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Abstract

This report contains user documentation and timing results for
a collection of assembly language equation-solving codes for the
CRAY-1.

Acknowledgement

The development of these codes was made possible by the devel-
opment of a CRAY-1 simulator by D. A. Orbits. The programming
assistance of S. Arya is also acknowledged.

Revision Notice

The discussion on tridiagonal matrix solution was revised on
11/8/79.

Progam Availability

These programs are available on a user-supplied 9 track tape.
Specify desired density,labeling,and blocking.



TABLE OF CONTENTS

PAGE
I. Introduction 1
A. Implicitness 1
B Vector length 1
C. Data flow 2
D Report Summary 3
II. Codes for the Solution of a Small, Dense System 4
A. Solution of a single full unsymmetric
system of equations 4
B. Solution of a single banded unsymmetric
system of equations 6
III. Codes for the Solution of Simultaneous Systems 8
A. Introduction 8
B. Solution of full unsymmetric simultaneous
systems of equations : 10
C. Solution of banded unsymmetric simultaneous
systems of equations 12
D. Solution of block tridiagonal unsymmetric
simultaneous systems of equations 14

Iv. Code for the Solution of a Single Tridiagonal System 16

References 18



I. Introduction

A. Implicitness

The most common application envisioned in the design of vector
processors has been the solution of partial differential equations.
It is now clear that many application-oriented researchers are
planning to use this vastly increased computational capability to
make solution algorithms more implicit [l]. For example, an algorithm
implicit by line (i.e., in one dimension) would become implicit by
strips (l+n dimensions); or, more variables may be coupled in a multi=-
variable problem. It is usually found that the larger the problem
and/or the more implicit the algorithm, the greater fraction of total
formulation and solution time is devoted to the latter. The coding

of the equation-solver then becomes a critical issue.

B. Vector Length

The vector length is the most obvious and general concern in
vector processing. The length results either from simultaneous oper-
ations on a number of similar systems or from the density of structure
(coupling of variables and grid nodes) within a single system.

In the solution of partial differential equations, the frequency
of variable updating determines the number of grid node equations that
can be formulated simultaneously. A point-Jacobi iteration would

allow simultaneous formulation and updating of all variables. An ADI
method would allow simultaneous updating of variables along a line.
The coupling between grid points and between lines of grid points
assumed in the equation solution determines the number of systems of

equations which can be solved simultaneously. Thus, if grid points

are assumed coupled in only one of two dimensions, then one can expect
a system of tridiagonal or block tridiagonal matrices which can be
solved simultaneously. This in turn yields a vector length equal to
the number of uncoupled grid lines. On the other hand, an ADI method
necessitates a solution of a single tridiagonal system.

The most obviously vectorizable algorithm would therefore be
one in which variables are simultaneously updated and minimal coupling

is assumed between grid nodes and/or variables at a grid point.



Iterative methods based on such schemes have notoriously poor conver-
gence. However, if simultaneity--and hence vector length--is reduced
to increase convergence rate, one must exploit single system density

to achieve long vectors. This density is usually manifested by rela-
tively small block sizes, bandwidths, or profiles in the matrix

structure.

C. Data Flow

With attention only to the vector length and with the use of a
high level language such as Fortran, it is not uncommon to obtain
only 20%-50% of the optimum CRAY-1l performance in the equation solu-
tion. The data flow must also be considered to achieve high per-
formance, as illustrated by the following instances associated with
‘equation-solving codes.

(a) With short vector chained operations, the CRAY-1 protocol
results in large bubbles in the arithmetic pipelines [2]. This occurs
in the processing of small dense blocks or narrow bandwidths.

(b) Vectors of any length on which little computation is per-
formed can create excessive data flow between memory hierarchies.
This situation prevails in the above-mentioned simultaneous solution
of equations, and results from the inherent decoupling of such sys-
tems.

(c) General equation-solving codes--ones which can accomodate
arbitrary problem size parameters--may suffer from excessive data flow
visa vis a special code written for small problem sizes which can
maintain critical data in the cache memory. For example, a simultan-
eous block tridiagonal solver specialized to a fixed small block
size can yield much higher execution rates than a general block tri-
diagonal solver (to be demonstrated).

The goal of high performance in spite of short vectors and
apparent data flow bottlenecks appears to suggest the need for a
plethora of specialized and highly-tuned codes to fill the same func-
tions as a single code executing on a scalar processor. However, a
mitigating effect is the computational dominance of the equation
formulation over the equation solution as the coupling shrinks. This
observation is based on (a) the number of entries in a matrix being
of complexity 0(nf), and (b) the triangular factorization operation

nr+€

count being O ), where €>0 and n represents the number of vari-



ables coupled to each other. Thus, more inefficiency can be tolerated
in the equation solver with small blocks, bands, and profiles.

D. Report Summary

This report provides user documentation for three classes of codes
either expected to be of general utility or else resulting from on-
going specialized_algorithm research for the CRAY-1l. All were devel-
oped with aid of a CRAY-1l timing simulator [3]. Many of the accumula-
tion kernels on which the high performance of the codes depend are
described in [4].

(a) Small dense systems. Highly-tuned accumulation kernels
yield codes which achieve high execution rates with small full and
banded systems. .

(b) Simultaneous systems. Simultaneous full, banded, and block
tridiagonal equation solvers have been developed around kernels which
reduce the previously-mentioned memory traffic. A variety of block
tridiagonal solvers are included representing the utility of such
codes. |

(c) Single system, single variable, odd-even tridiagonal
solver. The use of a simulator was deemed essential to develop this
challenging code which involves high memory traffic.

A fourth code, which can solve general single system sparse pro-
blems ranging:ﬁxm1block tridiagonal systems, general full and banded
matrices (which must be partitioned into 64 x 64 blocks for the CRAY-1),
and arbitrary-sparsity finite element problems, is also being prepared

[5].



II. Codes for the solution of small, dense systems

A. Solution of a single full unsymmetric system of equations (Calahan)
Description.
A system of equations A X = B is solved for X, where
A is an n x n real matrix and X and B are n x m real
matrices. Double column accumulation [4] is used to
achieve full cache utilization during both the triang-
ular factorization of A and the forward and back sub-
stitution of B. When m = 1, an alternate substitution

routine is provided.

Subroutine call to triangularly factor A.
CALL FULFAC (N, A, NDIMA, IERR)
where N is the dimension of A
A is the array representing A
NDIMA is the row dimension of array A
IERR contains a return code:
IERR = 0 implies N = 0
IERR > 0 is normal exit
IERR < 0 implies zero-valued pivot; position given
by |IERR

.

Subroutine call to forward and back substitute
CALL FULSOL (N, A, NDIMA, B, M, NDIMB)
where A contains the factored matrix
B is the array representing B
M is the number of columns of B

NDIMB is the row dimension of array B

Restrictions.
. (a) N < 64.
(b) no pivoting
(c) Fetches (but not stores) from main memory will occur
in FULFAC and FULSOL from the (n+l)st and (m+l)st
columns of A and B; this space should contain data,

not instructions.



When M = 1, a special call*
CALL FULSOLl (N, A, NDIMA, D, M, DNIMB)
should be used for best efficiency. The A array is not altered

in either FULSOL OR FULSOLIL.

Performance (simulated)

Ma;rix Factorization Substitution
size
4 6.5/.47 4.5/.49
8 23/1.1 12/.77
16 58/3.6 27/1.5 (52/1.5)
32 95/18 . 44/3.7
64 122/113 60/11

[Execution rate (MFLOPS)]/[time (kilo clocks)]
for solution of a full system of equations.
Result in parentheses for substitution of two

columns of B (M = 2).

*FULSOLL will solve systems where M > 1 and may be useful when M is odd
and the extra column fetch of FULSOL is undesirable.



B. Solution of a single banded unsymmetric system of equations

(Calahan)*

Description
A system of equations A X = b is solved for x, where A is
a banded real matrix and x and b are n x 1 real vectors.
The matrix A is stored in compressed form.

Subroutine call to triangularly factor A.

CALL BANFAC (N, NB, A, NDIM)

where N is the dimension of A
NB is the half bandwidth (i.e., 2*NB+l is the full bandwidth.)
A is an array containing the elements of A

NDIM 1is the row dimension of A.

Subroutine call to forward and back substitute.
CALL BANSOL (N, NB, A, NDIM, B)
where B contains the elements of b on entry and X on exit.

Comments
A is stored in packed form so that the (i,j) position of A
is stored in the (i - j + NB) + (j - 1)*NB address of A.

*The factorization algorithm is a recoded version of a band solver
written by T. Jordan of LASL [6][7]. The substitution code is
identical to Jordan's.



Half
Bandwidth Factorization Substitution

2 3.8/14 6.2/8.1

4 9.6/19 11/8.1
8 23/28 20/8.1

16 52/45 36/8.1

32 88/210 65/18

64 117/1260 93/49

[Execution rate (MFLOPS)]/[time (kiloclocks)] for
solution of a banded system of equations. Sixty
four equations were solved except for half band-
widths of 32 and 64, where 128 and 256 equations

were solved, respectively.



III.

A. Introduction
. Let A x =

A

Codes for the Solution of Simultaneous Systems

b represent the simultaneous system of equations

described by the block-diagonal matrix
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are identically-struétured n x n real unsymmetric
(k)

and Q(k) are n X 1 real

respectively.

Solutions of such systems on a vector machine have a number
of common character;stics.
1. Vectors are defined across the systems; e.g., the (i,7)
| (k) - X

positions of all A , 1, 2...m, constitute a single vector.
2. Two storage array

maps are common.
A

Map I. A, X, and b stored by column, then by row, then

by system, i.e.,
(k). . _ .
aij :1=1,2,..n; j =1, 2,..n; k=1, 2,..m
xi(k) i=1,2,..n; k=1,2,..m
bi(k) i=1,2,..n; k=1,2,..m
Map II. A, X, and b stored by system, then by column,
then by row.
aij(k) k=1, 2,..m; 1=1,2,..n; j =1,2,..n
xi(k)- k=1,2,..m; i =1,2,..n
b, Xk -1,2,..m i=1,2,..n



Map I may suffer from bank conflicts and loss of critical

chaining when the systems are a multiple of 8 address locations

apart.

A number of simultaneous system solvers are described in the

report.
1.

>ow N

Simultaneous full systems.
Simultaneous banded systems.
Simultaneous 3 x 3 block tridiagonal systems.

Simultaneous 5 x 5 block tridiagonal systems.



B. Solution of full unsymmetric simultaneous systems of equations
(Ames/Calahan)
Description
m simultaneous systems of the form of (1) are solved when
the é(k) are full matrices.

Subroutine call to triangularly factor A.
CALL FUSFAC (A, N, M, IA)

where A is the array containing the full é(k) matrices of (1)

N is the dimension of the é(k)
M is the number (m) of é(k) matrices
IA is the address displacement in array A between aik)
(k+1) ]
and a,.
1]

Subroutine call to forward and back substitute
CALL FUSSOL (B, IB)
where B is the array containing the right hand sides b and

the solutions X,

IB is the address displacement in array B between bék) and
b(k+l)
i
Restrictions:
(a) M < 64

(b) 1IA 2 Nz, i.e., Map I is used.

(c) no err monitoring of pivot reciprocation.

Performance (simulated)

Equations Number of Systems (M)
per

system (N) 4 8 16 32 64
2 3.1/.52 5.8/.55 11/.61 16/.80 21/1.2
4 5.7/2.1 11/2.2 19/2.6 28/3.5 35/5.6
8 9.6/11 18/11 32/13 45/18 53/31

(a) Factorization
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Equations Number of Systems (M)
' per .
system (N) 4 8 16 32 64

3.1/.62 6.1/.63 11/.68 19/.80 26/1.2
4 6.7/1.3 13/1.4 23/1.6 35/2.0 44/3.2
8 11/3.4 21/3.6 37/4.1 53/5.8 62/9.8

(b) Substitution

[Execution rate (MFLOPS)]/[time (kiloclocks)]

of simultaneous equation solver.
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Solution of banded unsymmetric systems of equations (Ames/
Calahan)
Description:
m simultaneous systems of the form of (1) are solved when
the é(k) are banded. The é(k) are stored in compressed form.
Subroutine call to triangularly factor g and forward and back
substitute
CALL BANSIM (A, B, N, NB, M)
where A is an M* (2*NB+1)*N array of elements of the banded
é(k) matrices of (1)
B is an M*N array of elements of the right hand side g(k)

and the solution g(k) (k)
N is dimension of the matrices A

NB is the half bandwidth (i.e., 2*NB+l1 is the full bandwidth)
M is the number of systems.

Comments
é, a band matrix, is stored in packed form so that the (i,j)
position of é(k) is stored in the k + (i - j + NB)*M +
(3 = 1)*M*(2*NB+1) address of A.
(k)

b is stored so that the ith position of b is stored in the

k + (i - 1)*M address of B



Performance

Half-
bandwidth
(NB)

[Execution rates (MFLOPS)]/[time (kiloclocks)]

(simulated)

2
2.1/47.3
3.1/80.7

4.6/156.

Number of systems

4
4.1/47.8
6.2/81.5

9.2/157.
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8
7.9/49.3
12./84.0

17.9/161.

™)
16

14.5/53.9

21.6/93.6

31.1/186.

32
23./68.0
32.9/123.

45.1/256.

for factorization, forward, and back substitution

of simultaneous banded systems.

32 equations.

Each system has

64
31.3/100.
43.0/188.

56.5/4009.
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Simultaneous block tridiagonal systems (Sesek)
Descriptions

Consider the simultaneous block tridiagonal system A X

with kth system é(k) g(k) = é(k), viz
29 a0 | -‘;(k)q rgl(k)ﬁ
By B3 B3 x| |2
T e
RS IRRERCI | Fl !
A || ] [
L Ju J L y

(k)

where the size of the square Aij is of fixed size
to achieve high execution rates.

A

Subroutine call to triangularly factor A.
3 x 3 block size |
CALL BT3FAC (A, B, C, M, N)
5 x 5 block size
CALL BTS5FAC (A, B, C, M, N)
whére A, B, and C are defined below
M is the number of systems

N is the number of diagonal blocks

Subroutine call to forward and back substitution

3 x 3 block size

CALL BT3SOL (A, B, C, D, M, N)
5 x 5 block size

CALL BT5SOL (A, B, C, D, M, N)

where D is defined below

o >
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Comments

A

Storage Map II is used for all éij’ X1 and b,. For block

size &, the storage is given below for n diagonal blocks.

Array A (m x 2

X n)

(A7 Rypt e Ayl
Array B (m x £ x RXn-l))
PR ERR S
Array C (m x 2 x 2(n-1))
[Ay; B35 "Ap,n-1
Array D (m x 2n)
[bl b2'~~bn] on entry to code
[xl xz---xn] on exit from code
Performance (simulated) -
Execution rates (MFLOPS)
Number
of 3x3 3x3 5x5 5x5
Systems FACTOR. SUBS. FACTOR. SUBS.
8 28.8 27.6 40.8 40.1
16 46.6 46.1 54.7 53.6
32 60.3 58.7 65.5 64.1
64 67.9 66.3 72.0 70.0

MFLOP rates for solution of block tridiagonal systems

for two block sizes, as a function of the number

of simultaneous systems

vector length).
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IV. Code for the Solution of a Single Tridiagonal System (Arya/
Sesek/Calahan)

Description
A single tridiagonal system is completely solved by
cyclic (odd-even) reduction, extended to include any
number of equations.
Subroutine call to triangularly factor A.
CALL TRIFAC (IPT, A, B, C, N)
where IPT contains the premature termination factor,
A contains the diagonal stripe, A(i),i=1l,...,N
B contains the super-diagonal stripe, B(i),i=1,...,N-1-,B(N)=0
C contains the sub-diagonal stripe, c(i),i=2,...,N ,C(i)=0
N

is the number of diagonal elements.

Subroutine call to forward and back substitute
CALL TRISUB (IPT, A, B, C, R, N)
where R contains the right hand side on entry and
the solution on exit.

Performance (simulated) (large IPT)

Matrix Factorization Forward and Back
Size (N) v Substitution

15 8.92/1.28 4,75/1.89

16 8.87/1.71 4.42/2.60

31 14.5/1.73 7.93/2.53

32 -~ 13.6/2.18 7.06/3.29

63 22.4/2.37 12.7/3.37

64 20.5/2.84 11.2/4.15
127 32.0/3.40 19.1/4.63
128 27.8/4.17 16.0/5.83
255 40.9/5.42 26.0/6.95
256 35.4/6.49 21.7/8.58
511 47.3/9.45 31.8/11.5
512 42.2/10.8 27.3/13.6
1023 51.0/17.6 35.5/20.7
1024 47.0/19.4 31.8/23.4
2047 53.0/34.1 37.7/39.1
2048 50.3/36.1 35.0/42.3
4095 54.0/66.9 38.9/75.9
4096 52.4/69.2 37.2/79.6

Timings of a cyclic reduction of a single tridiagonal system;
results given as [execution rate (MFLOPS)]/[time(kiloclocks)]
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Premature Termination:
Users not familiar with the cyclic reduction technique or
premature termination should set IPT to a large value

(e.g., 1000). Users familiar with these subjects can use
IPT as follows:

a) IPT = 0 -
Only the'reciprocation of A will be done in
the factorization routine and R will be multi-
plied to the reciprocate of A in the forward

and back substitution.

b) 0 < IPT < Lloglg_]
For the first IPT cycles normal cyclic solution
will be carried out, but after the first IPT
cycles only the reciprocation of A and its multi-

plication by R will be carried out.

N
c) 1IPT = Llogz_! | | | |
No premature termination. Complete cyclic-reduction
algorithm will be carried out.

The following table depicts the speed up of the algorithm
when IPT is used.

N IPT FAC
(MFLOPS/KCLOCKS)

63 large 22.4/2.37

63 2 33.4/1.28
2047 large 53.0/34.1
2047 6 54.7/32.6
2047 3 57.9/27.7
2047 2 61.3/22.8
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Restrictions:
(1) Single precision (10 digit) reciprocation of pivots.
(2) Arrays B and C should have a dimension of 2 times the
dimension of A.

NOTE: Simulation has been performed assuming a lé-bank
CRAY-1 configuration.

Comments:

Odd-even reduction requires = 2.7 times the floating point
computation of a scalar solution (important when evaluating the
MFLOPS rates above), but yields, for larger matrices, nearly all
64-length vector operations.

This code has been optimized for the large matrix case. The
execution is then easily shown to be memory-path bound. The algo-
rithm was therefore chosen to make a minimum number of memory
accesses per loop, utilizing shifting instead to align operand
vectors in the vector registers. The resultant coding was then
optimized to achieve full memory-path utilization. Simulation
shows that 93,89,78% utilization is achieved for the factorization,
forward, and back substitutions, respectively, as N +~ ». Based on
the nature of the algorithm, even-sized matrices take longer
to execute than odd-sized matrices. Therefore, the best
(N = 2% - 1) and worst (N = 2°

given above.

, r integer) execution timings are

Further algorithm discussion is given in [4] and [8].
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A NEW TRIDIAGONAL SOLVER

Mé?géx' ¥§§%L(clocks) CLOCKS/EQUATION
5 440 88
15 781 52.1
20 921 46.0
50 1956 39.1
101 3748 37.1
200 7752 38.8
401 15867 39.6
800 31312 39.1
1601 . 62411 39.0

Timing includes subroutine call overhead, approxi-

mately 40 clocks/call

Times to factorize and forward & back substitute
a single tridiagonal system using an algorithm by
Jordan (LASL) programmed by Forrest Brown (Nuc. Eng.,
UofM). Measured timings on UCS CRAY-1 (6/28/80).

- D. A. Calahan



NNy

3 9015 02652 7



