DESIGN CONSIDERATIONS FOR A
CAPACITANCE-MODULATED VFO

Technical Memorandum No. 60

Electronic Defense Group
Department of Electrical Engineering

By: T. W. Butler, Jr. Approved by: C. B. Sharpe

This is not a final report. Further investigation may make it desirable
to have this report revised, superseded or withdrawn.

Project 2262

TASK ORDER NO. EDG-4
CONTRACT NO. DA-36-039 sc-63203
SIGNAL CORPS, DEPARTMENT OF THE ARMY
DEPARTMENT OF ARMY PROJECT NO. 3-99-04-042

September 1958
ACKNOWLEDGEMENT

The author wishes to acknowledge the assistance of Mr. Gordon A. Roberts in the design and testing of the capacity modulated VFO.
TABLE OF CONTENTS

ACNOWLEDGEMENT ii
LIST OF ILLUSTRATIONS iv
ABSTRACT v

I. INTRODUCTION 1
II. THEORETICAL CIRCUIT DESIGN CONSIDERATIONS 1
III. PRACTICAL CIRCUIT DESIGN CONSIDERATIONS 6
IV. PERFORMANCE CHARACTERISTICS 12
V. CONCLUSIONS 14
REFERENCES 16
DISTRIBUTION LIST 17
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Basic Wide Range Tuning Circuit</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Basic FM Circuit</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Capacity Variations vs Bias Voltage</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Capacity Variations vs Temperature in °C</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>FM Capacity Modulated VFO</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Exterior View Showing Panel Arrangement</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Interior View Showing Parts Layout</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>Exterior View Showing Outboard Modulator</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Typical Curves of Frequency Deviation vs DC Bias Voltage</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>Typical Curves of Frequency Deviations vs Temperature in °C</td>
<td>15</td>
</tr>
</tbody>
</table>
ABSTRACT

The use of ferroelectric capacitors in the design of a band switching capacity-modulated VFO which will meet FCC specifications regarding Narrow-Band frequency modulation (NFM) is presented. The chief advantage of NFM is that it reduces or eliminates certain types of interference to broadcast reception and is quite simple and inexpensive to construct using capacitance-modulation techniques.
DESIGN CONSIDERATIONS FOR A CAPACITANCE-MODULATED VFO

I. INTRODUCTION

The use of ferroelectric capacities in the design of an electric-tuned capacitance-modulated oscillator has been presented in previous reports.\(^1\) The design of a band switching capacitance-modulated VFO which will meet F.C.C. specifications regarding narrow band frequency modulation (NFM) in the available Radio Amateur frequency bands is presented. Although the design was carried out with certain specific bands in mind the general design principles are flexible enough to allow their use in all VHF and UHF bands.

II. THEORETICAL CIRCUIT DESIGN CONSIDERATIONS

Since in the design of the capacitance-modulated VFO, electric tuning of the oscillator tank circuit is not a requirement (i.e., tuning over the range will be done by a variable air capacitor), and since it is desirable to maintain the overall frequency stability of the basic VFO without resorting to thermostating techniques and close regulation of the bias voltage, the basic wide range tuning circuit of Fig. 1 may be modified somewhat as shown in Fig. 2.\(^2\) The tank circuit \(L_1C_1\) of Fig. 2 is shunted by the series arrangement of \(C_2\) and \(C^*\) (voltage sensitive capacitor). Capacitor \(C_2\) serves as a d-c blocking capacitor and also provides a means of multiplying the effective \(Q\) of the circuit. The \(Q\) of \(C_2\) and \(C^*\) in series is approximated by:
FIG. 1. BASIC WIDE RANGE TUNING CIRCUIT

FIG. 2. BASIC FM CIRCUIT
\[Q = Q_v \frac{C_2 + C^*}{C_2} \]

where \(Q_v \) is the \(Q \) of \(C^* \).

If \(C^* \) is very much larger than \(C_2 \), as it is in the practical case, the effective \(Q \) of the circuit is greatly improved.

The actual curve of capacity variation vs voltage of the modulating element \(C^* \) is obtained from the \(\varepsilon \)-T-E surface at the VFO nominal operating temperature (in this case 25\(^\circ\)C) and replotted as shown in Fig. 3, curve a. Curve b of Fig. 3 is a plot of the series combination of \(C_2 \) and \(C^* \), where \(C_2 \) has a constant value equal to 4.7 \(\mu \)f under all variations of voltage while \(C^* \) varies as shown. For the same voltage deviation (e.g., \(\pm 40 \) volts either side of the 125 volt bias point) it is seen that the series combination changes only about \(0.0025 \mu \)f/volt, while for the tunable element alone the change is about \(0.3 \mu \)f/volt. To control the deviation even further, additional padding (e.g., 30 \(\mu \)f) can be shunted across \(C^* \) as shown by curve c, Fig. 3. For the given \(\pm 40 \) volts deviation about the 125 volt bias level the series-parallel arrangement change is about \(0.001 \mu \)f/volt.

The actual curve of capacity variation vs temperature of the modulating element (\(C^* \)) may also be obtained from the \(\varepsilon \)-T-E surface at the VFO bias voltage (in this case 125 volts) and replotted as shown in Fig. 4, curve a. Curve b of Fig. 4 is a plot of the series combination of \(C_2 \) and \(C^* \), where \(C_2 \) remains constant with temperature at a value of 4.7 \(\mu \)f and \(C^* \) varies as shown. Curve c is a plot of the series-parallel arrangement where the 30 \(\mu \)f paddler is also considered temperature insensitive. From the use of a series-parallel arrangement, it is seen that: (1) the linearity is improved; (2) the stability of the VFO is improved (i.e., changes in frequency due to temperature and bias variations are reduced); and (3) control of the
carrier frequency deviation due to the modulating signal is vastly facili-
tated, especially under band switching operation where a constant band to
band modulation index is desired.

III. PRACTICAL CIRCUIT DESIGN CONSIDERATIONS

To demonstrate the feasibility of NFM, a typical commercially
available all-band VFO was modified as shown in Fig. 5 and the photos of
Figs. 6, 7 and 8. The basic circuit is the series-tuned Colpitts or "clapp"
oscillator circuit. The tank circuit consists of two separate coils and two
separate stator connections of a differential capacitor to develop the ba-
sic output frequencies. The basic output frequency in range 1 is 1.75 mc,
doubling to 3.5 mc, and quadrupling to 7 mc. The basic output frequency in
range 2 is 7 mc, doubling to 14 mc, tripling to 21 mc and quadrupling to
28 mc. Padder capacitors are placed in parallel with the sections of the
differential tuning capacitor for adjustment. A series arrangement, con-
sisting of a 7.5 μf silver mica capacitor and a 200 μf ferroelectric capa-
citor are connected across range 1 of the tank circuit, while a second series
arrangement, 3.7 μf silver mica capacitor and a 200 μf ferroelectric capa-
citor, is connected across range 2 of the tank circuit. According to FCC
regulations for NFM, the channel width should not exceed twice the highest
audio frequency in the modulating signal; therefore, based on an upper audio
limit of 3 kc, the channel width should not exceed 6 kc. In band switching
operation the modulation index is multiplied by the same factor that the
carrier frequency is multiplied by; therefore, if the basic output frequency
is 7 mc, for example, with a frequency deviation of 2 kc, then the output
at 28 mc will have a deviation of 4 x 2 kc or 8 kc which is far too great.
FIG. 5. FM CAPACITY MODULATED VFO
FIG. 8. EXTERIOR VIEW SHOWING OUTBOARD MODULATOR.
In order to maintain a constant deviation for a given modulation voltage, additional padding is shunted across the ferroelectric capacitor as the band is switched to higher frequencies. Since NFM is not allowed in the 1.75 mc band the basic frequency output was considered to be 3.5 mc and the deviation adjusted at this point to be ± 2 kc for a change in bias of ± 40 volts. For 7 mc operation a 30 µuf padder is switched across the ferroelectric capacitor as shown in the schematic. With this arrangement, deviation in the 1.75 mc band would be 1/2 of the deviation obtained in the 3.5 mc band or ± 1 kc. The basic output frequency in range 2 is 7 mc, and the deviation is adjusted at this point to ± 2 kc for a change in bias of ± 40 volts. For operation at 14, 21, and 26 mc, additional padding capacitance is switched across the ferroelectric as shown.

The ferroelectric capacitor bias voltage is 150 volts and is taken from the plate of the OA2 regulator tube. The regulated voltage also represents the center of the linear portion of the voltage capacitance curve of the ferroelectric capacitor. Decoupling of the r-f from the bias is obtained by means of a one meg-ohm resistor, R7, connecting the plate of the regulator tube to the bias line and the 400 µuf capacitor C22. The 330 K resistors, R2 and R3, and the 400 µuf capacitor C22, serve as a filter to prevent r-f from getting back into the audio circuit. At the same time, the filter allows the audio variations at the plate of the audio amplifier to appear virtually unattenuated across the modulating capacitors.

The modulator section is a two stage audio amplifier utilizing a 12AX7 tube in a straightforward circuit. The control, R12, at the input to the second audio section, serves as a deviation control. Since the amplitude variations at the plate of the audio amplifier determine the deviation of the oscillator, controlling the input signal to the audio amplifier also controls
the deviation of the oscillator. The optimum setting of this control will vary somewhat from band to band and is best determined by operational checks. The final setting should correspond to a deviation of somewhat less than 3 kc.

The modulator was constructed in a 2-1/4" x 2-1/4" x 4" mini-box and mounted outboard fashion on the rear of the VFO. Audio leads were brought into the VFO through shielded cables.

Since this particular VFO utilizes two tuned circuits in order to obtain greater bandspread, it was necessary to replace the existing band-switch with a four-section, 7-position, non-shorting type ceramic switch. In most VFO modifications, where the tank is a single-tuned circuit, band-switch modifications will be much simpler. In any event, all modifications can be made by following the ideas presented in the foregoing sections.

Recalibration of the VFO should follow standard procedures as outlined in most Radio Handbooks.

IV. PERFORMANCE CHARACTERISTICS

The oscillator frequency deviation on each band was measured by using a frequency counter in conjunction with a very stable frequency meter. The d-c bias on the ferroelectric capacitor was varied 40 volts either side of the 150 volt bias level and the deviation was noted. Two sample curves are shown in Fig. 9. Curve A (Fig. 9) shows the deviation in the fundamental frequency range (i.e., 7.2 mc) and curve B shows the deviation at the 4th harmonic (28.8 mc). Note that the modulation index in the two ranges is almost identical and that the modulator is linear over the entire range.
The deviation is within allowable limits on all bands 3.5 through 30 mc.

As shown in Figure 10, the frequency stability of the VFO vs temperature, with and without the ferroelectrics in the circuit, is compared. The degradation of the VFO close to its normal operating temperature (39°C) is not serious. It should be noted that neither thermostating techniques nor additional compensating capacitors were used in this modification. If increased temperature stability is a requirement either of the above ideas could easily be incorporated.

V. CONCLUSIONS

The use of ferroelectric capacitors as the modulating elements in a narrow-band FM system have proved to be quite useful in the VHF-UHF region where conventional reactance tube and phase-modulation methods are unwieldy. The chief advantage of narrow-band FM is that it reduces or eliminates certain types of interference to broadcast reception and is quite simple and inexpensive to construct using capacitance-modulation techniques. Detection of NFM on a typical AM receiver is quite easily accomplished by means of slope detection, i.e., moving off frequency slightly.

Use of this type of VFO in portable and mobile operation, where equipment must be restricted in size, should prove very helpful.
FIG. 10.
TYPICAL CURVES OF FREQUENCY DEVIATIONS VS.
TEMPERATURE IN °C

NORMALIZED TO 39° C
OPERATING FREQUENCY 7.2 MC
FUNDAMENTAL FREQUENCY 7.2 MC
-○- WITH FERROELECTRIC CAPACITOR IN TANK CIRCUIT
-△- WITHOUT FERROELECTRIC CAPACITOR IN TANK CIRCUIT
REFERENCES

DISTRIBUTION LIST

1 Copy
Document Room
Stanford Electronic Laboratories
Stanford University
Stanford, California

1 Copy
Commanding General
Army Electronic Proving Ground
Port Huachuca, Arizona
Attn: Director, Electronic Warfare Department

1 Copy
Chief, Research and Development Division
Office of the Chief Signal Officer
Department of the Army
Washington 25, D. C.
Attn: SIGEB

1 Copy
Chief, Plans and Operations Division
Office of the Chief Signal Officer
Washington 25, D. C.
Attn: SIGEW

1 Copy
Countermeasures Laboratory
Gilfillan Brothers, Inc.
1815 Venice Boulevard
Los Angeles 6, California

1 Copy
Commanding Officer
White Sands Signal Corps Agency
White Sands Proving Ground
Las Cruces, New Mexico
Attn: SIGWS-EW

1 Copy
Commanding Officer
White Sands Signal Corps Agency
White Sands Proving Ground
Las Cruces, New Mexico
Attn: SIGWS-PC

1 Copy
Commanding Officer
Signal Corps Electronics Research Unit
9560th USASRU
Mountain View, California
65 Copies

Commanding Officer
USASRDLC
Fort Monmouth, New Jersey

FOR - USASRDLC Accountable Officer
Inspect at Destination
File No. 22824-PH-54-91(1701)

1 Copy

H. W. Farris
University of Michigan Research Institute
Ann Arbor, Michigan

1 Copy

Technical Documents Services
Willow Run Laboratories
University of Michigan
Ypsilanti, Michigan

11 Copies

Electronic Defense Group Project File
University of Michigan
Ann Arbor, Michigan

1 Copy

University of Michigan Research Institute Project File
Ann Arbor, Michigan