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ABSTRACT

This paper gives an introduction to object-based computer systems. In particu-
lar, it is shown how they can support the Ada programming language. A case study

using the Intel iAPX432 is given.



I. INTRODUCTION

There has been a growing interest in object-based computer systems recently.
Much of this is attributable to the Department of Defense's (DoD) massive commit-
ment to the Ada® language project. Although Ada (DoD's proposed standard system
implementation language) may not fit everyone's definition of ‘an object-based
language, it does incorporate key object-based concepts. In this discussion we will
explain several concepts that are central to object-based computer systems and the
Ada programming language. Computer architectures and the design implications for
such systems aré discussed, and examples are given which draw from our use of Ada

in programming a robot-based manufacturing cell [1, 2].

In software systems the term object-based describes software environments
which incorporate the concepts of data abstraction, program abstraction [3] and pro-
tection domaihs [4] through the use of "objects.” Objects are individually address-
able entities that uniquely identify their own contents. For éxample, in Intel's imple-
mentation of Ada for the iAPX 432 [5,6,7], objects form the basis for Ada packages

. that provide abstractions for either programs or data.

In hardware, the term object-based is normally used to refer to the architectural
support provided for data abstraction, program abstraction and protection domains.
This type of support is exemplified by an architecture where the primitive operations
for memory management, process dispatching, interprocess communication, or other
operating system features are provided by the hardware. In such systems the imple-
mentation details of the memory pool, process dispatching, or interprocess communi-
cation mechanisms are hidden, and a concise interface in the form of instructions
which operate on the objects corresponding to the respective mechanisms is

presented to the software operating system.

#da is a registered trademark of the Ada Joint Program Office-DoD.



Also in hardware, the term object-based is sometimes used to describe subsys-
tems in which abstract data types have been directly implemented. .This idea has
significant implications for the future when design automati‘on tools become more
sophisticated. One could envision CAD systems capable of economically customizing
individual batches of VLS| processors for specific operations which appear uhusually
often in a given application. This concept is closely related to the

hardware/software transparency issue discussed below.

There are two major goals in developing object-based software. The first is to
reduce the total life-cycle software cost by increasing programmer productivity and
reducing maintenance costs. Both increases in programmer productivity and reduc-
tions in maintenance costs are aided by the object-based modularization promoted by
Ada. The second goal is to implement software systems which resist both accidental

and malicious corruption attempts. Protection domains are used for this purpose.

The major goal in developing object-based hardware is to provide an efficient
execution environment for the software system. A future extension to this goal is to
design the system so as to be able to extend the abstraction mechanism to obtain
hardware/software (HW/SW) transparency [2,8]. The availability of HW/SW tran-
sparency would allow system designs to proceed without regard for the final 'place-
ment of the HW/SW boundary. The entire system could be described by a suitable
system implementation language and implemented in software as far as physically
possible. Then, after appropriate performance analyses, selected modules, which
would typically realize abstract data types, could be shifted to a direct hardware
implementation. If the design methodology was implemented in a development
environment with sufficient sophistication the migration from software to hardware
would not require any code to be rewritten and the interface would already be speci-
fied. The hardware interface could occur at several levels: bus level, similar to
current arithmetic coprocessors such as the Intel 8087; memory (1/0) level, like

many existing 1/0 devices; or, conceivably, at a level internal to the CPU involving an
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actual change in the CPU architecture.

There are a few commercially available computer systems which incorporate
various object-basved concepts. These include the IBM System/38 [9], the Intel
iIAPX 432 [6], and the PP250 [10]. The PP250, designed by Plessey Telecommunica-
tions Research Laboratories for applications in telephone switching systems, was the
first commercially available machine to incorporate many object-based concepts. For
use in telephone switching systems it had to meet very stringent reliability standards
requiring the inclusion of software error detection and recovery facilities. These
requirements were met through the use of a capability mechanism [11]. Many of the
ideas incorporated in the commercial systems were based on the results of several
university projects. The most recent of these projects include Cm* [12], C.mmp [13]
and CAP [14]. A common thread running through all of these machines is the use of
capability addressing techniques to implement secure protection domains. These pro-
tection domains (packages in Ada) can then be appropriately structured to provide

data and program abstractions.

Object-based machines are particularly well suited to applications which have
stringent requirements for data security and program integrity. The high degree of
abstraction provided by the architecture also facilitates the interconnection of
several processors into either tightly coupled multiprocessor systems and/or distri-
buted networks. For example, through the use of process/processor abstraction
Intel has achieved software transparent multiprocessing in their iAPX 432 system. In
addition, the Cm* system provides an example employing both tightly coupled mul-

tiprocessing and distributed networking concepts in one system.

As might be expected, all of the benefits of an object-based system do not
come free of charge. Present systems rely on some form of capability addressing. In
current implementations these addressing mechanisms greatly increase the address

generation and translation times, even when translation look-aside and caching
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schemes are employed. For example, to copy a capability requires ten memory refer-

ences on Cm* [15], and between two and twelve on the iAPX 432 [5].

The following section discusses key "object' concepts and their implementation
in Ada. Section lll is a case study that describes the architectural support for
object-based concepts in the Intel iAPX 432. Finally, comments on areas of further

research and concluding remarks are made in Section V.
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Il. OBJECT-BASED CONCEPTS

Abstraction plays a central role in the object-based design methodology, partic-
ularly data and program abstraction. Of the two, data abstraction is the most widely

used and understood.

Data Abstraction., Shaw gives the following definition of an abstract data type

[3]:

In most languages that provide the facility, the definition of an

abstract data type consists of a program unit that includes the follow-

ing information:

¢ Visible outside the type definition: the name of the type and the
names and routine headers of all operations (procedures and func-
tions) that are permitted to use the representation of the type;
some languages (e.g., Ada--our insert) also include formal specifica-
tions of the values that variables of this type may assume and of
the properties of the operations.

e Not visible oulside the type definition: the representation of the
type in terms of built-in data types or other defined types, the

bodies of the visible routines, and hidden routines that may be
called only from within the module.

The constructs for implementing abstract data types in Ada are ''packages’ and
"private” (hidden) types [16]. The Ada package effectively places a wall around a
group of declarations and permits access only to those declarations which are
intended to be visible. Packages actually come in two parts, the specification and
the body. The package specification formally specifies the abstract data type and
its interface to the outside world, along with other information which may be neces-
sary to enforce type consistency across separate compilation boundaries. The body
of the package contains the hidden implementation details. The relationship between
Ada packages and objects (in the context of the iAPX 432) will be discussed in the

next section.

Consider, for example, the Ada package ROBOT (the specification for which is
shown in Figure 1). The specification is delimited by "package ROBOT is" and "end

ROBOT;". Ada reserved words are shown in bold lower case. User defined and prede-
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fined package names, procedure names, function names, types and variables are

shown in upper case.

The types defined in the specification are as follows. ROBOT_ARM--the
abstracted data type. JOINT_JYPE--an enumeration type that defines joints as
either rotating or sliding. LINK_REP--a record that specifies the translational and
rotational relationship between adjacent links of an arm, and the type of joint at one
end of the link. ARM_REP--an array of links that make up the robot arm (the exact
number is declared when an instance of the type ROBOT_ARM is created). ARM--a
pointer to ARM_REP (access type in Ada). The pointer is necessary only because Ada
does not allow unconstrained arrays as part of records (see the ROBOT_ARM record in
Figure 1). FRAME--a 4x4 matrix that represents a homogeneous transformation. It
can represent the position and orientation of the hand of the robot arm by indicating
the matrix necessary to transform the coordinate system of the base of the arm to
the coordinate system in the hand. GRASPED--a boolean type to indicate whether

the hand's gripper is closed and has grasped something.

The procedures are as follows. SET_ATTRIBUTES--this creates an instance of
type ROBOT_ARM. The output of the procedure is of type ROBOT_ARM and the input is
of type ARM. The actual parameter that is substituted for the formal parameter
ATTRIBS carries the values that define the links of a specific arm. MOVE--takes as
input an arm and a transformation and moves the arm and its hand to the position and
orientation corresponding to the transformation. The arm is output. Its STATE has
been changed td reflect its new position and orientation. QPEN and CLOSE open and
close an arm's gripper. GET_FRAME is a function that returns an arm's position and

orientation.

As already noted, the abstracted data type is ROBOT_ARM. It is the intent of
. the package ROBOT that this type be known only through the procedures and the

function mentioned above and declared in the visible part of the package specifica-
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package ROBOT is

type ROBOT_ARM is limited private;
type JOINT_TYPE is (REVOLUTE, PRISMATIC);

type LINK_REP is

record
JOINT: JOINT_TYPE;
JOINT_ANGLE: FLOAT;
JOINT_LENGTH: FLOAT;
OFFSET_ANGLE: FLOAT;
OFFSET_LENGTH: FLOAT;

end record;

type ARM_REP is array (INTEGER range <>) of LINK_REP;
type ARM is access ARM_REP;

type FRAME is array (1..4, 1..4) of FLOAT;
. type GRASPED is new BOOLEAN;

procedure SET_ATTRIBUTES (X: out ROBOT_ARM; ATTRIBS: in ARM);
procedure MOVE (X: in out ROBOT_ARM; DESTINATION: in FRAME);
procedure OPEN (X: in out ROBOT_ARM);

procedure CLOSE (X: in out ROBOT_ARM);

function GET_FRAME (X: ROBOT_ARM) return FRAME;

private
type ROBOT_ARM is
record
RBT: ARM;
STATE: FRAME;
GRIPPED: GRASPED := FALSE;
end record;
end ROBOT;

Figure 1. Specification for the Package ROBOT.

tion (the visible or public part of the package specification extends up to the
reserved word ''private’’). Also abstracted, or hidden from public view, are all of the
other procedures, functions and data structures which are necessary to actually
effect the movement of the physical robot arm and to update its defining data struc-
ture. These other abstracted procedures, functions and data structures are located

within the package body. The fact that the type ROBOT_ARM is declared to be
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"limited private" and that its definition is given in the private part of the package
specification, means that while routineé in packages external to ROBOT may possess
an object of the type ROBOT_ARM, they cannot use it in any way other than as a
parameter to pass to one of the routines defined in the visible part of the ROBOT
package specification. Even tests for equality between two objects of type
ROBOT_ARM are not allowed outside of the ROBOT package. Hence, possibilities for
programming errors that directly affect the ROBOT_ARM are restricted to the domain
defined by the package ROBOT. Figure 2 illustrates how the package ROBOT is used
to move an ASEA robot or a PUMA robot. The ASEA or the PUMA (both of type
ROBOT_ARM) are manipulated by the procedure MOVE within ROBOT. The movement is

defined by TRANS of type FRAME.

The data structures, excluding those that are explicitly declared "private" or
"limited private", along with the procedures and functions which appear in the public
part of the package specification are directly available for use by other external
packages. In fact, in this example it is strictly necessary that external packages
have access to all of the "public"' data structures. Access to the FRAME and
GRASPED types are necessary to provide destination coordinate and gripper informa-
tion to the robot. Access to ARM (and hence ARM_REP), LINK_REP and JOINT_TYPE
(and, of course FLOAT, which is predefined in the language) are required in order for
the user to set the attributes of the specific robot that is being used. As already
mentioned, attributes are set with the SET_ATTRIBUTE procedure which takes a
ROBOT_ARM and assigns to it the attributes specified indirectly by an ARM type (i.e.,
by an ARM_REP type). Note that even though external packages have access to the
types ARM, FRAME or GRASPED they still cannot directly (i.e., without the use of the
SET_ATTRIBUTE procedure) manipulate them if they are components of another type
to which the external packages do not have access. This prevents external pack-

ages from being able to directly manipulate components of the ROBOT_ARM record.
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package ROBOT
[ ] SET_ATTRIBUTES

MOVE

(]
o)
o]

g

PUMA

Figure 2, Data Abstraction.

Program Abstraction. Programs and subprograms provide another common level

of abstraction. Program abstraction provides operations on implicit objects. In other
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words, in addition to hiding the representation of, and access to, the objects, even
the existence of the objects are hidden. This provides a more complete form of hid-
ing and, usually, a more concise interface than data abstraction, since the user is

prevented from even possessing an object of the abstracted type.

Program abstraction in Ada is realized through generic package instantiation.
The generic package is really a template for packages which will accept abstractions
as actual parameters. These parameters may be either data types or subprograms
(functions or procedures). This represents a slightly higher level of abstraction than
data abstraction, because the object(s) being manipulated is(are) completely hidden
within the package body. The hidden object structure is accessed through the inter-
nal package variables that are non-local to the subprograms in the package. Manipu-
lation of the object structure occurs as a controlled side effect--which is strictly
contained within the package body--of the requested operation. In this manner gen- -
eric program abstraction supports an environment in which the specified (public)
operations either directly or indirectly transform a hidden internal state which

depends only on past operations applied to the initial state of the system.

The ROBOT package example is repeated in Figure 3 using program abstraction
techniques. It can be seen that the interface is more concise in this example. The
external packages are no loﬁger required to specify the attributes of the given robot
arm that they wish to use. Instead, they just specify the name of the arm that they
wish to use when they instantiate the generic package ROBOT. This allows the elimi-
nation of the procedure SET_ATTRIBUTES and all of the types except FRAME from the
package specification. The proper attributes are automatically assigned to the
instantiated generic package based upon the value of the generic formal parameter

ARM at the time of instantiation. Hence, the statements:

- package MY_ASEA is new ROBOT (ASEA);

package MY_PUMA is new ROBOT (PUMA); ’
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type ARM_MODEL is (ASEA, PUMA, ... );

generic
ARM: ARM_MODEL;
package ROBOT is

type FRAME is array (1..4, 1..4) of FLOAT;
procedure MOVE (DESTINATION: in FRAME);
procedure OPEN;
procedure CLOSE;
function GET_FRAME return FRAME;

end ROBOT;

Figure 3. Specification for the Generic Package ROBOT.

would create instances of the package ROBOT specifically for an ASEA robot and a
PUMA robot, respectively. Such packages would then be instantiated in a one-to-one
correspondence with all of the active robots in a given system. Therefore, it is no
longer necessary to pass a parameter representing the specific robot arm (type
ROBOT_ARM in the previous example) to the procedures which will be manipulating it.
This is illustrated in Figure 4. Adding new models of robots entails adding values to
ARM_MODEL and making the corresponding changes in the generic body of ROBOT.

ARM_MODEL is an enumeration type visible within the instantiating program unit.

The attributes for all arms listed in the enumeration type ARM_MODEL are now
hidden from the user within the package body ROBOT. These attributes completely
specify all of the interlink relationships. It is required, however, that certain pro-
cedure bodies contain conditionally executed code segments to account for the
differences between number and type of links used in the different robots, and also
to allow individual robots to communicate with their respective device drivers. An

alternative to the conditionally executed code segments would entail instantiating
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MY PUMA.MOVE
[ ] my_puma.OPEN

Figure 4. Program Abstraction.

Intel, through one of their extensions to the Ada language, have provided a

the generic package with subprograms (procedures or functions) as actual parame-

poWerfuI construct for use in such situations. This has been accomplished by allow-
ing packages to be types, and hence, allowing them to assume values. For example,
we could define a package type ROBOT (Figure 5), create instances of ROBOT for
each different physical robot (Figure 6), declare a variable MY_ROBOT of package
type ROBOT, and then, during program execution assign a value (package body) to

the variable depending upon which robot we chose to use (see Figure 7). The
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procedures and functions which operate on MY_ROBOT are invoked in the manner

shown in the last line of Figure 7.

In Smalltalk, a language that takes the object-based programming philosophy
further than Ada, the concepts of data and program abstraction have been rational-
ized so that objects are all treated alike regardless of whether the objects represent

program modules or data structures [17]. It has been proposed that these concepts

package type ROBOT is
type FRAME is array (1..4, 1..4) of FLOAT;
procedure MOVE (DESTINATION: in FRAME);
procedure OPEN;

procedure CLOSE; }
function GET_FRAME return FRAME;

end ROBOT;

Figure §. A Package Type.

package ASEA is constant ROBOT;

package body ASEA is
[ ]

end ASEA;

package PUMA is constant ROBOT;

package body PUMA is

end PUMA;

Figure 6.
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MY_ROBOT: ROBOT;
NEW_POSITION: FRAME;

case ARM_TYPE is
when ASEA_ARM => MY_ROBOT := ASEA;
when PUMA_ARM => MY_ROBOT := PUMA;

end case;
MY_ROBOT.MOVE(NEW_POSITION);

Figure 7.

be merged together in Ada as well [18]. In fact, Intel has already taken a big step in
this direction with their "package type" extension to the Ada language mentioned
above [19]. The merging of progr-am and data abstraction concepts results in a com-
mon abstraction mechanism. The software designer is then relieved of the artificial

choice between program-oriented or data-oriented programming methodologies.

Protection Domains. Protection domains, and the inherent security that they
provide, are another key object concept. The basis for secure and error-tolerant
execution environments Iie§ in the principle of system closure [4]. This principle
basically states that the effects of all operations on a closed system shall remain
strictly within that system. One common construct used for providing system closure
is the protection domain [20]. Briefly stated, a protection domain is an environment
or context that defines the set of access rights that are currently available to a
specific user for objects of thg system. This concept maps very well on to Ada
packages. Capability based addressing schemes are the most efficient known

mechanism for implementing protection domains.

Protection domain schemes generally provide facilities for error confinement,

error detection and categorization, reconfiguration, and restarting. Error confinement
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and security strategies generally involve both process isolation and resource control.
The basic premise of process isolation is that processes are given only the capabili-
ties necessary to complete their required tasks. This implies that interactions with
any external objects (e.g., sending messages to other processes) must be strictly
formalized and controlled. Resource control refers to the binding of physicaI. resource
units to computational objects. Examples of this include the binding of processes to
processors, or the assignment of memory to currently executing contexts. The idea
here is to ensure that when the resource units are released, or preempted, that all
information contained withinﬁ the unit is returned to a null state. This prevenfs any
information from "leaking" out of a protection domain by being innocently left in an
area that will eventually become accessible to other users. Error confinement also
aids the program debugging process since bugs will be located in the modﬁle in which
the error is detected. Program maintenance also benefits since the protection domain
defines the maximal set of modules which could be affected by a modification to the
system. Error detection and categorization involves dynamic checking for object
type inconsistencies and access constraint violations during procedure execution.
The categorization of detected errors can then be used to aid in restoring the system
to a known consistent state. Reconfiguration facilities attempt to restore the sys-
tem to an operable state by removing from service the failed component, be it

hardware or software. If the reconfiguration attempt is successful the system is

then restarted.

The most efficient known mechanism for implementing protection domains is the
capability mechanism. While much can be done at compile time to enforce the con-
cepts of protection domains, there are many cases where a dynamic enforcement
mechanism is essential. The real-time sharing of data between programs provides an
obvious example. But compile-time protection enforcement also lacks the ability to

support the detection of, and recovery from, failures in the run-time system.
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A capability can be thought of as the name of an object. An object cannot be
accessed--in fact, its existence cannot even be determined--unless its name is pos-
sessed. The capability also contains the access rights to the object (e.g., read,
write, or capability copy rights, see Figure 8). The only subsequent modification
allowed outside of the creating context is the restriction of these rights. Capabili-
ties are created along with their respective objects. The initial control of the capa-
bility, hence the object, belongs solely to the creating context. Consider the case of
a user--package USER in Figure 8--that uses the package ROBOT of Figure 1. It is
the creating context for a \;ariable of type ROBOT_ARM (it creates the variable with a

call to SET_ATTRIBUTES). It restricts its own rights to ""copy" because ROBOT_ARM is

package ROBOT
(type manager for ROBOT ARM)
o
M :
package USER OVE 0
(which creates o
a variable T
of type ROBOT_ARM) . LOGICAL e
% ADDRESS
0
o
‘ . O
ADDRESS
COPY 0
' READ
LOGICAL
ADDRESS
,| & ROBOT ARM [* o
o ]| OBJECT . o
Nl o

Figure 8. Capabilities and Protection Domains.
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a limited private type. However, this does not prevent package USER from providing
capabilities with appropriate additional rights since it is the creating context. For
example, a variable of type ROBOT_ARM is passed as a parameter to both the MOVE
and GET_FRAME procedures. In the case of MOVE, ROBOT_ARM is both an "in" and
"out" parameter requiring read and write rights. In the case of GET_FRAME,
ROBOT_ARM is an "in" parameter, hence it requires only read rights. Specific imple-

mentation details are given in the case study.
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I1l. CASE STUDY

The Intel iAPX 432 is an object-based microcomputer system which provides
architectural support for many of the concepts discussed above. Specifically, the
mechanisms used to support the concepts of data abstraction, program abstraction,
and protection domains, as well as interprocessor communication and transparent

multiprocessing, are provided by the hardware/microcode.

Objects and Type Checking. All information in the iAPX 432 system is
represented by typed objécts. An object is defined by the following four charac-
teristics [21]. First, an object is a data structure containing organized information.
Second, objects also define the set of operations which may be performed on them-
selves. In fact, these are the only operations that are allowed. Third, iAPX 432
objects are referenced as a single ehtity regardless of the length of thé object.
Finally, every object has a unique label that contains the information about its type.
The first characteristic is, in general, rather restrictive. Consider the case of 1/0 for
example. The iAPX 432 avoids this restriction by not directly handling its own 1/0.
1/O responsibilities are left to an attached processor subsystem which partially
operates in the iAPX 432 general data processor's (GDP) memory space and commun-
icates with -the GDP's via a hardware implemented message passing scheme. If this
were not the case, the above definition of 6bjects would have to incvlude "pseudo
data structures'" which would actually provide the description of a physical device

interface.

Objects are implemented as a collection of one or more segments. Segments are
variable length groups of contiguous memory locations with two distinct parts, data
and access. Either part, data or access, may be null. Segment rights are identified
by header information which is stored in the segment itself, but which is invisible to
the software. Type information, along with the respective sizes of the access and

data parts, is stored in the storage descriptors of each individual object. The access
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part of a segment can contain only access descriptors or null entries. Access
descriptors are the "capabilities” in the iAPX 432 system. The data parts contain all
of the other information in the system, including things such as instructions or pro-

cess status information.

The ability of the hardware to identjfy access segments is one of the key
mechanisms used by the iAPX 432 to enforce protection domain security. Any
attempts to modify access segments can be closely monitored. Further, data refer-
ences in the instruction stream always use access selectors to choose an access
descriptor availablev within the currently executing context to gain access to the
desired object. This limits the set of access descriptors that a particular context
can possess, hence controlling the scope of accessible objects. In fact, there are
no iAPX 432 general data processor machine instructions which allow data to be
referenced in any other manner, including by physical address. Hence, it is impossible
for a process executing in a given context to corrupt, either maliciously or inadver-
tently, any system data for which it has not explicitly been given a capability

(access descriptor).

The security mechanisms inherent in the iAPX 432 architecture are not limited to
the above, however. As an example we will consider the protection against execut-
ing data. The currently e.xecuting process references instructions via two indices,
one of which is an instruction pointer that provides an offset into the current instruc-
tion object. The other is an index into the domain objéct access segment (described
later) which selects a capability that determines the current instruction object.
Since the physical base address of the currently executing instruction object is
cached on chip and since length bounds checks are automatically performed by the
hardware on all memory references, instruction fetching type consistency is
guaranteed by checking the object type of the instruction object referenced by the
indexed capability. This needs to be done only when the current instruction object

index is modified, that is only when an intersegment branch is executed.
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There are a number of hardware/microcode recognized system objects in the
iAPX 432 which support many of the object-based concepts discussed in Section Il.
This includes objects which represent instructions, protection domains, activation
records, processes, and even physical processors. The routines which manipulate
these objects are primarily located in the microcode. Some of these routines are
available to the user, in the form of machine level instructions, others remain below

the user interface and are invoked indirectly by mechanisms such as process
dispatch.

Two key objects are .the context and domain objects; these represent activa-
tion records and protection domains respectively. The domain objects and context
objects are used to realize the concept of type managers (see Figure 8), the
system's primary mechanism for implementing data and program abstraction concepts.
Type managers are modules that provide information hiding by containing a data
structure (in the case of program abstraction), or a type definition of one (in the
case of data abstraction), and all the necessary procedures to manipulate that data
structure. By allowing only a tightly controlled subset of these procedures to be
invoked from outside of th;a protection domain (i.e., the domain object), the implemen-
tation of the data structure and the procedures which directly manipulate it are

effectively "hidden'" from the outside world.

The domain object represents the static structure of a type manager. It is the
root node of a tree-like structure of objects which includes all of the instruction and
static data objects that are contained within the given Ada package. Consider, for
~ example, Figure 9 which shows the domain object and sub-objects corresponding to
the Ada package shown in Figures 1 and 2. Notice that all of the "public" information
is accessible from contiguous locations within the domain object. The iIAPX 432
architecture provides refinements which are subsets of objects. The object is not
modified in any wéy; a new access descriptor is created (possibly with more res-

tricted rights) which provides access to a contiguous subset of memory locations
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ACCESS SEGMENT
(CAPABILITY LIST)

— - PRIVATE INSTRUCTION SEGMENTS
> (i.e. DECLARED IN PACKAGE BODY ONLY)
‘PRIVATE ) 0
PART o
(o]
L L
e—|—» PUBLIC INSTRUCTION SEGMENTS (e.g. MOVE)
eT—> (e.g. SET ATTRIBUTES
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e——— PUBLIC ACCESS VARIABLES
— = ~
PRIVATE e——— PRIVATE DATA VARIABLES (e.gq. ROBOT_ARM)
PART e——— PRIVATE ACCESS VARIABLES

T

Bl

Figure 9, A Domain Object.

within the object. Capabilities for refinements are then given to external routines so
that they may access the "public" routines and data structures. The private routines

and data structures remain inaccessible outside of the domain and, hence, realize the

data or program abstraction.

The context object in the iAPX 432 contains the dynamic run-time information
which describes the execution environment of an invoked procedure, much as a stack
frame does for VAX-like architectures. The information in the context object includes
the current domain of definition, the indices that make up the instruction pointer, the
previous context, the operand stack and stack pointer, the capability addressing

environments and message objects (see [5]). Every activated procedure in the sys-
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tem has at least one context object associated with it. When a procedure is called,
a "new' context object is automatically allocated with a return link to the "old" one
stored in it; conversely, when a procedure returns to the "old" context the '"new"
context object is automatically reclaimed. In the interest of run-time efficiency con-

texts are created and destroyed in groups, and allocated and reclaimed as needed.

The IAPX 432 architecture supports dynamic type checking. System objects
have type information embedded in their storage descriptors which also contain phy-
sical addressing information. User defined types have associated with them a type
definition object that defines the corresponding type manager for each user defined
type. A pointer to the type definition object is found in the storage descriptors of
user defined objects. This, coupled with the support provided by system objects,
especially domain and context objects, allows the iAPX 432 to easily provide support
for dynamic package types. Furthermore, these package types can easily be passed
as parameters (messages) to other routines. An example of the utility of package
types was provided earlier in the ROBOT example (Figures 5, 6 and 7). Garbage col-
lection provides another example. Garbage collection algorithms manipulate objects
of an unknown and arbitrary structure by performing very general operations on them,
e.g., returning the memory space occupied by any arbitrary object to the free niemory
pooi. Another possibility is to have the operating system define its 1/0 devices as
packag‘es types. Then, as devices are added or removed, the system can dynami-
cally reconfigure itself without operator intervention. Standard Ada requires all types
to remain static, and to be known at compile time. Th‘rough Intel's extensions to Ada,

the iAPX 432 supports such dynamic applications using arbitrary types directly.

Address Generation., As noted earlier, address generation and translation
mechanisms are generally more complex in object-based systems. In the iAPX 432 all
of the object references for a given protection domain exist in the domain object's
access segment, or indirectly, in the access segment portion of objects which are

referenced from the domain. Operand references, then, consist of two major parts,
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one for selecting the access descriptor for the object, the other for providing the
offset into the object for the requested operand (see Figure 10). The access selec-
tion field which selects the access descriptor for the object can contain either a
direct reference embedded in the instruction stream (see Figures 11), or an indirect
reference. Indirect references are access selectors located on the top of the
operand stack (see Figures 12), or access selectors located within a data object

that is in turn selected using a direct access selector (a general indirect access--

see Figures 13). Direct access selectors are limited to either four or eight bits in

OFFSET REFERENCE ACCESS
FIELD SELECTION
BASE INDEX FIELD
DIRECT DIRECT OBJECT
IND£§;CT* IND??ECT* ADDRESSING
]
i,
OPERAND
~< T
>
OBJECT

*INDIRECT MAY BE FROM STACK, LOCATION WITHIN
OBJECT SELECTED BY ACCESS SELECTION FIELD,
OR LOCATION WITHIN ANOTHER OBJECT

Figure 10, Operand Reference.
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 —
L — "]
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Figure 11. Direct Access Selection.

length. In contrast, indirectly referenced access selectors are all sixteen bits in
length, allowing the selection of a much larger number of access descriptors albeit at
a higher cost in terms of memory references and instruction length. For each of the
access selection reference modes two bits of the selector are used to select one of
four addressing environments, with the remaining bits (fourteen in the case of the
indirect references) used to provide an index into fhe selected environment. Since
each access segment entry is a four byte access descriptor the fourteen bit index,
which is scaled, is able to address 216 bytes--the maximum size for an object. The
four environment entries which hold access descriptors for the access segments are

held in registers on chip.

The offset reference field itself consists of two basic parts, a base part and an

index part (Figure 10). Both the base and index parts can be referenced either
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Figure 12, Stack Indirect Access Selection.
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Figure 13. General Indirect Access Selection,
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SELECTED DATA

OBJECT

directly or indirectly. The direct offsets, which, again, are embedded in the instruc-

tion stream, consist of either a zero or sixteen bit field in the case of the base part,

and either a seven or sixteen bit field in the case of the index part. Indirect offset
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references can be in any one of three forms: stack indirect, general indirect or
intrasegment indirect. Stack indirect references provide the sixteen bit base or
index value on the top of the operand stack. General inc_lirect references use a
direct access selector (see Figure 11) to select an access descriptor for an object
which holds the base or index value. They then use a directly specified displacement
field of either seven or sixteen bits to locate the desired value within the selected
object. The intrasegment indirect references provide a seven or sixteen bit dis-
placement into the same object which was selected by the access selection com-
ponent to extract either the base or index value. There are four combinations of
direct and indirect base and index parts, and each is tailored to referencing a

specific type of data structure. The table below summarizes this:

BASE
Direct | Indirect
record
Direct scalar item

static | dynamic

Indirect array array

xXm O 22—

In the foregoing discussion we saw how operands were addressed. - The
addressing mechanism made use of access descriptors whenever referencing an
object. (These were capabilities for the object.) An access descriptor represents a
logical address for an object. Although it was not shown in Figures 11, 12, and 13,
logical to physical address translation for access descriptors requires a two level
table similar in nature to the page and segment tables of the IBM System 360 (see

Figure 14).

A system-wide table, the object table directory, exists at a known physical

address. This table represents the first level of the mapping process and contains
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Figure 14, Physical Address Generation/Translation
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the base addresses of all of the object tables in the system (a maximum of 4096 are
allowed). Object tables represent the second level of the mapping process and con-
tain descriptors for all of the objects associated with their respective tables. There
is roughly a one-to-one correspondence between processes and object tables. The
descriptors found within the object tables contain a 24-bit physical base address,

length, type, and other pertinent information for their respective objects.

As noted, the logical addresses that get translated are the access descriptors.
Besides containing rights (i.e., read, write, copy, etc.) information, the access
descriptors also contain two twelve bit index fields. The first field provides the
index into the object table directory to select a descriptor for an object table; the
second indexes into the specified object table to select the descriptor for the
desired object. The above addressing scheme provides a t'otal virtual address space
of 240 bytes, this comprises the 212 object tables which can each contain 212
descriptors for objects that can be up to 216 bytes in length. However, at any one
instant of time a process's logical address space is limited to 2°2 bytes. This is
because there are only four (22) addressing environment registers which hold access
descriptors for access segments. These segments can contain up to 21% access
descriptors for objects, and the objects can. have maximum lengths of 216 pytes.

The two level translation scheme facilitates relocation of objects even though there

can be up to 224 objects in the address space of the machine.
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The translation procedure is traced in Figure 14 by following the circled numbers

(see [B]):
= The access selector (1) is used to search the object cache (2).

= [f a match occurs: (Implying the data object address (3) has been
previously cached.) The 24 bit physical address from the object cache
entry is used to locate the data object in which the operand resides.

= |f no match occurs: The access selector is used in the normal way to
locate an access descriptor in the current access environment (4).
The specified access selection mode of the current data reference
can entail a recursion of physical address generation for each instance
of an access selector in the access selection mode.

» The directory index (5) in this access descriptor is used to
search the object table cache (7).

= Match occurs: (Implying the indexed object table
address (8) has been previously cached.) The 24 bit
physical address from the object table cache entry is
used to locate the indexed object table.

= No match occurs: The object table is located normally
through the object table directory (9) by using the
directory index (5). When this is the case, the 24 bit
physical address for the object table is loaded (with
other information) into an appropriate entry in the object
table cache.

» The segment index (6) from the access descriptor (4) is used
to index into the object table (8) to the object directory for the
selected data object (3). This object directory is then used to
provide a 24 bit physical base address for the data object.
When this is the case, the 24 bit physical base address is
loaded (with other information) into an appropriate entry in the
object cache (2).

» The operand offset is calculated using the specified data reference mode

(see above table). This calculation itself can entail a recursion of physical
address generation for each instance of an access selector in the data refer-

ence mode.
» The calculated operand offset (10) is added to the physical base address of
the data object (3) to obtain the final physical address of the first byte of

the operand (11).

One can see from Figure 14 that several memory references may be required to
retrieve a piece of data if its address is not available in the cache. The exact
number, of course, depends on the particular combination of access selection and

offset reference modes used, and on the effectiveness of the caching strategy.
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IV. CONCLUSION

In this paper we have characterized object-based computer architectures in the
context of the Ada programming language. This was done by illustrating key con-
cgpts with examples drawn from hardware and software systems. A case was made
for object-based systems reducing system development costs and providing a very
secure execution environment. These benefits require the use of elaborate address-
ing mechanisms which significantly incfease address generation/translation times.
Consequently, the performance of such systems becomes heavily dependent upon
efficient address generaﬁion and effective address translation bypass schemes.
Quantifying the trade-off between execution time on the one hand, and the granular-
ity of protection and the dynamic support for data and program abstraction on the
other hand is the first step in evaluating object-based computer architectures.
Development of the techniques necessary for this quantification and the evaluation
of any changes in the architecture that may result present important research

issues.
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