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PREDICTION AND MEASUREMENT OF NEUTRON CHOPPER BURST SHAPES
by

Johr. Marland Carpenter

Applying an original method* for the graphic representation
of the angular and spatial density of neutrons in a collimated
beam, a technique is developed for calculation of the number o.
neutrons passed through one or more rotating elements in such
a beam. The P-gram construction is briefly discussed. The effects
of moving elements in a beam of finite-velocity neutrons are described.
The apparent configuration of the rotating element is shown.to
differ from that of a stationary element and the apparent collimator
formed by it is represented in terms of the P-gram construction.
Consideration of the joint probability of transmission of a neutron
through both a stationary collimator which defines a beam, and
through a rotor, which interrupts the beam, leads to an expression
. for the time-dependent neutron transmission probability.
An experiment is described in which a monochromatic neutron
beam was selected by means of a crystal monochromator and the
method is applied to its analysis. Formulae are presented which
can be used for hand calculation of results to be expected in
the experiment. Results of the measurements are displayed and
these demonstrate the validity of the calculations.

*Carpenter, John M.; "A Construction for the Investigation
of Collimator Performance," work unpublished. The method of this
paper will be referred to as the "P-gram construction."
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CHAPTER I

INTRODUCTION AND DESCRIPTION OF THE PROBLEM

The development of nuclear reactors and other devices
as plentiful sources of neutrons led to experiments involved
with determining the energy spectra of neutrons. 1In addi-
tion to spectral examinations of the sources themselves,
these experiments include use of the neutrons as a probing
radiation for studies of properties of nuclei and systems
of nuclei. This is in just the same sense as that in which
sources of electromagnetic and acoustical, and also other
particle radiations have beeé studied and used as probes.

A branch of spectroscopy has developed‘with the use of each
of these radiations in this way, and sub-branches according
to wavelength or energy. Each is supplied with its own kit
of tools, and each has been found useful for studying cer-

tain classes of problems.

One of thé tools in each branch of spectroscopy is a
device for analyzing spectra according to energy (velocity,
frequency or wavelergth.) In neutron spectroscopy one of
the basic tools is a mechanical shutter. This is a device
by means of which a beam of neutrcens is opened for a short
interval of time, then closed, producing a short burst of
neutrons. The neutrons in the beam, having a distribution
of velocities, will arrive at a point some distance down-
stream at different times according to their velocities.

If one detects and sorts out these neutrons according to the

-1 -
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time of their arrival, then this sorting according to times
of flight is a velccity analysis. Figure 1 shows schemati-
cally a time-of-flight spectrometer, and 2 a plot of neutron
intensity as a function of time at several downstream points
from the shutter. Velocity analysis by this method is not
new, nor is it confined to neutron, nor even to particle
1 (1)

analyzers. Fermi, Marshall, and Marshal operated the

first such neutron "chopper" system in 1943.

Erected at the University of Michigan Ford Nuclear
Reactor is a spectrometer which operates upon this same
principle.® It is intended, however, for investigation of
neutron scattering events, and the change of speed and direc-
tion.experienced by the neutron in the scattering inter-
action. Thus in this device the velocity analysis is done
twice, once befo?e scattering, again after scattering. Fig-
ure 3 shows the University of Michigan machine diagrammati-
cally. Two shutters perform the analysis of neutrons incident
on the’scatterer, ~The first produces a short burst contain-
ing neutrons of many speeds which travel a distance L and
then are incident on the second shutter. The neutrons arrive

at the seccnd shutter at different times according to their

speeds. If one briefly opens the second shutter at some

(1) Fermi, E.; Marshall, J.; and Marshall, L.; Phys. Rev. 72,
p. 193, (1947}

*The University of Michigan device in many respects is pat-
terned after that of Egelstaff and co-workers at Chalk River,
for example, see Egelstaff, P. A.; Cocking, S. J.; and
Alexander, T. K.; IAEA Proc. of the Symposium on Inelastic
Scattering of Neutrons in Solids & Liquids, Vienna, Oct., 1960,
p- 165, IAEA (1961;. We shall refer to this paper as reference
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time t later, a burst of neutrons of well-determined speed
v = % will pass. The neutrons then strike the scatterer and
in general, change their speeds. The second velocity analy-
sis is dore by time of flight, that is, the neutrons are
allowed to travel a distance L' after scattering, and are
then detected. A neutron detected at time t' after the
burst strikes the scatterer, thus had a final speed v' = %%-

In the University of Michigan machine, the shutters are
rotating discs with several parallel, curved slits across
the diameter; as the slits pass parallel to the beam of neu-
trons, neutrons pass through in a short burst. The duration
of the burst:. and also the number of neutrons in the burst,
is determined by the size and angular divergence of the
beam, and by the angular velocity and slit configuration
of the rotor. It is the purpose of this paper to develop a
meéhod for predicting as a function of time the number of
neutrons passed by a system of rotors of this kind. Other
notable efforts to this end have been made by Stone and
Slovacek(z) and Marseguerra and Pauli(3)l The work of these
authors was directed toward prediction of the performance of
single-rotor systems and is not readily generalized to multi-
rotor systems. Also, these authors treated somewhat idealized,

albeit useful, models of chopper systems; Marseguerra and

Pauli a uniform, unidirectional beam, and Stone and Slovacek

(2) Stone, R. S.; and Slovacek, R.E.; KAPL 1499 (1956)

(3) Marseguerra, M.; and Pauli, G.; Nuclear Instruments and
Methods 4, pp. 140-150, (1959)
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a beam distributed unifbrmly in angle and uniformly in space.
The method of this paper may be used to caiculate the per-
formance of a multi-rotor system, and properly accounts for
the spatial and angular distribution of the beam passed
through the system. It is based upon the author's "P-gram"
construction(4), which was-developed to investigate the
angular and spatial distribution of a beam defined by an

arbitrary collimating system of rectangular geometry.

(4) Carpenter, J. M.; work unpublished



CHAPTER I1I

USE OF THE P-GRAM* CONSTRUCT ION
FOR THE CALCULATION OF CHOPPER BURST SHAPES

A. Introduction of the P-gram Construction

Let us begin by discussing briefly the idea behind the
P-gram construction. We shall speak in the context of the
following diagrams, figure 4 and figure 5.

The neutron trajectory, in direction Q 1is specified in
terms of angles 9 and V. The angle ¢ 1is the angle between
the x - axis and the projection of Q against the x-y plane,
while ¥ 1is correspondingly measured in the x-z plane.
These are not the angles of the usual polar coordinate repre-
sentation but are appropriate here because most collimating
elements are Sollér Slits, that is, they have rectangular
cross sections. In this case the probability that a neutron
which crosses a downstream point x, y, z in direction ¢, ¥
be transmitted through the collimating system is separable
into the product of two factors. One is dependent upon X,
y. ¢ and the other is dependent upon x, 2z, ¥. Here we have
assumed y and z to be measured along the rectangular
cross-sections of the collimator(s) while x 1is measured
as the distance downstream from some reference point. The
probabilities dependent upon x, y, ¢ can thus be considered
independently of those for x, z, V.

This separation is the more significant because in

*See footnote below

-6 -
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Figure 4. The coordinate system in terms of which collimator
transmission probabilities are separable for Soller Slit
collimators. The x-direction is the direction of the colli-
mator centerline. The y-direction is taken parallel to the
vertical dimension of the rectangular collimator aperture.
The z-direction is parallel to the horizontal dimension.

/-

COLLIMATOR 1 COLLIMATOR 2

Figure 5. A section through two successive collimators in
the resolution plane, showing a transmitted neutron trajec-
tery and its intercept on a screen at position x.
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most cases only cne plane is important for calculating chopper
resolution. The rotor turns in this plane. We chose it to
be the X, z plane and consider angles ¢ in this plane.
Having restricted our attention to effects in the "resolution"
plane, we erect an imagirary screen at an arbitrary down-
stream pcint x, and at that point draw z, ¥y axes as in
figufe 6.

Each péint on the z, ¥ plane specifies a trajectory.
The collimator will allow neutrons to rross the screen at
x for some trajectories z, ¥ and will not allow those
others for which the trajectory passes through the walls of
the collimator. We draw a diagram in the z, ¥ plane, the
interior of which correspords to "allowed" trajectories‘for
which the transmission prokability is unity. The exterior
corresponds to those trajectories which intersect collimator
boundaries and for these, the transmission prcbability is
zero. We call this diaéram a P-gram.* We define a function
P(x,z,¥) which is unity irside the P-gram, zero outside,
i.e., P=1 1if z, ¥ satisfy certain conditions, and P = 0
otherwise. The functiorn P is the transmission probability.

The'function P depends upon the downstream distance,
x, at which the beam is examined, to the extent that this

distance establishes the shape of the P-gram. We shall carry

*The word "P-gram" is used here to designate the region in
the z, ¥ plare containing transmitted trajectories. For
simple collimatcrs, this region has the shape of a parallelo-
gram, while it also represents the region of unit trans-
mission probability, thus the name "P-gram."
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x as an argumer.t in P therefore to indicate this fact.
In those instances where formulae are presented, the origin
" of that coordinate will be specified.

The utility of the construction is further enhanced if
one notes -that if there is more than one collimator in the
beam, then the event of tranmission through all consists of
transmission through each individually. Thus the probability
of transmission through all is the product of probabilities
for transmission through each, since these aréiindependent
events. The P-gram picture then consists of several over-
lapping P-grams, each appropriate to one collimating element,
and the overlapping areas are those in which the joint trans-
mission probability is unity. Thus if Pl(x,z,W) is the pro-
bability of transmission of neutron x, z, ¥ through colli-
mator 1 and Pz(x,z,w) is for collimator 2, then Plz(x,z,w),

the probability of transmission through both is
Py, (x:s2,¥) = P,(x,2,¥) P,(x,2z,¥)
(1r-1)

B. The P-gram for a Chopper Rotor

The rotating slits of a chopper rotor may be considered
to constitute a collimator. There is the added complication
that the.orientation of the rotor is not constant with time.
However, consider carefully the following argument for a
stationary collimator oriented with its slit centerline at
some angle 6 with respect to the beam centerline (x - axis)

as in figure 7. The slit centerline projects to a point
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x0 on the z - axis; the maximum angle transmitted is 6 + wmax.'
the minimum is 6 + wmin.' A P-gram for this slit may be
drawn but it is centered about z = x6, and ¥ = 6. For small
angles the P-gram for this slit is the same when the slit

is oriented off-axis by an angle 6 as when it is oriented
with the beam axis, except for this displacement. If this
angle 0 is time dependent, 6 = wt, the rotor P-gram moves

in the z, ¥ plane with its center along the locus z = xwt,

¥ = ot (or z = xy) as in figure 8. For counterclockwise
rotation, as assumed, motion is in the direction of the
arrow; if rotation is clockwise, then the rotor P-gram
moves in the opposite direction.

The P-grams of figures 7 and 8 represent regions of
allowed trajectories for neutrons of infinite speed, which
cross the rotor centerplane when the rotor is oriented at
angle 6 = wt. bFor neutrons of finite speed the slit will
appear curved, and the P-grams will have a different shape.
We reserve until later the problem of calculating this
effect. For now, let us address the problem of assigning
some meaning to the P-gram as seen in a coordinate system
moving along with it as it traverses the z, ¥ plane.

Recall that the time reference t = 0 is the time at
which the slit centerline is parallel to the beam axis.

At any later time t the slit centerline Qill be oriented
at an angle wt from the beam axis. The region of allowed
trajectories (P-gram) for neutrons which cross the rotor

centerplane when its slit is parallel to the beam axis is
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Figure 7. Section through a rotor turned at angle 9 from
the reference axis, showing the region of transmitted
trajectories on a trajectory plane at distance x from the
rotor centerplane
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Figure 8. Positions of the P-gram for a spinning rotor at
several times.
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centered at z = 0, ¥y = 0. The P-gram for neutrons which
cross the rotor centerplane when its slit is at angle wt to.

the beam axis, is centered at z = xot, ¥ = wt. This is to

say, the P-gram displaced to the point z = xwt, ¥ = wt is
for neutrons which cross the rotor centerplane at time é.
The P-gram retains its shape for each time t (angle wt).

" Thus we need only consider the shape of the P-gram
for neutrons which cross the rotor centerplane at time zero,
at which time the slit centerline is parallel to the x axis.
The shape will depend upon the physical configuration of the
-rotor, the neutron speed and the rctor angular speed. We
shall work here with a straight slit rotor, but we will
later show that the results thus derived are applicable to
the entire class of curved slit rotors with Archimedes'
Spiral centerlines, or those which approximate this condi-
t ion. The equations for the apparent slit boundaries des—‘
cribe the walls of a collimator which we may now consider
to be statiorary. From these the boundaries of a P-gram

may be determined.
C. Apparent Slit Boundaries

Let us derive the equations for the apparent slit
boundaries as seen by a neutron crossing the rotor center-
plane at time zero. Refer to figure 9, where symbols used
here are defired. 1In a coordinate system fixed in the rotor
(x',z') the straight slit boundaries are given by z' = t h/2

(choose + for upper, - for lower boundary). Here, h is the
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Figure 9. Coordinate systems (x,z) fixed in space and

(x',z') fixed in a rotor turned at angle €, and the
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width of the rotor slit.
Coordinates in the x', z' system are given in terms of

those in the x, z, system through the transformation

X' = X cos 6 + z sin @

z' -x sin 6 + z cos @ (11-2)
Thus in terms of the coordinates of the stationary system,

the boundaries are given by

+ h/2 = -x sin 8 + z cos 8 (11-3)

For a spinning rotor, 6 = wt, so that at any instant t the

slit boundaries are

+ h/2 = -x sin wt + z cos wt (11-4)

The apparent slit boundaries are given by the intersections
of a neutron plane wave moving at some speed v, and cross-
ing the rotor centerplane x = 0 at t = 0, which is repre-

sented by the 1line

x = vt (11-5)

The apparent boundaries are thus parametrically

{'x = vt
-x sin wt + z cos wt = & h/2 (11-6)

The parameter t may be eliminated rigorously but it is
adequate for our purposes to restrict our attention to small
times (wt <4< 1} which correspond to small angles; then we

have

x = vt
+
-xwt + z = = h/2 (11-7)



- 16 -
and eliminating parameter t,

¥ h/2;

h
2 (II-8)
These equations (+ for upper, and - for lower) represent
ﬁhe apparent boundaries of a siit rotating at angular speed w,
as seen by a neutron moving at speed v.* They pertain of
course only for -R £ x £ R, and are derived for neutrons
crossing the rotor centerplane at t = 0, when the slit is
parallel to the beam axis. The boundaries are parabolic,
and are symmetric functions of x. Moreover note that the

boundary equations are dependent only upon the ratio v’

and that for v-—s epoor ® = 0 the equations are those of a

straight slit, z = ¥ h/2.

D. The P-gram for the Apparent Boundaries of a Rotating S1lit

On figurelO is drawn the collimator formed by the appar-
ent slit boundaries for finite v. We wish to derive a P-gram
for this collimator. For this purpose we may note that the
re-entrant surface (lower boundary on figure 1l0) is not effec-
tive as a collimating surface, and it is the edges (c) and
(d) which are important. The upper surface establishes a
limiting condition on trajectories z, ¥, which are tangent

to it for -R ¢ x £ R, ard the edges (a) and (b) may also

*These results correspond to those of Marseguerra and Pauli,
who used th2 notation y* (x) and yi (x) for our z, (x)
and z_ . (x). u
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limit the trajectories.

The P-gram boundaries on a screen at a distance L
from the rotor ;xis are established by several conditions.
For trajectories z, ¥ which just touch an edge, say (c),
there is a unique relation between z and ¥ which gives the
P-gram boundary, see figure 11. The value of z on the
screen at L 1is shown for a trajectory with angle ¥, which
grazes the edge (c). The relation thus established between
z and ¥ is the boundary of the rotor P-gram due to edge (c).

For each edge therefore we have the boundary equations:

Edge (a): =z = h/2 + % R + (L + R) ¥ (I1-9a)
Edge (b): z =h/2 + ) R+ @w-r v (1I1-9b)
Edge (c): z ==h/2 + % R2 + (L +R) ¥ (I11-9¢)
Edge (d): z=-n/2 +2R° + (L-R ¥ (11-94)

which are referred to as lines (a), (b), (c), and (d) respec-
tively on figures 12 and 13, which are drawn for the simpli-
fying case L = 0.

In addition to these boundaries due to the edges of
the slit, the upper and lower surfaces may bound the rotor
P-gram. The limiting trajectory ¥ is one which is tangent
to the slit surféce (say the upper surface) at some point

x*, z*¥. At the tangent point,
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2}

Figure 11.
rotor, and
ing P-gram
L from the

L+R

2=
' .
%—"/@ 1 o
z=Rw h

The apparent collimator boundaries for a spinning
the construction by means of which the correspond-

boundaries are calculated for a screen at distance
rotor centerplane.



Figure 12. The S-gram for a straight-slit rotor for the
condition v > 4R w/h, w counterclockwise.

Figure 13. ,The P-gram for & straight-slit rotor for the
condition R“w/h € v £ 4R“w/h, w counterclockwise.
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from which

x* = =2 (11-10)

and

N
NIEs

h \%
= - * —_ = —
z* * o+ S5 VOt (II-11)

On the screen at L the value of 2z for this trajectory is

z = 2* + (L - x*) ¥
«-VvV_,2 _h -y 2
Sa V rt LV -5
v 2 h
=T q VvV PLVYS (11-12)

In further work, we shall uniformly assume that the screen
is erected at the rotor centerplane, i.e., L = 0.
The boundary due to the upper surface intersects the line

(b) at the intersection

z =+ h/2 + % RZ _ R ¥
2= -4 ¥ + n2 (11-13
from which
v 2 w 2
%W-RW"'VR-O
N 1
Rf'\/ R2 - 4 L @ g2
40 v
v = o
v 2

2 R w/v (II-14)

For % such that this intersection coincides with the inter-

section of (b) and (c),.lires (a) and (b) no longer bound the
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P-gram. The P-gram of figure 12 . thus is for the condition

2R ¢ _h
v N 2R
or
7 n (11-15)
For the condition
< 4R2w
VS (I1-16)
the picture appears as in figure 13 :. From this last diagram

we can see that the P-gram completely closes when the inter-
section of the lines (c) and (d) meets the parabola, i.e.,

when

- h/2 + R /v = + h/2
2
v = R w/h (11-17)

No neutrons are transmitted when v £ R2 w/h.

E. The Burst Shape Function, Definition and Derivation of

an Expression '

We now complete the description of the method of this
paper. To this point, we have developed all the results
needed to proceed to the calculation of the burst shape. The

first is the product rule, equat;on (I11-1).
Plz(X.z,W) = P,(x,z.¥) Pz(x.z,W) (I1-1)

Using this, we shall say that Pl(x,z,W) is the probability
of transmission through the collimator of figure 14, and

rename it PC. P2 applies to the rotor and we rename it PR'



V0

VI,

COLLIMATOR

Figure 14.

ROTOR

Section through a collimator and a rotor in the
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Figure 15. The P-gram picture of the formation of a burst

by the rotor-collimator system,

for a negative time t. The

shaded area is proportional to the number of neutrons trans-

mitted at time t.
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Figure 16.

The P-gram picture of the formation of a burst

by a rotor in a unidirectional beam.
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PR is a function not only of x, 2z, ¥; but also of the time
t and the neutron speed v, rotor speed w, and rotor para-

meters. Thus the probability P(x,z,¥,v,w,t) may be written

P(x,z,¥, V.,o,t) = Pb(x,ZIW) PR(x,z,W,v,w,t).
(I1-18)
Second we appeal to the assertion of section B which
stated that time dependence of the rotor transmission pro-
bability is simply described as translation of the P-gram
in the z - ¥ plane, as a function of t, the shape being
unaffected. This may be indicated mathematically by the

statement
PR(x,z,w,v,w,t) = PR(x,z -Lot, ¥ - ot, v, w)
(11-19)

where for PR(x,z,w,v,m) we take the function derived in
section D, see figure 12, and L is the distance from the
rotor centerplane to the screen. Hereafter we shall assume
this distance to be zero.

Third but less crucial is the note made at the end of
section C, that the shape of the P-gram is a function of

- the ratio w/v only:

PR(x,z,w - @t, v,w) = PR(x,z,w - ot, w/v).
(I1-20)
Let us now make a more precise definition of the burst
shape function. Consider

Ni(V) = the number of neutrons incident upon the
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chopper system with speed v, per unit length
z per unit time t, per unit angle V.
G(v,t) = the number of neutrons of speed v which
cross the rotor centerline in time dt
about t, which are transmitted by the
chopper system.

We shall assume No to be independent of ¥, z, t. Then

G(v,t) = Ni(v) Pc(x,z,W) PR(x,z,w -wt, w/v) d zd V¥

(11-21)

At first glance it would appear that G should be a
function of the position x along the beam, but more careful
thought indicates that the probability that a neutron be
transmitted does not change with the position x at which
it is observed. The position x appears in PC and PR only
to the extent that it establishes the shapes of the P-grams
at whatever position is chosen to examine them. After the
integrations are performed the results are independent of x.
The position x can be chosen at will for convenience, and
here we pick it to be the rotor centerplane.

We define the burst shape function

va,t! .
P(v,t) = N, (V) . (11-22)

]

Pc(x,z,W) PR(x,z,V - ot,w/v) d zd vy

(II-23)
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P then has dimensions of length times angle.

The significance of P(v,t) in reference to the z-¥
plane of the P-gram construction is now clear: It is the
total overlapéing area of the collimator P-gram, PC =1
and the rotor P-gram; PR = 1. This area is shaded in figure
15 and can be seen to change with time t, while it is a
function of w/v because the shape of the PR boundaries is
dependent on w/v. The function P(v,t) is related to the
burst shapé functions of Stone and Slovacek (2) and
Marseguerra and Pauli (3) in a simple fashion. Both pairs
of authors considered a unidirectional beam (that is, a
perfectly collimated beam) high enough to cover the rotor
slit (height h as in figu;e 9.) In the same sense as in
(II-22), let us define the burst shape function for the
unidirectional beam, Pu(v,t). The collimator transmission
probability for a perfectly collimated beam containing Ay
neutrons traveling in direction ¢ = 0 may be represented

AYE(¥): -h|2 € z € h2
0 : otherwise

PUC (XIZIW) = i

This function is represented as an infinitesimally narrow

strip in figure 16. Then, as in (II-23),

h/2
Pu(v,t) S Puc(x,z,w) Pk(x,z,w ~-ot,w/v) d z d ¥

~h/2

]

h/2
I AvD (Y) PR(X.Z,W -ot,w/v) d z d vy
-h/2
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h/2
= AY PR(x,z.-mt, w/v) d z

-h/2 (11-24)

PR is an even function in many cases, so we shall re-

place -wt by wt in the argument of P Since P_ is unity

R’ R
inside the P-gram and zero outside the integral (II-24) is
just the difference between z on the upper boundary of the

P-gram and z on the lower boundary,

Pu(v.t) = AW(zmax(mt,w/v) - zmin(wt,m/v) )

(II-25)

This is the result of references (2) and (3), except
for the normalization constant h, inserted by both pairs
of authors. Using the notation of Stone and Slovacek for

the burst shape function,

£(v,t) % (zmax(wt,w/v) - zmin(mt,w/v) )

1
Pu(v,t)

hAY (I1-26)

Use of the P-grain construction for the calculation of
burst shapes has the advantage that it enables the spatial
and angular distributions to be handled in a conceptually
simple way. The authors of references (2) and (3) confined
themselves to calculations for unidirectional beams¥,

*It must be noted thit Stone and Slovacek did proceed to
develop a Fourier series for the burst shape produced by a
rotor in a beam distributed uniformly in angle and uniformly
in space. Their procedure, although giving a good approxi-

mation to the correct result in many cases, did not account
for spatial effects at all.
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presumably because of their difficulty of including the
effects of distributed beams. The P-gram construction as
applied here has the advantages that spatial and angular
effects are well accounted for and easily understood.
Moreover, the method can be generalized to cases involving
several rotors and more complex collimators. In those cases
it could be the basis for a very efficient diéital computer
code, or in fact could lead to development of simple optical

analogies.



CHAPTER III

A CORRESPONDENCE THEOREM

In this chapter we undertake to prove a correspondence
theorem, through which the performance characteristics of
similar* rotors are related, as a function of rotor angular
speed, neutron speed, and rotor design parameters. Invoking
this theorem will enable us to justify making calculations
for simplified cases and generalizing them to more complicated
and realistic cases. As a criterion for judging similarity
of performance, we shall fix upon the "apparent rotor bound-
aries" discussed in sections IIB and IIC, (see especially
figure 10). That is, we shall exhibit conditions relating
rotor speed, neutron speed and rotor parameters, under which
the apparent boundaries of different fotors are identical.

Let us say that we wish to construct a rotor for which

the apparent boundaries are described by equations
Fi(x,z) =0 (III-1)

where 1 indexes the boundary surfaces of the rotor, and
(x,2z) is the stationary coordinate system of figure 9. 1In
section IIC, we displayed the transformation through which
the boundary equations written in the rotor coordinate‘sys—
tem (xfzs of figure 9,‘are related to the apparent boundaries.
The tfansformation is a function of neutron speed v and

rotor speed w:

*What is meant by "similar"” will be explicitly stated below.
- 28 -
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x = vt
x = X' cos wt - z' sin wt

x' sin wt + z' cos wt (I11I-2)

N
"

This may be rewritten in terms of the single parameter

y = =, when the dummy time t 1is replaced by the parameter

<le

6 = wt:
x = 6/y
X = X' cos @ - z' sin 9

x' sin 6 + z' cos & (I1I-3)

z
Now, if the slit boundaries are described by equations
fi(x‘,z')'= 0 (II1-4)

in the rotor system, then the function Fi(x,z) describing
the apparent boundaries is given parametrically through the

system
fi(x',z') =0
Fy(x.2) =0 x = 6/y
<=

X = X' cos 6 - 2z' sin 6

x' sin 6 + 2' cos 6

N
L}

(III-5)

or inversely, the rotor boundary functions are given in terms
of the apparent boundary functions through
Fi(x,z) =0

x = 0/y

0

X' cos 6 - z' sin @

z = X' sin 6 + z' cos @
(III-6)
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Having now established the required transformatidns,
let us proceed to the proof. Suppose we design a rotor to
produce apparent boundaries F:(x,z) =0 for y = 1% then the

rotor slit boundaries will be given by

F?(a,&) =0

o a = 6/7o

£, (x',2z') =0

< |
p

x' cos 6 - 2z' sin 6

X' sin 6 + z' cos 6

(11I-7)
in which we have replaced dummy parameters (x,z) by (a.,B).
Further let us inquire what are the apparent boundaries for

this rotor for y = 7y They will be given by the system

o,, _
£2(8.1) = 0
x = o/y
Fio(x,z) =0 1
= x = ¢ cos ¢ -7 sin ¢

€ sin ¢ + 7 cos ¢

z
(I11-8)
Here the dummy parameters (x',z') have been replaced by (£.7).

and the equation f?(g,n) = 0 may be replaced by the system

(111-7), to form

° —-—
Fi(a,B) =0
a = 9/7o
Fio(x,z) =0 a =€ cos 8 -1 sin 6
<> B =€ sin 6 + 7N cos 9
x = £ cos ¢ -7 sin ¢
z = £ sin ¢ + T) cos
x (I11-9)

= 9/7,
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It is only the transformation that we are interested in,
that is that part of the system which for a given (a,B) gives

(x.2). We may easily eliminate (£,7) to obtain

a cos (p - 8) - B sin (9 - 9)

X =
z =a sin (9 - 8) + B cos (9 - 9)

x = @/71

@ = 8/7, (I11-10)

This system may also be viewed as one which for given
(a,x) gives (B,z). Refer to figure 17. For each value of
X = a, we wish to compare the value of B from the equation
Fg(a,B) = 0 (on the original apparent boundary) with the value
of 2z given by Fio(x,z) = 0 (on the traﬁsformed boundary) .
That is for each abscissa x = a, we compare £ from
.Fi(a,ﬁ) =0 with 2z from Fio(x = qa,z) = 0. The system
(10) for the choice x = a, gives the values of B, z under
the sﬁated transformation. If B lies on the original appar-

ent boundary, for a choice of a, then z lies on the trans-

formed apparent boundary for the choice x a. The trans-

formation (10), for x = a reduces to

d =q cos (p - 8) + B sin (9 - 6)

8)

a sin (p - 8) + B cos (o

‘N
"

P -6 =a (71 - 70)
(I11-11)

which is a function of the parameter (71 - 70) only.

We may then state explicitly the following. theorem:
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Figure 17. Apparent rotor boundaxj: es F (a,p) for y_ and the
transformed apparent boundaries F, dlx,z) for y illustrating
the comparison to be made betweenlthe two fun(l.tions.
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If roter A produces apparent boundaries
F?(x,z) = 0 for y = 72 and rotor B produces

apparent boundaries F?(x,z) = F?(x,z) =0
for y = 75, then the apparent boundaries

produced by A for y = 7? are identical to

those produced by B for y = 7? if

(III-12)

This result is to be applied invthe following manner.
Recall tha. equations describing apparent slit boundaries
were developed in Chapter II, for a rotor with straight
slits. 1In the language of the theorem above, the straight
slits are the apparent boundaries for infinite speed neu-
trons (72 = 0). We have developed expressions for the
apparent boundaries for finite neutron speeds, that is for
7= 0.

The rotors which were used in the measurements described
below have curved slits, such that their apparent boundaries
are straight slits for a certain value of y, y = 72. The
theorem states. that for neutrons with 7y = 7?, the apparent
béundaries of the curved slit rotors are identical to those
for the straight slit rotor, if (III-13) is satisfied.

Thus we shall use the formulae of Chapter II to describe

curved slit rotors by replacing % everywhere by

—— 2,8 (111-13)

<le
<le



CHAPTER IV

ANALYSIS OF THE BURST SHAPE MEASUREMENT EXPERIMENT

For the purpose of these measurements, the FNR chopper
was set up in the configuration shown in figure 18. The
beam is formed in the collimator and strikes the thermal
neutron rotor, which is assumed to turn counterclockwise.
The pulsed beam emerging from the chopper rotor contains
neutrons of many speeds, and we select those having a well-
defired speed by placirg a monochromating crystal in the
beam. Neutrons travel to the detector and are counted,
having traversed a flight path of length L2D from the rotor
centerplane to the detector. We assume the detector to be
thin, (it is 2~ 3mm. thick) and that no appreciable uncer-
tainty is introduced into the flight path in this manner.
That is, we assume that neutrons are detected instantaneously
after crossing the detector aperture. Further explanation
of the details of the experimcnt is given in Chaptec VI,
below.

We wish to develop an expression for the counting rate
at the detector, as a function of time. Let us make the
following definitions:

H(t) dt = the number of neutrons crossing the

detector aperture ir time dt about t.

(Iv-1)

Pc(x)z,w) = the probability that a neutron with

trajectory x,z,¥ is transmitted through the

- 34 -
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FAST-NEUTRON THERMAL-
COLLIMATOR ROTOR - NEUTRON ROTOR

/ 2N o, CRYSTAL

DETECTOR

Figure 18. Schematic representation of the system used in
the burst shape measurements, showing collimator, fast-
neutron rotor, thermal-neutron rotor, monochromating crys-
tal at Bragg angle 98' and detector.

P.= |
Z=xy

——=———REGION WHERE
\p—-r PR # 0

Figure 19. The collimator P-gram for a case in which the
P-gram boundaries are parallel lines in the region where
the rotor P-gram is not identically zero.

}

r 4

,(p,,(x,z.wm

A
<l v

Figure 20. The P-gram for a rotor for the general case of
finite velocity.
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collimator.
(1v-2)
PR(x,z,w,t',r) = the probability that a neutron
with trajectory x.,z,¥ crossing the rotor center-

plane at time t', with flight time T, shall be

L2D

transmitted through the rotor, where T = v’

and L2D is the flight path from rotor 2, the
thermal neutron rotor, to the detector.

(Iv-3)
No(v)dv = the number of neutrons incident on
the chopper system with speed v in dv, per
unit angle ¥, per unit length z, per unit
time t.

(Iv-4)
X(¥,7) = probability that a neutron traveling
at angle ¥ and with flight time T shall be
reflected from the crystal.

(1Iv-5)
D(t';t,r)dt = the probability that a neutron
of flight time T which érosses the rotor cen-
ferplane at time t' shall cross the detector
aperture in time dt about t.

(1Iv-6)

Pc(x,z,W):

PC is unity within a region of the z, ¥ plane, zero

outside as in figure 19 . The shape is determined as in

reference (4).
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PR(xlzlwlt' IT) :
P is unity within a region of the z, ¥ plane and zero
outside. The region PR = 1 moves in the z - ¥ plane,

PR(x,z,w,t',T) = PR(x,z;w—wt',T) and has a shape determined

by the method of chapters II and III. See figure 20 .

X(¥.7):

A neutron is reflected if it satisfies the Bragg con-
dition:

A = 2d sin (QB + V) (Iv-7)

We may write this as a condition on the flight time as well

as on the wavelength:

A= % H K = a constant (1v-8)
L L
= 2D - 2D _
T v T K A (1Iv-9)
L2D
T =% 2d sin (GB + ¥) . (1Iv-10)

Recall that ¥y is small, so that sin Yy~ ¥y, cos ¥y =1; we

write therefore

2dL2D
T = K [ sin GB cos ¥ + cos 9851n f]
24L
~ 2D . .
T K [ sin 98 + Yy cos 9;]
2dL2D
=X sin 65 [-1 + ¥ cot 9;] (Iv-11)

The mean angle of the ¥ distribution is ¥ = 0, and this

gives the mean flight time T, reflected from the crystal,

. = dLyp
B K

B
sin 6, _ (IV-12)
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thus (11) may be written

T = Tp K 1 + ¥ cot 9;] (Iv-13)

The neutrons are reflected with an efficiency R(t),
(5)

related to the crystal reflectivity of Bacon'7’ and having

the dimensions of flight time. Thus

X(¥.1) = R(t) 6(t - g 11 + cot eBw] )
(Iv-14)

-D(t',t,T):
Neutrons crossing a point at time t' always reach a

downstream point at distance L at a time t given by

2D
t=t' + 1T, so

D(t', £, ) = 6(t - £' - 1) (IV-15)

As defined, these functions combine to give the mea-

sured counting rate
H(t)dt = \ N_(v) P_(x,2,¥)R(T)6 (-1 [1 + ¥ cot eB] ) )

(x) PR(x,z,w-wt',T)é(t-t‘-r) dzdydTtdt' dt
(IV-16)
The first d-function under the integral takes care of
the t-integration, replacing T wherever it appears by
T = TB(l + ¥ cot QB). However, we may consider R(t) N(t)
to be slowly-vérying functions of 1, and therefore evalu-

ate Tt at its mean value, T in those functions. Similarly,

Br

(5)Bacon,"Neutron Diffraction," p. 64, 82., Oxford University
Press, London (1955)
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PR varies slowly with respect to 1 in its last argument and

the same is done there

H(t)dt = NO(TB) Pc(x,z,w)R(TB)PR(x,z,W—wt ,TB)
b(t-t'-ty [1 + cot eBw] ) dzdvdt dt
(Iv-17)
The t'-integration is easily performed,
evaluate t'

at t' =

requiring that we
t - TB(l + cot GBW):
H(t)dt

N
[e]

(TB)Pc(x,z,W)PR(x,z,w - w(t - g [l + cot QB%),TB)
dzd vy dt

(Iv-18)

N (TB)Pc(x,z,W)R(TB)PR(x,z,w [l+wTBCOt9é]—w(t-TB),TB)

dzdy

(Iv-19)
In the same spirit as in the case of the burst shape

function P(v,t) of Chapter II, equation (II-23), we normalize

Mo, t) = H(t)

this function to unit incident intensity and unit reflectivity,
NO(TB) R(TB)

]

Pc(x,z,W)PR(x,z,w l+orT

peot GB)-m(t~TB),TB)
dzdv

(1v-20)
The function M(@B,t) will be referred to as the "measured
function." Note the factor (1 + w TB cot eB) multiplying
¥ in PR.
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The rate cf motion of the rotor P-gram across the z - ¥

plane can be obtained by following a point on the P-gram,

v(l + Wiy cot eB) - w(t - TB) = constant
av _ w (IvV-21)
dt (1 + Wty cot QB)

Say the factor (1 + wr_, cot QB) is greater than unity. Then

B
the rotor P-gram moves across the z - ¥ plane more slowly in
this case than in the case of the burst shape function. Thus
the rotor P-gram moves more slowly through the collimator
P-gram; the effect is to broaden the burst by broadening the
contribution of the collimatof P-gram.

What does the multiplier on ¥ do to the P-gram picture
of the formation of the burst? Figure 21 shows the case for
a perfectly monochromatic beam.

Figure 22 shows how this picture is modified by the

presence of the factor (1 + wt_ cot GB) arising due to the

B

fact that a crystal monochromator was used. We make a minor
change in the form of (IV-20), in terms of which to discuss
this modification. For this, define a new dummy variable

a€

1+ aﬂBcot GB

€ = v(1 + wrgecot eB); ay =

M(0.t) =\P(x,2,6/ 1 o o o QB))us

B

d zd £
(1 + wrycot GB)

a\PR(x,z,& - ot - TB),TB)
(Iv-22)
In a z - £ plane, the rotor P-gram is undeformed by the fac-

tor (1 + wrt_cot QB) = a, although the collimator P-gram

B
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Pc(x:z;‘l’) = l

PR(xv\l"“)(tin- TB )'TB )=|

AN Vo JF/PR(x'z.w—wuw.-ra>,;>

] i

/
wlt -T)

“’“;n ~Tg) out B

The P-gram picture showing the collimator P-gram

and the rotor P-gram at two instants of time;
at which the

Figure 21.

undistorted,
t. at which the burst just begins, and tout

baPst just ends.
P. (x,2, A

o - Pa(X,Z, € = w(fou - Te)Te) = |
PR(X,Z,G'w({m-TB), )=l R

ay ay

A  in
<3 >
3 |
8/2 X~ 8/2 7¢ 8/2—-—‘
/ (a)
w( ’ou" TB ) —

M@'TB)

Figure 22. The P-gram picture showing the collimator P-gram
distorted by the fac?af a > 1, and the rotor P-gram at two
i?g}ants of time; ti at which the burst just begins, and
t

at which the burst just ends.

out
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is now modified. Also, the rate of motion of the rotor P-gram

across the z - ¢ plane is
%—% = w (Iv-23)

In addition, for a = O,
M -o(65:t) = g Pc(x,z,w)PR(x,z,-w(t—TB),TB)d zdvy

&[(PC(X,Zde k’f] PR(x,z,—m(t—TB),TB) dz
(Iv-24)

n

If { Pc(x,z,W)d‘q is constant with respect to z in the

range where PR.% 0, then M (6_.,t) is proportional to

a=0""B
the function Pu(v,t) of equation (II-24).

Further, the total number of neutrons per burst for

M(QB,t) is
M(QB,t)dt = Pc(x.t,w)PR(x,z,aw-w(t-TB),TB)d zdydt
(Iv-25)
where o = (1 + w Ty cot GB). Put ay - w(t—TB) = W,
dp =_wdt then
. ) '
M(GB,t)dt =3 Pc(x,z,w)d v PR(x,z,u,TB) dpdz

(Iv-26)
which is independent of a, and therefore remains finite for
all values of a. (One might expect that as a-=-0, as it may,
the neutron intensity wculd approach zero.) This result
corresponds to that for the monochromatic beam, that is for
P(v.t).

Still further to illustrate the effect of the presence
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of the factor a, refer to figure 21 , for o=1 (for P(v,t)).

The burst begins at the time tin such that

w(t, -t_) = -(8/2 + Win); wt, = s -(8/2 + win)

in 'B in
(Iv-27)

and ends at time tout such that

w(tout_TB) = (o/2 + wout” wtout = TB +(6/2 + win)
(1v-28)
The width of the burst is thus
= 1
tout™tin T o O+ Vin * Youe) (1v-29)

where 5 is due to the rotor, and (win + v ) is due to

out
the collimator.

Referring to figure 22 , for o > 1, we see that the
collimator P-gram on a z - £ plane is broadened. Thus,

proceeding as above, the width is

(a) ()
tout ~ tin

é% (6 + a(win +'wout))
(IV-30)

illustrating ‘the broadening effect as one which increases

the collimator contribution to the width by the

factor a.

Further and more complete results will be developed in

the following chapter.



CHAPTER V

CALCULATION OF THE BURST SHAPE

In the preceding, expressions were developed for the
functions P(v,t) and M(eB,t), exhibiting them as integrals
involving the collimator and rotor transmission probability.
Equations describing the apparent boundaries of the P-gram
for a straight-slit rotor were derived. It was shown how
to apply those results to the description of a class of
similar curved-slit rotors. Little has been said concern-
ing the collimator P-gram itself, since its shape can be
determined by the methods of reference (4). Tﬁe effect of
the monochromating crystal has been shown to be one which
broadens the collimator P-gram in the ¥ dimension by the

factor a = (1 + v T, cot eB).

B
Two approaches could be followed from this point: To
perform the actual calculations using a computer, or to
develop formulae for hand calculation. For more complex
analyses than the present, the computer is the only reason-
able choice, and the techniques described above should form
the basis for a very efficient program. However, the experi-
ment which we propose to analyze is fairly uncomplicated and
we can expect hand calculations to be quite satisfactory,
as well as more gereral. We proceed in the following to
develop formulae suited to hand calculation.

It is the case in many systems that the collimator

P-gram has the special property illustrated in figure 19.
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Here the ccllimator P-gram boundaries are particularly

simple in the important region traversed by the rotor P-gram:

. i - <
1; if wo + z/§ S v« Vg * z/s

P (x.2,¥) =
: 0; otherwise (v-1)

Where wo is the maximum éngle transmitted by the collimator
through the point z = 0, and S is the distance from the
screen to the aperture in the collimator defining the colli-

mator P-gram boundary. In terms of the variable £ = ay,

1; if —awo +a z/5¢ 55(1w° + a z/8
PC(X.Z,Q/Q) = B
0; otherwise
(v-1')
For the range of z over which (V-1) holds, PC may be repre-

sented therefore

Yo
Pc(x,z.w) = b{z/s = v + ¥') d y'
: (v-2)
-wo
or GVO
P, (x.2z,6/a) b(Xz/s - £ + £') 4 €'
-a ¥ (V—2')

o

Recalling equation (IV-22),

-1 et T
M(OB,t) =3 PC(x:z,g/d) PR(x,z,g wt,LB)d z dé
(Iv-22)
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Applying (V-2'), we have

awo

]
Q=

M(QB,t) 6(a z/5 - € + &‘)dg'PR(x,z,i—wt,TB)d z d ¢

~Y, (V-3)

Putting € =7 +a z/S +wt, d€ = 47, this becomes

Q |~
o
P
uer

M(eB,t) —n—wt)PR(x,z,n + az/s,TB)dg'dn d z
-ay (V-4)

and further changing £" = €' - wt, d4¢" = 4¢'

awo-wt
M(0g,t) = é 6 ("M P (x, 2,70 + 0z/S,7 )dL" 4 d 2
-awo-wt (V-Sf

The function PR(x,z,n +az/S,TB) looks much like the
previous rotcr P-gram, but is deformed, as in figures 23 and 24.
The integral

Pp(x,2,N + cz/s,t )6(£"-N) dn 4 z
(v-6)
is interpretable as the length of a vertical line passing
through 1 = €", which lies inside the deformed rotof P-gram.
This interpretation is the same as that given in section
IIE, in showing the ccrrespondence between the P—grém burst

shape calculation, anrd the calculatiorns of Stone and Slovacek,
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/(b) z=R(-Z- 233+ ﬁ / +BS+77)

R (s 8
(c)z_”P( I+ /2+BS)

7
=8(Bp +172)

(@ 2= (-7~ % +83)

Figure 23.

the effect of the argument

Drawn for 0 € B £ 1/4(B =

al-
IA

The rotor P-gram P_(x,z,7 + a

R Z, v/w) showing
g +7a z/S in dlgtorting the P-gram.
R°w/hv) .

- 289 . 2

+
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(h) 2= R (-7 -8 _p3)

p

Figure 24.
drawn for 1/4 € B & 1 (B =

TS(zﬁ-zﬁ-szé+p/2+BP)

-
R
(9) 2515 (,7_3/;2 +s)

The distorted roEor P-gram Pe (%,2,1 + a z/S,v/w)
R°w/hv) .
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and of Marseguerra and Pauli. The difference here is in the
deformation of the rotor P-gram, and arises due to the cor-
rect inclusion of the effect of the collimator. In similar
fashion to the interpretation of section IIE, we may write
this length as the difference between z on the upper bound-

ary of the deformed P-gram, and z on its lower boundary:

PR(z,n + a %y w/v) §(5"—n)dn dz= zu(i") - zx (¢")

(v-7)
The burst shape function, from (4) is then
awo—wt
M(0,,t) = [zu(g") -z (€M) ]de"
—av,-wt (v-8)
Further, let us define these integrals
n
g z, (') an* = z (M
a
u
n
Zx(TI') an' = ZJZ (m (v-9)
%

Here ay and ap are irrelevant limits, chosen to simplify the
work. We shall calculate these last-defined functions Zu(n)
and gg(n), in terms of which
M(6p.t) = Zu(awo—wt) - Zu(—awoﬂmt)-zl(awo-wt)+zg(—awo—wt)
=482 (av - wt) - Az (-av - wt) (v-10)
The calculation is performed as outlined above. The

boundary equations of the deformed P-gram, PR(x,z,n+a§,TB)= 1
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are firs+- computed. These equations are displayed in tables

2, 2 2
AP0 ¢ ¢en ) and Db (for O v B

h YVS
.

Figures 22 and 24. The results are presented in terms of

Ia (for , and

reduced variables

©

1]

Q
nlx

v

[}
Sl WIS
<t

K

(v-11)

The functions Zu(n) and Zl(”’ are calculated from zu(n)
and zx(n) on these boundaries. The work of the actual calcu-
lation is algebraically involved but altogether trivial,
requiring integration of elementary forms. Therefore, only

the results are presented. Table IIa contains the function

2 2 2
z,(N) for 4%9 € vsoo , Imb for 28 ¢ vg 4—‘;—”3 . Table
2 2 2
IIla contains Zy (1) for A'ﬁ © ¢ vgoo, 1Imb for X20¢ v\<4R @

h
As it happens, a removable singularity exists at p =0
in the functions (V-30) and (V-34). As a consequence, for
small values of p, these equations do not lend themselves to
easy calculation. To simplify the numerical calculations it
is appropriate to approximate these equations with an expan-
sion in powers of p. The development of the expansion is
straightforward and is presented as an Appendix,where the

notation is also clarified. The result is

z(n) = Rr._ﬁ_QR -4 ﬁz_ g‘ %/2] (-3/2)n-k (_1)“
“ U8 3 p> n=3%k=0 k! (n-2k)!

(A-11)
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the expansion being the same for both (V-30) and (V-34).

The ranges of applicability are the same as for the original

formulae, of course.
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CHAPTER VI

DESCRIPTION OF THE EXPERIMENTAL ARRANGEMENT

In this section are‘described several experiments per-
formed at the University of Michigan machine which are subject
to analysis by the methods developed above. The physical
configuration of the machine during these measurements is
depicted in figure 25; the signal flow system is shown in
.figure 26. A brief description of the significant aspects
of each component is given below, but we now undertake to
discuss the operation of the entire system.

Two rotors were actuzily placed in the beam; nearest the
collimator (A)* exit was a fiberglass-resin rotor (B),
referred to hereafter as rotor 1l,and further downstream was
the chopping rotor (C) referred to as rotor 2. Rotor 1
produces a very broad burst, that is a burst of relatively
very long duration, four times per revolution and was run
at one-fourth the speed of rotor 2, in phase with the chop-
ping rotor so as not ﬁo interfere with the beam chopped by
rotor 2. Its effect was to reduce the background at the
detector due to fast (i.e., epicadmium) neutrons, which are
not greatly attenuated by the chopping rotor. The neutrons
.striking rotor 2 are chopped by this high-resolution rotor
into a narrow burst, which contains neutrons of many speeds.

In the absence of a device to select only one speed
*Letters in parenthesis indicate the section below in which
the system component referred to is described.
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DETECTOR
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Figure 25. Schematic representation of the machine configu-
ration during the burst shape measurements.

Rotor 1 Start
> Phase Display
Stop Monitor Recorder
Rotor 2
> Time Delay Tri
Generator rigger Time of
Detector f;lighf
Signol nalyzer

Figure 26. Block diagram showing the routing of signals
from various components of the machine during the burst

shape measurements.
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from this distribution, the faster neutrons would arrive at
a downstream detector very soon after the burst was formed,
whiie the slower ones would arrive considerably later. This
broadening of the burst would make interpretation of measure-
ments difficult. A single neutron speed was therefore
selected by erecting a monochromating crystal (D) in the
beam. A thin detector (E) was placed in the deflected beam.

The angle through which the beam was deflected (which
is equal to twice the Bragg angle) was established by the
following technique. On a calibrated circular scale cen-
tered at the middle of the crystal face, a small-diameter

BF, detector was placed at the desired deflection angle.

3
The crystal was rotated until the beam fell in this detec-
tor. The crystal was left in this position and the BF3
detector was replaced by the large-area, thin detector,
which was assumed to intercept the entire reflected beam.

In order to bring rotors 1 and 2 into the correct phase
relation to one another, a timing signal (F) was derived
from the shaft of each rotor. These signals occurred at
well-known times relative to the times at which the rotors
reached their open positions. The time interval between
the pulses from the two rotors was measured by a phase
monitor (G). The timing pulse from rotor 2 was also used
as a time-reference for the counting system. Since it was
necessary to introduce a time delay between the occurrence

of the pulse from rotor 2 and the beginning of the counting
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cycle, the pulse was fed through a time-delay generator (H),
the output pulse from which triggered the time analyzer (I).
The sequence of events is illustrated in figure 27 . Let
us-say that the first event is the occurrence of the timing
pulse from rotor 1. This event precedes the opening of rotor
1 by an angle 91, thrzggh which the rotor, turning at speed
/4, moves in time 'TSL' The timing pulse from rotor 2 occurs
at time tcp after that from rotor 1, and rotor 2, turning at
speed w, opens a time Eg later. If le is the distance
between the centerline? of rotor 1 and rotor 2, and the neu-
tron speed selected by the crystal is v, then these neutrons
L1z
v

travel from rotor 1 to rotor 2 in the time . For the

two-rotor system to pass this speed optimally (more accurately,
to insure that rotor 1 has no part in forming the burst of

neutrons) the phase time t(p must be such that

46 L.. C]
B e T a1

) v 9 o
. _ 491 - 92 . L 2

? © v (Vi-1)

In each case the phase time tcp was adjusted to satisfy
equation (VI-1l),

Neutrons which cross rotor 2 cénterplane when the rotor
is in its full open position (neutrons in the peak of the

Lop

burst) travel the distance L D to the detector in time -

2
The time analyzer is triggered (that is, its analyzing cycle
is initiated) by a pulse from the delay generator, which

pulse follows the timing pulse from rotor 2 after a delay
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4w®. ol L\'IZ | vao -
—~— 1, Jr nAt >
| TIME
TIMING ROTOR | TIMING ROTOR 2 DELAY NEUTRON
PULSE FROM OPENS PULSE FROM OPENS GENERATOR ARRIVES IN
ROTOR I ROTOR 2 OUTPUT CHANNEL n
PULSE
Figure 27.

Time scale of events during one cycle of the.
machine during the burst shape measurements.

| 5.00" R
! 1.25" TYP.
2. 50"TYP

19.44" TYP.

Figure 28.
rotor.
laminate.

The physical configuration of the fast-neutron
The rotor is constructed of fiberglass-resin
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of length t A pulse from the detector which arrives at

D
time nAt after the analyzer is triggered, is stored in

channel n of the analyzer. Here, At is the width of the
analyzer. time channel, and n is the channel number. 1In

each case the delay time t_ was adjusted so as to cause the

D
neutrons at the peak of burst to be counted at, or near the
middle channel of the time analyzer, n = 128. That is,

again referring to figure 27, in each case tD was adjusted

so that

D + nAt = ——== , n —~128 (VI-2)

We now undertake to describe the function of each of

the significant parts of the device.

A. Collimator

TheAcollimator resolution-plane geometry is what is
important for the present purposes. Shown in figure 25 is
the .collimation system, in which the collimator is represented
as desighed. This representation of the collimator is not
adequate to predict the burst shapes measured in the experi-
ments discussed here, as was found in the initial comparison
of theoretical and experimental results. Development of a

more adequate representation is discussed below.

B. Rotor 1
This rotor is of fiberglass-resin laminate, with slit

configuration as detailed in figure 28. The rotor has two
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identical, symmetric slits, oriented at 90° with respect to
one another. It therefore produces four bursts per revolu-
tion and is turned at one-fourth the speed of the chopping
rotor. 1Its purpose in this experiment was to reduce the

background due to epicadmium neutrons.

C. Rotor 2

This rotor is of high-strength Mg-Zn alloy containing
10% Cd for neutron attenuation, and although practically
opague to thermal neutrons, it is quite transparent to neu-
trons above the cadmium cutoff. Its slit configuration is
as shown in figure 29; one burst is produced per revolution.
Description of the mechanism of burst formation by this rotor
is the primary object of this paper; and has been thoroughly
discussed above. It remains to be said of this analysis
howeVer, that in the interest of simplicity the three slits
in the rotor have been treated as central slits. That is,
the formulae derived above have been developed for a slit
rotating about a point at its center, and these formulae
have been applied in the analysis to all three slits. The
approximation involved is of the order of that made in set-

R R
Surfaces of the slits are circular arcs concentric

ting cos h o 1 where h .05.

with the arc of the central slit centerline.

The design ratio of neutron speed to peripheral velo-

Vopt
city is =Rt =g

R o , which leads to the choice of the radius

of curvature of the central slit centerline. The arc,
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P = 14.3O is an alternative parameter indicating the optimum
_  2Rw

neutron speed, vopt = —5— .

Chapter III, the correspondence principle,- to the formulae

Thus to apply the results of

of Chapters II, IV and V, it is necessary to replace %

4 i _ 1 _ 1_ o
appea-lng there by v Wopt v >R

D. Crystal Spectrometer

The operation of the crystal spectrometer used to
select a well—aefined energy from the chopped beam has been
discussed above, but the details of the device are as
follows. The monochromator was a crystal of Copper, cut on
the (200) plane. Spacing for this plane is 1.816 K. Mosaic

M to be 4 minutes

width of this crystal has been measured
of arc, and the contribution to the experimental resolution

width is correspondingly small. Since

% = &N _ cot QBAQ‘A9=4'=.0012 rad.

Y
and flight times do not exceed 1000 microseconds, this con-
tribution to the resolution is approximately 2.0 micro-

second and is neglected.

E. Detector
The detector used for measurements of the burst shapes
was one of the type described in reference €% The detector

thickness contributes to the resolution of the experiment

+
to a negligible extent, since %= = %%
(7) J. L. Donovan, privéte communication
*See (8) onr next page
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where AL is the thickness of the detector,=.3 cm, while L2D is
the flight path of neutrons from rotor to detector, approxi-

mately 1.5 meters. Thus

= .002

{c
2

and the time uncertainty thus introduced for flight times of
about 1000 microseconds is 2 microseconds, at maximum. This

effect in the measured function is also neglected.

F. - shaft Angle and Frequency Signal Source

This device consists of two parts; a disc which is
attached to the top of the shaft driving the rotor, and a
magnetic pickup mounted in a fixed position perpendicular to
the rotating disc. The disc is of aluminum and contains a
1/32" wide slug of iron in its periphery. The pickup is a
high-output perﬁanent magnet pickup (Electro-Mation Model
3030 AN). As the iron slug passes the pickup, a timing

pulse is produced which appears as in figure 30.

200 to 400
VOLTS
d t

Figure 30. Shape of the timing pulse from the magnetic
pickup.

(8) Vincent, D.H.; Carpenter, J.M.; and Sutton, J.D.;

"A Thermal Neutron Detector Using LiF and Scintillating
Plastic," Bulletin of the American Physical Society, series
II, Vol. 8, No. 4, (1963), Paper UA-12.
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For this series of measurements, the lag angles 91 and

6, (see figure 27) were g, = 135° and 5, = 62°

G. Phase Monitor

The phase monitor is an electronic device which measures
the time interval between the occurrence of two events, in
this case the occurrence of a pulse from rotor 1 and 2. Refer

to figure 31.

|- Megacycle
Pulse
Generator

PULSE_FROM ROTOR |
on Gate
PULSE_FROM ROTOR 2| .. \

Binary
Scaler Light
Displa
T play
Digital-to- Strip
Analog Chart
Converter Recorder

Figure 31. Block diagram of the phase monitor circuit.

This description omits some of the workings of the cir-

cuit but serves to indicate its general manner of operation.
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A pulse frcm rctor 1 closes a circuit so that pulses from a
1-Mc clock are courted on a scaler. The scaler counts until
a pulse from rotor 2 opens the circuit, thus stopping the
scaler ir which are registered a number of counts proportional
to the time interwval between pulses from rotor 1 and 2. The
output is read out in two ways: on a binary light display
and; through a digital-to-analcg converter (which produces a
d.c. voltage proporticnal to the number in the scaler) to a
stripchart recorder which continuously monitors changes in
the phase time.

This device, the phase monitor, is a crucial part of
the system inasmuch as the data it provides are used to

set and maintain the correct phasing between rotors.

H. Time-Delay Generator

One of the functipns of the Tektronix‘Model 535-A
oscilloscope is to produce an output pulse at a set time
after a triggering pulse is received. The pulse from rotor
2 was used as trigger and the output pulse from the oscillo-
scope was -delayed by whatever time was required to place the
burst of reutrons near the center cf the time interval
scanred by the time-cf-flight arnalyzer, chosen according to

formula VI-2.

I. Time Analyzer
The time analyzer used was a TMC Model CN-110 computer
with Model 211 time-of-flight input. 1Its function is to

store signal pulses ir memory channels according to the time
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at which the signal pulses arrive, relative to the time at
which a triggerirg pulse arrives. The time interval associated
with each memory channel can be varied in stéps from .25 to
64 jsec., and a time of 16 psec. is required to perform the
storage operation. That is, the déad time of the instrument
is 16 micrcseconds.

Delayed pulses from the oscilloscope were used to
trigger.the analyzer, and pulses from the detector were used
as input. For all runs, the charnel width was 1 usec.

Using the equipment as described, burst shape data were
accumulated for five different neutron speeds (crystal
angles) and five different rotor speeds for each neutron
speed. The results of several of these runs are presented

below, and compared with the theoretical predictions.



CHAPTER VII

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

The difficulty with regard to the collimator was men-
tioned above in Section VI-A. Comparison of burst shapes
predicted under the assumption that the collimator was as
designed, with measurements, showed poor agreement. To
provide a modified representation of the collimator, data
from an experiment originally performed to locate the
collimated beam, were analyzed for this purpose. This mea-
surement Qas made in the following manner. At two posi-
tions downstream from the collimator, a strip of gold foil
was placed perpendiéularly across the beam in the resolu-
tion plane, and activated by neutrons streaming from the
reactor through the collimator. The foil strips were
scannedlby a small-aperture detector to determine the acti-
vation per uﬁit length as a function of position in the beam.
This activation at each point is proportional to the neutron
flux at that point.

This flux may be predicted using the methods of

reference .. and is proportional to an integral

N(x,z) = Pc(x’z”” ay

over the P-gram which may be interpreted as the y-interval
containing allowed trajectories at a point x, z. Figure

32 shows the measured activation density, and the predicted
density assuming the collimator to be as designed (the
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design prediction) for a position 132" from the collimator
exit. The measured activation density deviates from the
design prediction in a manner which suggests that‘the colli-
mator wall>is not flat, as shown in figure 25, but rather
contains a lump or bulge, which can be represented approxi-

mately as an edge, as in figure 33.

4l75" L @—L

| 2.00"

- -

T

0"

Figure 33. Assumed form of the deformation of the collimator.

The position and height (two parameters) of the bulge
were detgrmined so as to fit the points z, and 2y, at which
the measured activation begins to deviate from the design
prediction. The_activation predicted using this model of
the deformed collimator is also shown in figure 32. The
anaiysis produced a value forbthe position of the bulge,

Y = 15" from the collimator exit, on the south collimator
wall, and a value for the height of the bulge, ¢ = .79"

as shown in figure 33.

Presented as figure 34 is the result of a similar mea-
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surement at.a position 66" from the collimator exit. Also
shown is the prediction using the parameters of the deformed
collimator, assuming the centerline of the rotor support
rails to correspond to that of the collimator. It seems a
better assumption to say that the beam centerline does not
coincide with the rail centerliﬁe, but instead lies .16"
south. The predicted activation for the deformed collimator,
displaced .16" is also shown in figure 34.

Although the prediction thus generated for the activa-
tion at the 66" position does not match the measurement
exceptionally well, it is an improvement over the design
prediction. Deviations are attributed to the fact that such
a simple model of the deformafion is not completely realistic.

Conclusions drawn from this analysis méy be summarized.
The collimator is deformed and the deformation may be repre-
sented aé in figure 33. The rotor support rails are not
perfectly aligned with the collimator beam centerline, rather
the beam centerline passes the 66" position .16" south of the
rail centerline and passes the 132" position at the rail
centerline. Therefore, we conclude that the collimator is
misaligned by an angle of 4%%% = .00243 rad., and that
the collimator exit is misplaced a distance (.00243) (132") =
.32", south of the rail centerline.

With this modified representation for the collimator,

a P-gram for the deformed collimator can be constructed, at
the position of the rotor 2 centerplane. This is shown in

figure 35, in which the origin of the z-coordinate is taken
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as the position of the rail centerline, while that of the
Y-coordinate is taken as the direction of the rail centerline.
Therefore the collimator P-gram must be drawn displaced, its

center at

z = -.32" + 54" (.00243)
= -,32" + .13" = -.19"
¥ = .00243 radians

Also shown as figure 35 are the boundaries of the colli-
mator as designed, illustrating the effect of the bulge in
deforming the collimator P-gram. The paths of the P-grams
for the three slits of rotor 2 are also shown on figure 35.
The intersections of these paths with the collimator P-gram
boundaries determine the angles Win and wout which enter
the arguments of AZ.

Recall the result of Chapter IV

M(6g.t)

|~

Pc(x,z,i/a) PR(x,z,E—wt)d £ dz (1Iv-22)

where a = (1 + wr,cot GB), and for our purposes we may

B
regard 1/a as a constant of normalizaticn.
Also recall the function AZ(p,7]) in terms of which the

calculation of M(QB,t) was cast;

M(GB:t) = AZ( pogt'awout - ot) - AZ( Pin'®¥in wt)

for each slit in the moving roter; where p's and V¥'s are
to be chosen for the distended P-gram, i.e., Pc(x,z,ﬁ/a)=l.

The observed burst shape function is the sum of the bursts
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from each slit.

From figure 35 the intersection win and slopes z/Sin

out out
are tabulated below in Table 1.
Table VII-1
win Z/Sin wout z/sout:
Upper Slit -.0053 5/54 .0208 5/172

Central Slit

.0109 5/172 .0169 5/69

Lower Slit

.0133 5/172 .0114 5/69

Several records have been chosen for comparison with

theory: Figure 36 and Table 2 are for rotor speed 440

revolutions/sec. counterclockwise, and'eB = 24.50.
(vB = 2650 E§§%£§), (referred to hereafter as record 440-1).

Figure 37 and Table 3 are for rotor speed 280 revolutions/sec.,

. counterclockwise and GB = 38.3° (vB = 1780 M/sec.). (Referred

to hereafter as reccrd 280-5).
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Table VII-2

(For Record 440-1)

w = 440 cps = 2760 radians/sec. Counterclockwise
- oo
0y = 24.5°%;
Ag = 2d sin 65 = 2(1.816) sin 24.5° = 1.51 R
v, = 4000 _ 2650 m/sec
B AB

cot eB = 2.194

L2p _ 31.s3
2650

T, = —— =

=5.97 x 10°? sec.

1 +argeot 6, = 1+ (5.97 x 107%) (2.760 x 10%) (2.194)

1+ 3.60 = 4.6

b Ro_ 1 . 1, _ 8 _ Re
h YB vopt hvB 2h
3
(25) (2.54) (2.76 x 107) _ (5) (.25) _ 2.64 - 2.50
(.25) (2650) 2(.25)
B = .14
awin pin Qwout pout
Upper Slit -.0243 .43 .0956 .13
Central Slit -.0501 .13 .0778 .33

Lower Slit -.0611 .13 .0524 -33
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Table VII-3

(For Record 28Q—5)

280 cps = 1760 radian/sec. Counterclockwise

38.3°

A = 2(1.816) sin 38.3°

= 2.25 8
v, = 4000 1780 m/scc.
B A
B
cot OB = 1.265
L
_ 2D _ 1.58 _ -4
TB = VB = 1780 = 8.88 x 10 sec.
(1 + wrpcot 6) = 1 + (1760) (8.88 x 10™%) (1.265)
=1+ 1.98
= 2.98
p-Ro _Ro _ 4450 _ , .
hVB 2h 1780 :
=0 :
awin P1n awout pout

Upper Slit -.0158 .276 .0622 .0869
Central Slit -.0325 .0869 .0505 .216

Lower Slit -.0397 .0869- .0341 .216
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Measurements were also made with the rotors turning
clockwise, i.e., for w negative. The effect is to leave all
else unchanged except the factor 1 + wTB cot QB’ in which
the second term, positive for counterclockwise rotation,
becomes negative. With proper choice of parameters, this
factor approaches zero, and the effective width of the colli-
mator angular distribution is zero. What actually happens is
that the collimator angular spread is exactly compensated by
the spread in flight times of neutrons reflected by the
crystal. Under such circumstances, the beam might be said
to be "time focused", and the burst shape seen is that pre-
dicted for a unidirectional, monochromatic beam.

Since it was not possible to reach the condition of time
focusing because of experimental limitations several measure-
ments were made, for varying flight paths from rdtor center-
line to detector. 1In table 4 are exhibited the conditions
for each measurement. Results of these measurements are
shown in figures 38, 39, 40, 41. Plotted on each figure is
the predicted burst shape for the "focussed" condition. 1In
each case, the prediction is the same function, normalized
to have its area equal to that beneath the measured peak.
Agreement is not expected for any figure, rather it is to be

noted that as the length L approaches that "focussed" value,

2D
-80 meters, the measured burst shapes approach the prediction

for the "focussed" condition.
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each case, the prediction is the same function, normalized
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-80 meters, the measured burst shapes approach the prediction

for the "focussed" condition.
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Table VII-4

Conditions for measurements using clockwise rotation.

For all runs:

W = 280 cps. clockwise
= 1760 rad/sec. clockwise
_ o
GB = 38.3
Ag = 2.25 g
VB = 1780

cot GB = 1.265

oL

1 + wTB cot OB =1 + ;; cot QB
=1 - 1760 (1.265) L

1780

=1- 1.250 L

B =ﬁ_ &Q: 0
hv 2h
B

For figure 30 L2D = 1.51 meters 1-1.25 LG = -.83
For figure 31 L2D = 1.45 meters 1-1.25 L2D = -.82

. . = . -1. = -.5
For figure 32 L2D 1.27 meters 1-1.25 L2D 58
For figure 33 L2D = 1.07 meters 1-1.25 L2D = -.34
At "focus", 1 - 1.25 L =0 (L2D = .80 meters)
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CHAPTER VIII

DISCUSSION AND CONCLUSION

Comparisons of experimental data with predictions from
the theory developed above were displayed in the preceding
chapter for several situations. With regard to the justi-
fication of the theory by comparison with these data, let it
first be said that the experiments were designed for another
purpose. Therefore, some difficulties are to be anticipated,
due to the fact that certain conditions were not well estab-
lished and certain parameters necessary to the analysis,
were not well measured. This was true with respect to one
most important length, LZD from the rotor centerplane to
the detector. This length establishes not only the magnitude
of the factor (1 + wtr cot 6), but also the location of the
chopping rotor. The length L2D was inferred from measure-
ments of times of flight. A large number of burst shapes
were measured, of which those presented are only represen-
tative. For each measurement, the neutron velocity was
well known as well as time of arrival relative to the time
at which the chopping rotor opened (i.e. the flight time.)

The length L used here is the average value of the product

2D
of the neutron velocity and the flight time, from a large
number of measurements. It is also true that the knowledge
of the shape of the collimator P-gram is not exact, as was

already discussed.

Further there is the lingering doubt as to the chopping
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effect of rotcr 1, (which was assumed to have no effect on
the chopped beam.) This effect can be computed by the method
of this paper, but the approach undertaken here has been to
present formulae and methods adaptable to hand calculation.
As a»practical matter this almost precludes even undertaking
to estimate this effect, or to judge the conditions under
which it is present or absent, within a reasonable time.

With these apologies, the relatively poor agreement
between prediction and measurement shown for figure 36, may
not be surprising. This is so because in that case, the
effect of the collimator is exaggerated to its maximum

extent (because the factor (1 + wt,, cot eB) is largest.),

B
'and any errors in the samevfacto: (arising due to error in
L2D or inaccuracies in the description of the collimator)
are therefore similarly at maximum.

The situation with respect to figure 37 is in cohtrus£
to that of figure 3€.* Here, agreement between prediction
and measurement is highly convincing. This may be somewhat
fortuitous, but it is to be noted that in this case, the

~effects of the doubtful collimator data are smaller than for

the measurement of figure 36.

‘*Here one should note that there are two compensating effects
establishing the width of the burst shape, which is given by

=1 \
At = w(l + ercct QB)AJ + AY

collimator rotor

Ay

+ AY
coll. rot.
w * TBCOt eB AV’coll.
The first term is larger in the cases of the lower frequency,
while the second term, which varies as cosine 5 )1is smaller
for larger Bragg angles, and tends to compensatg.
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Further substantiation of the theory is exhibited in the
sequence of figures 28, 39, 40, 41, for varying lengths L2D'
In each case the unidirectional-beam prediction is super-
posed upon the plot of the measured function. To be especial-
ly noted is the fact that the measured functions approach
this prediction as the length L2D approaches the focussed
condition. '

Invthe light of these comparisons, it is concluded
thét the theory is well substantiated by the measurements.
However, the theory itself is intrinsically satisfying,
because of the insight it provides into the mechanism of
burst formation in a chopping device. This is in addition
to, of perhaps the basis for the fact that calculations of
the burst formation follow readily from the P-gram theory,
as it has been applied.

Reflecting, we can see those points at which signifi-
cant clarifications and simplifications have come about
due to the use of the P-gram theory. The first is the
manner in which expressions for the expected counting
rates are formulated, as in equations II-21 and IV-19. Here,
the expressions involve functions either subject to
straightforward measurement (as in the case of the inci-
dent neutron intensity), or available from other theory
(as in the case of the crystal reflection) or calculable
from the P-gram theory. Inasmuch as these formulae give
instantaneous counting rates, they can also be used to

give long-time-average counting rates, and resolution
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functions.

Second is the straightforward explanation the theory
provides for the effect of the monochromating crystal in a
chopped beam. Third is the ease with which the chopping
effects of several rotors in sequence can be understood,
by herely considering several rotor transmission probabili-
ties, that is, by superposing several rotor P-grams on the
same plane.

A digital computer code could be written applying the
P-gram concept to more complex systems. The code might be
one which samples points in the trajectory plane (z - ¥
plane), and makes decisions whether successive points be
within the P-grams for each element of a device. It
would be fairly easy to include the effects of semi-trans-
parent (as copposed to totally opaque vs. perfectly trans-
parent) components in such a code.

A further clarification of chopper dynamics is in
the theorem of Chapter III, which doubtlessly is not new,
and indeed has been proved approximately in reference 3.
However, the proof is without approximation here, and is
new in this context. The proof as detailed has the advan-
tage that the method for calculating apparent boundary
transformations is a part of the proof.

The methods of arnalysis presented here could be gener-
alized to treat many of the common forms of neutron spec-

trometers. Indeed these same techniques may possibly also

be applied to analysis of systems employing other radiations.



APPENDIX
EXPANSION OF THE FUNCTION Zu(ﬂ) ABOUT p = O

In order to avoid the difficulties associated with
calculating the values of the functions (V-30) and (V-34)
near the removable singularity at p = 0, we remove the
singularity in an expansion in powers of p. The term on which
we focus attention is the radical,

(@- + B8 4 n?/z = (QQ:)V2 (1 + ﬂ(l + Lﬁ)?/z

2 P P pod 20N

(A-1)

in which the largest term is %Q , the smallest, %o . The

binomial expansion

[~ =)
1-xP = 2 _(_-p)_n_ <" (A-2)
n=20 n:
where
(@ = (a)(a+1(a+2) ... (@+n-1) (a-3)
(@)g =1

applied to A-1 gives

oo . ps . 32 psd/2 = -3/ won o
GE+ M = (D) ——2(-1) (§p) (1+52)

n=0 n: [s19) 27
(a-4)
Another application gives
n
: n (-n) k 3
0, _ .. po
(1 + 2 = kT (D G (A-5)
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so that
oo n

3/2 3/2 (-3/2)_(-n),_
Bp , g 85
S +mo= EY = = w ( )nm
n=0%-=

k
pb .y + k

n
32 ©2 (-3/2) _(-n)
- (s__) 2 2 — o k(;)k(n)n k(Bl)n n+k ) nvk
n=0%k=20 :
(A-6)
For k2 O,
(—n)k =(-n){-n+ 1) ... (-n + k - 1)
= (-1)¥ n(n-1) ... (n -k +1)(n-%) ...1
_ (n-%X) (n -k -1) ...01
_ (1% n: ‘
(n - x)! , (a-7)
Thus

oo, B5 n$/2— (!_3_)3/2 2 2 (-372) (- nk l)k(ﬂ)n-k
o2 P _ n=0k_ok'(n—k)'2 5
o (%)n pn+k (_l)n+k . (A-8)

Replacing n by n - k everywhere leads to the more appropriate

form /S}
3/2 372 2 Ww/2) (-3/2) L (-1)P
oo é_ - (B8 E - n-k '~
5 1 () = k! (n-2 k)¢ =)
n=0%kx=0
n-2k n .
(9)RainvilleE.D.; "Special Functions", The Macmillan

Company, New York (1960) p. 56
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The symbcl in/zl is defined to be the greatest integer in
n . 7

n i a . L ‘ = '
> that is, for example, if > > n/2] 3.

In full, then the function Zu(n) may be represented

. n/2] n
2.2 . (-372)_ . (-1)
ap%? < X 1 k70 .n-2k n
-3 e = KT (no2%) | (- 38 (53 P

n=3%k=0
2.2 2 2 2 2 2.2
-4 BO 208, D° _B8Y _ 5p , PO , 4 B757
3 P3 p2 2p [ 8 [ 3 p3

(aA-10)

In this form the negative powers of p vanish, and

22 oo [n2 (-3/2)__, (-1)7

2
i 5% 4 p2s
2. (n) = R{- - = - - (x)
u 8 T3 3 ohnoo X ezl
1.k 0 \n-2k _n
w (- 35)" (53 P (A-11)

As 1is suggested by the form of the generating function,
the polynomials appearing in the expansion A-1ll are a type
of ultraspherical polynomial, of which the well-known
Legendre polynomiais are a spccial case. This knowledge
could be helpful in performing calculations from A-11,
except for the fact that these polynomials are not commonly

found in tabulated form.
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