (Section 2.3), h-univalent, and unique-
ly solvable (Section 3.3) sequence generators. Consequently, if o is any

one of these sets it can be recursively enumerated, and so there is a synthesis
algorithm for & and any set of sequence generators B.

For our next result we need the concept of one sequence generator being
"a part of" another. T = (S,G,R,Pl, .. ., P is a part of
r=(§,6,R,P", . .., P whenever Sc§, GEG, RSR and each Pt is Pt cut
down to S. As an example of this concept we mention that the reduced form
rf is a part of I'. Clearly if I is & part of I, @(I)S@(I). The following
is a theorem: let r = (é,é,ﬁ,é,é) be semi-deterministic with respect to fo;
there is a P-deterministic I = (S,G,R,P,Q) which is a solution of I' if and
only if there is a Pddeterﬁinistic r = (s,G,R,P,Q which is a part of " and
such that every P-state occdrring inwﬁ“%f) occurs in@®(r).

There is a proof of this theorem which consists of two steps. In the
first step the theorem is established for the special case where no two com-
plete states of the given condition r agree on both of their projections.

In terms of formulas (Section 4.2), this means that the theorem is proved for
conditions which are M-formulas. The second step is to extend this justifica-
tion to XM-formulas, that is, to extend the proof of the theorem to the general
case, where the given condition f is an arbitrary two-projection sequence
generator. . The second step of the proof involves a construction which is

of some interest in its own right. Let I = (S,G,R,P) and T = (S,G,R,P).

The cross product of these two sequence generators I' x I =T (é,é,ﬁ,ﬁ) is

. defined by

[

{<s,s>s eS&s e S & P(s) = ?(é)}

wmn:
i

¢ = (6xQNs
R (< sy, 81 >, <8z, 82> = [R(s1, s2) & R(s1, 82)]

P(<s, 8> = P(s).

The preceding construction can be used to establish the following lemma:

Let T = (é,é,ﬁ,?,@) be a sequence generator which is semi-deterministic with
regard to PxQ and T = (é,é,ﬁ,f,i), where I(s) = s. There is a P-deterministic
sequence generator I' = (S,G,R,P,Q) which is & solution of I' if and only if
there is a P-deterministic I which is a solution of T.

This theorem leads directly to a combined solvability-synthesis algo-
rithm for < a,B >, where o is the class of all two-projection sequence genera-
tors which are deterministic with respect to the first projection, and B is
any class of two-projection sequence generators; the essential steps of the
algorithm are to aﬁply the subset sequence generator operation to the given
condition and to examine each part of the result for determinism. By the
results of Section 4.2, this gives us a combined solvability-synthesis algo-
rithm for < a,B > , where ¢ is the class of systems of restricted recursions
(i.e., representations of deterministic information processing systems) and
B is any class of ZA;formulas, the free predicate variables of all formulas
being divided into input variables and output variables. This extends a re-
sult of Church, 1960, pp. 33a ff., 36 ff.,which is a solvability-synthesis
algorithm for < a,B > , where ¢ is the class of systems of restricted recur-
sions but B is any class of A-formulas.

Weng, 1959, p. 312, Theorem 6, has a result which is (in our terms) a
solvability-synthesis algorithm for < @,B >, where O consists of systems of
unrestricted singulary recursions and B is any set of O-formulas. Our last

stated lemma holds with "uniquely solvable" replacing "P-deterministic.”

T8

By applying this lemma, Wang's result can be extended to provide a solvability-
synthesis algorithm for < o,B >, where @ consists of systems of unrestricted
singulary recursions and B is any set of YA-formulas, the free predicate vari-
ables of all formulas being divided into input variables and output variables,
as before.

We give next an example (already to be found in the literature) of the
use of conditions. Sometimes an automaton is given with ”input restrictions"
by drawing an internal state diagram which does not provide transitions for
all inputs (Aufenkamp and Hohn, 1957, Section IV). One is then interested
in an automaton which has the same behavior as this diagram with respect to
all input sequences which are provided for. This situation may be described
in sequence-generator terms. The internal state diagram with input restrictions
may be converted into a I' = (s,G,R,P,Q which is semi-deterministic with re-
spect to P (see Section 1.2); in fact, the semi-determinism is not required
for what we are going to do.r We define a I' = (S,G,R,P,Q) which will have
I as a part. Let B consist of complete states < p,q > for all P-states p and
Q-states . © = SUB. R is R extended so that (1) R(S,, 8p) for all
él, 8-> ¢ B and (2) for any s ¢ S and any P-state p, if there is no s; e S such
that R(s, s,) and P(s;) = p, then R(s, 8) for every & ¢ B. P and § are P and
Q extended to cover the elements of B so that P (< p,q >) = p and Q(< p,q >) = q.
The original problem now becomes that of finding a P-deterministic
T = (§,G6,R,P,Q which is a solution of ' (cf. the penultimate paragraph of
Section 2.1). An answer will always be given by the solvability-synthesis
algorithm for deterministic sequence generators. described two paragraphs back.

The solution, solvability, and synthesis algorithms we have been discus-
sing are defined in terms of behavior. Tt is worth noting that other solution,
solvability, and synthesis algorithms may be defined by using different con-

cepts in place of behavior in the definition of "I' is a solution of f";

19

for example, the set of I'-sequences of a sequence generator, the computation
of a sequence generator (Section 4.1), or the behavior of the final state
sequence generators to be introduced next. We do not have space to discuss

these algorithms.

4.4, SEQUENCE GENERATORS AND REGULARITY

We now extend the concept of sequence generator to include a set F of
final states. I = (S,G,F,R,P) is defined as in Section 1.1, with the addi-
tional proviso that F<S. The definition of I'-sequence is altered to re-
quire that the last complete state of a finite I'-sequence belong to F (be a
final state) and to require that an infinite I'-sequence contain infinitely
many occurrences of members of F. (Contrast the concept of an infinite com-
putation element of Section 4.1 and note that the functions of the sets G and
F could be performed by two two-valued projections; for an illustration of
this, see the last example of Section 1.3.) Behavior is defined as in
Section 2.1, using the new concept of I'-sequence. It will be convenient to
have a concept of finite behavior @f for both ordinary and final state sequence
generators: @I(I) =@(r) - (). We will assume that those earlier concepts
(e.g., determinism) which are easily extended to cover sequence generators with
final states are in fact so extended.

Final-state sequence generators are of interest in connection with
"regular sets." A regular set is a set of finite sequences defined in terms
of certain algebraic operations on a given finite set of finite sequences.

It has been shown that the following three sets are equivalent:

(1) The set of regular sets

(2) The set of finite behaviors @f(F) of final state sequence generators.
r =(s,g,F,R,P).

(3) The set of finite behaviors @f(r) of final-state sequence generators

80

r = (s,¢,F,R,P) which are deterministic.

See Kleene, 1956, Copi, Elgot, and Wright, 1958, and Myhill, 1957.

The concept of- a final-state sequence generator is a bona fide generali-
zation of the concept of a sequence generator without final states. For
every sequence generator (S,G,R,P) of the latter kind there is a behavioral-
ly equivalent sequence generator of the former variety, namely, (S,G,S,R,P).
But not every behavior of a final-state sequence generator is the behavior
of some sequence genersgtor without final states. This may be shown by means
of the concept of "open behavior." A behavior (finite or unrestricted) of
a sequence generator, is said to be "open" if every initial segment of an ele-
ment of the behavior belongs to the behavior. The Infinity Theorem (2.1-3)
implies that the behavior of a sequence generator without final states is
open. The corresponding theorem does not hold for final-state sequence genera-
tors, as the simple example of Fig. 17 shows; @B(I') consists of the single se-
quence p,,P, and hence 1s not open. Clearly, then, no sequence generator

without final states has the behavior of Fig. 17.

Fig. 17. Final-state sequence generator I = (S,G,F,R,P).
F = {s1}. @(T) is not open.

Though the behavior of a final-state sequence generator is not in general
the behavior of a sequence generator without final states, any open finite be-
havior of a final-state sequence generator is the finite behavior of some se-
quence generator without final states. That is, for any I' = (S,G,F,R,P),
ir @L(r) is open, then there is a I' = (é,('},f{,l") such that @ (T) =([3f(l“).

Given any I = (S,G,F,R,P), whose(ﬁf(F) is open, the desired I' may be constructed

81

as follows. By the results of paragraph two of this subsection, there exists

a P-deterministic sequence generator I' = (S,G,F,R,P) whose @f(f) =@f(1") .

Since @f(l‘) is open, ,ﬁf(f) is open. Now construct I' = ('S.,(.},f{,i;), where G = GN T
and R is R cut down to F X F It can be shown from the openness of @f(l.“.) and
the determinism of T that every complete state which belo’ngs to a i'"-sequence
is an T. Consequently, aaf(r) =@f(i“.). Hence @f(f’) =65(r), and [is the
desired sequence generator without final states.

The result just established for open finite behaviors does not hold for
open behaviors in general. That is, there is a I' = (S,G,F,R,P) with open
@B(T) for which there is no behaviorally equivalent sequence generator without
final states. An example is given in Fig. 18. @(I‘) consists of all finite
sequences of p, and is thus open. But if the behavior of a sequence generator
without final states contains all finite sequences of py, by the Infinity

Theorem (2.1-3) it must also contain the infinite sequence py, Py, Pos -

Hence @(I') is not the behavior of any sequence generator without final states.

P P

Fig. 18. Final-state sequence generator I' = (S,G,F,R,P).
F = {sy). @®(I') is open, but it is not the behavior of
any sequence generator without final states.

We will conclude this subsection with a discussion of Boolean operations
on sequence generator behaviors. ILet ¢(T), ff(l“) ,POT) be the sets of all,
all finite, all infinite sequences of P-states, respectively. The complement
of a behavior is defined with respect to the appropriate one of these:

) = f ‘Wf f W _ n
~@(r) = 1) - (1), ~@" (1) =@ (1) -@ (1), and ~@r) =) - #D).

Consider first sequence generators without final states. Let I' be the

82

sequence generator represented by the state diagram obtained by juxtaposing
the state diagrams for I' and 1.“, treating the complete states of I' and F as

distinct. Then clearly

&(T) = g(r) ver)
(r = &) vetn
D) = £ uED).

Let T =T x l.“, where "x" is the cross product operation defined in Section

4.3, Tt may be proved that

eI = e(r) NE(D)
ef(h = &f(maefn
AT = £%r) neX(r).

Thus the union and imtersection of sequence-generator behaviors are always
sequence-generator behaviors. But the complement of a sequence-generator be-
havior is not generally a sequence-generator behavior. This is shown by Fig.
19; it can be proved by means of the openness of the behavior of a sequence
generator without final states and the Infinity Theorem (2.1-3) 'that no se-
quence generator without final states has ~ @(T), ~@f(1‘) , or ~@X(I) as its

behavior.

Po

Fig. 19. I = (s,G,R,P). No sequence generator without
final states has ~@(T), ~@eE(r), or ~@¥(T) as its be-
havior. :

83

The situation is very different with final-state sequence generators.
The class of finite behaviors of sequence generators with final states is
closed under union, intersection, and complement (Rabin and Scott, 1959).
Consider next infinite behaviors. In Section 4.2 we showed how to pass be-
tween various kinds of formulas and sequence generators without final states.
There are also formulas which correspond to sequence generators with final
states. J. Richard Buchi (unpublished) discusses such formulas which he calls
"quasi-y,-formulas" end establishes that the complement of a set represented
by a quasi-zl-formula may be represenfed by a quasi-zl-formula. The same re-
sult is,in sequence-generator terms, that for every I' = (s,G,F,R,P) there is
a T =(S,6,F,R,P) such that EXT) =~ @°(r). As before, if I is the result
of juxtaposing I' and f,‘@@(E) = £°(r) U @@(f). Hence by De Morgen's theorem,
the class of infinite behaviors is closed under union, intersection, and
complement. Consider finally (complete) behaviors. As before, if [1s the
result of juxtaposing T' and T', B(F) = @(I) U @(I). However, the intersection
of the behaviors of sequence generators with final states is not always a
sequence-generator behavior, and hence by De Morgan's theorem the complement
of the behavior of a sequence generstor with final states is not always a
sequence-generstor behavior. This is shown by Fig. 20. @(T) of Fig. 20(a)
consists of all finite sequences terminating in p; and all infinite sequences
with infinitely many occurrences of p;. @(f) of Fig. 20(b) consists of all
finite sequences terminating in p, and all infinite sequences with infinitely
many occurrences Of pg. Hence @(T) N @(I') contains only infinite sequences.
But no sequence-generator behavior contains 6nly infinite sequences, and
therefore no sequence generator has the behavior g(T)NE(T).

Section 2.3 contains a decision procedure for the inclusion of the be-
havior of one sequence generator without final states in the behavior of

another. This is also a procedure for the inclusion of finite behaviors and

8l

] - 1- P

¢
Py %1
(b)
Fig. 20 (a) (SGFRP) F = {s,}.
(b) = (8,a, F R,P). {so} No sequence generator

has the behavmr @(F) N @(I’

a simple modificatiog of it gives a procedure for the inclusion of infinite
behaviors. It follows from the fact that both the class of finite behaviors
and the class of infinite behaviors of final state sequence generators are
effectively closed under union and complement that there are decisions for
"Ts @) € E°(r) 2", "Is g1 (r) € @T(T) 2", "Is @(r) € /(1) 2", where I and T

are final-state sequence generators.

L.5. INFINITE-SEQUENCE GENERATORS

In this subsection we will discuss briefly a generalization of the origi-
nal concept of sequence generator obtained by dropping the requirement that
the set of complete states S be finite (Section 1.1). The resultant generali-
zation is called an "infinite-sequence generator."

Actually much of the content of this paper applies to infinite-sequence
generators as well as finite ones. All our concepts apply to infinite-sequence
generators except for the various decision procedures and the reduced form FT,

and it 1s easy to define the reduced form of an infinite-sequence generator.

85

Many of our theorems apply to infinite-sequence generators too, with only
minor modifications being needed in the proofs we have given to cover this
extension. Of course the various decision procedures we have given make es-
sential use of the finitude of the number of complete states of sequence
generator, and the Time-shift Theorem (3.3%-2) applies only to finite-sequence
generators.

In the first part of this paper we have made implicit use of infinite
sequence genersators. It will be seen on examination that Lemma 1.3-2 is
in fact about an infinite-sequence generator (S, 8os), Where S is any set
(finite or infinite) on which p is defined. The following theorem is very
close to Lemma 2.1-2. Iet I' = (S,G,R) be an infinite-sequence generator with
G finite and R(s) finite for every s e S; if every set in the w-sequence
G, R(G), RE(G), RS(G), . . . is non-empty, then there is an infinite I'-sequence.
By means of this lemma the proof of the Infinity Theorem (2.1-3) can be re-
written, with minor modifications, to yield the following extension of the
Infinity Theorem: ILet I' = (S,G,R,P) be an infinite sequence generator with
G finite and R(s) finite for every s e S; then any sequence of P-states be-
longs to B(I') if and only if every finite initial segment of it belongs to
B(I).

The tree operator to be defined next was used implicitly in the proof
of the Infinity Theorem as well as in step (2) of the Reduced Form Algorithm.
The tree operator "t" applies to any (infinite or finite) sequence generator
r = (S,G,R,Pl, “ o e Pn) and produces its "tree generator"

-t ° e o o 09 °n
.. . P)

°
4

S = the set of finite I'-sequences

G = ¢

R (s, [s1(0,5 +1)) = [([s1(0,5 +1) €8) & (s = [s1(0,))]
P ([s1(0,k)) = Pi(s(k)), fori=1, ..., n

Note that if R(s) is always finite; then R(s) is always finite. Moreover,
if S is finite, then S is infinite if and only if T has a I'-admissible com-
" plete state.

We conclude with some examples of infinite-sequence generators which
have already been discussed in the literature, though not under this name.

A Turing machine as defined by Turing, 1936-37, consists of a finite automaton
to which is attached an infinite tepe; odd-numbered squares are used for writ-
ing the digits of a real number. Such a machine corresponds to a sequence
generator (S,G,R,Q), where S is the set of states of the machine (including
its tape), G is the set of initial states of the machine, R is given by the
transition rule, and the output projection Q when applied to a complete

state s gives the number written on the odd-numbered squares of the tape when
the machine is in that state. R(s) is always a unit set. For the special-
purpose machine (Whoéé tapeiis initially blank), G is a unit set. For the
universal machine, G is an infinite set consisﬁing of those states whose‘tape
part represents a program for a special purpose machine. The concept of com-
putation (Section 4.1) can be extended to infinite-sequence generators. In
particular, this can be done for Turing machines in such a way that two
machines (one of these:may be universal) are computationally equivalent if

and only if they compute the same number in Turing's sense. This fact was
part of the motivation for defining the concept of computation inasmuch as

a similar statement cannot be made in terms of behavior.

The basis von Neumenn uses for his construction of a self-reproducing
automaton consists of an infinite number of cells each capable of 29 states,
with the state of each cell at time t + 1 determined by the states of itself
and its neighbors at time t (Shannon, 1953; Burks, 1960, Section 4). This
basis corresponds to a sequence generator (S,G,R), with S and G both infinite,

and R(s) finite but unbounded. Burks, 1959, Section 6, Church, 1960, p. 21 ff.,

87

and Holland, 1960, have given definitions of infinite automata with inputs and
outputs. These correspond to infinite-sequence generators with two projections;
in the latter two formulations, infinitely many input states are allowed, with
the consequence that R(s) is infinite. Any Post canonical language (Post,
1943) in which each production rule has only one premise may be représented
by an infinite-sequence generator (S,G,R). S is the set of strings, G is the
set of axioms, and R is given by the production rules.

Although we will not attempt to give a definition of "effective sequence

n
generator,

it should be noted that all the examples of infinite-sequence
generators given above are effective in the “sense that in each case integers
may be assigned to the states in such a way that S,G,R, and the Pi's are all

recursive.

4.6. PROBABILISTIC SEQUENCE GENERATORS

For the sake of completeness we will discuss the relation of probabilistic
to non-probabilistic sequence generators before concluding this paper.

Let I = (8,6,R,PY, . . . ,P),n=0,1,2, ..., bean infinite-
sequence generator with non-null G. Let W be a weight function which assigns
positive initial probabilities summing to one to the elements of G and, for
each s ¢ S, assigns positive transition (conditional) probabilities summing
~ to one to the elements of (< s, s; >|R(s, s;)], provided this set is non-null.’
(S,G,R,W,Pl, e e Pn) is a "probabilistic sequence generator." Note that,
as we use the terms, "probabilistic" and "deterministic" are not contradictories.
"Deterministic" was defined in Section 2.1 for non-probabilistic sequence

generators; its opposite is "indeterministic," not "probabilistic." More-

over, given a deterministic sequence generator (S,G,R,P) one can form a

SThere is an alternative concept which is more difficult to define but easier
to use in some applications: for each P-state p the initial probabilities
sum to one over (s|seG & P(s) = p), and for each p & seS the transition
probabilities sum to one over {< s, s, >|R(s,s;) & P(8;) = p}.

88

probabilistic sequence generator (S,G,R,W,P) from it by adding a weight
function W.

The weight function W induces a probability distribution on the finite
P-sequences of I' = (S,G,R,P) and hence on the elements of @;kf). The proba-
bility of a finite I'-sequence [s](0,k) is the initial probability of s(0)
multiplied by the probabilities of the transitions
<s(0), s(1) > <s(1), s(2) > ..., <s(k-1), s(k) > The probability
of any element of(ﬁf(F) is the sum of the probabilities of those I'-sequences
which produce that behavior element.

A stochastic process in which the probability of a state occurring at
time t dependé only on the preceding states of the sequence can be represented
by a sequence generator whose states are finite sequences of states of the
stochastic process; compare the tree sequence generator Pt of Section L4.5.

A Merkov chain with cdonstant transition probabilities is a probabilistic se-
quence generator without projections (S,G,R,W) such that (S,G,R) has no termi-
nal states (see, for example,Feller,1957, p. 340). If S is finite, then
(s,G,R,W) is a finite Markov chain.

It is worth noting that many of the concepts employed in analyzing a
finite Markov chain (S,G,R,W) depend only on the underlying non-probabilistic
sequence generator (S,G,R) and not on the probability function W. We will
give some exaﬁples. s is an absorbing state if and only if R(s) = {s}. (It
should be recalled in this connection that every probability assigned by W
is positive; hence if the probebility of s succeeding s is one, then R(s) con-

S
tains only s.) Let R(s;, s2) = s» eitLRi(sl). s is a transient state if
and only if there is a state s;eS such that R%(s, s;) but not R%(s;,s);
s 1s a persistent state if s is not transient. A seéuénce generator (S,G,R)
which satisfies these two conditions is ergodic: first, for any two complete

states sy, speS, R%s;, so) and R%(sp, s;), and second, the greatest common

89

divi;or of the lengths of all cycles of complete states is one (cf. Shannon,
1948, p. 1435).

It was remarked immediately after Corollary 2.1-1 that the concept of a
sequence generator with projections is & bona fide generalization of the con-
cept of a sequence generator without projections; for example, the sequence
001001001 ... belongs to the behavior of a sequence generator but it is not
a I'-sequence of any sequence generator (cf. the discussion of various ways
of generalizing sequence generators in Section L4.2). Similarly, probabilistic
sequence generators with projections are bona fide extensions of probabilistic
sequence generators without projections. 1In any probabilistic sequence
generator (S,G,R,W,P) the probability of a giveﬁ complete state occurring
at any time depends only on what complete state occurred at the preceding
time. This is not so for the P-states, for since the same P-state may be as-
signed to different complete states the occurrence of a P-state at t can be
made to depend on what P-states occurred at times prior to t - 1. An example
is given in Fig. 21; the probability’that P, Will occur, given that the three
preceding P-states are py, Py, Po, in that order, is 0.8, while the probability
that p, will occur, given that the three preceding states are pi, pi, Do, in that
order, is 0.5.

We give some examples of probabilistic sequence generators. Shannon,

1948, p. 384 ff., defines a "discrete information source." A discrete informa-
tion source is a finite Markov chain T % (s,G,R,W) to which has been added a

set of symbols, each transition of I' producing one of these symbols as outputs.
One can construct another sequence generator I' = ($,G,R,W,P), where S consists of
pairs of elements of S and f 1s an output projection,” such that f-will prdduce the
same output sequences with the same probabilities as the original discrete
information source.

Von Neumann, 1956, p. 61 ff., investigates finite probabilistic nets

90

Fig. 21. Probabilistic sequence generator (S,G,R,W,P).
(ef. Moore and Shannon, 1956). These are well-formed nets composed of com-
bined switch-delay elements. An element produces the correct (desired) out-
put at each time with probability 1 - € and the complement (incorrect) output
with probability €. Thus in Fig. 22(a), the output B is defined probabilistical-

ly as

B(0) with probability 1 - e, B(0) with probability e
B(t +1) = [A(t) # B(t)] with probability 1 - e,

B(t +1) # [A(t) # B(t)] with probability e.

civen a probabilistic net, one can ‘erive a probabilistic sequence generator
from it by methods similar to those of Section 1.2. Figure 22(b) is the
probabilistic sequence generator (S,G,R,W,I,0) for the binary counter of Fig.

22(a); I is the input projection and 6 is the output projection. The solid

o1

lines represent the desired (correct) transitions, the dotted lines the er-
roneous transitions; cf. Fig. 1. ©Note that (S,G,R,I,0) of Fig. 22(b) is not
deterministic. In a similar way, a probabilistic sequence generator (S,G,R,W,Q),
may be obtained from a probabilistic Turing machine; here Q is the output

projection, S is infinite; see de Leeuw et al., 1956.

So0 €@— ~ — — — — e So1

iO? O0 io: e1

(e/2)

511
il: go < il) 9].
l-¢
(%) —» (¢/2)
v ‘ T ‘
\\\—/, _/,

(o)

Fig. 22. (a) Binary counter (probabilistic). (b) Prob-
abilistic sequence generator (S,G,R,W,I,0) for binary
counter (a). Solid lines represent transitions with prob-
ability (1 - €)/2. Dotted lines represent transitions with
probability /2.

92

BIBLIOGRAPHY

Aufenkamp, D. D., and Hohn, F. E., "Analysis of Sequential Machines," Institute
of Radio Engineers, Transactlons on Electronic Computers, 1957, EC- 6,

276- 285.

Bichi, J. R., Elgot, C. C., and Wright, J. B., "Non-Existence of Certain Algo-
rithms of Finite Automata Theory," Abstract, Notices of the American
Mathematical Society, April 1958, 2, No. 2, issue 30.

Burks, A. W., "Computation, Behavior, and Structure in Fixed and Growing Auto-
mata," in M. Yovits and S. Cameron (eds.), Self-Organizing Systems,
Pergamon Press, New York, 1960, pp. 282-311.

Burks, A, W., "The Logic of Fixed and Growing Automata," Proceedings of an
International Symposium on the Theory of Switching, 2-5 April 1957,
Harvard Univ. Press, Cambridge, 1959, Part I, pp. 1L7-188.

Burks, A. W., and Wang, H., "The Logic of Automata," Journal of the Association
for Computing Machinery, 1957, 4, 193-218, 279-297.

Burks, A. W., and Wright, J. B., "Theory of Logical Nets," Proceedings of the
Institute of Radio Engineers, 1953, 4l, 1357-1365.

Chomsky, N., and Miller, G. A., "Finite State Languages," Information and
Control, 1958, 1, 91-112.

Church, A., "Appllcation of Recursive Arithmetic to the Problem of Circuit
Synthes1s," Summaries of talks presented at the Summer Institute for
Symbolic Logic, Cornell University, 1957, “Institute for Defense
Analysis, Princeton, 1960.

Church, A., Review of Edmund C. Berkeley: "The Algebra of States and Events,"”
The Journal of Symbolic Logic, 1955, 20, 286-287.

Copi, I. M., Elgot, C. C., and Wright, J. B., "Realization of Events by
Logical Nets," Journal of the Association for Computing Machinery,

1958, 5, 181-196.

de Leeuw, K., Moore, E. F., Shannon, C. E., and Shapiro, N., "Computability
by Probabilistic Machines," in C. E. Shannon and J. McCarthy (eds.),
Automata Studies, Princeton Univ. Press, Princeton, 1956, pp. 183-212.

Feller, W., An Introduction to Probability Theory and Its Applicationms,
2nd Edition, Wiley, New York, 1957.

93

Fitch, F. B., "Representation of Sequential Circuits in Combinatory Logic,"
Philosophy of Science, 1958, 25, 263-279.

Harary, F., and Paper, H. H., "Toward a General Calculus of Phonemic
Distribution," Language, 1957, 33, 143-169.

Heyting, A., Intuitionism, an Introduction, North Holland, Amsterdam, 1956.

Holland, J. H., "Iterative Circuit Computers," Proceedings of the 1960
Western Joint Computer Conference, 1960.

Kleene, 5. C., "Representation of Events in Nerve Nets and Finite Automata,"
in C. E. Shannon and J. McCarthy (eds.), Automata Studies, Princeton
Univ. Press, Princeton, 1956, pp. 3-4l.

Konig, D., Theorie der Endlichen und unendlichen Graphen, Akademische
Verlagsgesellschaft M.B.H., Leipzig, 1936.

Mealy, G. H., "A Method for Synthesizing Sequential Circuits," The Bell
Bystem Technical Journal, 1955, é&, 1045-1079.

McKinsey, J. C. C., Introduction to the Theory of Games, McGraw-Hill,
New York, 1952. .

Medvedev, I. T., "On a Class of Events Representable in a Finite Automaton,"
translated by J. J. Schorr-Kon from a supplement to the Russian
translation of Automata Studies, C. E. Shannon and J. McCarthy. (eds.),
Group Report 34-73, Lincoln Laboratory, Lexington, Mass., 1958.

Moore, E. F., "Gedanken Experiments on Sequential Machines," in C. E.
Shannon and J. McCarthy (eds.), Automata Studies, Princeton Univ. Press,
Princeton, 1956, pp. 129-153.

Moore, E. F., and Shannon, C. E., "Reliable Circuits Using Less Reliable Relays,"
Journal of the Franklin Institute, 1956, 262, 191-208, 281-287.

Myhill, J., "Finite Automata and Representation of Events," in Fundamental
Concepts in the Theory of Systems, WADC Technical Report 57-624, ASTIA
Document No.-AD 1557 41, 1957.

Post, E. L., "Formal Reductions of the General Combinatorial Decision
Problem," American Journal of Mathematics, 1943, éé, 197-215.

Putnam, H., "Decidability and Essential Undecidability," The Journal of
Symbolic Logic, 1957, 22, 39-5h.

Rabin, M. O., and Scott, D., "Finite Automata and Their Decision Problems,"
IBM Journal of Research & Development, 1959, 3, 11k-125.

ok

Shannon, C. E., "Computers and Automata,” Proceedings of the Institute of
Radio Engineers, 1953, 41, 12%35-1241.

Shammon, C. E., "A Mathematical Theory of Communication," The Bell System
Technical Journal, 1948, 27, 379=423, 623=656.

Turing, A. M., "On Computable Numbers, with an Application to the Entscheidungs-
problem," Proceedings of the London Mathematical Society, Series 2, 1936,
k2, 230-265, and 1937, 43, 54k-5k6. .

von Neumenn, J., "Probabilistic Logics and the Synthesis of Reliable Organisms
from Unrelisble Components," in C. E. Shannon and J. McCarthy (eds.),
Automata Studies, Princeton Univ. Press, Princeton, 1956, pp. 43-98.

von Neumann, J., "The General and Logical Theory of Automaté," Cerebral
‘Mechanisms in Behavior, Wiley, New York, 1951, pp. 1-41.

Wang, H., "Circuit Synthesis by Solving Sequential Boolean Equations,"
Zeitschrift flr mathematische Logik und Grundlagen die Mathematik,

1959, 5, 291-322.

95

DISTRIBUTION LIST
(one copy unless otherwise noted)

Assistant Sec., of Def. for
Res, and Eng.

Information Office Library Branch

Pentagon Building
Washington 25, D. C.

Armed Services Technical Informa-(10)

tion Agency
Arlington Hall Station
Arlington 12, Virginis

Chief of Naval Research

Department of the Navy

Washington 25, D. C.

Attn: Code 437, Information
Systems Branch

Chief of Naval Operétions
Op-07T-12

Navy Department
Washington 25, D, C.

Director, Naval Research
Laboratory

Technical Information Officer

Washington 25, D, C.

Attn: Code 2000

Commanding Officer

Office of Naval Research

Navy No, 100, Fleet Post Office
New York, New York

Commanding Officer
ONR Branch Office

346 Broadway

New York 13, New York

Commanding Officer

ONR Branch Office

495 Summer Street
Boston 10, Massachusetts

(2)

(2)

Office of Technical Services
Technical Reports Section
Department of Commerce
Washington 25, D, C.

Bureau of Ships

" Department of the Navy
Washington 25, D. C.
Attn: Code 671 NTDS

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: Code 280

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C,
Attn: Code 687E

Naval Ordnance Laboratory
White Oaks

Silver Spring 19, Maryland
Attn: Technical Library

David Taylor Model Basin
Washington 7, D. C.
Attn: Technical Library

Naval Electronics Laboratory
San Diego 52, California
Attn: Technical Library

University of Illinois
Control Systems Laboratory
Urbana, Illinois

Attn: D. Alpert

University of Illinois
Digital Computer Laboratory
Urbana, Illinois

Attn: Dr. J. E. Robertson

97

Technical Information Officer
U.S. Army Signal Research

and Dev. Lab.
Fort Monmouth, New Jersey
Attn: Data Equipment Branch

Director

National Security Agency
Fort Geo. G. Meade, Maryland
Attn: Chief, REMP

Naval Proving Ground
Dahlgren, Virginia
Attn: Naval Ordn. Computation Center

National Bureau of Standards
Washington 25, D. C.
Attn: Dr. S. N, Alexander

Aberdeen Proving Ground, BRL
Aberdeen Proving Ground, Maryland
Attn: Chief, Computation Lab.

Office of Naval Research
Resident Representative
University of Michigan
820 E. Washington Street
Ann Arbor, Michigan

Commanding Officer

ONR, Branch Office

John Crerar Library Bldg.
86 East Randolph Street
Chicago 1, Illinois

Commanding Officer
ONR Branch Office
1030 E. Green Street
Pasadena, California

Commanding Officer

ONR Branch Office

1000 Geary Street

San Francisco 9, California

National Bureau of Standards
Washington 25, D. C.
Attn: Mr. R, D. Elbourn

98

Naval Ordnance Laboratory
Corona, California
Attn: H., H, Weider

George Washington University
Washington, D. C.
Attn: Prof. N, Grisamore

Dynamic Analysis and Control Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts
Attn: D. W. Baumann

Burroughs Corporation
Research Center

Paoli, Pennsylvania
Attn: A, J. Meyerhoff

Hermes Incorporated

75 Cambridge Parkway
Cambridge 42, Massachusetts
Attn: Mr. Reuben Wasserman

Lockheed Missiles and Space Division
3251 Hanover Street

Palo Alto, California

Attn: D. G. Willis

Univ., of Michigan

Ann Arbor, Michigan

Attn: Dept. of Philosophy,
Prof, A. W. Burks

Census Bureau

Washington 25, D. C.

Attn: Office of Asst. Director for
Statistical Services
Mr. J. L. McPherson

National Science Foundation

Program Director for Documentation
Research

Washington 25, D. C.

Attn: Helen L. Brownson

Univ. of California - LA

Los Angeles 24, California

Attn: Dept. of Engineering,
Prof, Gerald Estrin

Columbia University

New York 27, New York

Attn: Dept. of Physics,
Prof. L. Brillouin

Hebrew University
Jerusalem, Israel.
Attn: Prof, Y, Bar-Hillel

Massachusetts Institute of Technology

Cambridge, Massachusetts
Attn: Prof. W. McCulloch

Benson-Lehner Corporation
1860 Franklin Street

Santa Monica, California
Attn: Mr., Bernard Benson

Atomic Energy Commission
Washington 25, D. C.
Attn: Div. of Research

Naval Research Laboratory
Washington 25, D, é.
Attn: Security Systems

Code 5266, Mr. G. Abraham

Cornell University
Department of Mathematics
ITthaca, New York

Attn: Prof, Mark Kac

Dr. A, M. Uttley

National Physical Laboratory
Teddington, Middlesex
England

Diamond Ordnance Fuze Laboratory
Washington 25, D. C.
Attn: Library

U.S. Army Signal Research
and Dev, Lab.

Fort Monmouth, New Jersey

Attn: M, Tenzer

99

Harvard University

Cambridge, Massachusetts

Attn: School of Applied Science,
Dean Harvey Brook

The University of Chicago
Institute for Computer Research
Chicago 37, Illinois

Attn: Mr. Nicholas C. Metropolis,
Director
Commander

Wright Air Development Division
Wright Patterson Air Force Base,
Ohio
Attn: WCLJR, Maj. L. M. Butsch
Laboratory for Electronics, Inc.
1079 Commonwealth Ave,

Boston 15, Massachusetts

Attn: Dr. H. Fuller

Stanford Research Institute
Computer Laboratory

Menlo Park, California
Attn: H. D. Crane

General Electric Co.

Schnectady 5, New York

Attn: Library, L.M.E, Dept.,
Bldg. 28-501

The Rand Corp.

1700 Main St.

Santa Monica, California

Attn: DNumerical Analysis Dept.,
Willis H. Ware

Hunter College
New York 21, New York
Attn: Dean Mina Rees

General Electric Research Laboratory

P. 0. Box 1088

Schenectady, New York

Attn: Information Studies Section
R. L. Shuey, Manager

Radio Corporation of America

Moorestown, New Jersey

Attn: Missile and Surface Radar
Division, Sidney Kaplan

University of Pennsylvania
Institute of Co-operative Research
Philadelphia, Pennsylvania

Attn: Dr. John O Conner

Stanford Research Institute

Menlo Park, California

Attn: Dr. Charles Rosen
Applied Physics Group

Northeastern University

360 Huntington Avenue
Boston, Massachusetts °
Attn: Prof. L. 0. Dolansky

Marquardt Aircraft Company

16555 Saticoy Street _

P, 0. Box 2013 - Squth Annex

Van Nuys, California

Attn: Dr. Basun Chang,
Research Scientist

Texas Technological College
Lubbock, Texas
Attn: Paul G. Griffith

Office of Chief Signal Officer

Department of the Army

Washington, D. C.

Attn: R and D Division SIGRO-6D
Mr, L. H. Geiger

Bell Telephone Laboratories
Murray Hill Laboratory
Murray Hill, New Jersey
Attn: Dr, Edward F. Moore

National Biomedical Research Inst.
9301 19th Avenue

Hyattsville, Maryland

Attn: Dr. R. S. Ledley

National Bureau of Standards
Washington 25, D. C.
Attn: Mrs. Frances Neeland

University of Pennsylvania

Moore School of Electrical Engineering
200 South 33rd Street

Philadelphia L4, Pennsylvania

Attn: Miss Anna Louise Campion

Varo Manufacturing Company
2201 Walnut Street

Garland, Texas

Attn: Fred P. Granger, dJr.

Department of Electrical Engineering

IBM Corporation

Military Products Division
Owego, New York

Attn: Dr. S. Winkler

Post Office Department

Office of Research and Engineering

12th and Pennsylvania Avenue

Washington 25, D. C.

Attn: Mr. R. Kopp, Research and
Development Division

Air Force Cambridge Research Center
L. G. Hanscom Field,

Bedford, Massachusetts

Attn: Chief, CRRB

Data Processing Systems Staff
Department of State
Washington 25, D. C.
Attn: F. P. Diblasi

Dr. Saul Gorn, Director
Computer Center

University of Pennsylvania
Philadelphia 4, Pennsylvania

Applied Physics Laboratory

Johns Hopkins University

8621 Georgia Avenue

Silver Spring, Maryland

Attn: Supervisor of Technical Reports

100

Bureau of Supplies and Accounts, Chief
Navy Department

Washington, D. C.

Attn: Cdr. J. C. Busby, Code W3

Myerbach Electronics Corporation
1634 Arch Street '
Philadelphia 3, Pennsylvania

National Aeronautics and Space
Administration

Goddard Space Flight Center

Greenbelt, Maryland

Attn: Chief, Data Systems Division

Federal Aviation Agency

Bureau of Research and Development
Washington 25, D. C.

Attn: RD-375, Mr. Harry Hayman

Mr. Donald F. Wilson

Code 5144

Naval Research Laboratory
Washington 25, D. C.

David Taylor Model Basin

Washington 7, D. C.

Attn: Aerodynamics Laboratory, Code 6
Miss Cravens

Chief, Bureau of Ships

Code 671A2

Washington, D. C.

Attn: Ledr, E. B. Mahinske, USN

Lincoln Laboratory

Massachusetts Institute of Technology
Lexington T3, Massachusetts

Attn: Library

28

101

