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ABSTRACT

An inexpensive special-purpose relay machine is proposed
(requiring some 40 standard relays, 90 crystal diodes, and a rotary
selector switch) which will produce the complete truth-table for a
formula 25 characters long containing 10 distinct variables in about
15 minutes machine time.

Some theory is presented concerning the Polish notation,
the type of language upon which the machine is based, e.g., theorems
concerning the relation between structure and length of a formula and
the amount of equipment required for its evaluation.

It is pointed out that the proposed machine is not adaptable
to extremely long formulas but that the theory could be embodied in an
electronic machine which could handle such formulas and which would have
some advantages over comparable versions of existing machines used for
this purpose.
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TRUTH-FUNCTION EVALUATION USING THE POLISH NOTATION

1. INTRODUCTION

Two different methods for the mechanized evaluation of truth-
functions (i.e., expressions in the propositional calculus) have been
proposed recently. The first is a parallel, analogue method. To each
occurrence of a logical connective in the formula to he cvaluated is
assigned a physical element (rudimentary circuit of relays, vacuum tubes,
ete.) which realizes that connective. An input which has two stable states
(one for each of the two truth-values "true" and "false") is assiguned to
each variable occurring in the formula. The inputs and physical elements
are then interconnected in accordance with the arranzemeut of variables
and connectives in the formula so that therve is a single output wire which,
when the inputs represent a ziven assignment of values to the variables,
will represent the truth-value of the formula for that assignment. A
counting or stepping device then causes the inputs to represent succesive-
ly all possible truth-value assignments to the variables and the output
wire will then successivély represent the corresponding truth-values of the
formula. Two machines embodying this method have been built, one by
Kalen and Burkhart (1)¥ and a second by engineers at Ferranti (2). Both
machines used relays as their basic components, but 1t is obvious that
special-purpose hich-speed electronic machines embodying this same method
could be readily designed.

The second method employs a general-purpose computer, the evalu-
ation being done by means of a special sequence of instructions (4). These
instructions cause the machine to first assign truth-values to all variables
and second reduce down to a single truth-value the resultant formula. This
is repeated until all possible assignments of values to variables have been
exhausted., The reductions are generally accomplished by arithmetic operations
(e.g., negation of a truth-value can be done by subtracting the given truth-
value from a constant) but in some instances logical operations might be used
(e.g., in some binary machines digit extraction is a form of bitwise logical.
conjunction).

fParenthesized numbers refer to the bibliography at the end of the volume.



It is difficult to compare computing methods per se, that is,
independently of the physical means used to realize them, and yet com~
parisons which do not abstract from equipment are of little use. With
this reservation in mind, consider formulas of great length (e.g., 250
characters) containing a large number of distinct variables (e.g., 25).
Even assuming the use 'of high-speed electronic compaenents, neither of these
two methods seems practical for such formulas. The former method requires
an excessive amount of equipment, especially if the machine is designed
so that setting it up for a particular problem is automatic (e.g., from
a tape). The latter method seems to require an excessive amount of compu-
tation time, presumably because this 1s not the type of problem which
present general purpose machines were designed to handle efficiently.

In the present report a new method for the evaluation of truth-
functions is proposed which does seem to be practical for formulas of
great length and many variables and which has other features of interest.
This new method is based on the Polish notation. We will first make a
few remarks concerning this notation and our use of it., Following that
(Section 2) a rather detailed design is presented for a special-purpose
relay machine embodying the new method. This machine cannot handle
formulas of the size referred to above, but it will serve to illustrate
the principles involved. (The design work is further justified by the
fact that there is some interest in Philadelphia in constructing it,
mainly as a test for certain types of relay equipment.) Section 3
contains some general theorems relevant to the proposed method of truth-
function evaluation. Finally, Section 4 considers briefly the use of
this method for the evaluation of formulas of great length and many
variables by means of high-speed electronic equipment.

In the Polish notation a logical operator is followed by its
arguments instead of being placed between them as is normally the case
and no parentheses are needed. E.G. '(pyq) * r' 1is expressed as
'KApgqr', where 'K' stands for conjunction and 'A' for disjunction

(alternation).

The machine of section 2 evaluates formulas in a language
containing the following primitive symbols:

Ten propositional variables: Dy G 5.0,y ¥
Six dyadic operators: defined by Table I below

A "left-end-of -formula" symbol: *



TABLE T

Name 'Symbol Truth Values

First argument P 0 0 1 1
Second argument q O‘ 1 0 1
Conjunction Kpq 0 0 0 1
Alternation

(Inclusive Disjunction) Apq 0 1 1 1
Conditional

(Material Implication) Cpg 1 1 0 1
Negation% Npgq 1 0 1 0
Exclusive Disjunction

(Meterial Inequivalence) Dpq 0 1 1 0
Biconditional

(Meterial Equivalence) Epq 1 0 0 1

The number of variables (10) was decided upon somewhat erbitrarily
as providing reasonable cépacity for handling an "interesting" range of
problems and at the same time keeping the size of the machine within fairly
modest bounds. Changing this number would require only the most obvious
changes in the design of the machine.

The six operators were chosen similarly on practical grounds—
obviously a single stroke-function operator would have been logically
sufficient, but would have seriously restricted the practical application
of the machine. The decision to make all operators dyadic, however, is in
a somewhat different category. The possibility of changing this condition
will be considered in section 3.4, but for the present it will be said merely
that the restriction seems advisable for a "Mod I" experimental machine.

¥See third paragraph following.



In connection with dyadic operators, Negation deserves special
mention. Whereas the other five operators are "naturally" dyedic, Negation
is ordinarily monadic. The present definition requires that N take two
well-formed formulas as arguments, the first of which 1s irrelevant-—a
"qummy", It has been found most efficient (as will be explained in section
3) to insist that

1) the first rather than the second argument be the dummy
2) the dummy be a single variable
3) the variable be ome that occurs elsewhere in the formula.

Rigorous discussion of the properties of the language will be
reserved for section 3. However, some concepts which are particularly
relevant to the operation of the machine—namely those defining the class
of formulas which the machine is capable of handling—will be mentioned
briefly at this point.

First the formation rules of the language must be given (section
3.1, p. 17). For the present, a formula may be recognized as well-formed
on intuitive grounds if it contains no symbols other than those listed above
and if it constitutes a translation from a well-formed formula in the more
familiar propositional notation (v, -,~ , etc.).

Second, it must be known that evaluation of a given well-formed
formula will not exceed the capacity of the machine. This depends, obviously,
on the formula's containing a number of symbols (tokens) which can be stored.
But it depends, also, on a less obvious structural property called the Rank
(section 3.1 Def. 1B). For the present, it can be safely stated that any
well-formed formula of less than 20 symbol-takens can be handled by the pro-
posed machinet.

Finally, before passing to a detailed consideration of the machine,
the general procedure of evaluation will be outlined, since it is relevant to
both section 2 and section 3.

The entire operation is sequential. For a formula of n distinct
variables, 20 Major Cycles are required. A Major Cycle consists of, first, making
an assignment of a 0 or a 1 to each variable of the formula, and, second,
reducing this Evaluant (with binary digits properly substituted for the varia-
bles) to a single binary digit by successive application of the operators,
proceeding from right to left (until the * is reached). If any Evaluant

$¥This fact is assured by Theorem 3, section 3.3, but does not by.any means
indicate the complete class of formulas which can be handled by the machine.

4



reduces to a 0, the formula is a non-tautology; if any evaluant reduces to
a 1 ,the formula is a non-contradiction; and if all 21 evgluants reduce
to 1 (0) the formula is a tautology (contradiction).
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2. A TRUTH FUNCTION EVALUATOR

The operation of the proposed machine will be described in
three stages: first (section 2.1) at the block-diagram level, pointing
out the purposes of the various components, second (section 2.2) a de-
tailed discussion of the construction and operation of these components,
and third (section 2.3) a description of the operation of the machine as
a whole. Section 2.4 considers a few simple modifications which would
make the machine somewhat more versatile.

2.1 Block-Diagram Analysis

Figure 1 is a schematic representation of the complete machine.
For the present, attention is directed primarily to the "block-diagram"
aspect of this drawing: the five heavily-outlined boxes (Rotory Selector
Switch, Gated Counter, Operator Function Switch, Buffer, Shifting Register)
and their interconnections. The detailed discussion of the internal opera-
tion of these components, along with such overall problems as timing, is
reserved for sections 2.2 and 2, 3.

The Rotary Selector Switch stores the original formuls and es-
tablishes the timing«cycle for the entire operation. The formula is set
up manually, each of a sequence or arc of contacts being connected to the
proper one of the 10 variable, 6 operator, or % outputs. As the wiper
passes over these contacts, the outputs are activated, one at a time, in
a sequence corresponding to the sequence of symbols in the formula reading
from right to left. . '

The Gated Counter produces Evaluants of the formula. It consists
of a 1l0-stage binary counter. BEach stage drives a gate (actually a double
gate) which is fed by one of the variable (p through y) outputs of the
Selector Switch. Each gate has twe-outputs, the corresponding outputs of
all gates being connected in parallel to produce the 0 , 1 outputs at the
bottom of the box. The result is that when one of the variables is en-
countered by the Selector, the Counter will produce a 0 or a 1 output
corresponding to the state of the stage of the Counter associated with that
variable, Initially the counter is cleared to zero and is then advanced
"1" by each occurrence of the * ,thus producing a new Evaluant for each
complete "run" of the formuls (Major Cycle). When all 2% Evaluants have
been used, i.e., when the Counter returns to 0, Signal-2 will be operated
- indicating tautology and the machine stoppedft.

fThis can occur only if none of the Evaluants reduces to O .. Provision for
handling formulas with less than 10 distinct variables is discussed in
section 2.2,

6



The Operator Function Switeh is fed by the six operator outputs
of the Selector and is controlled by the first two stages of the Shifting
- Register (q.v.) —as indicated in Figure 1 by the center lines=in such a
way that whenever an operator is encountered by the Selector, the values
of its two arguments occur in the left end of the Register. These three
signals are combined in the Operator Function Switch to produce an output
which is O or 1 according to the truth-table for that operator and its
arguments.,

The Shifting Register stores the successive portions of the
Evaluant as they are produced and facilitates the reduction to a single
value. It consists of 10 binary stages with provision for shifting its
contents one stage to the right or to the left upon command. Whenever a
variable occurs and is assigned a O or 1 by the Counter, the Register
is shifted right and this O or 1 stored in the leftmost stage. When
an.operator is encountered it is applied to its two arguments from -the
Register (as in the preceding paragraph), the Register is shifted left to
dispose of the arguments just used, and the new value from the Function
Switch is stored in the leftmost stage of the Register.

When a star occurs, the state of the leftmost stage of the
Register represents the final reduction (to 0 or 1) of the current
Evaluant., If this value 1s 0, the Stop box will operate Signal-l
representing non-tautology and stop the machine.

The purpose of the Buffer is to combine for one purpose and
to 1lsolate for another its twe pairsof 0 , 1 inputs. A signal on either
of the input pairs (variable or operator but never both) must be sent to
the Register. This is done by the outputs on the right of the diagram.
In addition, a left shift of the Register is required for an operator and
a right shift for a variable. These are effected by the LS and RS outputs
at the bottom of the box. |

2.2 Detailed Analysis of Components

The preceding subsection gives an idea of the operation of the
machine "in the large". Now the details will be filled in.

The operation of the proposed machine depends importantly on a
special. type of flip-flop. Such a flip-flop must have the ability to record
the occurrence of a O or ‘1 input signal and at the same time remembers
its previous state. This situation could be realized in many different ways—
some of the most efficient requiring special-purpese equipment. One of the
"ground rules" of the present design, however, is to make use of certain
available equipment: in this case standard, 8-spring relays. The designing



of the most practical and efficient circuits for the proposed machine is
left to the more specialized skills of the engineers and technicians who
will be responsible for the actuasl construction. Nevertheless, in order
to be sure that the proposed design was workable, it seemed advisable in
~-geveral instances te work out- some rather detailed circuits. Such
instances are to be taken primasrily as proof that the proposed design can
be- carried out with a reasonable amount of equipment. If any of these
circuits prove adequate for the actual construction of the machine, so
much the better, but it is: fully expected that modifications may be neces-
sary.

In the case of the special flip-flop mentioned above, a circuit
is presented in figure 2, which accomplishes the desired purpose by the
use of two relays: A, the registering relay, and B, the auxiliary relay.
Speaking generally, an input signal, throughout its duration will affect
only the auxiliary relay, B, When the signal is removed, relay B will
drive the registering relay, A, into the same state as B.

Because of the memory embodied in this flip-flop, its state
cannot be determined, in general, from a knowledge of the state of the
inputs alone—it is necessary to know the previous state. The various
possibilities are presented in Table II. The digit-pairs represent the
state of the two relays, e.g., 'Ol' indicates that the A relay is
unoperated and the B relay operated. The positions marked 'X' repre-
sent conditions that can never occur in normal operation. Note that the
states 00 and 11 are "permanent" in the sense that one or the other
is produced whenever there is no input. Similarly, the states Ol and
10 might be termed "transient".

TABLE II

Previous state — 00 11 0l 10

Close 00 10 X X
0

Open 00 X X 00

Close oL 11 X X
1

Open X 11 11 X
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In detail, the operation of the flip-flop is as follows:

Figure 2 shows the flip-flop storing a O and with the

input circuits open. (The notation 'X', 'X' refers to the upper
and lower terminals, respectively, in the orientation of the diagram,
of relay coil X.)

‘al
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Flip-Flop

Figure 2

The "1" Input (from the "Q" state)

Closing this input grounds B and A shunting out A
and closing by which locks-up B..

Opening this input removes the ground from A. K remains

grounded through by and coil A (protected_by the diode
or "varistor", V) is energized eclosing a., B remains
locked-up to V2 and V; (either one alone would be suf-=
ficient for.this purpose?. The state of the flip-flop is
now "stable" for storing a 1. Closing the "1" input
again has no effect because of V2 .

The "0" Input (from the "1" state)

Closing this input shunts out B at Vy, opening bl if

Vi is present, (Vl might not be required for this purpose
if the forward resistance of Vo and V3 1is small enough,

_but is necessary in the next step.)



Opening this input remdves all ground and a; opens.
Closing the "0" input again has no effect because of
Vl-

The equipment requirements for this circuit are two standard
relays with transfer contacts, 3 varistors, and 2 resistors.

In the Schematic Diagram (Figure 1) the flip-flops are repre-
sented as small rectangles, labeled 'FF', in the boxes for the Gated
Counter and the Shifting Register. Each flip-flop has a "0" and a
"1" input. The transfer contacts required on each (the- A and the B)
relay for internal-operation of the flip-flop are not shown. Additional
contacts required for external operations are shown and are connected to
the proper flip-flop by means of center lines. Except in the case of the
Stop-box, all contacts are (and must be) comtrolled by the A relays.

The detailed operation of circuits incorporating the flip-flop
are most easily grasped by a careful study of figure 1. Some general
remarks, however, may help to establish the proper orientation—particu-
larly.with-réspect to the timing and overall organization of the operation.

A Minor Cycle will be defined as the period between the instant
the wiper touches-a contact on the Rotary Selector Switch and the instant
that it touches the next centact in its direction of travel. This Minor
Cycle has twe phases: the Contact phase, during which a contact is con-
nected through the wiper te greound, and the Open phase, during which no
contact is grounded. The design is such that in each phase at most one
relay operation (either an-opening or a closing) is required. It is a
fundamental requirement of the proposed design that the Rotary Selector
can be operated at a speed that will permit this. The evidence-——admitted-
‘ly incomplete-—suggests that the Selector could be operated in the continu-
ous or "running" mode and this mode of eperation will be assumed. 'If the
assumption proves to be unrealistic, the Switch could be advanced in discrete
steps at the cost of a slight increase in equipment but a rather considerable
loss of speed.

An intermediate pessibility is that, while the Minor Cycle is of
sufficient duration to-allow two relay operations in sequence, the division
into Open and Contact phases leaves the Open phase too short for one relay
operation, In this event it might be possible to introduce a "slow-acting"
relay—one whose.operation time is invariably longer than the operation time
for any other relay in the circuit—between the Selector and the flip-flops

-in order to artifically adjust the phase division. Another less efficient
scheme would be to use only every other contact on the arc of the Selector
Switch.

10



To proceed, then, the above indicates that s signal on an
input of any box will consist of a grounding of that input, the input
remaining grounded throughout the Contact phase of a Minor Cycle., The
signal will be preceded and followed by the Open phase in which the input
1s floating. The destination of such a signal will, in general, be a
flip-flop input -of the Shifting Register (the major exception being for
the * which operates the Counter). From origin to destination the signal
may be routed through contact networks and through the Buffer but with
negligible loss of time—i.e., there is no sequential operation of relays
during the Contact phase (or, for that matter, during the Open phase) of
a Minor Cycle. During this phase, the only relays which can change state
are the B relays. During the second (Open) phase of this Cycle, the A
relays are driven by the B relays, thus setting up the contact networks
for the next Minor Cycle.

The speeific applications of the flip-flop can now be described.
In the Gated Counter of Figure 1, note the two vertical banks of transfer
contacts. These contacts are controlled by the A relays of corresponding
flip-flops (FF's) as indicated by the center lines. The inner bank effects
the counting operation. The binary number recorded by the counter is in-
terpreted as having its least significant digit at the left. The FF inputs
are connected to transfer contacts in such a way that a "count" signal will
change the statet of every digit to the left of and including the first 0

As indicated in Figure 1, the Counter is connected to produce an
output which will stop the machine when it has counted to 210 (returned
to the all-0 state). This corresponds to producing all evaluants of s
formula of 10 distinct variables--the maximum capacity of the machine. To
handle efficiently formulas of fewer variables, two alternative modifications
are suggested, both assuming that the variables omitted are those nearest the
end of the alphabet.

A. Connect the "stop output" directly to the O input of the
nth FF from the left— n being the number of variables in
the formula. This could be done easily as part of the manual
set-up.

B. Provide means (e.g., push buttons) for "clearing" the (10-n)
rightmost FF's to 1 and leaving the "stop output" unchanged.

The purpose of the outer bank of contacts is to route the variable
signal from the Selector to the O or 1 output of the Counter in accordance
with the state of the FF corresponding to that variable.

flhe FF —i.e., the A relaywof course does not change until the
"count" signal is removed.

11



The second application of the flip-flop-the Shifting Register—
depends again merely upon the proper interconnection between transfer contacts
on the A relays and FF inputs. In the figure, the upper row of contacts
controls the right shift——the springs being connected in parallel to the RS
input. The make and break contacts controlled by FFi are then connected,
respectively, to the 1 and O inputs of FFig1 - The left shift is ef-
fected similarly by the lower bank, the connections being in this case from
the contacts of FF; to the inputs of FF;_, . The varistors connected
to the transfer contacts are to prevent interaction between the LS and
RS circuits, Note that three springs have been eliminated (FFl,Q,lO)

sinece the corresponding shifts are never required.

It was mentioned previously that the Operator Function Switch is
controlled by the Shifting Register. This is shown in Figure 1 by the center
lines connecting the two vertical columns of transfer contacts in the Switch
to FFy and ¥Fo (A relays) of the Register. When one of the operators,
N,D,E,C, A, or K, occurs (no more than one can occur.at a time)
the signal is fed through the contact network producing an output (0 or
1) which is the result of that operator applied to its arguments (from
FF, and FF,).

The purpose of the Buffer has been stated and the internal oper-
ation of this simple diode circuit hardly requires further discussion.

2.3 Operation

Given a well-formed formula to be evaluated by the machine, the
first step will be to set up the Rotary Selector Switch., In Figuré 1, two
arcs of contacts are indicated, one set up for the formula, ¥ANqgqq , the
other for ¥NpKqp . The use of two separate arcs in this manner permits
the setting up of one formula while the machine is evaluating another. The
switch just below the wiper selects the desired arc. Then the wiper is
placed in the "home" position: on (or perhaps just ahead of) the first used
contact.

Clearing the machine consists merely of opening all relays and
could be accomplished simply by removing all sources of power. It is worth
noting that under normal operation very little clearing is required. Irrele-
vant information in the Shifting Register will never be able to move into
FF, or FFp at a time when it could affect the operation; hence the regis-
ter need never be cleared. The counter will automatically clear to zero upon
completing the evaluation of a tautology but in any case when the machine has
not completed all evaluants it must be cleared.

12



Assuming then that the necessary clearing has been done, the next
step is to set the maximum to which the Counter is to count~-i.e,, 2% for
a formula of n variables. This can be done by method A or B of section
2.2 and the operation 1s ready to start¥.

The first step of the evaluation will be, invariably, the activation
(grounding) of one of the variable outputs of the Selector. In the example of
Figure 1, with the inner arc of the Selector in use, the ©» outpuv is grounded.
Due to the state of the Counter, its zero output becomes activated; this in
turn activates the RS and O outputs of the Buffer., Simultaneously, a O
is recorded in FFq (B relay) and the Register shifts right-~-i.e., puts the
B relay of FFj,7 1in the same state as the A relay of FF._.L . This
concludes the operations of the contact phase of the first Minor Cycle.

The open phase begins when the wiper of the Selecuor leaves the
first contact. This removes the iround from all FF inputs in the Re isver
thus allowing the A relays to be driven to the state of the B relays and
changing, correspondingly, the state of the contact networks both in the Regis-
ter and in the Function Switch.

The second Minor Cycle repeats the procedure of the first for the
next contact of the arc which in the present example corresponds to the
variable, q , and is assigned the value O . At the conclusion of this
Cycle, the values (both 0 ) for p and q are stored in FFy and FFp

The third Cycle begins when the wiper reaches the third contact
which, in this case, is connected to the K operator output of the Selector.
By tracing the "K" path through the Function Switch it is seen that the
0 output is activated as is required since the value of KOO 1s O
Passing through the Buffer it is seen that its O and LS outputs are
activated thus storing a O in FFl and simultaneously shifting the Regis-
ter, this time, to the left.

The next two Cycles disposec of p and N , leaving in FFl the
value NOKOO = 1 . The next Cycle, which is the last Minor Cycle of the
first Major Cycle, grounds the * output. This signal is transmitted
simultaneously (1) to the Stop box, where it encounters an open circuit
(since FFl is storing a 1 ), (2) to the counter which it advances one

step—1i.e., changes the state of FFp from 0 to 1, and (3) to the "Home"

*Here, as elsewhere, the simplest alternative is assumed: <that all
power can be applied and the Selector set in operatvion simultaneously.
It is realized, however, that more selective control might be useful or
possibly necessary and it is left to the engineers to make such modifi-
cations as seem advisable.

13



input of the Selector which will return the wiper to its initial position%
preparatory to-the neéxt Major Cycle.

The remaining three Major Cycles proeceed quite analogously until
the final Minor Cycle of the problem-that for * . At this point FFl
holds the value of N1K11 which is O . Hence the * signal can pass
through the Stop box, turn on Signal-l indicating non-tautology and stop
the machine. Given the proper timing arrangement, the * signal could
also effect a final "count" and "home" operation which might or might not
be of some slight advantage.

The computation time for a formula of length (number of character-
tokens), L , containing n distinct variables, on a machine whose Minor
Cycle time is t , is given by the formula,

T = tLot

This is the time required to test all evaluants. Of course in many cases
it will not be necessary to test them all., Assuming that t = 1/50
second (30 steps per second of the Rotary Selector Switch under the mode of
operation described above) the computation time would be, for example, for

a "large" formula with n = 10, L = 25, just under 15 minutes; for a
"emall" formula with n = 5, L = 10, T would be slightly over 10
seconds.

2.4 Modifications

Depending upon the use to which the mechine will be put, it might

- be advantageous-to provide certain facilities not included in the basic design.
Naturally, only a few of the many possible contingencies can be provided for
the four suggestions below are offered as examples.

1) oOver-length Formulas. If the number of character-tokens in a formula is
greater than the number of contacts on an arc of the Selector, it could be
set up on two or more arcs and a simple relay circuit added to "home" and

to effect automatic switching of wiper contacts from one arc to the next.

The formula for running time, T = tL2" applies to this case without change.

2) Tests other than for Tautology. If the connections in the Stop box are -
reversed—closing the circuit through the "make" rather than the "break"
contact—then Signal-1l will be operated and the machine stopped upon the

TIf a "non-homing" type of switch is used, certain modifications must
be made at this point.

14



occurrence of a "1" or "true" evaluant indicating that the formula is not
a contradiction.

It might be required to determine the values of the variables for
which the formula is true or for which it is false. For this purpose neon
lights might be attached to the FF's of the Counter for easy reading.

The states of these lights would be recorded, manually, each time the machine
stops. The "non-contradiction stop" of the preceding paragraph would be used
to-advantage in this test on formulas known to have more false than true values.

3) Formulas 9£ more than Ten Variables. If it seemed advisable to use the
Evaluator at all frequently for such formulas, it would of course be a simple
matter to add the necessary number of FF's to the Counter. However, given
any fixed capacity, the following slight modification makes it possible to
"program" the handling of formulas with an excess. number of variables. Provide
two additional Selector Switch outputs, connected directly to the O and 1
outputs of the Counter. This has the effect of adding the constants 0 and

1 to the formula language. The assignments of O and 1 to the "excess
variables" can then be made manually. This procedure requires 2n-10  complete
"runs" to test all possibilities where n-1l0 represents the number of excess
variablest. The standard formula for running time gives a good approximation
for this case, but a more accurate time would be given by the formula T =
tL2l + tm?n’lo when tm is the time required for manually changing the con-
nections to the 0 , 1 outputs and 2n-10 is the number of possible combi-
nations of the excess variables—i.e., the number of times the connections

- must- be made.-

4) Formulas of Excess Rank. Though the formal definition of rank is reserved
for section 3, it can be informally characterized for present purposes as that
property of & formula which determines the capacity required in the Shifting
Register. A Formulas of "excess rank", therefore, is one whose evaluation would
-exceed the capacity of Register. Although it has been assumed that such
formulas will not be allowed on the machine, it might be desirable for the
machine to detect excess rank, if only for the purpose of error prevention.
This facility can be provided.as follows:

a) Clear the Register before each problem,

b) Provide a signal to indicate a right shift of a 1
from the rightmost FF (FFy,)

c) Provide for & 0O to be shifted into FF,, by every left shift.

0

TCertain special types of formulas are adaptable to less time-consuming
varigtions of the above procedure and, in fact, it seems probable that
the general procedure might be: improved upon; but the possibilities
have not been seriously investigated.
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Though the fact appears toe be of little practical value, it is worth noting
that this modification actually increases the "rank capacity" of the machine
for certain rare formulas, due to the effect of shifting O0's off the right
end of the register and then shifting them back in again.

This concludes the description of the machine, per se. The remainder of

the report is concerned primarily with the theory underlying the method evalu-
ation.
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3. THEORY OF TRUTH FUNCTION EVALUATION

The present -section serves two purposes: to provide a more
rigorous basis for the design of the machine in section 2, -and to express
the theory behind this machine in more generalized form so that it may be
applied to a wider variety of problems in truth function evaluation.

3.1 Formal Languages.

The symbolism used throughout the remainder of the report will
be as folleows:

o1 (n an integer) will range over operators of degree n

(1, , A will range over formulas-——usually well-formed formulas.
P , @ ,... will range over propositional variables.

a , B .,... will range over the two truth-constants, O and 1
(Any of these éymbols may have subscripts or superscripts.)

(All of the above symbols are in the meta-language. In addition, the language
of -section 1 will be used, frequently, for examples. Note that the use of

'p' , 'g' ,... constitutes an ambiquity between the object language and

the meta-language; this ambiguity will be resolved by the context in all cases,
however.

Several languages will now be defined: Def. 1A giving the set of
symbols for each, Def. 1B giving the formation rules which are common to all.

EEEC ‘lA‘

S contains a finite number of operators, which may be of different
degrees, and a finite number of propositional variables.

S contains the same operators as S , the two truth constants, O
and 1 , but no propositional variables.

S% (s®) contains the same symbols as S (5) except that all
operators are of degree n =-—i.e,, '"n-adic".

17



Def. 1B. Any propositional variable or truth constant is a

Well-formed Formula (henceforth, wff) with Rank, R = 1
If M ,..., by aore wf (Well-formed) , then 6% A...AqT
is wf with
n
R = Max (R(Aq) +1-1) .
i=1

The Length, L(A) of a wff , A , is the number of characters
(tokens of operators, variables, truth constants) in A

Note the assymetrical role played by the various arguments of an
operator in the determination.of the rank of the operator-plus-its-arguments.
This. can be taken advantage of in minimizing the rank of formulas under various
circumstances. E.g., suppose we need the alternation of p and Xgr
ApKqr has a rank of 2 , AKqrp has a rank of 3 , while the lengths of
both formulas are the same.

A further example concerns the conditional operator, C . It is
often the case that the antecedent of a conditional has a greater rank than
the consequent; this is especially true with the hypothetical corresponding
to a given argument. Suppose R([' ) >R(A) > 1 . Then R(Cl——l A) = R(rj )
+1 and L(C['A) = L([')+ (L(A) + 1 . The rank could be reduced by 1
if C were replaced by a "reversed conditional" operator, C, : CpAi =
def. C[—]A . Then R(CrAr1 ) = R(l—“| ) . However, the same saving in
rank can be obtained without the introduction of a new operator by using the
equivalent expression, AANp fﬂ , Whose rank 1s also R(rI ) although its
length is L([_‘) + L(A) + 3 , an increase of 2

It is not. obwitus that the decomposition of a wff into its
arguments is unique; i.e., that, given a wff A of the form &Y AJ...Al, A
cannot. also.be expressed.as @J‘A’...Ai unless it is true that all A, =
Ai . Since the uniqueness of Rank and of truth values depend upon this
uniquenéss. of decomposition. it will now be formally established.

Lemma, Givena wff , A = o ..., and a wf initial segment
of A , rj = o ... (having its sequence of m characters identical
to. the sequence of the first m characters of A) , then A = fj

Proof (by induction on L(A) ) . The Lemma is true, obviously, for L(A)

= 1 . Assume that it is true for all. A having L(A) £ n ; then it can
be shown to hold.for L(A) = n+ 1 by the following: By the formation
rules, A can be written as oJ Ay e.. by, and rﬂ as & [j

with L(Aj) £ n and L([—1j) € n . Therefore, since either A; is an

FThe order of the Ay 1is significant only in relation to the Rank formula
which follows. For an informal discussion of Rank see section 2.4, modi-
fication L.
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initial segment of riI or vice versa, the two formulas satisfy the induction
hypothesis~ and AJ = fj . Suppose it has been shown that A., = fj
for all j' satlsfylng J »3'4 J . Then the argument above (for subscrlp%
J) applies and it follows that for all J such that 1<« j<J , A,
= rﬂj- 5 and therefore A = fj . Q.E.D. J

Theorem Q0. The decomposition of a wff 1into an operator followed
by a sequence of wff's is unique; il.e., if A = OK,AJ...Al
= Kby f, then X = J and A, = A

Proof. Each of the pairs of formulas (85 Aﬁ) s (AJ-l 5 Aﬁ-l) yoos
in turn satisfies the hypothesis of the Lemma and consequently the conclusion.
Continuation of the process until A 1is exhausted will establish simul-
taneously the identity of the paired formulas and the relation J = K .
Q.E.D.

On the strength of Theorem O , it can be assumed henceforth,

that_the Rank of any wff is unique, and that the truth value of a wff
in § (or Sn) is independent of the order of evaluation.

3.2 Concepts and Theorems Concerning the Process of Evaluation.

Let us call any wff |, Ay of S an evaluant. A is, of course,
an evaluant of some wff |, r1 of 8 , i.e., A 1is obtainable from some
fj of S by substituting O for all occurrences of some (possibly none)
of the variables of and substituting 1 for all occurrences of the
remaining variables. Hereafter, section 3.2 will be concerned with the
language, S , exclusively.

The Length of the Uninterrupted Sequence of bits (occurrences of
truth constants( counting from the right of an evaluant A 1s called
Lus (A) ; e.g., Lus (Q% o e% Ba) = 2 , Lus (@) = 1 .

Theorem 1. Lus (A) >the degree of the rightmost operator of A ,
or 1 if there is no operator in A . (I.e., the rightmost
operator 6% of an evaluant A 1s followed by at least n bits.)

Proof. Else A would not be wf . Q.E.D.
([ is the immediate reductum of an evaluant, A) = def.

[1 1s formed from A by substituting for the rightmost operator o
of A and the following n bits its value). E. g., KOl 1is the immediate

4=Thé t=t meaﬁs that the sequences of symbols are identical.
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reductum of KOAOlL . Note that the immediate reductum of the evaluant
is itself- an evaluant.

(Ay 5.+, Ly is the complete sequence of reducta of an
evaluant A1) = def. (Ayy 1is the immediate reductum of A; , and
Ay i8 0 or 1 .) E.g.,” KOAOL , KOL , O is the complete sequence
of reducta of KOAOL.

The main theorem on evaluation is:

Theotem 2. If A, Syeeey AM is the complete sequence of
reducta of the evaluant A(A = Ay) , then
M
Mex (Lus (4,) ) = R(4).
=1

Proof. (by induction on IL(a) ).

(I) It is obvious that it holds for L(A) = 1 .

(II) Assume it holds for all wff of L =n . It will be proved that
1t holds for any formula A of L = n+ 1 . Note that A is of the
form ©J [ﬂ Jeee fjl , where L( rjj) <n (1 £j£J) , and each

is an evaluant.

Let the complete sequence of reducta of A be Ay ,..., Ay ,

AM (as before) and the complete sequence of reducta of . be

rj.. yoxniy fjg shnny f— J-  (where fﬂé is rﬂ ;I_]hen A

m = p+ 2;: P is of the form

J 1Y
e [ ... Mar [ @gae00q s

P.
d
where Max (Lus (r1?) ) = R([—'j) by the inductive hypothesis., It
p=l ’
follows that
PJ‘
p=1

since there are Jj -1 a's 1n the sequence aJ 1 seees O
Hence, ~

M J
Mex (Lus (A ) ) = Max (R( [—‘j) +3-1) .
m=1 J=1

But, by definition,



Therefore,
M
Max (Lus (&) ) = R(4) . Q.E.D.
m=1

3.3 Theorems Concerning Languages with only Dyadic Operators.

With the machine of section 2 specifically in mind, the present
subsection will establish some theorems concerning the language, 52 , in
which all operators are dyadic. Theorems 3 and 4 establish connections
between L(A) and R(A) .

Theorem 3. If A is in §° then L(A) = 2R(4) - 1.

Proof. (by induction on L(A)

(I) The theorem clearly holds for L(A) 1 .
(II) Assume it holds for all wff of L n . It will be proved that it
holds for any formula A of L = n+ 1 . Note that A 1is of the form
62 by Ay vwhere L() L(A2) <n .F Obviously, L(A) = L(AQ) + L(47)
+ 1 . By the inductive hypothesis L(A,) 2 2R(A5) - 1 and L(Al) 2 2R(Al)
-1 . Hence,

IN 1)

L(A) = 2R(A5) + 2R(By) -1

Depending upon the relative Ranks of A} , and Ap , there are two cases
to consider:

no
+
-
w
=)
>
=
=
>
o
+
—
N
d
>
=
~

3
B
=
d
—
[~
p—
1}

R(Ap) + 1 Then R(A) = R(A
and L(A) 2 2R(4) + 2R(Ay):-3 . | and. L(A) 2 2R(dy) + 2R(4) -1 .
But R(A) 21 But R(d,) =1

so L(A) =2rR(A) -1 . so L(A)=22R(A) -1 .

Hence, L(A)22R(A) -1 . Q.E.D.

Remark: For each rank there exists a formula A of that
rank such that L(A) = 2R(A) =1, i.e., a minimup length

TNote that for even values of I no formulas exist in S2 and the
Theorem holds vacuously.

21



formula of that rank. Such a fermula can be obtained by starting with an
o and simultaneously prefixing a o° and suffixing an @ as many times
as reguired, e.g., 020262 aon, is of renk 4 and length 7

Theorem L. For any R > 2 there is no upper limit to the .
length (L) of formulas of S2 of this rank¥.

Proof. Consider any formula A of R = 2 . An indefinitely long formula
of the same rank may be constructed from it by repeatedly preceding it by
e p . Q.E.D. '

Note that Theorem 3, the remark following it, and Theorem 4 establish
the following concerning the formula of any given rank =2 2 : ‘there is a
lower bound to the length of these formulas but no upper bound. In the absence
of an upper bound it would be of interest (indetermining the relative capacity
of the memory and the shifting register) to have more information concerning
the relation between the length and rank of the formulas that would actually
be tested on such a machine as has been proposed. Note in this connection
that for all formulas A with the property that for every operator the argu-
ments of that operator are of equal length (e.g., 676762 o6 Qe=6° oe® )
it is the case that

L(a) = oR(A) 1

For any formula rﬂ let rj' denote the formula derived from r1 by
replacing each occurrence of N! (if any) by N°p (where p is a dummy
argument ) ¥,

Theorem 5. Let A be a wff in S . Then R(4) = R(A')
< R(A) +1 .

Proof. (by induction on L(A) ) :

(I) The theorem holds for L(A) = 1 (trivielly).

(II) Assume it holds for all wff , A , such that L(A) = n . It will

be proved that it holds for any formula, A , such that L(A) = n+ 1 .

This proof involves two cases according to whether or not the first operator
of A is Nt

Case 1. The first operator in A 1is not Nt ; A is of the form oJ AJ
)
l .

#This theorem applies, more generally to any language, S
ttNote that the "prime" symbol in the expression [—“ " here denotes an
operation on f1
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. Then, A' = ©J A'...A'
1. The M

2. By the inductive hypothesis: R-(-AJ.) € R(Aj) < R(A,) + 1
B ]

3. But, by definition, R(A) = Max (R(A') + j - 1)
: i1 j

4. Therefore,

J J

Max (R (Aj)+ J-1) £ R(A') = Max (R (A.) + J -1+ 1)

J=1 J=

5. R(A) £ R(A') € R(A) +1 .

Case 2. The first operator in A = Nl ; A 1is of the form A = Nl Ay

1. By definition of the substitution operation, A' = N2 pAi
2. R(4y) £ R(8y) = R(Al) + 1 by hypothesis.

3, Two sub-cases must be considered according to whether
R(d;) * 2 or R(Al) = 1

(a) Suppose R(Ay) > » then R(A') = R(4])
Now, since R(A) = ( ) , Step 2 yields
R(A) £ R(A') & R(A) + i .

(b) Suppose -R(Al) = 1 , then R(A) = 1 ,
R(A'") = 2 , satisfying the theorem. Q.E.D.

Note that any of the alternative ways of constructing the N2
operator would, in general, increase both R and L . If the second rather

than the first argument is the dummy, there is no upper limit to R(r1 )
- R(A) as shown by

.e -NENENEPqIQEq—jm ‘e (= P )
Loty (=2 )

Hence L([j - L(A) 1is equal to the number of occurrences of N2 in fﬂ
of Nl in A) .

If neither argument is a dummy, then in order to satisfy nt
= N2 A rﬂ , it is necessary that A be a function of r1 or a constant
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formula (tautelogy or contradiction)*. In either case extra computing time
and -perhaps extra equipment would be required. Using identity — Nt

= 1\12[_-'[—1 - which is probably as simple a function as any, each occurrence
of negation has its Rank increased by 1 and its Length increased by L - 1
as compared to the Ne proposed in this report¥¥, Using for A a simple
constant formula, the contradiction Dpp , a negation has its L 1increased
by 2 (as compared to the standard N2) ; its Rank is not increased except

for the case of R([') ¢ 2 .

FIf the symbols for O and 1 are included in the formula language (as
suggested in section 2.4) the use of one of these constants as dummy,
rather than a constant formula, would be a satisfactory alternative.

##This is true for all instances except L = 3 - the shortest possible

expression.
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L. CONCLUSION

In conclusien a few remarks will be made concerning the use of the
proposed method of evaluating truth-functions in connection with formulas of
great length and many variables. This method, which was illustrated in
section 2, may be summarized as follows: For each Evaluant of the given
formula, the fermulas is scanned from right to left, each variable being
replaced by its value in the Evaluant and each operator together with its
arguments being replaced by its functional value until a single truth-value
is c¢btained. One of the advantages this method has is that the- capacity of
a machine embodying it may be increased with regard to the length, rank, or
number of variables independently, merely by enlarging the memory, the shifing
register, or the counter respectively.

- Thespeed -of -operation required for extremely long formulas may be
shown by reference to-an example. Consider a formula containing 25 distinct
variables and 250 characters. There are 225 Evaluants of this formula, and
if' these -are all reduced the machine must scan 250 x 225 or roughly 1010
characters. For this to be feasible the time per character must be of the
order of microseconds; for example, 250 x 225 microseconds equals approxi-
mately 140 minutes.

It is clear from the preceding sections thet & serial, circulating
memory is naturally adapted to the present method of evaluating truth-functions.
Mercury delay lines would be especially suitable; a magnetic drum would be
satisfactory but somewhat slower. A brief "design-sketch" will be presented
for an evaluator using mercury delay lines of 1000 bit capacity and 1 micro-
-second pulse period. The design of an evaluator employing a magnetic drum
would be very similar. We assume that the formula will be read into the
machine from a magnetic or paper tape so that set-up time will be small.

Consider a language containing the six dyadic operators K , A ,
Cc,E,D, N, the marker symbol * , and 25 distinct propositional
variables. Express these 32 characters in a five-bit code and store them
in parallel in a bank of five delay lines. Store the formula to be evaluated
in this memory as many times as it will go, placing a * after each occurrence
of it and filling every unused memory position with a * . There will be a
certain waste of memory capacity (and hence of time) whenever the formula is
not an integral factor of 1000 characters in length; e.g., a formula of 251
characters (including a * ) would be stored three times with a waste factor
of 247/1000 or about 25%. This waste factor could be decreased by the use of
2 or more banks of delay lines and some switching equipment.

The above-described memory would feed a decoding function switch

with five inputs and 32 outputs. These outputs would in turn feed a gated
counter, operator function switch, buffer, shifting register, and stop box,
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all of which would be the electronic analogues of the circuits shown in
Figure 1. Certain minor variations in the design are necessary, e.g., one
due to the fact that stars are used to fill otherwise empty memory positionms.
It is possible, using available electronic techniques, to construct these
circults so that they would keep up with the megacycle pulse rate of the
circulating memory. Such a machine would completely evaluate a formula
containing 25 variables and slightly over 250 characters in length in about
three hours.
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