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ABSTRACT

Material Requirements Planning (MRP) originally was designed
to aid in production planning given known, deterministic demand
for finished product. However, MRP systems often operate under
conditions of stochastic demand, and safety stock is used to
maintain customer service levels. An algorithm is developed to
determine cost-effective safety stock levels for a single item
with a two-level product structure. Emergency production setups
are not permitted. Application of the algorithm over a wide
range of parameter values indicates that in most instances, only
finished product safety stock should be held. These results are
confirmed with simulation studies. The general results also may

be extended to other single-item arborescent assembly structures.



BUFFERING AGAINST DEMAND UNCERTAINTY IN MATERIAL
REQUIREMENTS PLANNING SYSTEMS--SYSTEMS
WITH NO EMERGENCY SETUPS
1. INTRODUCTION

Material Requirement Planning (MRP) was designed to operate
with the assumption of known demand for the finished broduct, but
MRP systems often operate in conditions of demand uncertainty.
This not only creates uncertainty about the quantity required,
but may also create uncertainty about the timing of a require-
ment. The latter may arise because the lot-sizing algorithm
employed shifts the timing of a planned production rumn, or be-
cause an emergency production setup is required to avert short-
ages. A buffering mechanism is required if acceptable customer
service levels and stable production schedules are to be main-
tained.

Several researchers have proposed operational policies to
buffer against demand uncertainty, while others report results
from simulation studies. Researchers who have proposed opera-
tional policies include Eichert (1974), Meal (1979), Miller
(1979), Moore (1973), New (1975), Orlicky (1973), and Welch
(1973). Eichert suggests that standard statistical inventory
methods be applied to unplanned demand only. Meal proposes a
method for measuring forecast errors for each item in the MRP
system and suggests that these measurements be incorporated into
standard statistical inventory models. Miller advocates a
technique which takes into account decreasing forecast error
variance as the period in question approaches, thereby

maintaining a larger proportion of safety stock at points in the



product structure where inventory is less expensive. Moore
states that safety stock should be determined for finished goods
based on the cumulative leadtime.

New points out that a practical rule of thumb is to set
safety stock equal to the "maximum demand likely to occur in a
single period" (p.8). Orlicky states that "safety stock 1is
properly applied only to inventory items subject to independent
demand" (p. 79), but also indicates that one exception to this
rule is safety stock to compensate for uncertainty of supply.
Welch advocates the use of an order point equal to the maximum
planned demand during a "planning period."

Simulation studies in the literature are numerous. One of
these studies was reported by Whybark and Williams (1976). Their
study indicates that safety stock is better than safety time for
buffering against demand uncertainty, while safety time is better
than safety stock for buffering against timing uncertainty.

Lambrecht, Muckstadt, and Luyten (1984) show that the form
of the optimal policy for a multi-stage periodic review
production system with stochastic demand, setup costs, and
shortage costs (per unit per period) only for the final product,
is of the (s,S) type. They also propose a heuristic solution
procedure which is shown to be effective and efficient.

Nahmias and Schmidt (1983) characterize the form of the
optimal policy for a two-stage assembly system with no setup
costs and a shortage cost per unit per period for the finished
product. They show that the optimal policies are of the "order-
up-to" type insofar as permitted by component availability.

Many production operations prefer (and use) a cyclic sched-



ule when possible (see, for example, Caie and Maxwell (1981))
because of ease of implementation, because it simplifies capacity
allocation, and because an (s,S) policy cannot guarantee a cyclic
schedule. Furthermore, shortage costs that are required for an
(sy8) type of policy are difficult to ascertain in real applica-
tions, while desired fill-rates are somewhat easier to ascertain.
We therefore chose to address the problem of determining place-
ment of safety stock to achieve a desired fill-rate at minimum
cost when cyclic schedules are used. The reader is referred to
Carlson and Yano (1984) for analyses of a system in which both
timing and quantity of batches are allowed to vary over time.

Our objective in this paper is to develop a fundamental
understanding of the economics related to "location" and quantity
of safety stock and the impact of mating of parts in assembly for
relatively high volume products. Because this work represents
the first analytically-based research on safety stocks for
assembly systems using a fill-rate criterion, we cannot hope to
solve the problem for the most general case. Therefore, we
examine a simple case first to develop some fundamental insights
into how more general problems might be approached.

In section 2, we describe the problem. Section 3 outlines
our approach to the problem, and section 4 then details the
development of the algorithm. Section 5 discusses the
implementation of the algorithm and experimental results.

Extensions of the results and a summary are presented in Section

6.



2. DESCRIPTION OF THE PROBLEM

We address the problem of determining cost-effective safety
stock levels for each component in the product structure of a
single finished product under conditions of stochastic demand.
We assume that the item is a homogeneous, medium to high volume
product produced to inventory (i.e., not produced to order), and
that there is complete backordering. We examine a simple
assembly structure in which two components are purchased or
produced and assembled into the finished product. We assume that
these components are not common to any other finished products.
Less restrictive assumptions would make the analyses much more
complex and is beyond the scope of this initial investigation.

We assume that there are no production or storage capacity
constraints and that no other uncertainty exists in the system.
Production leadtimes, yields, and both timing and quantity of
supply are assumed to be deterministic. While these are strong
assumptions, our intent is to focus on the effects of demand
uncertainty, which is a critical problem in make-to-stock
situations.

Demand is assumed to be stationmary, which is a reasonable
first-cut approximation to reality in many make-to-stock
environments. To be consistent with this assumption and to
incorporate unbiased forecasts, the forecast of demand for the
finished product is equal to mean demand. In this paper, we
assume that forecast errors are normally distributed with mean
zero. However, our algorithm may be adapted to any infinitely
divisible distribution of forecast errors. We assume that

production leadtimes are positive since safety stock is



unnecessary when leadtimes are zero.

To incorporate the dynamic nature of MRP systems, we use
rolling schedules (Baker (1977)). A rolling production schedule
is a plan which is composed of the first period plan of each of a
series of finite horizon plans. Operationally, one would estab-
lish a plan based on known demand requirements or forecasts for a
finite horizon and implement only the production plan for the
first period in that horizon. One would then observe actual
demand in the current period, add a new requirement or forecast
to the end of the previous horizon, update other requirements/
forecasts as necessary, devise a new finite horizon production
plan, and implement the first period of that plan. The process
continues in this manner.

Although we are using rolling schedules, which by their
nature are dynamic, we examine a situation in which the timing of
production setups is fixed far in advance of the setup. There-
fore, no "emergency" setups or expediting may occur. However,
the planned production quantity may change, and is not fixed
until the production run is begun.

The objective is to determine fixed (time independent)
safety stock quantities (and hence order-up-to levels) which
minimize total setup and inventory holding costs subject to a
service Tevel constraint, where only the service level of the
finished product (end-item) is considered critical. Service
level is measured in terms of percent of demand filled
immediately from stock, often referred to as "fill-rate," which

is a commonly used criterion (in industry) for ‘medium to high



volume products.

We assume that the desired fill-rate is sufficiently high
that shortages of the finished product and components occur only
in the last period with positive demand prior to an order
arrival. In most realistic situations and at most commonly used
target service levels, this is a reasonable assumption. It would
be possible to incorporate less restrictive assumptions in
portions of the analyses. However, in other portions (as will be
apparent later), the complexity of the analysis prohibits this.
We will discuss this point in more detail in Section 4.

In the simulation studies which will be discussed later, we
use the Wagner-Whitin (1958) dynamic lot-sizing algorithm
independently for each item in the product structure, beginning
with the finished product and continuing toward the raw
materials. The use of this particular lot-sizing algorithm is
not critical to the development of our algorithm. What 1is
important is that the Wagner-Whitin algorithm produces regular,
cyclic production schedules when demand (or the demand forecast)
is relatively constant from period to period. The setup cost can
be set to obtain any desired cycle length. Given a cyclic
schedule, the form of the optimal replenishment policy is of the
(R,T) type (order up to R every T periods) when demand is
stationary. Therefore, the results presented here are applicable
to all such situations, although the exact lot-sizing policy. used
may differ. For instance, the Silver-Meal (1973) or Period Order
Quantity (POQ) lot sizing heuristics with appropriate provision

for safety stock can be used equally well in this framework.



The system operates as follows. The Wagner-Whitin algorithm
is used to determine the "optimal" time between production runs.
Since the quantity to be produced is based on forecasts (since demand
is stochastic), one produces up to a target inventory level if
requisite components are available. Otherwise one produces as
much as available components permit. The order-up-to quantity 1is
the sum of mean demand during a cycle plus leadtime, and safety
stock., Additional details of the simulation model can be found

in Appendix A.

3. APPROACH TO THE PROBLEM

The problem can be formulated as in an intractable non-
linear integer optimization problem with stochastic elements.
This formulation appears in Appendix B. While it is possible to
represent some of the terms in mathematical notation, a few
cannot be represented in closed form in terms of known
parameters. In particular, some of the terms related to
expected holding costs and expected backorders cannot be
represented in closed form.

Hence, we cannot even evaluate the objective function or the
constraint, much less attempt to optimize using traditional
approaches. We therefore developed an alternative approach to
modeling the problem mathematically in an attempt to find a
simple method for determining approximate solutions.

We began our study by simulating MRP systems for two- and
three-level product structures, varying the following factors:
(1) holding cost rates for components, (2) natural cycle lengths

of the end-item and components, (3) leadtimes, (4) variability of



demand, and (5) safety stock levels. The purpose of these
studies was to gain insight into the impact of these factors on
system performance measured in terms of total cost and service
level. Therterm "natural cycle" refers to the average number of
periods between adjacent production setups.

The primary finding of consequence here is that the most impor-
tant tradeoff in determining cost-effective safety stock levels is the
tradeoff between end-item and second-level component safety stock.
Predecessors of the finished product are referred to as second-
level components. Simulation studies showed that in most
situations, component safety stock is not cost-effective, as
illustrated in Figure 1. Under special conditions, however, some
positive levels of component safety stock are cost-effective. A
typical cost versus service level diagram for such conditions is
depicted in Figure 2. By examining the characteristics of these
situations, we determined that the elements which are most impor-
tant in this tradeoff are: (1) holding cost of the component
relative to that of the end-item, (2) proportion of the value of
the end-item added at the last assembly/manufacturing stage, (3)
frequency of setups of the second-level component relative to
that of the end-item, and (4) availability of "partner" compo-

nents with which a particular component must be mated.

FIGURES 1 AND 2

4., DEVELOPMENT OF THE ALGORITHM
We desire a measure of the relative cost-effectiveness of
safety stock of the end-item and of second-level components which

is possible to model mathematically. Insight into the principal



factors in the tradeoff discussed in the last section led to the
development of such a measure. Since the timing of setups is
fixed (with frequency approximately equal to the natural cycle),
changing safety stock quantities can affect inventory holding
costs and fill-rate but not setup costs. Therefore, a marginal
analysis approach using inventory costs alone is possible if one
accepts the premise of decreasing marginal returns as safety
stock increases.

An intuitively appealing approach would be to consider the
fill-rate changes and costs resulting from one additional unit of
safety stock for each item in the product structure. This
approach, unfortunately, has one of the same drawbacks as the
original formulation: the fill-rate cannot be determined (and
likewise changes in the fill rate).

To circumvent this problem, we would like a measure which
indicates the cost, on average, resulting from adding enough
safety stock of an item, say i, to avert one additional (end-
item) shortage during an end-item natural cycle. Thus, we would
have a well-defined unit of change in the fill rate (i.e., 1 unit
divided by average demand during an end-item natural cycle),
and the associated costs for the various safety stock
alternatives. The problem of determining how many units to add
still remains. Furthermore, determining their associated costs
is difficult because each additional unit results in different
(increasing) marginal costs.

An alternative approach, which is the one we chose, is based

on an approximation to this approach. We can determine expected



costs resulting from an additional unit of safety stock for a

given item. We can also determine the probability that the

additional unit of safety stock will be instrumental in reducing
end-item shdrtages during the course of an end-item cycle (i.e.,
a shortage of at least one unit would have occurred if the
additional unit were not available). The ratio of the expected
cost and the probability is a value which approximates, on the
margin, "the expected cost of averting an incremental shortage
per end-item cycle." We refer to this relative cost measure as

C:

;» where the index i refers to the item for which safety stock

is added. In general terms, this relative cost can be expressed
as
expected holding cost per probability that the
cycle from an incremental incremental unit averts (1)
unit of safety stock |, an end-item shortage
during a typical end-
item cycle
The algorithm developed in this paper uses these relative cost
measures in conjunction with an approximation to the shortage
cost implied by the fill-rate to achieve (approximately) the
desired fill-rate.
In section 4.1 we develop this relative cost measure for
end-item safety stock. Section 4.2 discusses a framework for

modeling the relative cost measure for component safety stock.

Throughout the paper we use the following notation:

T, = natural cycle of item i

h; = holding cost of item i

L; = leadtime for item i

k; = safety stock multiplier for item i
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D = mean end-item demand during a period

0 = standard deviation of demand during one period
®(+)- = cumulative standard normal distribution
¢(+) = standard normal density

We will represent safety stock quantities as a multiple of
the standard deviation of demand during an order cycle plus
leadtime. This convention is not critical to the analysis; it
simply permits us to let k; represent the usual safety stock
multiplier., If the safety stock must buffer against demand
variability over a shorter or longer time horizon, this fact is

incorporated explicitly into the analyses.

4.1 Expected Cost of Averting an Incremental Shortage Per End-Item

Cycle Using End-Item Safety Stock

We first must determine the expected holding cost term in
the numerator of the relative cost given by (l1). It can be
expressed as the holding cost per unit time, h; multiplied by the
expected period of time the unit will be held.

Recall that we made an assumption in section 2 that
shortages occur only in the last period with positive demand
prior to an order arrival. Since demand for the finished product
is positive in each period, shortages are assumed to occur only
in the period immediately prior to an order arrival. Observe that
the probability that a shortage occurs two periods prior Lo an
order arrival is

1- o [(p + kiJTi + L o)/(VTi -1 + L; o)l

which is negligible in most instances. Therefore, an incremental

unit of safety stock will be held for T; periods (the entire
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cycle) if it is not needed to satisfy an end-item demand, and T,
- 1 periods if it is needed. Thus, that incremental unit will be
held for T; periods with probability

¢ (kl)
and for Ty - 1 period with probability

1 -0 (kp)

The expected length of time it will be held is
T, =Ty 6(ky) + (Ty - 1) [1 -2 (k)]
We next determine the probability term in the denominator.
An incremental unit of end-item safety stock will avert an end-
item shortage only if demand exceeds current cycle stock plus
safety stock. This is equivalent to the event that demand during
the leadtime plus natural cycle is greater than k; standard

deviations from its mean. This event occurs with probability

1 - ¢(kq)
Notice that since the probability is applicable to each end-item
cycle, it is applicable to the "typical" end-item cycle as well.
The expected cost of averting an incremental end-item short-

age using end-item safety stock is thus

hy Ty

Cl = "
(1 -9 (k)

4.2 Expected Cost of Averting an Incremental End-Item Shortage

Using Safety Stock of Second-Level Components

An incremental unit of safety stock for a second level

component will avert an end-item shortage only if

12



(a) the component is susceptible to a shortage,

(b) that incremental unit of safety stock averts a shortage
of that component (i.e., level 1 is able to obtain more
than would have been available otherwise), given that
the component is susceptible to a shortage,

(c) "partners" for that second level component are avail-
able, and

(d) an end-item shortage is averted as a result.

Let us first discuss (a). If a component is produced in a
lot size which is approximately a multiple n (greater than 1) of
the end-item lot size, then for the first n- 1 withdrawals of
components, shortages are extremely unlikely, particularly if
desired fill-rates are high. The actual multiple, n, in this
problem is T;/T;. 1Inonly the last of the T;/T; withdrawals is a
shortage of components likely to occur. Therefore, the fraction
of the time that a withdrawal is susceptiblé to shortage is Tl/Ti
for second level component i. If an item is susceptible to a
shortage, a shortage situation may or may not occur depending
upon actual demand. However, we assume that shortages do not
occur if an item is not susceptible to shortage. In the event

that T, = T,

;» the possibility that there is insufficient stock of

component i always exists (i.e., it occurs a fraction of the time
equal to T{/T; = 1).

Given that item i is susceptible to a shortage, we can diagram
the possible sequence of events in an event tree as illustrated in
Figure 3.

FIGURE 3
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This is not an event tree in a decision analytic sense;
however, it is useful for exposition purposes. Therefore, we
will continue to use this construct throughout the paper. Also
indicated for each path are the resultant expected holding costs

which are developed in Section 4.2.2.

4.2.1 Calculation of Path Probabilities

The analysis of this system would be simple if the probabi-
lity associated with each of the branches were independent of
predecessor and successor branches. Unfortunately, this is not
the case.

Since we have an "order-up-to" type of system, each order
quantity is equal to the demand for that item since the last such
order was placed. The demand for second-level components 1is
generated by level 1 orders for them, which, in turn, are equiva-
lent to end-item demand over some period of time. Therefore, the
occurrence of each of the events in the event tree depends upon
end-item demand in some time frame. Consider a particular (but
typical) item i (component) lot for which an order is placed in
some period t. That lot becomes available in period t + L; and
is utilized to satisfy assembly requirements in periods t + L, t

+ Ly o+ lyeey, £+ Ly +T

i i - Tqe Notice that the next item i lot

will satisfy assembly requirements starting in period t + L; +

T;. Since assembly is done only every T; periods, so there are

no component withdrawals between t+L; + T

i~ Tl and t + Li +

T;. Since an "order-up-to" system is used, the assembly

requirement in period t + L; + T;

i - T depends upon end-item

demand through period t + L, + T; - Ty - 1. The item i lot in

14



question was ordered in period t but must buffer against demand

fluctuations through period t + L; + T;

i - T1 - 1. Therefore,

whether or not an additional unit of safety stock averts a
shortage of item i depends upon demand in periods
Eyeewy £+ Ly + Ty =Ty -1

Therefore, if the sum of demands during these periods exceeds
mean demand during a cycle plus the previous level of safety
stock, an additional unit of safety stock will avert an item i
shortage. Otherwise, the extra unit remains as component
inventory.

Let us now examine the availability of partner components.
For each possible pair of second level components there will be
simultaneous production runs or deliveries at intervals equal to
the least common multiple of the natural cycle lengths of that
pair. For instance, if T; = 4 and Tj = 6, the production runs
for items i and j will be completed simultaneously every 12
periods. In most realisitic situations, shortages occur only in
the last period with positive demand prior to a production run,
just as shortages generally occur only in the last period prior
to a production run of the end-item. Therefore, an incremental
unit of safety stock of a particular second-level component will
almost certainly.have partners available the fraction of the
time that the partner's order arrivals do not coincide with that
of the component in question. The remainder of the time, the
partner may be lacking.

Let item j be the partner component in a situation with two

components on the second level. Items i and j will have simulta-
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neous order arrivals at intervals equal to the least common
multiple of the two natural cycles. Let Ty,y = least common
multiple of T; and Tj. Then there is a potential item j shortage
situation a fraction T;/Tpcy of the time, and item j will be
assumed to be available a fraction of the time equal to (1 -
Ti/TLCM)'

Using this knowledge, we perform an analysis of the dynamics
of the system similar to that done before. We note that the
event that item j is available, given that the next order arrives
simultaneously with an item i order, depends upon demand realiza-
tions in periods

t+ T, +L; - Tj - Lj""’ t +L; +T; - Ty -1

In theory, it is possible to determine the probability that
all partuners of a particular component are available. However,
the complexity of the analysis limits us to the case of two
second-level components heré.

We turn now to the final branches in the tree. An addi-
tional unit of item i safety stock (eventually) averts an end-
item shortage only if end-item demand exceeds available stock
from all sources. Available end-item stock is constrained by
available component stock at the time of production plus end-item
safety stock. Recall that an end-item shortage may occur even
when there is sufficient second-level stock if the end-item
safety stock level is not large enough to buffer against the
demand variability which occurs. However, we are concerned here

with those shortages which are a direct result of shortages of

second-level stock.
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An analysis of the system dynamics provides the result that
the event that an end-item shortage occurs because of an item 1

shortage depends upon demand in periods
t + Li’ o 00y t + Li + Ti + Ll - l

In short, we are concerned with the following:
(1) Fraction of item i order arrivals which coincide with
item j order arrivals

T

Trem

(2) The event that an incremental unit of item i averts an

item i shortage, which depends upon demand in periods
(*) t, ¢ 00y t + Li + Ti - Tl - 1

(3) The event that item j is available, given the next
order arrives simultaneously with an item i order,

which depends on demand in periods

(4) The event that an item 1 (end-item) shortage occurs
because of an item i shortage, which depends upon
demand in periods

(%%) t + L.

i9 eeey t+ Lo+ T4

1+L1"1

The event that an incremental unit of item i averts an item 1
shortage will occur if demand in the periods indicated in (2)

above exceeds

17



mean demand + ki T;{ + L

i 0
The event that item j is available given the next order arrives
simultaneously with an item i order occurs if demand in the periods

indicated in (3) above is less than

d d + k. . }
mean deman J\’TJ + LJ o)

The event of an item 1 shortage due to an item i shortage

will occur if demand in the periods indicated in (4) above exceeds

mean demand + kl\JTl + Ly 0 + min {kiN’Ti +L; 0, ijTj + LjO}

if the next order arrivals of items i and j are simultaneous, or

mean demand + kl\’Tl + Ly o+ ki\’Ti + Li o]

if they are not.

Our algorithm incorporates the demand characteristics in each
of these (usually overlapping) time spans directly as discussed
below.

The duration spanned by the intervals in (*), (*%), and
(¥**) can be broken into independent subintervals to simplify the
computation of the required joint probabilities. Since demand in
each subinterval is independent of demand in other subintervals,
each of the joint probabilities can be expressed as a multiple
integral in which only the limits of the integrals are related.
However, even in their simplest forms, the joint probabilities
can be expressed only as indeterminate integrals. This
difficulty arises, in part, because of our use of normally
distributed forecast errors. But the problem would exist for any

commonly used, continuous, infinitely divisible distribution of
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forecast errors. Probability mass functions provide little help
in solving this difficulty. In order to circumvent this problem,
we use discrete approximations for these indeterminate forms, as
they can be computed quickly by a computer.

Notice that when T; = T:; and L; = L;

i i it is essential that

the safety stocks of item i and j be equal. There are other
situations such as when T, = Tj with L; and Lj unequal, in which
an even more detailed coordination is required. In such
situations, purchases of the component with the shorter
procurement leadtime should be directly tied to the known future
availability of the component with the longer leadtime. (See
Nahmias and Schmidt (1983) for further discussion). Observe,
however, that the vast majority of MRP systems do not have the
sophisticated intra-level coordination required to accomplish
this, and only fixed order-up-to points can be used. 1In all
other cases, the coordination required between component safety
stock levels is taken into account explicitly through the time
spans indicated in (%), (**), and (**¥*).

It is important to note here that to model the general case
with arbitrary leadtimes and arbitrary but integer lot timing
multiples, twenty-eight (28) different relationships arise among
the subintervals mentioned above. In other words, the correct
procedure to use to calculate the joint probabilities depends
upon the leadtime and natural cycle values, and it must be chosen
from among 28 such procedures. Because of the complexity
associated with this aspect of modeling the probabilities, and

because it is generally not possible to implement detailed intra-
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level coordination within existing MRP systems, we do not address
detailed coordination in the few situations in which it may be

desirable.

4.2.2 Calculation of Expected Holding Cost Terms

The expected cost of holding an incremental unit of item i
safety stock is determined as follows. The incremental unit of
item i will be held for T; periods at a cost of h; per period if
it is not assembled into a unit of item 1. There are two ways in
which this may occur. First, this unit of item i may not be
required for the final assembly stage because demand realizations
are less than the forecast or because end-item safety stock 1is
expected to be sufficient to cover deviations of demand from the
forecast. Second, there may not be a unit of item j available
with which to mate it. These are paths 1 and 4, respectively, in
Figure 3.

If the incremental unit of item i is assembled into a unit
of item 1, it will be held at a cost of h; per period for T; - T,
periods. This is the duration between the item i order arrival
and the last level 1 order (for components to be assembled) which
is drawn from that item i lot. After it is assembled, the hold-
ing cost associated with the value-added in the assembly stage
must be incurred as well. The holding cost associated with the

value-added 1is

20



Therefore, the holding cost for the incremental unit of item 1

plus the value-added is

hi + (hl - hi - hj) = hl - h

Notice that the unit of item j already existed and any holding
cost associated with it is a sunk cost. At this point this unit
of what is now item 1 behaves as a unit of item 1 safety stock.

We must incur the holding cost h; - h.

i for Ty periods if the unit

does not avert a shortage (i.e., is not used to satisfy a cus-
tomer demand) and for Ty - 1 periods if it is used to avert a
shortage.

We can now identify the costs associated with each path in
the tree in Figure 3. The expected holding cost associated with an

incremental unit of item i safety stock is:

Ei(g) = hiT;(pp + pg) + by (Ty = TP (py + p3) + (hyp -h3)(Ty = 1)py

+ (hp - hy)Typ3

where Py is the probability associated with the f&th path in the
tree. The value of h; depends upon K, the safety stock vector,
because the values of P, are a function of E. Using this infor-
mation and the facts that
(1) item i must be susceptible to a shortage in order for
an incremental unit of safety stock to have an impact
on customer service, and
(2) given that item i is susceptible to a shortage,
an incremental unit of item i safety stock will affect
customer service with the probability associated with

path 2 in the tree,
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we can represent our relative cost measure, C;, as
Ei(k)
C. = - i on second level
(T1/T3) py
in the general case and
h; (k)
Cj = e i on second level
P2

in the special case where all second level components have natural

cycles equal to that of the end-item.

5. ALGORITHM

We now have all the components necessary to create an algo-
rithm. Recall that the policy will be to add the unit of safety
stock with the lowest value of C;. However, because we cannot
compute the fill rate as a function of the safety stock multi-
pliers k;, we cannot simply add the '"cheapest" safety stock
until we achieve the desired service level.

When only end-item safety stock is held, there is a strong linear
relationship between fill-rates actually achieved and fill-rates com-
puted as if the system had a single stage with a leadtime equal to the
cumulative leadtime of the true system. (The reader is referred to
Yano (1981) for details). Therefore, it is possible to determine the
requisite value for k; to achieve any desired fill-rate. The value of
kq, in turn, implies a shortage cost per unit‘which is approximated by
Cy. Givenavalue of C;, we can use the formulas for C; developed
earlier to determine an approximately optimal quantities of component
safety stock. The "most economical" type of component safety stock 1is

added until the cost of averting an incremental shortage, C;,
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equals the "shortage cost per unit," C;

ALGORITHM
Step 1. Set k; so that the achieved service level will be equal
to desired service level.
Step 2. Set k; =0 for i on the second level.
Step 3. Choose a step size, Ak, which is the incremental step
size for the second-level safety stock.

Step 4. Calculate

hy 1
C]_="'——"
1 - @(kl)
Step 5. Calculate
hi(k)
Ci = come— for all i on the second level
(Tl/Ti) P2
Step 6. Find z = min Cj, i on second level
i
If z » Cy, stop.
Otherwise:
Set k; = k; + Ak, where i = minimand Cj.

Return to Step 5.

As an alternative, one can begin with k = (0,0,0) and proceed
with a greedy approach in which an increment of the most "cost-
effective" safety stock is added at each iteration. In order to
ensure that the fill-rate achieved is close to the target value, it 1is
necessary to choose a threshold shortage cost using the formula for C;
in conjunction with an appropriate value of kj.

We also note that 1f T; = Tj and L; = Lja we can collapse
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the product structure into a serial system by using an
"aggregate" component with holding cost equal to h; + hj. This

forces equal safety stock quantities for the two components.

5.1 Results

Results from the algorithm for a large number of problems
indicate that for nearly all realistic situations, the algorithm
determines that safety stock level for second-level components
should be zero. Simulation results for a large number of
problems confirm this fact. Initially we designed a complete
factorial experiment. The parameter values for these experiments
are shown in Table 1. We ran the algorithm for most of these
problems using various values of k; from 0 to 1.2, which would be
expected to yield fill-rates over 95% in most cases and over 90%
in almost all others. 1In nearly all of these cases, these
algorithm provided solutions with no component safety stock.
Furthermore, when the algorithm was initialized at k = (0,0,0)
and was permitted to increment k; as well, finished product
safety stock remained the preferred buffering technique.

Two examples are selected for illustration. Figures 4 and
5 show average cost versus average service level relationships as
end-item safety stock is increased and as second-level safety
stock (for one component, or both, as applicable) is increased.
These fIgures are for two situations in which the algorithm
indicates that no second-level safety stock should be used. The
plotted values represent averages obtained from 50 simulation
runs, each with a 24 period horizon. The same set of stochastic

conditions (same problem set) was used for each set of safety
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stock multipliers, so as to reduce the variance of the
differences among the results. The results are not amenable to
statistical analyses because of the bivariate nature of the data,
but with the large number of simulation runs and variance
reduction techniques, we can place a reasonble degree of
confidence in the results.

Note that Figure 4 represents a case in which parameter
values were chosen so as to afford advantage to second-level
safety stock relative to end-item safety stock. First, T; = T,,
so that the T;/T; factor in the denominator of C; is at a
maximum. Second, the second-level components have very low
holding costs so that the h; term is low. Finally, the joint
probability term is large relative to other situations because
the partner component is always available.

The case illustrated in Figure 5 is more typical. Only 20%
of the value of the product is added at the last stage (versus
80% in Figure 4). 1In addition T, = Tg > Ty, so that the T)/T;
factor is not at a maximum. In this case, second-level safety
stock is extremely costly and provides little increase in the
service level.

Through the C; values, the algorithm accurately predicts how
second-level safety stock will perform relative to end-item
safety stock. For instance, the values of C; at k = (0,0,0) for
the case illustrated in Figure 4 are

C; = 3.00; Cy + C3 = 3.40
while the values of C for the case illustrated in Figure 5 are
Ci = 3.00; C) + Cy = 288.

Recall that items 2 and 3 have equal natural cycle lengths and
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leadtimes so that safety stock must be added simultaneously for
both items. The large value of Cy + C3 for the second case shows
that it is extremely expensive to utilize second-level safety
stock in order to increase the service level. The fact that the
value of C, + C3 is only slightly larger than Cy for the first
case indicates that second-level safety stock is only slighty
more costly than end-item safety stock to attain small increases
in the service level.

Since it is preferable to carry no second-level safety stock
in nearly all situations, the algorithm does not need to be
modified from its present form for the purpose of adjusting ky in
most cases. Therefore, the value of k; can be set so as to
achieve the desired service level.

Additional results from the algorithm and from simulation
studies indicate that several factors must be present
simultaneously in order for some second-level safety stock to be
cost-effective., They are:

(1) The holding cost of the component must be very small

relative to that of the end-item (i.e., 10% or less).

(2) The partner components must have high availability

brought about by long natural cycles.

(3) The desired service level must be extremely high (i.e.,

98% or more) leading to a large value for Cy-
If these conditions exist, then the savings from using second-
level safety stock depends upon the ratio of the holding cost
associated with the value-added in assembly (echelon holding cost

for finished product) to the holding cost of the end-item. As
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this ratio decreases, the benefit from using component safety
stock increases. These findings provide strong confirmation of
the logic on which the algorithm is based. The reader is
referred to Yano (1981) for additional details.

After observing these results, we decided to move para-
meters systematically in directions that would appear to favor
component safety stock. In this way, we were able to determine
(approximately) the conditions necessary for positive component
safety stock to be cost-effective. An example of such a

situation is:

T = (4,4,12)
h = (1.0, 0.1, 0.1)
L = (1,1,1)

The algorithm gives a solution of kz* = 0.25 and k3* = 0 for an
initial value of k; = 0. Simulation results representing the
average of 50 problems, each with a 24 period horizon are shown
in Figure 6. The same stochastic conditions are used for each of
the safety stock levels indicated in the figure. It appears that
our algorithm has determined (approximately) the point at which
it is no longer economical to add component safety stock (i.e.,
additional finished product safety stock should be added before
component safety stock is increased).

We have done additional studies of situations in which the
desired fill-rate is high (greater than 98%), necessitating
fairly large quantities of finished product safety stock. 1In
these situations, the cost-effectiveness from additional finished
product safety stock declines rapidly as the quantity is

increased. Suppose that one chooses an initial value of ki and
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uses the algorithm to determine k, and k3. It appears at first
that the algorithm severely understates the "optimal" values of
component safety stock as determined by a grid search. An example
of such a situation is illustrated in Figure 7. Observe, how-
ever, that in order to increase the fill-rate further one should
then add a small increment of finished product of safety stock

and recompute C;. We would expect the recomputed value of Ci to
be significantly higher than the previous value (as is apparent

in the declining slope of the cost - fill-rate curve). It is
extremely likely that considerably more component safety stock
would now be cost-effective and should be added if additional
increases in the fill-rate are desired. The only unsolved problem
is one of determining the fill-rate obtained from a given safety

stock vector in which component safety stock is positive. This

remains a problem for further research.

6. EXTENSIONS AND SUMMARY

The results obtained here may be applicable to other product
structures by simple induction. If there are more than two
components on the second level, the likelihood that all partner
components are available decreases. Therefore, the expected cost
of averting an incremental shortage using safety stock of any
particular component increases. This in turn causes a decrease
in the optimal safety stock quantity and the potential savings to
be gained from using component stock.

An evaluation of the relative cost measure for a component
on the third level can be done in the same way as we have done

here for two levels, although we do not claim that it is easy to
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do so. However, intuition would indicate that as one moves
deeper into an arborescent product structure, a much larger
number of events must occur simultaneously in order for component
safety stock to have a beneficial effect on the end-item service
level. The joint probability that all the advantageous events
occur simultaneously decreases approximately geometrically. The
expected holding costs arising from an incremental unit of safety
stock tends to decline at a slower rate, since inevitably some of
the additional third-level safety stock will be incorporated not
only into units of the (second-level) parent item but also into
units of the end-item which would not have existed otherwise.
Therefore, the expected cost of averting an incremental end-item
shortage tends to increase as one moves deeper into the product
structure.

One must use caution when attempting to compare the results
obtained here with related research on multi-stage systems with
stochastic demand. Other research (see Nahmias and Schmidt
(1983) and Lambrecht, Muckstadt, and Luyten (1984)) has used a
shortage cost per unit per period while we have used a fill-rate
criterion which is essentially equivalent to a shortage cost per
unit. (Observe, however, that the relationship between the
shortage cost and the fill-rate is not as clearly defined in a
two-stage system as in a single-stage system). The use of a
shortage cost per unit per period will provide greater incentive
to hold component safety stock than will the use of a shortage
cost per unit. Observe that if a shortage cost per unit per

period is imposed, within a period of time no longer than the
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assembly natural cycle plus leadtime, component safety stock can
be transformed into usable finished product (provided a partner
component is available). This finished product can then reduce
the shortage costs which otherwise would be incurred from that
point on. This is not true when a "one-time-only" shortage cost
per unit is used. While the actual results depend upon the
problem data, component safety stock may play a more important
role when time-weighted shortage costs are used. Shortage costs
imposed at intermediate stages in the production process may also
increase the desirability of some component safety stock.

We have provided an approach to the MRP safety stock problem
which, while not optimal, has provided a method for determining
when component safety stock is cost-effective in a simple product
structure when emergency setups are not permitted. A variation
of the algorithm can aid in determining "where" additional safety
stock should be added to improve the fill-rate most economically.

Managers usually determine timing of production runs and
safety stock quantity sequentially. The problem of obtaining
truly optimal solutions for large systems is simply too complex
and too costly, particularly in the presence of setup costs.
However our relatively simple approach to the problem provides
important managerial guidelines. We have provided intuition
regarding the factors which favor component safety stock when a
fill-rate criterion is used. Further research is needed to solve
more complex problems involving multiple finished products with

common parts and materials.
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TABLE 1

Initial Problem Parameters

Parameter Values
Tl 2’4
T2, T3 T1, 2Ty, 3T1
hl 100
h2, hj .10, .25, .40
D 200/period
0) 10, 30, 50 per period
Ly, Lo, Lj 1,5
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Case Where Zero Second-Level Component Safety Stock
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32



end-item
safety stock
only

\

<

some second-level
component
safety stock

Service Level

Cost

Figure 2
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Comparison of Cost-Effectiveness of End-Item and Second-Level
safety Stock — T = (2,4,4) , b =(1,04,0.4) , L= (1,1,1)
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Results for T = (4,4,12) , h = (1,0.1,0.1) , L= (1,1,1)
Under Fixed Scheduling
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Results for T = (,4,12) , h = (1,0.1,0.1) , L = (1,1,1)

With Fixed Scheduling at High Service Levels

(Safety Stock Vectors Indicated in Parentheses)
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APPENDIX A
Description of Simulation Model

The simulation operates as follows. Since the demand process is
stationary, forecasts are set equal to mean demand. Available stock,
backorders, and on-order quantities, if any, are then used to calculate
net requirements using standard MRP logic. The Wagner-Whitin
algorithm is implemented using these net requirements. If a lot must
be produced in the current period, safety stock in the amount of
kidti + L; 0 is added to the production quantity.

We use a planning window of 24 periods, which for all cases in
this study, is three or more times the length of the natural cycle of
the component with the largest natural cycle. The fixed schedule is
achieved by fixing the timing (but not the quantity) of all orders for
a period of time equal to the largest integer multiple of the natural
cycle less than the length of the planning window.

There are several reasons for this approach. First, research by
Baker (1977) Blackburn and Millen (1980) and Carlson, Beckman and
Kropp (1982) indicates that using a horizon equal to an integral
multiple of the natural cycle is better than a non-intergral multiple
when the Wagner-Whitin algorithm is implemented in a rolling horizon
environment. Second, fixing the timing but not the quantity of the
orders provides some latitude for responding to demand fluctuations
without changing the ordering interval. Third, this technique limits
production schedule changes to the end of the horizon, thereby
essentially eliminating "nervousness" in the system. For instance, an
item with a natural cycle of 4 would have its production schedule
fixed for (24/4 -1) x 4 = 20 periods when the length of the planning

window is 24 periods. This technique also serves to avoid scheduling
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setups whose timing may not be optimal because of end-of-horizon
effects. The production schedule for the latter periods becomes fixed
as the horizon rolls forward.

When this fixed scheduling technique is used, the Wagner-Whitin
algorithm causes an order to be placed precisely every T; periods
(i.e., a cyclic schedule results) when the demand forecast is
constant.

In each period, a plan is determined for a finite horizon,
current decisions are implemented, a realization of the random demand
process occurs, and the finite horizon rolls forward. The process
then repeats. This differs from most of the earlier rolling horizon
literature because demand is stochastic (not simply time varying) and

is not know in advance.
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APPENDIX B

We can formulate the problem with fixed scheduling as follows:

T.D-nD

S S
Yno _ _
Tl D - nD
Minimize {Sl + hy ) VaoJ> = [-=-e=--=--- -z ¢(z)dz}/T1
k O‘D(Tl ﬁo
n integer
T,D-aT;D
T;D - nT,D
1 1
* ,Z [Si * by z n Ty ——— -z] #(2)d¢|[T,
1=2 O<n<Ti/1‘1 VF;U i

n integer

+ hl * T(kl)/Tl

3
# 3 [H(k)i/'ri]
i=2 ;
o\T, + L, G(k,T,L)

<1l -a
subject to -
TlD
where [.] = integer part
§; = setup cost for item i
Ei = natural cycle of item 1
L; = leadtime for item i
h; = holding cost for item i
o) = gtandard deviation of demand
D = expected demand per period
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G(+) = standard normal loss function given k,T,L
H(k); = expected holding cost arising from using safety stock

multiplier k; rather than k; = 0, given kj and K

hl-r(kl) = expected holding cost arising from using safety stock
multiplier k; rather than k; = 0
[kiVTi+Li o]
- £
H(k); = zZ hy (kl, _, kj>
where Ei(kl,ki,kj) = expected holding cost arising from an incremental
unit of item i safety stock, given kj, k; and kj
v e
T(ki) = T]_
£=0 ~T1+Llo
where fl(kl) = expected length of time an incremental unit of item 1

safety stock is held, given k;
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