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1. INTRODUCTION

The Thermosphere Probe (TP) is a rocket-borne system which contains various
experiments to investigate the upper atmosphere (Spencer, et al., 1965, and
Taeusch, et al., 1965). The instruments it carries measure geophysical param-
eters in the altitude range of 100 to 350 kilometers. The instruments normally
included in the TP system are a Langmuir probe to measure electron temperature
and density and one or two mass spectrometers to measure either neutral particle
density and temperature or positive ion density.

In order to accomplish these experimental objectives, the TP employs a
cylindrical configuration and a tumbling motion. The TP is a cylinder six inches
in diameter and approximately three feet in length. One or two mass spectrometers
are mounted so that each has its orifice centered in an end of the TP. The
Langmuir probe is mounted in the center section along with an optical aspect
sensor and the telemetry antennae. During boost, the TP remains inside the nose
cone of a Nike-Tomahawk vehicle. When the Tomahawk and the nose cone assembly
attain an altitude of approximately eighty kilometers, the entire system is
despun, and the TP is ejected. From that point on, the TP and the rocket continue
to separate at a rate of one or two meters per second until they reenter the
lower atmosphere. During the coast to peak and the fall back to earth, the TP
rotates freely with an end-over-end tumbling motion.

In order to evaluate the data received from the mass spectrometer experi-
ments, it is necessary to measure the attitude of the TP as it tumbles in the
thermosphere. The measurement of the attitude is accomplished by the TP aspect
system which is made up primarily of a solar or a lunar aspect sensor. By cor-
relating these optical data with the mass spectrometer output, a complete attitude
analysis can be performed. The purpose of the present report is to describe the
motion of the TP, the aspect system, and the attitude analysis.



2. MODEL OF MOTICN OF THE TP

2.1. ANALYSIS OF A TP EJECTION

Before the TP can be ejected, the spin rate of the rocket must be sub-
stantially reduced. Two despin mechanisms are employed to reduce the spin
rate from its nominal value of 6.6 revolutions per second. The first, called
a "yo-yo despin module" (Fedor, 1961), is illustrated in Figure 1. There are
two yo-yos, each of which consists of a 0.42-pound weight fastened to a cable
1/16 inch in diameter and 70 inches in length. The two cables are hooked onto
a cylindrical housing at the base of the nose cone. They are wrapped in
grooves 2.75 turns around the housing, opposite in direction to the anticipated
spin of the rocket. Immediately before the ejection, the release of the weights
causes the cables to unwind until they finally become unhooked. The increase
in moment of inertia of the system causes the spin rate of the rocket to be
reduced by a factor of about 8.

The spin rate of the rocket is further reduced by the opening of the clam
shells. When the clam shells are closed, the moment of inertia about the spin
axis is approximately 1.43 slug £t2. The moment of inertia about the spin
axis of the rocket with fully opened clam shells is approximately 17.5 slug
£t=. Consequently, opening the clam shells increases the moment of inertia
about the spin axis by a factor of nearly 12 and reduces the spin rate by the
same factor. The combined effect of releasing the yo-yo and opening the nose
cone is to reduce the spin rate of the rocket by a factor of about 100.

The ejection of the Thermosphere Probe begins with the opening of the nose
cone. When the clam shells reach an included angle of 150 degrees, a latch
releases the plunger spring. The plunger spring has a spring constant of 100
pounds per inch (K) and is initially compressed L inches (X, ). Upon being
released, the plunger is allowed to travel a predetermined distance where a
stop (Xmin) restricts any further expansion of the spring. This action causes
the TP to move coaxially to the rocket with an initial separation velocity
determined by the energy provided by the plunger spring.

The TP is caused to tumble by a moment imposed by the "Neg'ator."* The
negator consists of a spring motor and a cable which reels into the motor and
maintains an approximately constant tension in the cable. The negator motor is
mounted in the base of the nose cone, and the cable is hooked onto the side of
the TP as shown in Figure 2. Consequently, a moment is applied to the TP which
is approximately normal to the longitudinal axis. This moment is applied un-
til the TP has rotated sufficiently for the negator cable to become unhooked.

*"Neg'ator" is a trade name, hereafter used as a generic term for simplification.
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The deceleration force of the negator has three effects. First, the
separation velocity is reduced. Second, the TP is caused to tumble, that is,
to begin an end-over-end rotational motion. Third, the initial spin rate of
the TP can be significantly changed because the moment imposed by the negator
does not remain normal to the longitudinal axis of the TP. The spin rate of
the rocket influences the first two effects and primarily causes the third.
Both the tension force of the negator and the length of travel of the plunger
(Xmax-Xmin) can be modified in order to control the rate of rotation and
separation velocity of the ejected TP.

Certain assumptions are made in order to predict the motion of the TP
during its ejection. The rocket and the nose cone are assumed to be rotating
at a constant rate about the 2 axis of a nonrotating coordinate system called
the base system, shown in Figure 3. In this system the 2 axis is coaxial with
the rocket, and the % and § axes are defined to form a right-hand orthonormal
system. The negator cable is assumed to be without mass and to extend from the
hook on the TP to the source of the negator cable which rotates at a constant
rate (Qg) about the 2 axis in the X-§ plane. The negator cable exerts a force
on the rocket during ejection. It is assumed that the acceleration of the
rocket (and of the base system) is translational and that the moment imposed
by the negator on the rocket is negligible.

Under these assumptions, the separation velocity between the TP and the
rocket caused by the plunger can be calculated relative to the center of mass
of the system. Let M; be the mass of the TP, My be the mass of the plunger,
and Mz be the mass of the burned rocket and nose cone. An instant before the
plunger reaches the end of its travel, the TP and the plunger have a velocity
V; relative to the center of mass system, while the rocket has a velocity Vs
as shown in Figure L.
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Figure L. Velocity imparted by the plunger
spring as viewed from the center of mass.

By conservation of momentum

(My + Ma) V3 = Mg Vp , (2.1)
and by conservation of energy

1 1 1
EK(Xz -x2 ) = 5041+M2)V§+5M3 Vs . (2.2)

An instant after the plunger reaches the end of its travel, the TP continues
at V;, while the rocket and plunger have a velocity Vs. By conservation of
momentum

Mz Vo - Mo V3 = (Mo + Mg) Vg . (2.3)

Equations (2.1), (2.2), and (2.3) are solved simultaneously with the re-
sult



KMo (X2 - X%
5 ( - )

min
Y (2.k4)
* (My + Mo)(My + My + M) 7
2 2
+ M X - X
v K(Mi 2)( max min) (2 5)
2 Ma(M; + Mp + Mg) ’ ’
MaVs - MoV
= =2 - 271 . 2.6
Va Mo + Mo ( )
The TP and rocket will separate at the rate
Vg = Vi + Vg . (2.7)

A coordinate system called the TP system with principal axes ﬁ, G, and W
is rigidly attached to the TP. The W axis is along the longitudinal axis of
the TP. The U and ¥ axes are defined to complete a right-hand orthonormal sys-
tem, and the origin is at the center of gravity as shown in Figure 3. The TP
is represented in this system as having a point mass (M;) at the origin and as
haviﬂg an inertia tensor with principal moments I, Io, and Is about the G, G,
and w axes, respectively.

The path that the negator follows from the rocket to the hook depends upon
the position of the TP and of the source of the negator cable. If the line
from the source of the negator cable to the hook does not pass through the TP,
then the cable is assumed to follow a straight line. Otherwise the cable is
assumed to follow the shortestapath around the surface of the TP to the source
of the negator cable; Define H to be the vector from the origin of the TP sys-
tem to the hook and E to be the vector from the*origin to the point where the
cable leaves the surface of the TP. Note that E = H if and only if the cable
is not wrapped around the surface of the TP.

Let f be the vectog which represents the force exerted by the negator
cable on the TP. Then F is directed along the negator cable from the point
where the cable contacts the surface of the TP, and it has a magnitude equal
to the tension force of the negator.

>
F = fl}/é + f2§' + fsé\ . (2-8)



Let ; be the vector which represents the moment imposed by the negator on the
TP.

Tl{l\ + TZW/I\' + TsT{\\T . (2.9)
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Let R be a vector from the origin of the base system to the origin of the TP
system.

R = 1% + rof + ra?2 . (2.10)

Then the translational motion of the TP and of the rocket is described as a
function of time (t) by
a®r f f
n n n
> = ==+
dt My Mo + Mg

, for n = 1,2,3. (2.11)

The+rotation of the TP system is descr%be% in tefms of a total rotation
vector (Q), and the axes of the TP system, u, v, and w.

x A A A
£ = Wil + WV + waW . (2.12)

>
[

A A A
= WX t* upy + usz ,

A A A
ViX + Voy + vaz |,

<>
]

A A A AN
W = WiX + Woy + Waz . (2.13)

The transformation matrix from the base system to the TP system (TMX)
is

U1 Uo Us

TMX

i

Vi Vo Va . (2.]_1#)

Wi Wo Ws



The rotation of the TP system is described as a function of time by
Euler's equations (Equations 11-7, Symon, 1961)

dwy _ My - (I - Tp)wows
at I,

dws o My - (Il - I3)®1w3
= )

at I
dwg _ Mz - (Ie - Il)®1®2
gy I (2.15)

Finally, the time derivatives of G, 0, and w are computed by using the
equations

dun

EE— = WgVy, - WoW,

dvn

i WiW, - W3l

dwn

T = ®2Un - O1vp (2.16)

forn = 1, 2, and 3 (Equations 7-32, Symon, 1961). It should be noted that
there are only three independent conditions described by these nine equations
and that they are consequently redundant.

The entire system of coupled differential equations is solved simultaneously
by using Hamming's method of numerical analysis (Hamming, 1962). The initial
boundary conditions for this analysis are

]
H
N
—~
ct
1]
o
S~
L}
o
)

r(t=0)

r3(t=0) = distance from base of plunger to the
center of gravity of the TP,

dr dr
= = = =
20 (t=0) = —=E(t=0) = 0 ,
dr
3 (4= -
v (t=0) = Vg
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The solution of motion of the TP is presented as a computer tabulation of

certain parameters at uniform intervals in time (see Figure 5). These param-
eters are as follows:

DISTANCE is the 72 coordinate of the center of gravity of the TP in feet.

VELOCITY is the separation velocity of the TP and base coordinate systems
in feet per second.

TUMBLE RATE is the magnitude of the component of ¢ perpendicular to the
longitudinal axis in degrees per second.

SPIN RATE is the magnitude of the component of 5 parallel to the longi-
tudinal axis in degrees per second.

AXIS THETA is the ©-spherical coordinate of Z in the base system in de-
grees.

AXIS PHI is the ®-spherical coordinate of z in the base system in degrees.

WRAP ANGLE is the ®-spherical coordinate of the source of the negator
cable in the TP system in degrees.

CABLE LENGTH is the length of negatoi %able from the hook on the TP to
the source of the negator in the x-y plane in feet.

RELEASE ANGLE is the angle between the cable and the W axis in degrees.

When the release angle becomes approximately 90 degrees, the negator

cable will be released, and the TP will continue rotating at constant spin and
tumble rates. The computer solution is structured as though the negator cable
remained attached to the hook.

11



EJECTION SIMULATION FOR NASA 18,52 AND NASA 18.53

~ NEGATOR FORCE 2.000 POUNDS HOOK VECTOR 0,315 n.n 1,520 FEET
PLUNGER TRAVEL 1.090 INCHES INERTIA TENSOR 3.120 3,120 n,090 SLUG FT FT
_INITIAL WRAP ANGLE 20,000 DEGREES TP MASS 2,200 SLUGS

TTTIME DISTANCF VFLOCITY TUMRATE SPINRATE AXIS THETA AXIS PHI WRAP ANGLE CABLE LENGTH RELEASE ANGLE
NN 24432 5,642 N.0. 30,000 N.9 n.0 20,000 3.935 1.661
n,n5A 2.713 5.583 n.583 29.439 N5 352,728 19.956 1.550
faon 24991 5,523 1,167 284913 0.N58 353,406 _1.456
150 3,265 5.464 1.752 28.418 0.131 354.070 1.378
n2nn 3.537 5.405 2.339 27.949 n.234 354,721 1.319
A, 250 3.806 5.346 2.930 27.500 n.365 355,359 1.284
0,300 4.172 5.287 3,525 27.067 0,526 355,986 1277
n.3sn 4.334 5.228 4,125 26,646 n.718 356,601 1.305
~a40n 4,594 5.168 4,733 26,231 0,939 357,205 _ 1.375_
0,450 4,851 5.119 5.349 25,817 1.191 357.798 1.488
n.500 5,105 5.051 5.974 25.398 1,473 358,381 1.646
A 550 5.256 4,991 6,617 24,970 1.787 358,955 1.848
r.6nn 5.6N% 4,932 7.258 24.527 2.134 359,518 2.091
rL.65" 5.849 4.873 7.920 264,063 2.512 n.0T72 2.374
n. 700 6.792 4,813 8.596 23.572 24974 0.616 B 2.695
ALT5N 6.321 4,754 9.289 23,047 3.371 1.159 3.054
n.8nn 6.567 44695 11,010 22.481 3.851 1.675 3.449
N RSN 6,807 4.636 10,737 21,870 4,368 2.191 3,881
n.9nn 7.021 4.577 11.48"° 21.2% 4,922 2.697 4.348
n.o5n 7.258 4.518 12,252 20.478 5.513 3.194 4.853
1.n00 7.482 4,458 13.151 19.683 6.144 3.681 50396
1.057 7.774 4,299 13.874 18,814 6.815 4,158 5.976
1.100 7.922 4,340 14,724 17.862 7.527 4,625 6.596
IBER 8,138 4,781 15.6M4 16.821 8.283 5.083 7.257
1.200 8.350 4.222 16.515 15.684 9,083 5.531 7.959
1.25° 8.56n 4,163 17.459 14,444 9,929 5.969 8.705
1.300 8.767 4,113 18,438 13.095 11,823 6.396 0245 10,208 9.495
1.350 8.970 4,764 19.455 11,633 11.766 6,813 21.48% 10.403 10.331
1,400 9.171 3,995 20,517 10,051 12.762 7.219 21.671 10.59% 11.216
1.450 9.369 2,976 21.607 8.346 13.811 7.615 21.793 16.781 12.151
1.500 9.564 3.867 22.748 64516 14,915 8.0nN 21.844 _ 10.964 13,137
1.55™ 9.756 3.878 23,935 4,560 16.078 8.373 21.817 11,143 14,178
1.6M0 9,945 3,749 25,171 2.478 17.301 8.736 21.705. 11.317 15,276
1.650 1,137 3,689 264455 0,273 18,587 9,087 21.510 11.487 16.433
1.700 1n.313 3.637 27,794 -2.051 19.938 9,426 21.197 11,653 17,651
1.75¢ 10,494 3,571 29,188 -4,485 21.358 9.754 20.789 11.814 18.934
1.800 1N.671 3.512 30,640 -7.M18 22.848 10.071 20.270 11,970 20,285
1.851 11.845 3,453 32.153 -9.638 24.413 11,373 19.636 12.121 21.706
1.900 11.716 3.394 33,728 -12.325 26.N55 17,665 . 18,883 12.268 23,202
1.95" 11.186 2,335 25,368 ~15.058 27.778 11,944 18,797 12.408 24.775
2.n0" 11,349 3,276 217,175 -17.899 29.584 11.211 17,077 12,543 26,430
2.057 11.512 3.217 38.851 -20.549 31,477 11.466 15.884 12.673 28.170
2.100 11.671 3,158 40,69A -23.240 33,462 11.709 _  14.637 12.796 30.000
2.150 11.827 3.1799 42,617 -25.843 35,540 11.939 13.270 12.914. 31.924
2.200 11.981 3,739 44,610 _-28.311 37,717 12.156 11.790 13.025 33,946
2.250 12.131 2.98n 46,677 ~30,596 39,995 12.362 10.202 13.130 36.071
2.370 12,279 2.921 48,827 -32.643 42.378 12.555 8,519 13.227 38.304
2.350 12.424 2.862 51,037 -34,399 44,871 12,737 6.751 13.318 40.650
2,400 12,565 C2.873 53,329 -35.807 47477 12,907 4,915 13,402 43,114
2.450 12,704 2,744 55.694 -36.810 50,209 13,067 3.930 13.479 45.700
2.500 12,840 2.685 58,130 -37.356 53,043 13,215 1.115 13,549 48.414
FLY 12.972 2.626 60,636 =37.397 56,010 13.353 ~0.806 13.610 51.261
2.600 13,102 2.568 63,207 -36.891 59,104 13.482 -2.707 13,665 54,245
T2.650 13.729 2.509 65.839 -35,808 62.328 13.602 ~4.561 13.711 57.373
2.700 13,353 2.450 68,528 34,128 65.685 13,715 -6.340 13,750 60,649
2.750 13,474 2.391 71.266 ~31,848 69.179 13.820 ~8.014 13,781 64,077
2,800 13.592 2.332 T4.047 -28.979 72.810 13.919 -9.555 13.804 67.663
2.850  13.707 2.273 76.86N0 -25.553 76.581 14.013 -10.935 13.819 T1.412
2.900 13.819 2.214 79.696 ~21.617 80,494 14,104 -12.129 13.826 75.327
2,950 13,929 2.155 82.543 -17.239 84,549 14.193 -13.112 13.827 79.413
3,001 14,1035 2.096 85,1386 -12.502 88.747 14.282 -13.867 13.820 83.674
3.050 14.138 2.037 88,210 -7.508 93,086 14.372 -14.376 13.808 88.112
3.100 14,239 1.978 90,996 -24369 97.565 14,466 -14.632 13,789 92.730
73,150 14.336 1.919 93,726 2.79% 102.182 14.566 -14.629 13.767 97.529
3,200 14,431 1.860 96.376 7.856 106.934 14,675 ~14,370 13,741 102.509
3,250 14.522 1.801 98.925 12.692 111.816 14,797 -13.861 13.713 107.668
3,300 14.611 1.742 101.346 17.189 - 116.821 14,936 -13.116 13.685 113.002
3,350 14.696 1.683 103.615 21.243 121.944 15.097 -12.153 13.6%59 118.504
3.400 14.779 1.624 105,704 24.776 127.176 15.290 -10.992 13,637 124,167
3.450 14.859 1.565 107.588 27.731 132.506 15,525 -9.660 13.620 129.977
3.500 14,936 1.506 109.242 30,083 137.924 15.820 -8.180 13,611 135.921

Figure 5. Computer format for the mathematical solution of a typical
ejection of a TP.
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2.2. DESIGN OF THE EJECTION SYSTEM

The force of the negator, the length of travel of the plunger, and the
initial wrap angle can be adjusted to control the rotation rate of the ejected
TP. The initial wrap angle is the angle through which the TP is rotated in-
side the nose cone from the position where the hook and negator source are
aligned. In general, it is desirable to minimize the spin rate and to choose
a tumble rate suitable for the particular experiments in a TP. The ejection
analysis and computer program can be used to adjust the ejection system and to
achieve the desired tumble and spin rates.

The first step in the procedure for obtaining the design parameters of
the ejection system is to run the program with a series of data sets and solve
the ejection with a nominal length of travel of the plunger and a variety of
negator forces. To the first order of approximation the tumble rate at re-
lease is independent of the length of travel of the plunger. Consequently, the
final tumble rate can be plotted versus negator force as shown in Figure 6.
The negator force required for a desired tumble rate is easily read from this
graph.

Once the negator force has been specified, the length of travel of the
plunger is chosen. The program is again run, and the ejection is solved for
the chosen negator force and a variety of lengths of travel of the plunger.
Plots of the extension of the negator cable and of separation velocity versus
length of travel of the plunger can be made as shown in Figures 7 and 8. The
extension of the negator cable is defined as the difference between the cable
length before ejection and the maximum cable length required for an ejection.
From these graphs the length of travel of the plunger can be selected so that
the separation velocity is acceptable and so that the physical limitations of
the negator are not exceeded.

The third step in the design process is to solve for an initial wrap
angle which will produce the desired final spin rate. The program is run again
for a variety of initial wrap angles, with the negator force and length of
travel of the plunger chosen in the previous steps. The final spin rate can
be plotted as a function of initial wrap angle as shown in Figure 9. It
should be noted that the final spin rate is also dependent upon the initial
spin rate, so that a family of such curves can be constructed, each for a dif-
ferent initial spin rate. By the assumption of a nominal value for the initial
spin rate, an initial wrap angle can be chosen from this graph.
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2.3. MOTION OF THE TP AFTER EJECTION

After separation from the nose cone assembly, the TP is considered to be
free from all external forces except for the earth's gravitational attraction.
Under this assumption, a mass point trajectory can be calculated and fitted to
data obtained from radar measurements of position versus time. The result is
a flight history of position and velocity as a function of time.

The rotational motion is calculated under the assumption that the TP ro-
tates freely about its center of gravity. This motion is characterized by the
spin rate (ws), the tumble rate (wy =\wI + ws), the moments of inertia (I,
Io, Is), and the angular momentum vector (L) of the TP. 1In general, it is
assumed that I, = I, > I3, and that after ejection, remains constant through-
out a flight. As the TP rotates freely, its longitudinal axis generates a
conical surface symmetrical about ﬁ, as shown in Figure 10. This cone of mo-
tion is described by the angular parameter (8), called the coning angle. The
parameter & is degined as the angle between the cone of motion and a plane
perpendicular to L called the tumble-plane, and is determined by

Il(l)t
cot & = Toos (2.18)

— >

CONE OF MOTION\\

VELOCITY VECTOR

Figure 10. Motion of the TP in free space.
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3. ATTITUDE SENSING INSTRUMENTS

In order to measure the attitude of a body in space, it is necessary to
have information concerning the orientation of a body relative to two linearly
independent vectors (directions). 1In the case of the TP, aspect measurements
are normally made with reference to an optlcal vector toward the sun (S)
or the moon (M) and to a second vector (V) of the translational velocity of
the TP. Therefore, the TP has two independent aspect sensing instruments:
the first is an optical sensor and the second is a pressure gauge. These as-
pect sen31ng instruments measure two angular parameters which are used to
solve for L The optical aspect sensor measures the first parameter, the angle
between L and the optical vector S or M called ©__ or ©__, respectively. The
second parameter is an angular phase dlfference be%ween %%e outputs of the two
sensors and 1is called vy.

3.1. SOLAR ASPECT

The solar sensor is the primary attitude sensing instrument when a
Thermosphere Probe is launched during the day. It is an optical sensor which
measures the orientation of the TP relative to the solar vector (§8) and con-
sists of an array of light-sensitive elements mounted in the center section of
the TP.

The field of view of the solar sensor is a 360 degree fan which is symmet-
rical about and approximately normal to the longitudinal axis of the TP
(Figure 11). To be more specific, the field of view subtends the solid angu-
lar region which is bounded by two conical surfaces symmetrical about the
longitudinal axis. In terms of the TP coordinate system defined in Section 2,
the field of view contains a plane parallel to the a-v plane and extends about
one degree above and below 1t Therefore, the field of view is approximated
by a plane parallel to the a-v plane Wthh is called the solar sensor plane.

As the TP tumbles, the sun will enter and leave the field of view twice
during each tumble. When the sun enters the field of view, the solar sensor
will trigger and read out a coded digital signal. This digital signal contains
information about the value of the ¢-spherical coordinate of 8 in the TP sys-
tem. Consequently, at the tlme of each solar sensor readout, é (expressed in
the TP system) is in the 4-3 plane, and its ¢-position is known
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3.2. LUNAR ASPECT

For night launches, a lunar sensor is used in place of the solar sensor.
The lunar sensor is constructed by mounting the light-sensitive base-emitter
junction of a silicon transistor behind a glass plate which has been masked
by a series of concentric opaque rings. The lunar sensor is mounted in an end
of the Thermosphere Probe with the glass plate perpendicular to the longitudinal
axis. Consequently, the lunar sensor has a field of view which is a series
of concentric cones symmetrical about the longitudinal axis (Taeusch and Grim,

1967).

As the TP tumbles, the moon passes through the field of view, and the
sensitive area is alternately shaded and exposed to the moonlight. The resultant
lunar sensor output indicates the minimum angle between the TP axis and the vec-
tor toward the moon, and also indicates the time during a tumble at which the
minimum angle occurs. The minimum angle is interpreted as n/2 £+ 6_  + &, and
the angle y can be calculated from the time relationship of pressure maxima
and the times of minimum angle to the moon vector. The net result is that
the mathematical analysis is nearly identical to the case of solar aspect.

3.3. VELOCITY VECTOR ASPECT

The second aspect sensing element in the Thermosphere Probe is an axially
mounted pressure gauge. An omegatron mass spectrometer (Niemann and Kennedy,
1966) is mounted in an end of the TP with its orifice symmetrical about the
longitudinal axis. Although the primary function of the omegatron is to
measure atmospheric density, its output also reflects the angle between the
velocity vector (V) of the TP and the longitudinal axis. The output of the
omegatron is at a local maximum approximately when the angle between ? and
the longitudinal axis is at a minimum. This relation allows for the calcula-
tion of y, the tumble angle from the point of minimum angle of attack to the
point of the nearest solar sensor output.

3.4, FEARTH NORMAL ASPECT

It is also possible to perform the attitude analysis with reference to
the optical vector and a vector toward the center of the earth called the earth
normal vector. In this case a horizon-sensing instrument is mounted in an end
of the TP. When the longitudinal axis of the TP crosses the horizon, the ther-
mal radiation of the earth's lower atmosphere is detected, and the sensor
"turns on." When the second horizon is crossed, the sensor "turns off." The
longitudinal axis of the TP is assumed to be at its minimum angle to the earth
normal vector, midway between the times of turn on and turn off. Consequently,
the earth normal vector can be used as a reference vector for determining atti-
tude in the same manner as the velocity vector, and the mathematical analysis
is identical.
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4. PARAMETERS OF THE ATTITUDE SOLUTION

4,1. TUMBLE-PLANE COORDINATES

Solving for the attitude of the Tgermosphere Probe necessitates solving
for the total angular momentum vector L. In order to arrive at a mathematical
solution, certain parameters are measured from the outputs of the optical sen-
sor and from the pressure gauge. These parameters are easily visualized if
the rotating TP is viewed in the special coordinate reference frame called the
tumble-plane coordinate system (Figure 12). Let the vector £ be the local 2
axis, and th? % axis be defined as the projection of 8 (or M) into the tumble-
plane. The y axis is constructed by requiring a right-hand orthonormal coor-
dinate system:

N>
it
>
-

A P
y = LxS ,
X = §xz . (4.1)
Then in this system
8§ = % sin O * Z cos 6 > (h.2)
T = % cos o sino._ +9 sin 6_sin 6. + 5 cos © (k.3)
w7 v LV w o’ 3

where

O g is the angle between i and @,

A A
eLV is the angle between L and V,

A
¢V is the ¢-spherical coordinate of V.

In this %oordinate system, the rotational motion of the longitudinal axis of
the TP (w) is described as a function of time (t) by

@ = % cos wg(t - ty) cos & + ¥ sin wg(t - ty) cos & + 7z sin &

(b.1)
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where w; 1s the tumble rate. Then define the tumble angle as ¢LO = w%(t - to)
which is the ¢-spherical coordinate of the TP in the tumble-plane system.

>
]
N>

L

TUMBLE-PLANE

>
™~

A
| \'
: OLs 6L :
! l
! I
! |
] ! A
I S ' '
~ I
{ ~\-\_ |
: >
' ¢v‘/\\~‘.\
~
~

A
X
Figure 12. Tumble-plane coordinate system.

This mathematical representation can be applied to the models for the
field of view of the solar sensor and for the conical motion of the TP in or-
der to predict the relative time that the solar sensor will trigger. If the
motion of the TP were planar, then the solar sensor would trigger when
¢L = * /2. 1In general, the motion is conical with a coning angle &, and the
sogar sensor field of view is notnecessarily plan%r. IR will be assumed that
the solar sensor triggers when the angle between w and S becomes (n/2) - f, where
f is the angular deviation of the boundary of the solar sensor field of view
from the solar sensor plane. Nonzero values of & or of f cause the solar
sensor to trigger at a tumble-plane angular deviation (e) from the simple case
(Figure 13). Therefore, sun pulses occur when ¢_ = * (n/2 + ¢). The value
of € can be calculated in the following manner: at the time of a sun pulse,
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=>
w>
1

sin T,
W = - % sin e cos & * § cos € cos § + z sin %,
i = - si in ©__ + si cos ©_ .
sin f sin € cos & sin IS sin & 1S
Consequently,
sin ¢ = cot 6., tan 8 - sin f/cos & sin 85 - (L.5)

The parameter ¢ is a signed angle and - n/2 < ¢ < + n/2. Normally e is small
enough so that it can be neglected in the aspect computations.

N>

b4

i )

CONE OF MOTION

A

A
w w
SENSE- | SENSE-2
SUN PULSE X 1\SUN PULSE

TUMBLE—PLANE

Figure 13. Solar sensor triggering.

L.2. THE PARAMETER Yy

The primary parameters in the solution for attitude can be expressed in
terms of the tumble-plane coordinate system. The first of these is called vy.
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A
The parameter y is defined as the angle between the projection of V into the
tumble-plane and the vector w at the time when ¢LO = * n/2, with the restric-
tion that - n/2 < y < n/2. In other words,

y = mf2 - ¢ or y = 3nf2 - ¢ (4.6)

W v’

whichever is smaller in magnitude.

The angle y can be measured directly from the outputs of the pressure
gauge and the solar sensor. The axially mounted omegatron sees a local maxi-
num pressure once during each tumble. This occurs approximately when the angle
between w and V, called the angle of attack (a), is minimal, that is, when

= 0. Because of the relation between & and the output of the omegatron,

tﬁe time when ¢LO ¢V can be measured for each tumble. Then y is calculated
by

(%.7)

T on [fime of nearest sun pulse - time of omegatron maximum
7 tumble period

Certain small corrections must be applied to this direct estimate of y. The
omegatron response is not instantaneous since the ambient density changes
rapidly as the TP moves along its trajectory, and ¢ may not be negligible (see
Appendix A).

For the case of lunar aspect, y can be computed in a similar manner. The
angle ¢V is calculated from

or [time of center of moon pulse output - time of omegatronpea%]
A L tumble period ’

©
"

(4.8)

and then y is given by Equation (4.6).

4.3, THE PARAMETER eLS
A
TheAseconQ important parameter in the determination of L is ©__, the angle
between L and S. TIts value is determined directly from the output of the
solar sensor.

In order to derive the expression for © g first assume that the TP is not

rolling, that is, wz = O. In this case ® is zero, and consequently € is zero.
The angular momentum vector is continually in the plane of the sun sensor.
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Because of the zero spin condition, I will be located at a constant angle (¢4)
on the sun sensor angular scale. At time t, the sun moves into the plane of
the sensor, and the sensor reads out its angular location ¢p. Half a tumble
later at time tp4j, the sensor reads out an angle ¢p,7. Then

6 = + 0
n % s ?
= ¢_ 5 O
*n+1 o* “rs
+ 20 = - . .
2 IS CDn d>n+l (h 9)

If the TP is rolling slowly, Equation (4.9) can be modified to account
for roll:

28, = o - En’“l - u>3(tn+l - tn)] . (4.10)

In general, ws is sufficiently small so that & and ¢ can be neglected,
and the expression for 6__ will yield valid results. If these simplified con-
ditions do not exist, then a more detailed analysis is necessary to account
for large € and large & (see Appendix B).

It should be noted that © s cannot be distinguished from n - ©6__ unless
additional information is avai%able. If there were some way that a sun pulse

occurring at ¢_ = - 5/2 could be distinguished from one at ¢__ = + x/2, then
the exact © could be determined. If a sense-1 sun pulse is defined as one
which occurs when ¢_ = - n/2, and a sense-2 sun pulse as one which occurs

when ®LO ¥+ n/2, a%g a sense-1 sun pulse occurs at time tn’ then

= +
d)n ¢o eLS ?
= [0) - -
¢n+l o eLS CL)r( n+l tn) ’
and
Brg = 0 -0 - wr(tn+l - tn) . (k.11)

Therefore, if the sense of the sun pulses is known, the exact ©__ can be

determined. Otherwise, eLS is known to be either an angle or its supplement.
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5. SOLUTION FOR ATTITUDE

5.1. SOLUTION FOR ¢LS

N
Once the angles y and 6__ have been determined, the solution for L is per-
formed in another coordinate reference frame called the sun-velocity coordinate
system, as shown in Figure 14, Tt is defined as follows:

<> N>
] ]
n wn>
o

<

.

bd>
"
>
X
N>
o
l—‘

Make the following representations:

(5.2)

<>
i
>
1}
i_]
]
D
+
N
[¢]
(o]
1)
)

A AN A A
= in 6 + in 6 i + . .
L X sin rs €08 orq Y sin g Sin oo + Z cos eLS (5.3)
Assume that the TP is tumbling is a plane; then a sun pulse will occur when

W@(sun pulse) = +*+ S x L = (X sin ¢__ - Y cos ¢L ) . (5.4)

>
Define an intermediate vector A:

<>
o}
>

E = (5.5)

It can be seen in Figure 15 that both Q(sun pulse) and K are in the tumble-
plane, and that

|Z] |sin y| = |E.%(sun pulse)| ; or

> 2 > >
[Q(sun pulse)-A] = A-A sin®y . (5.6)
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Figure 14. Sun-velocity coordinate system.
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Figure 15. Aspect solution in the tumble-plane coordinate system.
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A A A
A = VxUL

A
= - in © in ¢
X(-cos 6y Sin 6,4 sin LS)
AN
i - C] in ©
+ Y(cos eSV sin eLS cos ¢LS cos O o sin SV)
A
+ i in © iin ¢ . .
Z(sin Bgy Sin O 4 81 LS) (5.7)
A >
. = S} i - e in © . .
w(sun pulse) A cos ¢LS cos 6, sin eSV cos 6, sin O o (5.8)

By substituting Equation (5.8) into Equation (5.6)

2 2 . 2 .2 2
c] S] + (] cos“©
cos ¢LS cos IS sin sy sin IS o) sV

- 2 cos ¢LS sin eSV cos eSV sin eLS cos eLS

equals

sin2¢LS sinzeLS sin®y + cos2¢LS c0326SV sinzeLS sin27

- 2 2
+ S o
sin®6., cos"O o sin%y

- 2 cos ¢LS sin eSV cos eSV sin eLS cos eLS sin®y . (5.9)

—

Then by substititing sin®¢__ = 1 - cos®¢ Equation (5.9) becomes a quadratic in
g )

cos ¢LS' The solution of %ﬁis quadratic Is
cos ¢ - 22 © - bac (5.10)
1S 2a )
where

. 2 .2 . 2 2
= 6 +
a sin SV(Sln v sin“o s cos“6 S) s

b = - 2 in © : 2
2 cos gy Sin 8., cos eLS sin eLS cos%y ,
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. 2 . 2 .. 2
c = cos®e sin”o - 8in“y sin™®

.. 2 2 .. 2
- sin cos“6 sin“e .
sV 1S 7 s o

LS SV

The above expression yields two distinct values for cos ¢__ which in turn yield
four solutions for ¢__. In order to resolve the ambiguity of four solutions,
two or more separate aspect determinations are performed for a flight. By com-
paring the sets of solutions for ¢__, extraneous solutions can usually be
eliminated and the accuracy of the correct value of ¢ S can be improved. Once
¢LS is known, then L is given by Equation (5.3).

A second method for finding the value of ¢ involves exploring the func-
tional relationship between vy, ¢ g9 and GL . The previous method approached
this problem by considering ¢. %o be a muitiple—valued function of y and ©
Perhaps a more natural approach would be to consider y a single-valued func-

ti o d e__.
ion o IS an IS

y = 7(¢Ls’eLs) = 5(I) . (5.11)

This relationship holds over the range

and

It is also noteworthy that this function has the following symmetry:
A A
7(L) = - y(-L) . (5.12)

If 6_, were held constant and equal to the measured value, then y could
be considered a function of ¢__ only. The second method involves fixing the
value of ©__ and computing the value of (¢ S) for values of ¢ o taken at one
degree increments over the entire range of ¢__. Then ¢ g can %e looked up
directly from the resultant tabulation of (9 S) which %s plotted in Figure 16.
The actual computation of y is done on a digi%al computer by usingAthe following
method. Given values of ¢__ and 6__, the cartesian components of L are com-
puted. Then a makrix transformation for a tumble-plane coordinate system is
constructed, and V is transformed into this coordinate system by a matrix
multiplication. The value of ¢V is computed and then y is given by Equation

(h.6).
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The mathematical methods of solving for ﬁ can be applied when the earth
normal technique of evaluating the attitude of the TP is employed. This tech-
nique requires a horizon sensor in the TP, and the agalysis is identica% to
the previous analysis with the earth normal vector (N) substituted for V. Both
the velocity vector method and the earth normal method may be employed to
evaluate the attitude of the TP.

The velocity veckor method has the advantage that 9 changes significantly
during a flight. As V changes, the parameter y changes inAa continuous manner.
As a result, three of the four mathematical solutions for L will wander, and
the correct solution will remain constant. Consequently, the redundancy in the
solution for ¢;q is easily resolved. The disadvantage of the velocity vector
method is that the measurement of y can have significant systematic errors.
This problem is caused by the difficulty in measuring the time when o is mini-
mal (see Appendix A). An ambient particle wind can also complicate this prob-
lem.

The earth normal method has the advantage that horizon sensing instru-
ments can resolve the earth's horizons to an accuracy of better than one de-
gree, This resolution exceeds the accuracy with which y can be determined in
the velocity vector method. Consequgntly, the earth normal solution for I is
the more accurate method. However, N does not change significantly during the
time of flight, so that the redundancy of the solution for ¢__ cannot be re-
solved by this method. The earth normal method also has the disadvantage that
the horizon sensor, occupying an end of the TP, limits the space available for
other instrumentation. Another disadvantage is that in sounding rocket appli-
cations the cost of horizon sensors can be prohibitive.

5.2. CALCUIATION OF ANGLE OF ATTACK

A
After  and L have been determined, t%e angle of attack (o) from the TP
longitudinal axis to the velocity vector (V) is calculated. The usual tech-
nique for reducing TP data requires only the minimum angle of attack during a
tumble (o, ), which is given by the relation

. AN A
sin (Oﬂin +8) = L.V (5.13)

The angle (ogy) from any vector fixed on the body of the TP (@) to any
other reference vector (R) can be calculated after the cone of motion is known.
The general method for calculating Ogp is to compute the attitude of the TP
and then to express the TP fixed vector and the reference vector in the same
coordinate system.

The first step is to construct the axis vector of the TP %) as a func-
tion of time. If a sense-l sun pulse occurs at time t,, then w is given as a
function of time (t) by
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Q(t) = ¥ sin o, (t - tn) cos & - ¥ cos wt(t - tn) cos 8 + 2 sin & .
(5.14)

where Q, §, and 2 form the tumble-plane coordinate system. Now, define a co-
ordinate system with axes X, Y, Z, where

A
Z = w
A
? = @x1 ,
A A A
X = Yx2Z (5.15)
A
The vector fixed with respect to the TP (F) is represented by
A A A A
F = X sin ¢ cos eF + Y sin ¢ sin eF + 7 cos eF R (5.16)

whexe Op is the angle between ﬁ and Q, and where ¢ is the ¢-spherical coordinate
of F. The value of 6y is a known constant, and ¢ is calculated as follows:

let ¢p be the angle on the sensor scale of the projection of F into the solar
sensor plane. Then

o = ¢F -0 - eXS + wg(t - tn) , (5.17)

AN A A
where 6__ = cos~1(X-S). Therefore, if R is the known reference vector, and F
has been calculated,

Oy = cosTHR-F) . (5.18)
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APPENDIX A

MEASUREMENT OF vy

The parameter y is defined as the tumble angle from a minimum angle of
attack to the nearest ideal sun pulse, and ranges from - n/2 to + n/2. Its
measurement from telemetered aspect and pressure gauge data is complicated by
the following:

1. Sun pulses are displaced by the angle ¢ from their ideal location.
This error can be corrected by using Equation (4.5) to calculate c.

2. The finite acoustic conductance of the antechamber of the dmegatron
causes a time delay in the pressure gauge output which is strongly dependent
upon the dimensions and the shape of the antechamber.

3. The change of ambient density with altitude shifts the peak pressure
in time away from the point of minimum &. The amount of shift is dependent
upon the velocity of the TP and upon the rate of change of density with al-
titude. This time shift can be calculated on the basis of a closed source,
the pressure gauge chamber (Ainsworth, et al., 1961; Schultz, et al., 1948).

n, = na,'Ta/Ti F(s) . (A.1)

'2kTa
S = S cosa = Vcos oy\ - (A.2)
F(S) = exp - 5 +Vx S[1 + erf 5] . (A.3)

The parameter S can be represented as a function of time where t, is the time
of a peak pressure and w(t - ty) is much smaller than n/2.

EkTa
S =V -
cos a . cos wt(t to)/' -

In this representation, at t = t_, the TP is at the minimum angle of attack.
If the pressure gauge shows a maximum pressure at time t = to + At, then At
will be the time shift of an omegatron peak. To solve for At, set

(A.4)

an,
—= (at) =
o (4%) 0
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By differentiating Equation (A.L4)

as o ainT
— = - = + t t -t +
at Sy + @ tan o o) T o
&) | S (1L + erf s)
dt
ainT
d4nF(S) Vs g a
= - + = + - +
Tt F(s) (1 + erf S)E] @ tan wt(t to) e
dn, din n dInT
1 i a a
—_—— = 0 = +
n, d dt 2dt
i
\/; S' d}ZnTa
- +erf S)|1B+w, t t -t )+
F(S) (1 + erf 8) I3 + o, tan o o) ¥ Za
Let us assume that a)t At <K 1
din n d/ZnTa
a
+ a
F(So cos O[min) dt 2dt mTa ~ o At
N cos @, [L+ erf S cos a . ] v 2dt ¢
o min o) min
By the ideal gas law and the hydrostatic equation
ainT din n
a ., a _ _ mg
dh dh kT
a
din n dsinT v aT
a a z |mg a
+ = - + —
dt 24t Ta k 2dh
Therefore,
ng dTa]
V F(S a 4 —
- 4 ( 0 cos min) k 2dh § Vz
wTV Ewt

2T S cosa . Nx [L+ erf S cos o . ]
a o min o m

t in
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Where

h = altitude
g = gravitational acceleration
v, = TP vertical velocity
V = TP total velocity
m = molecular weight of gas
T, = ambient temperature
wy = tumble rate in radians per second

S = speed ratio = V/(most probable thermal particle velocity)

S = V(normal to orifice)/(most probable particle velocity).
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APPENDIX B

GENERAL eLS ANALYSTIS

Let a sense-1 sun pulse occur at time t,, sense-2 at t ,,, and sense-1
again at t,,,. Represent the TP vector as

A A A
w(tn) = W= W, (B.1)

A
As in Figure 17, define a vector C by

77N

A
c(t ) = Lxw = C . (B.2)

w>

CONE OF oo

MOTION OF TP

= ——
——
—~—
-

‘/\TUMBLE—PLANE

Figure 17. General eLS analysis.



Consequently,

A
én-wn = 0 . (B.3)
A A

Sew = 0 . (B.k4)

AN
Define the angular parameter 6% as the angle between § and C . Then

n
ASERAY
cos 6% = S-Cn . (B.5)
where, in the tumble-plane system
§ = Xsine__+ 7 cos 6 | 6
= xsin O  + 7z cos 6, . (B.6)
A A A
Cn = x cos € -y sin € . (B.7)
cos ©% = sin eLS cos € ,
cos O
in © = — . .
St s cos € (.8)

Therefore, if both ©* and e can be measured, eLS can be calculated from Equation

(B.8).

Let us assume that 61g < n/2. Also assume that the TP is spinning with
a constant spin rate ws, and that the solar sensQr reads out the angle ¢, at
tn, ®n+1 at tps+y, and op4p at tpyo. Now since Cp is situated in the plane
of the solar sensor, it will have an angular position in the sensor scale.
Call this position ¢,. Consequently,



c n+2
n+2
® = % 7 O“\:"(tnﬂ_ - tn) ’
n+l n
= + - . .
°, °, w3(tn+2 tn+l) (B.9)
n+2 n+l
Now solve this system for ©%;
* = - + - - + . .
Lo ws(tn 2tn+l tn+2) (¢n 20 1 ¢n+2) (B.10)

Note that this analysis is valid only if ©1g < n/2. Also note that all
arithmetic with angles is done with a modulus of 2m.

In the case where n/2 < 61g < 1
¢ - ¢ = -0%
c n
n
¢ - ¢ = 6% - ,
n+l
n+l
- ¢ = =B% . .
°, o (B.11)
n+2
The resulting solution is
-hox = t -2t -t - (o - - .
ws( n 2 n+l n+2) ( n 2¢n+l <|)n+2)
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