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Most of the results presented herein are drawn from our much longer paper
which is to be published in the Proceedings of the Symposium on Recursive Func-
tion Theory held in New York City, April 6-7, 1961, and sponsored by the Amer-
jcan Mathematical Society, the Association for Computing Machinery, and the
Association for Symbolic Logic. The terminology and mode of development in
the present paper differ considerably from that of the longer paper.

The fundamental concept is that of a sequence generator. An seguence gen-
erator is a finite, directed, labeled graph. Each node may or may not be la-
beled as a root R. FEach node is labeled with a pair of truth values.

We are particularly interested in what we call the "behavior" of a sequence
generator (see Fig. 2). The behavior of a sequence generator is a set of ma-
trices of truth values. The pairs of truth values taken from the nodes along
an infinite path of the graph constitute a two-by-omega matrix. Such a two-
by-omega matrix belongs to the behavior of a sequence generator if and only
if it is taken from a path of the graph which begins with a root. For example,
the first element of Fig. 2 is taken from the path that starts with the root
and always stays in the root, while the second element is taken from the path
that starts with the root and oscillates back and forth between it and the
other node.

This concept of behavior may be connected to the ordinary one by calling
the upper truth value of a node an input and calling the lower truth value of
a node an output. A sequence generator then determines a relation between
infinite input sequences and infinite output sequences, which relation con-
stitutes its behavior.

The inputs and outputs labeling nodes may be vectors of truth wvalues
rather than single truth values. Our results all apply to this more general
case, but in the interest of simplicity we will present them in terms of the
case where the input and output vectors are of length one,

Digital computers or finite automata are closely related to a special
type of sequence generator called a deterministic sequence generator. Figure
3 1s deterministic. A sequence generator is deterministic when 1t satisfies
these two conditions:

(1) TFor each truth value, there is exactly one root having that
as 1ts input truth value.

(2) For each node and each truth value, there 1s exactly one node
following the given node and having the given truth value as its input.

The deterministic sequence generator of Fig. 3 corresponds, in fact, to a
binary counter.



Consider a graph derived from a digital computer or finite automaton
in the following way. Each pair consisting of an input state and an internal
state is a complete state. A node of the graph is provided for each complete
state. The labels on a node give the input state and output state assoclated
with the corresponding complete state of the automaton. Directed arrows of
the graph indicate direct transitions between complete states. Any graph
derived from a digital computer in this way is a deterministic sequence gen-
erator, and each deterministic sequence generator corresponds to a digital
computer,

The rows of truth values in the infinite matrices introduced earlier
define predicates on the natural numbers. This suggests the use of logical
formulas to represent sequence generators. We do this in an interpreted
system called the sequential calculus.

A formula of the sequential calculus is given in Fig. 4., The symbols
of the sequential calculus are: individual variables:, interpreted as ranging
over the natural numbers; monadic predicate variables, interpreted as ranging
over predicates of natural numbers; the individual constant zero; the suc-
cessor function; truth-functional connectives; and quantifiers on both in-
dividual and predicate variables.

To each sequence generator there corresponds a formula of the sequential
calculus, as illustrated in Fig. L. The existential predicate quantifier
"there is an s" asserts the existence of an infinite sequence of nodes sat-
isfying four conditions: s(o) says that this infinite sequence of nodes be-
gins with the root R, (v7)[s(T) V s(7')] that it is indeed a path of the graph;
i(7) = s(7) and o(T) = s(T) define the input and output predicates for the
path. This correspondence between formulas and sequence generators is such
that a pair of predicates of natural numbers <i,o> satisfies the formula if
and only if the corresponding two-by-omega matrix of truth values belongs to
the behavior of the given sequence generator.

See next the normal form of Fig. 5. Every formula derived from a sequence
generator can be put in the normal form (ds) [R&((VT)P) ], where R and P are
both truth functions, the root condition R being a truth function of s(o), P
being a truth function of s(7), s(t'), i(T), and o(T). Conversely, one can
derive from any normal form formula a corresponding sequence generator.

Thus formulas of the sequential calculus can be studied by means of
sequence generators, to which combinatorial methods can be easily applied.
We will next present a theorem which was arrived at by working with sequence
generators but is more easily stated here as a theorem about formulas of the
sequential calculus.

We introduce the following definition for a formulaféxi,o) containing i
and o as the only free variables. %Z(i,o) is uniquely solvable if and only
if for each predicate i there is exactly one predicate o such that the pair
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<i,o> satisfies f?(i,o) in the intended interpretation. It is clear that

when a formula %?(i,o) is uniquely solvable, it implicitly defines a function
g% such that o = Ez(i) if and only if '€(i,o0). éiis a function which maps
the set of all predicates of natural numbers into the set of all predicates
of natural numbers.

We are interested in a recursive definition of the type Church calls an
unrestricted singulary recursion. As Fig. 6 shows, such a recursion gives:

s(o) as a truth function of i(o),..., i(h)
s(7') as a truth function of s(7); i(7'),..., i(T'+h)
o(T) as a truth function of s(T),
where h is a constant.
Our first theorem is a definability theorem for uniquely solvable normal
form formulas. The theorem is: for every uniquely solvable normal form formula
nP(i,0), there exists an equivalent formulae (ds)(T)2d(s,i,0,7), where U(s,i,

o,T) is an unrestricted singulary recursion. Turthermore, the formula
(gs) (T)U(s,i,0,T) can be constructed effectively from the given formula‘ﬁ%i,o).

The proof of the definability theorem has three steps. The first can be
expressed if we think of the natural numbers as discrete times with T being a
time variable. Consider now a uniquely solvable normal form formula kai,o)
and the corresponding sequence generator with input i and output o. The out-
put o at time T may, contrary to physical reality, depend on input states which
occur at a time later than 1. Let k be the number of nodes of the sequence
generator. It turns out that the amount of anticipation is bounded by k=2,
that is, the parameter h of the unrestricted singulary recursion is in fact
k2, Thus the first step of the proof of the definability theorem establishes
the fact that for a uniquely solvable sequence generator with k nodes, the
output o at time T is independent of input states after T+k=.

The second step of the proof of the definability theorem involves a func-
tion or operation on the class of sequence generators, called the subset se-
guence generator operation, and used by Myhill, Medvedev, Rabin, and Scott.
Let T be a sequence generator and let I'* be the subset sequence generator of
I'. The nodes of I'* are sets of nodes o' I'. The arrows of I'* are placed ac-
cording to the arrows of I' in such a way as to take account of the fact that
a binary relation induces on the subsets of its domain a function which is
single-valued. There are two important facts about I'*. First, if T is uniquely
solvable, then for each predicate i there is exactly one path of I'* giving
rise to 1. ©Second, I'* has the same behavior as I'. Previous users of the sub-
set sequence generator operation have shown this second fact to be so when be-
havior is based on finite sequences. This behavioral equivalence may be ex-




tended to our concept of behavior, which is based on infinite sequences, by
means of Konig's infinity lemma.

As a consequence of steps one and two, our consideration of the normal
form formula (O(i,0) is reduced to a sequence generator I'* and a number k2
having these two properties: first, for each predicate i there 1s a unique
path in I'* giving rise to 1; second, k2 is a bound on the time dependence of
the predicates s and o on the predicate i, since s(T) and hence o(T) are in-
dependent of the input states after T+k2, To obtain the unrestricted singulary
recursion for (P(i,0) we must express s(T') as a truth function of s(T) and
i(7),...,i(7'+h). TFor any given i we use the predicate s defined by the cor-
responding path through I'* as the s of the recursion, and we take h to be k=,
A simple argument based on the uniqueness of the path will show that s(T')
is a time-independent truth function of s(t) and i(T'),...,i(7'+h). To write
0 as a restricted singulery recursion of i and s is now essentially a matter
of an elaborate truth table.

Our definability result may be generalized to arbitrary formulas of the
sequential calculus by means of some theorems about the sequential calculus
established by J. R. Blichi. Blchi's main result is that there is a decision
procedure for whether or not an arbitrary sentence of the sequential calculus
is true in the intended interpretation.

An immediate corollary of this result is that there is a decision pro-
cedure for unique solvability, since an arbitrary formula (Z(i,o) is uniquely
solvable if and only if the following formula of the sequential calculus
is true:

(1) (Eo) {6(170)&(01)[e(i;O)D(T)(O(T) = Ol(T))]}-

The generalization of our definability result involves the concept of
a finitely anticipatory formula. A formula C?(i,o) is finitely anticipatory
if for each time T there is a integer h such that the input states from time
zero up to time T+h determine the output state at time 1. It should be noted
that in an unrestricted singulary recursion h is a constant, whereas in the
definition of finitely anticipatory, h is a function of 7. Since = can be
defined in the sequential calculus, the statement that (3(i.o) is finitely
anticipatory can be expressed by a sentence of the sequential calculus. There-
fore, the decidability of truth of sentences of the sequential calculus implies
that the class of finitely anticipatory formulas is effectively decidable.

We can now state our general definability theorem. Let CZ(i,o) be any
formula of the sequential calculus. The theorem states that the relationship
between 1 and o can be expressed by an unrestricted singulary recursion if
and only if (?(i,o) is both uniquely solvable and finitely anticipatory. More



precisely, let C(i,0) be any formula of the sequential calculus having i and
o as the only free variables. There is an unrestricted singulary recursion
Uls,i,0,7) such tkat &(i,0) = (Es){7) WU s,i,0,7) if and only if &(i,0) is
both uniquely solvable and finitely anticipatory. Moreover, there is an
algorithm applicable to (7(i,0) which yilelds an equivalent formuls, (xs) (1)L
(s,i,0,T), if one exists.¥

The proof of the generalized definability theorem is too involved to be
presented here, but we will make some remarks about it. The proof uses a
normal form involving an infinite existential quantifier (qw) (see Fig. 7).
"(g%) G" means that there exist infinitely meny natural numbers satisfying G.
The infinite existential quantifier (™) is definable in the sequential cal-
culus. Biichi has shown that, for any formula ©(i,0) of the sequential calculus
having the predicates 1 and o as the cnly free variables, there is an equivalent
normal form formula. As shown in the top iine of Fig. 7, this normal form is
(is) [Re(z%T) C)&( (Vv T)P) I, where R is a truth function of s(0), G is a truth
funetion of s(7), and P is a truth function of s(T1), s(t'), i(T), and o(T).
This normal form is tihe same as the one we had before except for the addition
of the conjunct muﬂG.

The generalized normal form of Fig. 7 corresponds to an extension of the
idea of sequence generator in which eack node may or may not be labeled as a
goal G {see Fig. 8). The effent of the infinite quantifier (I%) of the
formula is obtained in a sequence generator with goals by considering only
paths which pass through the goals infinitely many times. There is then a
one-one correspondence hetween generaiized normal form formulas and sequence
generators with goals, which correspondence preserves behavior. Figure 8
gives an example of a sequence generahor with goals and the equivalent gen-
eralized normal form formuia.

It will be recalled that irn the case of an ordinary uniquely solvable
sequence generator with k nodes, *toe2 cufput o at time T is determined by the
input states from time zero up tc time v+k®, The same lemma holds for those
sequence generators with geals whiczhk are toth uniquely solvable and finitely
anticipatory, sc that, as before, the amcunt of anticipation is independent
of time.

A complete presentation of the procf of the general definability theorem
requires going inside Blicki's proof of cecidability for the sequential cal-
culus and maeking use of regular sets as defined by Kleene. We will not here
present this proof but will conclude Sy summarizing the main result of this
paper: there is an algorithm applicable to any formula of the sequential
calculus with free input and cutpu® predicates. This algorithm produces an
equivalent unrestricted singuiary recursion, if one exists, and otherwise
indicates that none exists.

*This theorem is not in the paper %o te published in the Proceeding of the
Symposium on Recursive Function Thaeory.
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R =root
t = true
f = false

Fig. 1. Sequence Generator. Finite, directed, labeled graph.
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Fig. 2. Two elements of the behavior of Fig. 1.
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Fig. 3. Deterministic sequence generator for a binary counter.
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(3s) {s(o) &
(vT) |s(T) v s(T')] )

:i('r) = s('r)]a
o(n) = s(0)] }

Fig. 4. Sequence generator and formula of the sequential calculus.

(3s) [R&((vP)]
R [s(o)]
P[s (1), s(), ilt),0(r)]

are truth functions

Fig. 5. Normal form.

s(o)=Alilo),....i(h)] &
s(7) =B [s(0); i(®),....i(r'+h)] &
o(t) =D [S(T)]

A, B, D, are truth functions

Fig. 6. Unrestricted singulary recursion.



(3s) [R & ((3°7) G) & ((vT) P)]

R[s(0)]
G:S(T)]
Pls(), s(),il0), olx)]

are truth functions

Fig. 7. Generalized normal form.
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(3s) {s(0)&(3°7)s(T) &
(V1) [s(t) v s(t)] &

(i(r) =s(T))&(o(T)= s_(;)]}

Fig. 8. Sequence generator with goals and equivalent generalized normal
form formula.



BIBLIOGRAPHY

Buchi, J.R., "On a Decision Procedure in Restricted Second-Order Arith-
metic," to appear in the Proceedings of the 1960 International Symposium
on Logic, Methodology and Philosophy of Science, Stanford University Press.

Church, Alonzo, "Applicetion of Recursive Arithmetic to the Problem of
Circuit Synthesis.” Summaries of talks presented at the Summer Institute
for Symbolic Logic, Cornell Univ., 1957, Institute for Defense Analysis,
Princeton, 1960.

Kleene, S.C., "Representation of Events in Nerve Nets and Finite Automata,"
in C.E. Shannon and J. McCarthy (eds.), Automata Studies, Princeton Univer-
sity Press, Princeton, N.J., 1956, pp. 3-Ll.

Konig, D., Theorie der Endlichen und unendlichen Graphen, Akademische
Verlagsgesellschaft M.B.H., Leipzig, 19%6.

Medvedev, I.T., "On a Class of Events Representable in a Finite Automaton,"
translated by J.dJ. Schorr-Kon from a supplement to the Russian translation
of Automata Studies, C.E. Shannon and J. McCarthy (eds.), Group Report
34-73, Lincoln Laboratory, Lexington, Mass., 1958.

Myhill, J., "Finite Automata and Representation of Events," in Fundamental
Concepts in the Theory of Systems, WADC Technical Report 57-62L4, ASTIA

Document No. AD 1557 41, 1957.

Rabin, M.0., and D. Scott, "Finite Automata and Their Decision Problems,"
IBM Journal of Research and Development, 1959 3, 11k-125,

\O



DISTRIBUTION ILIST
(One copy unless otherwise noted,

Asste. Sec. of Def. for Res. 2 Bureau of Ships

and Eng. . Department of the Navy
Information Office Library Br. Washington 25, DaCo
Pentagon Bldg. Attn Code 671 NTDS

Washington 25, D. C.
Chief, Bureau of Ships

Armed Services Tech. Infor. Agecy. 10 Department of the Navy

Arling Hall Sta. Washington 25, Dole

Arlington 12, Virginia Attn Code 280

Chief of Naval Research 2 Chief, Bureau of Ships

Department of the Navy Department of the Navy

Washington 25, D.C. Washington 25, D.Co

Attn Code 437, Inf. Syst. Br. Attn Code 68TE

Chief of Naval Operations Naval Ordnance Laboratory

OP-071-12 White Osks

Navy Depta Silver Spring 19, Maryland

Washington 25, Ds Co Attn Technical Library

Director, Naval Res. Lab. 6 David Taylor Model Basin

Tech, Inf. Officer/Code 2000 Washington 7, Do Co

Washington 25, D.Cs Attn Technical Library

Commanding Officer, Officer of 10 Naval Electronics Laboratory
Naval Research San Diego 52, California

Navy No. 100, Fleet P« O Attn Technical Library

New York, New York
University of Illinois

Commanding Officer, ONR Br. Office Control Systems Laboratory
346 Broadway Urbana, Illincis

New York 13, New York Attn D. Alpert

Commanding Officer, ONR Br. Office University of Illirois

495 Summer St. Digital Computer Laboratory
Boston 10, Massachusetts Urbana, Illinois

Attn. Cr. J.E. Robertson
Office of Technical Services

Technical Reports Section Technical Infcrmation Officer
Department of Commerce UoS. Army Signal Research and Deve. Labe
Washington 25, D.C. Fort Monmouth, New Jersey

Attn. Data Equipment Branch



DISTRIBUTION LIST (Continued)

Director 3 Naval Ordnance Laboratory
National Security Agency Corona, Californis
Fort Geo. G. Meade, Maryland Attn. H.H. Weider

Attn, Chief, REMP
George Washington University
Neval Proving Ground Washington, D.Co,
Dahlgren, Virginia Attn. Prof. No Grisamore
Attn. Naval Ordn. Computation Center
Dynamic Anal., and Control Lab.

National Bureau of Standards Massachusetts Institute of Tech.
Washington 25, D.C. Cambridge, Massachusetts

Attn. Dre. S.N. Alexander Attn. D.W. Baumann

Aberdeen Proving Ground, BRL Burroughs Corporation

Aberdeer Proving Ground, Maryland Research Center

Attn. Chief, Computation Lab. Paoli, Pennsylvania

Attn, A.J. Meyerhoff
Office of Naval Research

Resident Representative Hermes Incorporated

University of Michigan 75 Cambridge Parkway

820 E. Washington Street Cambridge 42, Massachusetts

Ann Arbor, Michigan Attn. Mr. Reuben Wasserman
Commanding Officer Lockheed Missiles and Space Div.
ONR, Branch Office 3251 Hanover Street

Jochn Crerar Library Bldg. Palo Alto, California

86 East Randloph Street Attne. D.G. Willis

Chicago 1, Illinois
Tnive of Michigan

Commanding Officer Ann Arbor, Michigan
ONR Branch Office Attn. Dept. of Philosophy,
1030 E. Green Street Prof, A. W. Burks

Pasadena, California
Census Bureau

Commanding Officer Washington 25, Ds C.

ONR Branch Office Attn. Office of Asst. Director for
1000 Geary Street Statistical Services,

San Francisco 9, California Mr. Jo L. McPherson

National Bureau of Standards National Science Foundation
Washington 25, D.C. Program Dir. for Documentation Res.
Attn. Mr. R.D. Elbourn Washington 25, D. Co.

Attn. Helen L. Brownson



DISTRIBUTION LIST (Continued)

Unive. of California - LA Diamond Ordnance Fuze Laboratory
Los Angeles 24, California Attn. Library
Attn Dept. of Engineering, Washington 25, D. Cs
Prof. Gerald Estrin
U.S« Army Signal Research and Dev. Labe.
Columbia University Fort Monmouth, New Jersey
New York 27, New York Attn. M. Tenzer
Attn. Dept. of Physics,
Prof. L., Brilloutin Harvard University
Cambridge, Massachusetts
Attn School of Applied Science,

Dean Harvey Brook

Hebrew University
Jerusalem, Israel

Attn. Prof. Y. Bar-Hillel
The University of Chicago

Institute for Computer Research
Chicago 37, Illinois

Attn, Mr. Nicholas Cs Metropolis, Dir.,

Massachusetts Inst. of Technology
Cambridge, Massachusetts
Attn. Prof. W. McCulloch

Benson-Lehner Corporation Commander
1860 Franklin Street Wright Air Development Division
Santa Monica, California Wright Patterson Air Force Base, Ohio

Attn Mr. Bernard Benson

Atomic Energy Commission
Washington 25, D. C.
Attne. Division of Research

Naval Research Laboratory
Washington 25, D. Co
Attn. Security Systems
Code 5266, Mr. G. Abraham

Cornell University
Department of Mathematics
Ithaca, New York

Attn. Prof. Mark Kac

Dr. A, M. Uttley

National Physical Laboratory
Teddington, Middlesex
England

Attn. WCLJR, Maje L+ M. Butech

Laboratory for Electronics, Inc.
1079 Commonwealth Ave.
Boston 15, Massachusetts
Attn. Cr. H. Fuller

Stanford Research Institute
Computer Laboratory

Menlo Park, California
Attn. H. D. Crane

General Electric Co.

Schnectady 5, New York

Attn. Library, L.M.E. Dept.,
Bldg. 28-501

The Rand Corporation

1700 Main Street »

Santa Monica, California
Attns Numerical Analysis Depte
Willis H. Ware



DISTRIBUTION LIST (Continued)

Hunter College
New York 21, New York
Attn. Dean Mina Rees

General Electric Research Laboratory
P.0. Box 1088

Schenectady, New York

Attn. Information Studies Section

R. L. Shuey, Manager

Radio Corporation of America

Moorestown, New Jersey

Attn. Missile and Surface Radar Div.
Sidney Kaplan

University of Pennsylvania
Institute of Co-Operative Research
Philadelphia, Pennsylvania

Attn. Dr. John OiConner

Stanford Research Institute
Menlo Park, California
Attn Dr. Charles Rosen
Applied Physics Group

Northeastern University
360 Huntington Avenue
Boston, Massachusetts
Attn. Prof. L. O. Dolansky

Marquardt Aircraft Company

16555 Saticoy Street

P. 0. Box 2013% - South Annex

Van Nuys, California

Attn. Dr. Basun Chang, Res. Scientist

Texas Technological College
Lubbock, Texas

Attn. Paul G. Griffith

Dept. of Electrical Engineering

IBM Corporation

Military Products Division
Owego, New York

Attn. Dro. S. Winkler

Post Office Department

Office of Research and Engineering
12th and Pennsylvania Ave.
Washington 25, D. C.

Attn, Mr. R. Kopp, Res. and Dev. Div.

Air Force Cambridge Res. Center
Le G+ Hanscom Field, Bedford, Mass.
Attn. Chief, CRRB

Office of Chief Signal Officer
Department of the Army
Washington, D. C.

Attn. Res. and Dev. Div. SIGRO-6D
Mr. L. H. Geiger

Bell Telephone Laboratories
Murray Hill Laboratory
Murray Hill, New Jersey
Attn. Dr. Edward F. Moore

National Biomedical Research Inst.
9301 19th Avenue

Hyattsville, Maryland

Attn. Dr. R. S. Ledley

National Bureau of Standards
Washington 25, D« Cs
Attn. Mrs. Frances Neeland

University of Pennsylvania
Moore School of Electrical Enge.
200 South 3%rd Street
Philadelphia 4, Pennsylvania
Attn. Miss Anna Louise Campion

Varo Manufacturing Company
2201 Walnut Street
Garland, Texas

Attn. Fred P. Granger, Jr.

Data Processing Systems Staff
Department of State
Washington 25, D. C.
Attne F. P. Diblasi



DISTRIBUTION LIST (Continued)

Dr. Saul Gorn, Director
Computer Center

University of Pennsylvania
Philadelphia 4, Pennsylvania

Applied Physics Laboratory

Johns Hopkins University

8621 Georgia Avenue

Silver Spring, Maryland

Attn. Supervisor of Technical Reports

Bureau of Supplied and Accounts, Chief
Navy Department

Washington, Do Ce.

Attn, Cdr. J.C. Busby, Code W3

Auverbach Electronic Corporation
1634 Arch Street
Philadelphia 3, Pennsylvania

National Aeronautics and Space Admin.
Goddard Space Flight Center
Greenbelt, Maryland

Attn. Chief, Data Systems Division

Federal Aviation Agency

Bureau of Research and Development
Washington 25, D. Co.

Attn. RD-375 / Mr. Harry Hayman

Mr, Donald F. Wilson

Code 514k

Naval Research Laboratory
Washington 25, D. Co

David Taylor Model Basin

Washington 7, D. C.

Attn. Aerodynamics Lab., Code 628
Miss Cravens

Chief, Bureau of Ships

Code 67142

Washington, D. C.

Attn, Ledr. E. B. Mahinske, USN

Lincoln Laboratory

Massachusettes Inst. of Technology
Lexington (3, Massachusettes

Attn, Library



IIIIIIIIIIIIIIIIIII

LML

3 9015 02846 7366



