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Abstract

In this paper we introduce a new class of covariance stationary long-memory models

on the positive half-line. The overall structure of the models is related to that of GARCH

processes of Engle (1982) and Bollerslev (1986), whereby sequence of random variables of

interest have multiplicative shocks structure. Unlike FIGARCH model of Baillie, Bollerslev

and Mikkelsen (1996), our models are weakly stationary with non-summable autocovari-

ances and hence belong to the class of long-memory models according to the criteria of

McLeod and Hipel (1978). In addition, we are able to ensure positivity of all underlying

components of the model, thereby improving on the results of Giraitis, Robinson and Sur-

gailis (2000). Apart from volatility modeling, the class of models introduced in this paper

will find applications in high-frequency financial data econometrics.

JEL classification: C22, C51

Keywords: Conditional heteroscedasticity, Long-memory, Weak stationarity, Economet-
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Introduction

In this paper we introduce and study a class of covariance stationary long-memory time-series

models on the positive half-line. Similarly to the popular GARCH models of Engle (1982) and

Bollerslev (1986), our model is defined as the product of a sequence of positive i.i.d. innovations

{εt}t∈Z and a latent observation driven covariance stationary positive long-memory component

{ψt}t∈Z:

Xt = ψt · εt . (1)

The model is potentially useful in several applications in econometrics and statistics. In partic-

ular, it provides an alternative to FIGARCH models of Baillie, Bollerslev and Mikkelsen (1996)

and can also be used to model long-range dependence in high-frequency financial durations data

as in Jasiak (1999). In the paper we give conditions for stationarity and existence of first two

moments of our model, discuss its extension to the short-memory case and outline estimation

and inference procedures.

Since the introduction of GARCH models into econometric literature by Engle (1982) and

Bollerslev (1986) there has been a substantial interest in time-series models with multiplicative

shocks structure. This approach to the design of time-series models is especially appealing

for modeling conditional heteroscedasticity, for it allows researchers to capture variations in

the second moment of data in the separate process. Recently, techniques and ideas employed

in GARCH models have been utilized for statistical modeling of other positive time-series

processes, most notably high-frequency financial durations data in Engle and Russel (1998)

and Engle (2000).

The evidence of long-range dependence in the volatility of many financial assets has led to

the extension of GARCH models to account for this empirical regularity. Baillie, Bollerslev

and Mikkelsen (1996) and Ding and Granger (1996) introduce a class of FIGARCH models.

In contrast to GARCH processes, FIGARCH models assign hyperbolic weights on the effects

of past shocks in the conditional volatility part of the model using the (1 − L)d polynomial.

Analogously, Jasiak (1999) documents substantial persistence in the financial durations data

and introduces FIACD model able to pick up this regularity.

However, as shown in Giraitis, Kokoszka and Leipus (2000), weakly stationary version of

FIGARCH model in fact implies absolute summability of autocovariances of squared returns

or, in the case of FIACD model, financial durations. Therefore, according to McLeod and

Hipel (1978), FIGARCH and FIACD models belong to the class of short-memory models.

Empirical success of these models in picking up observed long-memory dynamics of volatility

and financial durations can be attributed to the non-stationarity of {Xt}t∈Z implied by their

standard form.

In addition, when used for modeling sequences of positive random variables such as financial

duration, standard form of FIGARCH model implies infinite unconditional first moment of such

processes. In practice this is rarely the case. Moreover, it is often desirable to have a model for

weakly stationary sequences of positive random variables incorporating long-range dependence.
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In this paper we introduce a new approach to modeling sequences of positive random vari-

ables {Xt}t∈Z with multiplicative long-memory component as in (1). In contrast to FIGARCH

and FIACD models, we are able to ensure weak stationarity of {Xt}t∈Z and have non-summable

autocovariances. These characteristics of our model parallel ones of ARFIMA processes of

Granger (1980) and Hosking (1981), which are defined on the entire real line.

Attempts to define {Xt}t∈Z that is both weakly stationary and exhibits long-range depen-

dence are presented in the recent paper by Giraitis, Robinson and Surgailis (2000). Authors

formulate and study the following model:

Yt = ψ∗t · zt
Xt = (Yt)

2

ψ∗t = a+ (1− L)−dYt−1 ,

(2)

where {zt}t∈Z is a sequence of i.i.d. random variables with mean zero and unit variance. Giraitis,

Robinson and Surgailis (2000) show that for 0 < d < 1
2 {Xt}t∈Z is weakly stationary with non-

summable autocovariances.

In this paper we introduce and study a class of models for covariance stationary long-

memory sequences {Xt}t∈Z that are related to Giraitis, Robinson and Surgailis (2000). How-

ever, in contrast to the latter, where {ψ∗t }t∈Z is defined on the entire real line and therefore

does not have usual volatility interpretation, our models restrict {ψt}t∈Z to lie on the positive

half-line as in the class of GARCH models. By formulating ψt in terms of the martingale

difference sequence {Xτ − ψτ}τ<t weighted by the coefficients of the (1−L)−d polynomial, we

are able to reproduce results of Giraitis, Robinson and Surgailis (2000) pertaining to the weak

stationarity and long memory in {Xt}t∈Z without sacrificing volatility interpretation of ψt. Our

model is also applicable to the financial durations data, where parameter ψt is proportional to

the conditional intensity of the associated point process and therefore also needs to be positive.

The paper is organized as follows. In section 1 we introduce the long-memory version of

our model, derive conditions for stationarity and existence of moments and study the implied

autocorrelation structure of {Xt}t∈Z. In section 2 we discuss short-memory extension of the

model from section 1 and present relevant results. Section 3 describes maximum-likelihood

inference in the models. Conclusion summarizes the findings.

1 Sequences of stationary long-memory positive random vari-

ables

In this section we introduce the model for stationary1 long-memory sequences of positive ran-

dom variables with multiplicative shocks as in (1). We derive conditions for the existence of

first two moments of {Xt}t∈Z and study its autocovariance structure.
1Unless mentioned otherwise, in the rest of the paper “stationarity” refers to the concept of “weak station-

arity”.
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1.1 The basic model

We define the following model for positive random variables with multiplicative shocks:

Xt = ψt · εt
ψt = a+ γ(1− L)−d(Xt−1 − ψt−1)

(3)

where {εt}t∈Z is a sequence of i.i.d. non-negative random variables with E[ε1] = 1, and γ, a > 0

are constants. In this subsection we also assume that 0 < d < 1. By construction, if {ψt}t∈Z

is stationary and E|ψt| < ∞, sequence of random variables {Xt − ψt}t∈Z is well defined and

constitutes a sequence of martingale differences, i.e. E[Xt − ψt|Ft−1] = 0, where Ft denotes

information generated by the process up to time t.

Recall that in the similar model of Giraitis, Robinson and Surgailis (2000) {ψ∗t }t∈Z is

allowed to become negative, which invalidates its interpretation as the standard deviation in

the framework of GARCH models. In proposition 1 we show that, under suitable restrictions

on γ and d in model (3), {ψt}t∈Z stays on the positive half-line with probability one. We need

the following preliminary results:

Lemma 1 Define recursively:

η1 := θ2 − θ1θ1

η2 := θ3 − θ2θ1 − θ1η1

η3 := θ4 − θ3θ1 − θ2η1 − θ1η2

...

where {θj}j≥1 are from the expansion of the polynomial (1 − L)−d = 1 +
∑∞

j=1 θjL
j with

0 < d < 1. Then {ηj}j≥1 ⊆ R+.

Proof From Hosking (1981) the recursive expression for {θj}j≥1 is given by θj = θj−1
j−1+d
j

and θ1 = d. Simple calculations show that:

η1 = θ1

(
θ2
θ1
− d
)

= d (1−d)
2 > 0

η2 = η1

(
θ3−θ2θ1

η1
− d
)

= . . . = d (1−d)(2−d)
6 > 0

η3 = η2

(
θ4−θ3θ1−θ2η1

η2
− d
)

= . . . = d (1−d)(2−d)(3−d)
24 > 0

...

By induction ηj = d
∏

1≤k≤j
(k−d)
k+1 and hence {ηj}j≥1 ⊆ R+. �

Lemma 2 For given sequences {uj}j≥1 ⊆ R, {θj}j≥1 ⊆ R+ and {πj}j≥1 ⊆ R+, such that∣∣∣∑∞j=1 θjuj

∣∣∣ <∞ and πj < θj for all j ≥ 1,
∣∣∣∑∞j=1 πjuj

∣∣∣ ≤ ∣∣∣∑∞j=1 θjuj

∣∣∣ <∞.

Proof From
∣∣∣∑∞j=1 θjuj

∣∣∣ <∞ follows that
∑∞

j=1 θju
+
j <∞ and

∑∞
j=1 θju

−
j <∞, where:

u+
j =

{
uj if uj ≥ 0

0 if uj < 0
u−j =

{
−uj if uj ≤ 0

0 if uj > 0

4

jaygot
William Davidson Institute Working Paper 493



Then 0 ≤
∑n

j=1 πju
+
j ≤

∑n
j=1 θju

+
j and 0 ≤

∑n
j=1 πju

−
j ≤

∑n
j=1 θju

−
j for all finite n, and

by the monotone convergence theorem limn→∞
∑n

j=1 πju
+
j ≤ limn→∞

∑n
j=1 θju

+
j < ∞ and

limn→∞
∑n

j=1 πju
−
j ≤ limn→∞

∑n
j=1 θju

−
j <∞. Hence, the result follows from:

0 ≤

∣∣∣∣∣∣
∞∑
j=1

πjuj

∣∣∣∣∣∣ =
∞∑
j=1

πju
+
j +

∞∑
j=1

πju
−
j ≤

∞∑
j=1

θju
+
j +

∞∑
j=1

θju
−
j =

∣∣∣∣∣∣
∞∑
j=1

θjuj

∣∣∣∣∣∣ <∞
�

Proposition 1 If γ ≤ d, then for any sequence {εt}t∈Z ⊆ R+∪{0} in model (3) {ψt}t∈Z ⊆ R+.

Proof It is enough to show that for ψt > 0 and any sequence {ετ}τ≥t the resulting sequence

{ψτ}τ≥t, recursively defined from (3), is positive.

Define mk := a + γ
∑∞

j=0 θj+kψt−1−j(εt−1−j − 1). Then model (3) induces the following

recursion:

ψt = m0

ψt+1 = m1 + γθ0ψt(εt − 1)

ψt+2 = m2 + γ
∑1

j=0 θjψt+1−j(εt+1−j − 1)

= (m2 − θ1m1) + (θ1 − γ)ψt+1 + γψt+1εt+1

ψt+3 = m3 + γ
∑2

j=0 θjψt+2−j(εt+2−j − 1)

= . . . = (m3 − θ1m2 − η1m1) + (θ1 − γ)ψt+2 + η1ψt+1 + γψt+2εt+2

ψt+4 = m4 + γ
∑3

j=0 θjψt+3−j(εt+3−j − 1)

= . . . = (m4 − θ1m3 − η1m2 − η2m1) + (θ1 − γ)ψt+3 + η1ψt+2 + η2ψt+1 + γψt+3εt+3

...

where coefficients {θj}j≥0 are from the expansion of the polynomial in model (3) (1− L)−d =∑∞
j=0 θjL

j and {ηj}j≥1 ⊆ R+ is defined as in Lemma 1. By induction, for j ≥ 2:

ψt+j = (mj − θ1mj−1 −
∑j−2

k=1 ηkmj−1−k)

+(θ1 − γ)ψt+j−1 +
∑j−2

k=1 ηkψt+j−1−k + γψt+j−1εt+j−1

(4)

It is left to show that ψt+1 > 0 when ψt = m0 > 0 and that expression in terms of {mk}jk=1

in (4) is positive for all j ≥ 2.

1. Write ψt+1 = m1−γψt+γψtεt. It is sufficient to show that ψt+1 ≥ m1−γψt = m1−γm0 >

0 when 0 < m0 <∞. Then:

m1 − γm0 = a(1− γ) + γ
∞∑
j=0

(θj+1 − γθj)uj ,

where uj := ψt−1−j(εt−1−j − 1) and {uj}j≥0 ⊆ R is a given sequence. Since, by Hosk-

ing (1981), 0 ≤ θj+1− γθj = θj

(
j+d
j+1 − γ

)
≤ θj(1− γ) for all j ≥ 0 if γ ≤ d, by Lemma 2

we get:

0 ≤

∣∣∣∣∣∣
∞∑
j=0

(θj+1 − γθj)uj

∣∣∣∣∣∣ ≤ (1− γ)

∣∣∣∣∣∣
∞∑
j=0

θjuj

∣∣∣∣∣∣ <∞ .
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Since we are only interested in the case when
∑∞

j=0(θj+1−γθj)uj < 0, using the inequality

above we conclude that:

ψt+1 ≥ a(1− γ) + γ(1− γ)
∞∑
j=0

θjuj = (1− γ)ψt > 0 .

2. We demonstrate positivity of mj − θ1mj−1 −
∑j−2

k=1 ηkmj−1−k for the case j = 3. Other

cases are handled analogously. Note that by Lemma 2 sequence {|mk|}k≥0 is finite and

non-increasing. Write:

m3 − θ1m2 − η1m1 = (1− θ1 − η1)a+ γ
∞∑
j=0

(θj+3 − θ1θj+2 − η1θj+1)uj ,

where {uj}j≥0 ⊆ R is defined as previously. Then, by Hosking (1981), we have the

following inequality:

θj+3 − θ1θj+2 − η1θj+1 =

θj+1

(
(j+1+d)(j+2+d)

(j+3)(j+2) − θ1
(j+1+d)

(j+2) − η1

)
< θj+1(1− θ1 − η1) ,

and hence by Lemma 2 the inequality:

0 ≤

∣∣∣∣∣∣
∞∑
j=0

(θj+3 − θ1θj+2 − η1θj+1)uj

∣∣∣∣∣∣ ≤ (1− θ1 − η1)

∣∣∣∣∣∣
∞∑
j=0

θj+1uj

∣∣∣∣∣∣ <∞
From here, positivity of m3− θ1m2− η1m1 follows from the argument in 1 and positivity

of m1.

Therefore, from previous, condition θ1 − γ = d − γ > 0 is sufficient for the sequence {ψτ}τ≥t
from the recursion (4) to be positive for any {ετ}τ≥t ⊆ R+ ∪ {0}. �

Note that Proposition 1 shows positivity of the sequence {ψt}t∈Z from model (3) for any

sequence {εt}t∈Z ⊆ R+ ∪ {0}, not necessarily random. For random sequences {εt}t∈Z, almost

sure positivity of {ψt}t∈Z is a trivial consequence of Proposition 1.

1.2 Stationarity and moments of the model

In order to study stationarity and moments of {Xt}t∈Z from model (3) we now develop an

alternative representation of {ψt}t∈Z in terms of the Volterra series; see Priestley (1988) and

Giraitis, Kokoszka and Leipus (2000). Recursive substitution into expression for ψt yields:

ψt = a+ γ(1− L)−d(ψt−1εt−1 − ψt−1) = a+ γ
∑∞

j1=1 θj1−1ψt−j1(εt−j1 − 1)

= a+ aγ
∑∞

j1=1 θj1−1(εt−j1 − 1)

+γ2
∑∞

j1=1

∑∞
j2=1 θj1−1θj2−1ψt−j1−j2(εt−j1 − 1)(εt−j1−j2 − 1)

= a+ aγ
∑∞

j1=1 θj1−1(εt−j1 − 1)

+aγ2
∑∞

j1=1

∑∞
j2=1 θj1−1θj2−1(εt−j1 − 1)(εt−j1−j2 − 1)

+γ3
∑∞

j1=1

∑∞
j2=1

∑∞
j3=1 θj1−1θj2−1θj3−1ψt−j1−j2−j3(εt−j1 − 1)(εt−j1−j2 − 1)(εt−j1−j2−j3 − 1)

= . . . = a+ a
∑∞

l=1 γ
l
∑∞

j1=1...jl=1 θj1−1 · · · θjl−1(εt−j1 − 1) · · · (εt−j1−...−jl − 1) .
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Define M(l, t) :=
∑∞

j1=1...jl=1 θj1−1 · · · θjl−1(εt−j1 − 1) · · · (εt−j1−...−jl − 1). Then we can write:

ψt = a+ a

∞∑
l=1

γlM(l, t) . (5)

We use this equivalent representation of {ψt}t∈Z to prove the following proposition:

Proposition 2 If
(
γ2
E

[
(ε1 − 1)2

]∑∞
j=1 θ

2
j−1

)
< 1 and conditions of the Proposition 1 are

satisfied then the sequence {ψt}t∈Z defined by (3) is weakly stationary with the moments:

E[ψt] = a

E [(ψt+k − a)(ψt − a)] =
a2γ2

E[(ε1−1)2]
1−γ2E[(ε1−1)2]

∑∞
j=1 θ

2
j−1

∑∞
j=1 θj−1θj+k−1 .

Proof In order to prove that {ψt}t∈Z ⊆ L2 we use its representation given in (5).

We first prove that {M(l, t)}l≥1 ⊆ L2. Observe the following recursive equality for the

sequence {M(l, t)}l≥1, analogous to the one in Kokoszka and Leipus (2000):

M(l, t) =
∞∑
j=1

θj−1(εt−j − 1)M(l − 1, t− j) , (6)

with M(0, t) := 1 for all t ∈ Z.

Consider the case l = 1. Then, since the proposition implies that E
[
(ε1 − 1)2

]
< ∞ and

0 < d < 1
2 , and {εt}t∈Z is i.i.d. , M(1, t) is stationary and square integrable by the well-known

results from the literature on long-memory processes; see e.g. Brockwell and Davis (1991)

Theorem 13.2.1.

Assume M(l − 1, t) is stationary and square integrable. Define:

Mn(l, t) :=
n∑
j=1

θj−1(εt−j − 1)M(l − 1, t− j) .

We need to show that {Mn(l, t)}n≥1 ⊆ L2 and it converges in L2 as n→∞. Using linearity of

the integral:

E

[
Mn(l, t)2

]
=

∑n
j=1

∑n
k=1 θj−1θk−1E [(εt−j − 1)(εt−k − 1)M(l − 1, t− j)M(l − 1, t− k)]

=
∑n

j=1 θ
2
j−1E

[
(εt−j − 1)2

]
E

[
M(l − 1, t− j)2

]
= E

[
(ε1 − 1)2

]
E

[
M(l − 1, 1)2

]∑n
j=1 θ

2
j−1 <∞

since, by construction, for m = j ∧ k, M = j ∨ k for j, k ∈ {1 . . . n}, (εt−m − 1) is independent

of (εt−M − 1)M(l − 1, t−m)M(l − 1, t−M) and M(l − 1, t) is assumed to be stationary.

Now, we show that limn,m→∞ ‖Mn(l, t)−Mm(l, t)‖2 = 0. For n < m it follows from:

‖Mn(l, t)−Mm(l, t)‖2 =
(
E

[(∑m
j=n+1 θj−1(εt−j − 1)M(l − 1, t− j)

)2
]) 1

2

=
(∑m

j=n+1 θ
2
j−1E

[
(εt−j − 1)2

]
E

[
M(l − 1, t− j)2

]) 1
2

=
(
E

[
(ε1 − 1)2

]
E

[
M(l − 1, 1)2

]) 1
2

(∑m
j=n+1 θ

2
j−1

) 1
2 → 0 as n,m→∞

7

jaygot
William Davidson Institute Working Paper 493



using the same independence and stationarity argument as above, and that for 0 < d < 1
2∑∞

j=1 θ
2
j−1 < ∞. Hence, by completeness of L2, Mn(l, t) → M(l, t) in L2 as n → ∞ for all

t ∈ Z.

Finally, stationarity of M(l, t) follows from (6) by the i.i.d. assumption on {εt}t∈Z and

stationarity of M(l − 1, t).

Hence, {M(l, t)}l≥1 is the sequence of square integrable random variables. They have means

independent of l and given by:

E [M(l, t)] = limn→∞ E [Mn(l, t)]

=
∑∞

j=1 θj−1E [εt−j − 1]E [M(l − 1, t− j)] = 0 .

Their variances are defined by the recursion:

E

[
M(l, t)2

]
= limn→∞ E

[
Mn(l, t)2

]
= E

[
(ε1 − 1)2

]
E

[
M(l − 1, 1)2

]∑∞
j=1 θ

2
j−1 ,

from where E
[
M(l, t)2

]
=
(
E

[
(ε1 − 1)2

]∑∞
j=1 θ

2
j−1

)l
. Moreover, elements of the sequence

{M(l, t)}l≥1 are mutually orthogonal in L2. Consider covariance of M(1, t) and M(l, t) for

l ≥ 1:
E [M(1, t)M(l, t)] = limn→∞ E [Mn(1, t)Mn(l, t)]

=
∑∞

j1=1

∑∞
j2=1 θj1−1θj2−1

E [(εt−j1 − 1)(εt−j2 − 1)M(l − 1, t− j2)] .

For j1 6= j2 and m = j1 ∧ j2, M = j1 ∨ j2 for j1, j2 ∈ {1 . . . n}, (εt−m − 1) is independent of

the rest of the terms under the expectation operator, giving zero expectation. For j1 = j2 and

using stationarity assumption the expectation is given by E
[
(ε1 − 1)2

]
E [M(l − 1, 1)], which is

zero for l > 1.

Next, assume that M(p − 1, t) is orthogonal w.r.t. other elements of {M(l, t)}l≥1. Then

covariance of M(p, t) and M(l, t) for l ≥ 1 is given by:

E [M(p, t)M(l, t)] = limn→∞ E [Mn(p, t)Mn(l, t)]

=
∑∞

j1=1

∑∞
j2=1 θj1−1θj2−1

E [(εt−j1 − 1)(εt−j2 − 1)M(p− 1, t− j2)M(l − 1, t− j2)] .

Similar argument shows that for p 6= l this covariance is zero. Hence, by induction sequence

{M(l, t)}l≥1 is orthogonal in L2.

Now we show that {ψt}t∈Z ⊆ L2. We follow the same line of proof as above. Using (5)

define:

ψt,n := a+ a
n∑
l=1

γlM(l, t) .

We need to show that {ψt,n}n≥1 ⊆ L2 and that it converges in L2 as n→∞.
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Square integrability of {ψt,n}n≥1 follows immediately from square integrability of {M(l, t)}l≥1

shown above. By Minkowski’s inequality for n < m we can write:

‖ψt,n − ψt,m‖2 =
(
E

[(
a
∑m

l=n+1 γ
lM(l, t)

)2]) 1
2

≤ a
∑m

l=n+1

(
E

[(
γlM(l, t)

)2]) 1
2

= a
∑m

l=n+1

(
γ2
E

[
(ε1 − 1)2

]∑∞
j=1 θ

2
j−1

) l
2 → 0 as n,m→∞

since
∑∞

l=1

(
γ2
E

[
(ε1 − 1)2

]∑∞
j=1 θ

2
j−1

)l
< ∞ by assumption. Hence, by completeness of L2,

ψt,n → ψt in L2 as n→∞ for all t ∈ Z.

Stationarity of {ψt}t∈Z follows from (5) and stationarity of M(l, t) for given l ≥ 1.

Finally, we consider moments of {ψt}t∈Z. The first moment is given by:

E[ψt] = lim
n→∞

ψt,n = a+ a
∞∑
l=1

γlE[M(l, t)] = a .

The following auxiliary result is used in the derivation of the auto-covariance function of

{ψt}t∈Z:

E [M(p, t+ k)M(l, t)] = limn→∞ E [Mn(p, t+ k)Mn(l, t)]

=
∑∞

j1=1

∑∞
j2=1 θj1−1θj2−1

E [(εt+k−j1 − 1)(εt−j2 − 1)M(p− 1, t+ k − j1)M(l − 1, t− j2)]

= E

[
(ε1 − 1)2

]∑∞
j=1 θj−1θj+k−1E [M(p− 1, t− j)M(l − 1, t− j)] ,

where last equality is justified by the fact that for (j1 − k) 6= j2 and m = (j1 − k) ∧ j2,

M = (j1 − k) ∨ j2 for j1, j2 ∈ {1 . . . n}, (εt−m − 1) is independent of the rest of the terms

under the expectation operator, producing zero expectation. By orthogonality of {M(l, t)}l≥1

E [M(p− 1, t− j)M(l − 1, t− j)] will be different from zero only when p = l. Therefore we get:

E [M(p, t+ k)M(l, t)] =

{
E

[
(ε1 − 1)2

]
E

[
M(l − 1, 1)2

]∑∞
j=1 θj−1θj+k−1 when p = l

0 when p 6= l

Using this result and expression for the variance of M(l, 1)2, the auto-covariance function of

{ψt}t∈Z is given by:

E [(ψt+k − a)(ψt − a)] = limn→∞ E [(ψt+k,n − a)(ψt,n − a)]

= a2
∑∞

p=1

∑∞
l=1 γ

l+p
E [M(p, t+ k)M(l, t)]

= a2γ2
E

[
(ε1 − 1)2

] (∑∞
j=1 θj−1θj+k−1

)(∑∞
l=0 γ

2l
E

[
M(l, 1)2

] )
=

a2γ2
E[(ε1−1)2]

1−γ2E[(ε1−1)2]
∑∞
j=1 θ

2
j−1

∑∞
j=1 θj−1θj+k−1 .

�

1.3 Discussion

It is a well-established empirical fact that volatility and trading intensity of many financial

time series exhibits substantial persistence over time; see Andersen, Bollerslev, Diebold and
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Labys (2001) and Jasiak (1999) among many others. Model (3) proposed in this section is

designed to account for this empirical regularity and, as such, competes with FIGARCH model

of Baillie, Bollerslev and Mikkelsen (1996) and Ding and Granger (1996), and linear ARCH

model of Giraitis, Robinson and Surgailis (2000). In this subsection we briefly discuss relative

merits of the three models.

The simplest form of the FIGARCH model of Baillie, Bollerslev and Mikkelsen (1996) and

Ding and Granger (1996) re-expressed in our notation is given by:

Xt = ψt · εt
ψt = a+

(
1− (1− L)d

)
Xt ,

where {εt}t∈Z is a sequence of i.i.d. non-negative random shocks with E[ε1] = 1, and a > 0

is constant. As shown in Baillie, Bollerslev and Mikkelsen (1996) this form of the FIGARCH

model implies infinite first and higher unconditional moments of ψt and Xt variables. And even

if additional restrictions imposed to ensure weak stationarity of the process, Giraitis, Kokoszka

and Leipus (2000) show that the FIGARCH model is essentially short memory according to

the criteria of McLeod and Hipel (1978).

It appears that FIGARCH model is not well-suited for modeling long-range dependence

in the sequences of positive random variables with multiplicative shocks. In order to ensure

summability of
(
1− (1− L)d

)
Xt series, where {Xt}t∈Z ⊆ R+, coefficients of the 1− (1− L)d

polynomial have to be summable. Providing that the second moment exists, this in turn

implies absolute summability of the autocovariances of {ψt}t∈Z and {Xt}t∈Z sequences and

demonstrates short-memory nature of their dynamics.

Giraitis, Robinson and Surgailis (2000) overcome this difficulty by disturbing {ψt}t∈Z pro-

cess using mean zero random variable Yt as shown in (2). This allows them to introduce much

slower decaying structure of the coefficients (1 − L)−d in the infinite series representation of

their model, while still ensuring L2 summability. However, as we mentioned previously, variable

Yt in their model lacks the usual volatility parameter interpretation of GARCH models. In ad-

dition, variable Yt is the square root of the variable of interest Xt, which leads to complications

in deriving closed-form expressions for the autocovariance function of Xt.

Model (3) in this paper fills the gap between FIGARCH model of Baillie, Bollerslev and

Mikkelsen (1996) and the linear ARCH model of Giraitis, Robinson and Surgailis (2000). When

applied to volatility modeling, it retains usual GARCH interpretation of the {ψt}t∈Z by insuring

its positivity, and at the same time allows for weak stationarity of the {ψt}t∈Z and {Xt}t∈Z

processes. Positivity of the ψt parameter also comes as an advantage in the context of modeling

trading intensity in high-frequency data.

Parameter d in model (3) has very much the same interpretation as in the class of ARFIMA

models of Granger and Joyeux (1980) and Hosking (1981). In particular, using results of

Proposition 2, it becomes possible to test for weak stationarity of the volatility or trading

intensity process {ψt}t∈Z in the real-world datasets.

Another advantage of model (3) lies in the transparency of its dynamic properties. Un-
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like linear ARCH model of Giraitis, Robinson and Surgailis (2000) and FIEGARCH model of

Bollerslev and Mikkelsen (1996), model (3) does not involve non-linear transformations of the

underlying processes {ψt}t∈Z and {Xt}t∈Z and hence is straightforward to derive autocovari-

ances and other dynamic properties.

2 Combined short- and long-memory model

In this section we extend basic model (3) of section 1 for the sequences of positive long-memory

weakly stationary random variables to include simple short-memory component. We again

derive conditions for stationarity and existence of first two moments of this extended model.

2.1 Basic model with additional autoregressive component

In this subsection we introduce an extension of the basic long-memory model (3) which includes

additional autoregressive component. The models is defined as:

Xt = ψt · εt
ψt = a+ γ(1− φL)−1(1− L)−d(Xt−1 − ψt−1)

(7)

where, in general, restriction |φ| < 1 is assumed and other parameters are as in (3).

Apart from having more flexible structure of autocovariances, one of the reasons for intro-

ducing model (7) is to remove the restriction γ ≤ d. As shown in Proposition 1, this restriction

is necessary for {ψt}t∈Z to stay positive in the basic long-memory specification (3). As we

demonstrate later in this subsection, model (7) allows parameter of fractional integration d

to become zero such that sequence {ψt}t∈Z will retain short-memory dynamics implied by its

autoregressive component and satisfy non-negativity condition.

Proposition 3 establishes the set of restrictions on the parameters of (7) sufficient for the

sequence {ψt}t∈Z implied by the model to stay on the positive half-line with probability one.

Proposition 3 If γ ≤ d+φ and d(1−d−2φ) ≥ 0, then for any sequence {εt}t∈Z in model (7)

{ψt}t∈Z ⊆ R+.

Proof Rewrite dynamic equation for ψt in model (7) in the following form:

ψt = a+ γ
∞∑
j=1

θ̃j−1ψt−j(εt−j − 1) . (8)

Here, sequence of coefficients {θ̃j}j≥0 comes from the expansion of polynomial (1− φL)−1(1−
L)−d and is given by:

θ̃j =
j∑

k=0

φkθj−k ,

where {θj}j≥0 are as in Proposition 1.
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Next, consider sequence {η̃j}j≥1 defined as:

η̃1 := θ̃2 − θ̃1θ̃1

η̃2 := θ̃3 − θ̃2θ̃1 − θ̃1η̃1

η̃3 := θ̃4 − θ̃3θ̃1 − θ̃2η̃1 − θ̃1η̃2

...

Simple calculations show that {η̃j}j≥1 can be re-expressed in terms of φ, θ1 and the sequence

{ηj}j≥1 defined in Lemma 1 as follows:

η̃1 := η1 − φθ1

η̃2 := η2 − φη1

η̃3 := η3 − φη2

...

Using results of Lemma 1 it is easy to see that non-negativity condition for η̃1 is given by

d(1 − d − 2φ) ≥ 0, and for η̃k, k ≥ 2, by η̃k−1 (k − d− (k + 1)φ) ≥ 0. Hence, it follows that

condition d(1− d− 2φ) ≥ 0 is sufficient for non-negativity of the sequence {η̃j}j≥1.

Result {ψt}t∈Z ⊆ R+ is then established using the same line of proof as in Proposition 1

using representation of ψt given in (8). �

Note that non-negativity condition d(1−d−2φ) ≥ 0 in Proposition 3 is quite restrictive for

positive values of φ when d is different from zero. For negative values of φ, restriction γ ≤ d+φ

is likely to be binding and implies that parameter d must be different from zero.

Proposition 3 provides only sufficient conditions for positivity of {ψt}t∈Z. In fact, condition

{η̃j}j≥1 ⊆ R+ ∪ {0} in Proposition 3 is not necessary and some lower-order η̃j can be negative

without violating positivity of {ψt}t∈Z. Analytical derivation of necessary and sufficient condi-

tions for this case is likely to be complicated. In practice, however, non-negativity of {ψt}t∈Z

can be checked by the impulse response analysis of model (7).

2.2 Conditions for weak stationarity of the model

As in subsection 1.2, additional restrictions on the parameters of model (7) must be placed in

order to ensure existence of the weakly stationary solution. They are shown in Proposition 4:

Proposition 4 If
(
γ2
E

[
(ε1 − 1)2

]∑∞
j=1 θ̃

2
j−1

)
< 1 and conditions of the Proposition 3 are

satisfied then the sequence {ψt}t∈Z defined by (7) is weakly stationary with the moments:

E[ψt] = a

E [(ψt+k − a)(ψt − a)] =
a2γ2

E[(ε1−1)2]
1−γ2E[(ε1−1)2]

∑∞
j=1 θ̃

2
j−1

∑∞
j=1 θ̃j−1θ̃j+k−1 .

Proof We show that under assumptions of the proposition the sequence {θ̃j}j≥0 in (8) is

square summable. The following representation is useful:

θ̃2
j =

(
j∑

k=0

φkθj−k

)2

=
j∑

k=0

φ2kθ2
j−k + 2φ

j−1∑
k=0

φ2kθj−kθ̃j−k−1 ,
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where last sum is zero for j = 0. Hence, we need to show that
∑∞

j=0

∑j
k=0 φ

2kθ2
j−k < ∞

and
∑∞

j=1

∑j−1
k=0 φ

2kθj−kθ̃j−k−1 <∞. Theorem 3.50 in Rudin (1976) gives sufficient conditions

for the convergence of such series. In both cases,
∑∞

j=0 φ
2j converges absolutely for |φ| < 1.

For 0 ≤ d < 1
2 , implied by the proposition,

∑∞
j=0 θ

2
j is also absolutely convergent, and hence∑∞

j=0

∑j
k=0 φ

2kθ2
j−k <∞.

It is left to show that
∑∞

j=0 |θj+1θ̃j | <∞. Using recursive structure of the sequence {θj}j≥1

given in Lemma 1 and assumption 0 ≤ d < 1
2 it is easy to derive the following inequality for

all j ≥ 0:

0 ≤ |θj+1θ̃j | ≤
j∑

k=0

|φk|θ2
j−k .

By theorem 3.50 in Rudin (1976) the series
∑∞

j=0

∑j
k=0 |φ

k|θ2
j−k converges, thereby establishing∑∞

j=0 |θj+1θ̃j | <∞.

Other results of the proposition are established using the same arguments as in Proposition 2

and square summability of {θ̃j}j≥0. �

2.3 Discussion

Compound model (7), which extends basic long-memory specification (3) by including addi-

tional autoregressive component, demonstrates that the class of models for stationary sequences

of long-memory positive random variables introduced in this paper is a natural generalization

of GARCH processes of Engle (1982) and Bollerslev (1986) to the case of non-summable auto-

covariances. In particular, model (7) nests short-memory GARCH(1,1) model as special case

when d = 0.

Indeed, model (3) can be seen as an evolution of the short-memory GARCH(1,1) as follows.

Write GARCH(1,1) using our notation:

Xt = ψt · εt
ψt = a+ γ(1− φL)−1(Xt−1 − ψt−1) ,

where the usual assumptions about coefficients a, γ and φ, and sequence {εt}t∈Z hold. In

this form ψt is expressed as the infinite sum of exponentially weighted martingale differences

{Xτ − ψτ}τ<t, provided that 0 < φ < 1, and positivity of {ψt}t∈Z is guaranteed when γ ≤ φ.

Polynomial (1 − φL)−1 in GARCH(1,1) model produces sequence of absolutely summable

coefficients, which in turn results in summable autocovariances of the process {ψt}t∈Z. From

this prospective, long-memory model (7) is the evolution of the GARCH(1,1) model above,

where polynomial (1 − φL)−1 is replaced by (1 − L)−d, giving square summable coefficients

and non-summable autocovariances of {ψt}t∈Z. The compound model (7) introduced in this

section can be regarded as GARCH(2,1) with one of the autoregressive polynomials replaced

by (1− L)−d.
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3 Maximum likelihood inference

This section provides brief overview of the statistical inference for model (3) in section 1 and

model (7) in section 2.

In sections 1 and 2 a new class of models for sequences of positive stationary long-memory

random variables is introduces. One of the fundamental assumptions in this models is the i.i.d.

property of the multiplicative shocks {εt}t∈Z. However, no parametric assumptions on the

distribution of the shocks is made. It is clear that the conditional and marginal distributions of

the variable of interest Xt is going to depend on the distributional properties of the shocks. At

the same time, particular characteristics of the distribution of Xt are likely to be substantially

different from application to application.

In the context of short-memory GARCH processes and related ACD and FIACD models

QML estimator seems to be the preferred choice. It usually allows to impose only mild moment

conditions on the sequence of shocks {εt}t∈Z and therefore is attractive in many empirical

contexts. However, rigorous discussion of the theoretical properties of the QML estimator has

so far been limited only to the cases of ARCH(q) model in Weiss (1986) and GARCH(1,1)

model in Lee and Hansen (1994) and Lumsdain (1996).

Consider a sequence of non-negative random variables {Xt}t∈Z with conditional expecta-

tions given by the sequence {ψt}t∈Z, where {ψt}t∈Z describes all dynamic properties of {Xt}t∈Z,

such as in the models (3) or (7). Then the pseudo-likelihood function for the QML estimator

based on the likelihood function for the sequence of i.i.d. exponential random variables is given

by:

LT (θ) = −
T∑
τ=1

(
log ψ̂τ (θ) +

xτ

ψ̂τ (θ)

)
. (9)

In this expression parameter vector is given by θ = (a, γ, d) for model (3) and θ = (a, γ, φ, d)

for model (7). Let the vector of true parameters be denoted θ0, consisting of a0, γ0, d0 and

possibly φ0.

One of the difficulties in estimating long memory models is that at every time point t ∈ Z

the process {Xt}t∈Z depends on its own infinite past history {Xτ}τ<t. In finite-samples time-

domain estimation methods this history is not observed, and hence the issue of proper start-

up conditions becomes relevant. In particular, {ψ̂τ}Tτ=1 can only approximate the sequence

{ψτ}Tτ=1, even when evaluated at θ0. In the context of linear ARFIMA processes these diffi-

culties are highlighted in Chung and Baillie (1993) among others.

Let ψ̂τ be truncated version of ψt as follows:

ψ̂1(θ) = a

ψ̂τ (θ) = a+ γ
∑τ−1

j=1 θj−1(xτ−j − ψ̂τ−j)
(10)

and coefficients {θj}j≥0 depend on the assumed parametric form of the model. QML estimates

θ̂T are then obtained by maximizing (9) and (10) subject to the set of constraints derived in

sections 1 and 2.
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QML estimator based on (9) together with (10) is similar to the one used for modeling

financial durations data; see Engle and Russel (1998) and Engle (2000). Consistency and

asymptotic normality of the QML estimator for ACD models follows directly from the known

result on the estimation of short-memory GARCH processes. However, these results are likely

to be of little use in the case of long-memory models (3) and (7) because of their infinite

dependence on its own past history and non-summable coefficients. So far, relatively little is

known about time-domain estimation of the non-linear processes with long-range dependence

similar to those proposed in this paper.

One of the potentially fruitful ideas for the time-domain inference in the class of models

put forward in this paper is to initialize both the assumed data-generating mechanism and

the estimator using εt = 1 for t ≤ 0. This will in turn imply that Xt = ψt = a for t ≤ 0.

This condition is similar to one used in Tanaka (1999), among others, for the time-domain

estimation of possibly non-stationary ARFIMA processes. Main advantage of this approach is

seen to be in the possibility of obtaining one estimator for both stationary and non-stationary

long-memory processes possessing properties similar to those in the short-memory case, i.e.
√
T -consistency and asymptotic normality.

A limited Monte-Carlo study was carried out by the author in order to understand the

properties of the QML estimator (9) and (10) on the synthetic data from the conditional

generating mechanism described above. Preliminary results suggest normality of the estimator

for parameters γ, φ and d and various values of d0 ∈ [0, 1). It is also apparent that the

distribution of the parameter a is different in the intervals 0 ≤ d0 < 1
2 and 1

2 < d0 < 1,

reflecting the boundary between the stationary and non-stationary cases. Further properties

of the estimator are currently under investigation.

Conclusion

In this paper we introduced a class of model for sequences of weakly stationary positive random

variables with non-summable autocovariances. Models feature multiplicative structure of inno-

vations and therefore related to the GARCH processes of Engle (1982) and Bollerslev (1986).

A class of models with similar structure and dynamic properties, referred to as linear ARCH

models, was recently introduced by Giraitis, Robinson and Surgailis (2000). In comparison to

linear ARCH processes our models have two important advantages:

- Linear ARCH models involve instantaneous non-linear mapping of the underlying pro-

cesses which substantially complicates derivation of the autocovariance function for the

sequence of random variables of interest. Class of models introduced in this paper does

not involve non-linear transforms and therefore easy to handle analytically.

- Linear ARCH models are not nested with short-memory GARCH processes. Moreover,

due to the structure of linear ARCH models, interpretation of its core components is very

different from those in GARCH models. In this paper we propose a class of models that
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extends GARCH models to the long-memory case and has similar interpretation of the

basic underlying elements.

Another popular in econometric literature model that accounts for long-range dependence

commonly found in the volatility of many financial time-series is FIGARCH model of Baillie,

Bollerslev and Mikkelsen (1996). However, as shown in Giraitis, Kokoszka and Leipus (2000),

FIGARCH model is essentially short-memory when conditions for the existence of the second

moment are satisfied. This is due to the fast decay and summability of the coefficients in the

ARCH(∞) representation of the model. In contrast to FIGARCH , both linear ARCH process

of Giraitis, Robinson and Surgailis (2000) and the class of models proposed in this paper are

able to produce weakly stationary sequences of positive random variables with non-summable

autocovariances.

Models introduced in this paper have several potential applications in empirical studies in

a variety of fields. From the perspective of the dynamic heteroscedasticity, our models offer a

framework that naturally extends short-memory GARCH models, including finite and infinite

second moment. In the former case, the autocovariances are non-summable, which satisfies

the long-memory criterion of McLeod and Hipel (1978). In the paper we also show a method

to obtain the compound model which nests both the basic long-memory and GARCH models.

This gives researchers a tool to distinguish between the cases of summable and non-summable

autocovariances in the volatility process of real-world financial data.

Another potentially attractive area of application for the models is econometrics of high-

frequency financial data. Time-series dynamics of durations between adjacent observations in

transactions data is complicated and often exhibits long-range dependence. However, direct

application of FIGARCH models to this data implies infinite first moment of durations —

feature that is rarely true in real-world datasets. Models proposed in this paper do not have

this shortcoming and allow researches to test between the cases of short- and long-memory in

financial durations data.
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