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Abstract

The equivalence of the Landau and Van Kampen treatments of the in-
itial value problem for plasma oscillations is demonstrated. Using com-
pleteness and orthogonality theorems for the normal modes, an integral
representation for the solution of the initial value problem is obtained
which is shown to be identical with that obtained by modifying the inte-

gration contour in Landau's Laplace Transform solution.
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I. INTRODUCTION

The initial value problem for an electronic plasma has been solved
by two strikingly different methods. Landau (1) has given a solution us-
ing a Laplace Transform technique. Van Kampen (g) has solved the problem
by means of a normal mode expansion. Since both approaches have some
puzzling features, it is interesting to see the complete identity of the
solutions. This is shown below utilizing an orthogonality property which
is proved. The results obtained in order to prove the identity are rath-
er interesting mathematically, as they indicate that many of the classi-
cal completeness and orthogonality theorems hold for quite pathological
operators.

The plan of this paper is as follows. In Section II the derivation
of the fundamental equation is sketched, primarily to introduce notation.
The equations considered are identical with those treated by Landau and
Van Kampen except that the unperturbed distribution is left arbitrary.
The normal modes are described in Section III. Next, the adjoint equa-
tion and its normal modes are discussed. In Section V, which contains
the crux of the proof of identity, an orthogonality theorem is proved
for solutions of the original and adjoint equations. The appropriate
normalization constants for the orthogonality integrals are also obtained.
A completeness theorem is then proved by an almost trivial modification

of Van Kampen's method. 1In Section VII, Van Kampen's normal mode solution



of the initial value problem is given. Landau's Laplace Transform ap-
proach is slightly changed in Section VIII by the introduction of two-
sided transforms. By deforming the integration contours for the solution,
we obtain Van Kampen's results. It is then apparent that the Laplace
Transform method gives a generating function for the "improper" eigen-

functions of Van Kampen.

II. FUNDAMENTAL EQUATIONS

In our model of the plasma the positive ions will be imagined to be
smeared out to form a uniform background. Collisions are omitted and
the electron distribution is considered to be but slightly perturbed from
a spatially uniform but otherwise arbitrary distribution. Finally, we
consider only longitudinal waves in an infinite medium.

Since only the electrons are treated dynamically, we have but a sin-
gle distribution function F(?,%,t) describing the system. Neglecting col-

lisions, this satisfies the Liouville equation

§E+$»vF +3-V.F = 0 . (1)

>
Here the local acceleration a is given in terms of the electron charge
>
(e), mass (m) and the local electric field E by

>

>

a = ek (7,t)
m

The electric field is then determined in terms of the electric charge

->
density p(r,t) by



where

o(T,t) = edeS% - 0y (3)

and Po is the uniform charge density due to the positive ions.

We now linearize the equations, writing
+f , (L)
where f, is a given time and space independent function of velocity (for
example, Ty might be a Maxwell distribution) and f is assumed small.
Inserting the "Ansatz'" for F in the previous equations and neglecting

terms of higher order in the perturbed quantities gives

of = e >
— 4+ v.Vf + — By, T = 0 . (5)
ot m Voo
>
Introducing a scalar potential by E = —V¢, we have

g - -Lmeffoﬁ?f . (6)

Since the coefficients in (5) and (6) are independent of position we can

treat the spatial dependence by Fourier decomposition. Restricting our

> >
attention to one Fourier component, i.e., writing ¢, E, f~ elk'r and
->
omitting an implied index k, reduces the above to
of > > > bre? \jf >\ a7
=— + 1k-vf = 1ik:Vyf f(v)d=v

and
be >
¢ = —_k2 ffdsv o ( 8)

In velocity space we introduce axes along and perpendicular to the

.
vector k. The components of 3 with respect to these axes are then written
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->
as VH and Vl° With this notation we have, for example,

-> >
u/\fdsv = b/\f(v“, Vl) av)| d?l . (9)
For many purposes, for instance, to calculate ¢, we are only interested

in the function g(v|) defined by
I

ff(vH, \71) d?fl = glv) (10)

>
Integrating both sides of (7) over all Vl then yields

g% + ikvg(v,t) = -ikn(v)h/ioo g(v')dv! (11)
with
L et D
ﬂ(VH) = ZiZ S;ﬂ \/pfo( IE l)dvl . (12)

Many authors (l,g) have noted that, for an isotropic distribution

fo(v), (12) simplifies to

n(v) = e Vfo(V)

However, we will here make no use of this simplification.

Finally we note for future reference that ¢ is given in terms of

g(v) by
g - 52 ] st (13)

Our basic problem will be to solve (11) given g(v,0). The electric

field at any time t is then to be obtained using (13).



ITI. NORMAL MODES

Following Van Kampen (g) closely, we first consider the normal modes
corresponding to (11). The only difference from his work is that we will
(a) not specify n(v) and (b) prove some orthogonality relations which make
the normal mode expansions trivial.

Let us look for solutions of (11) which vary exponentially with time,
i.e., g~ e ¥ 1abel solutions by

v = o/k

Then our "eigenfunctions" will have to satisfy the equation

(v-v)g (v) = -n(v) [ g lvilav' . (14)

It is convenient to classify the eigenvalues and eigenfunctions in

four groups.

CLASS 1la

For these solutions v is real and n(v) # 0. In later work we will
say that such points v are members of the set 2. It may be noted that
these are the only solutions for the Maxwell distribution and hence were
the ones considered by Van Kampen (2).

Normalizing the solutions so that

e

f g vi)av = 1 (15)

-00

shows that



g () = -2 U () s(vw) (16)

Vv -
Here ® denotes the Dirac delta function and the P signifies that the
principal value integral is to be taken when integrating the expression
for gv(v) with respect to velocity. The normalization condition (15)

gives

vV -V

AMy) = 1+ P\jp nlv)dv . (17)

-00

CLASS 1b

Here we have v real and n(v) = O. We can proceed exactly as above,

obtaining
g () = - P L) vy (18)
where again
O 1+/“:1f%Y . (19)

In (18) the principal value sign is of course now not necessary. How-
ever, it is convenient to carry it along since it serves to remind us

that in integrating with respect to v we are to omit the points of Class

lc.

CLASS 1lc
These are exceptional cases of Class 1lb which occur when v is real,
n(v) = 0 and N(v) also vanishes. These can only occur for a finite num-

ber of points v; where i = 1,2,---m. These solutions are

gy (v) = gi(v) = ) (20)
V-'Vi



where again

00

/ gl(V)dV = 1 . (2]_)
CLASS 2

These are solutions for complex v. Again taking

\[mgv(w -1,

-0

we have

g lv) = W) (22)

V-V

The normalization condition then again determines a finite discrete set
of points vj where J = m+l,m+2,...n.
The varieties of solutions can then be summarized as follows: We

have a continuum of solutions for all real v such that not simul taneously

n(v) = 0 = Avy) = 1+f nvlav (23)

V- Vi

We have a discrete set of solutions for 121 such that either v; is com-

plex and

/‘mm .

V=v3

or v; is real with n(v;) = NMvy) = O.
There are twoc important points to note.

(a) All solutions have been normalized so that

(o]

/ﬂ gv(v)dv = 1 . (2L)

00

(b) We assume, for simplicity only, that all roots v; are simple.
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IV. THE ADJOINT EQUATION

Along with our fundamental (11), it is useful to consider an adjoint

equation which we take to be
~ : [o¢]
o8 + ikv g(v) = -ik /’ n(v') glv)av' . (25)
3t J .
The utility of studying this equation is shown in the next section. Here
we show that to each eigenvalue v of the fundamental Eg.(1l) there is an

eigenfunction of the adjoint Eq. (25). Thus for each v of the previous sec-

tion we consider the equation.

, 00

) B = - [l Blvar (26)

-00

To exhibit the solutions we parallel the decomposition of v into classes.

CLASS 1la

v real, n(v) # 0. We normalize g, so that

(o]

JF n(v') g (vi)av' = 1 . (27)
Then (26) becomes
(v-v) B {v) = -1 , (28)
with the solution
g v) = -P L 4+ X(v) s(v-v) , (29)
V-V

from which we obtain, using the normalization condition (27),

V-V

Xv) n(v) = 1+ P‘/h Av)dv A v)
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2
>
<
=

Mv) = . (30)

=3

—
<<
~

CLASS 1b
This class is characterized by: v real, n(v) = 0, AN(v) # 0. For
solutions of this class we can take

gv) = 8(v-v) (31)

since inserting in the right-hand side of (26) gives

b/\ g(v) n(v)av = q(v) = 0

-00

[Hence, &, (v) given by (31) does indeed satisfy (26).]

CLASS 1lc
Here n(vy) = 0 = N(v;) with v; real. Normalizing according to (27)

gives

1

By, (V) gi(v) = - L1 . (32)

Inserting this expression in the normalization condition yields an iden-

tity in virtue of (23) which defines vj.

CLASS 2

Here v is complex. Again we normalize according to (27). Then

Bi(v) = -1 . (33)

Again the normalization condition becomes an identity.



V. ORTHOGONALITY PROPERTIES

The eigenfunctions of the adjoint equation which have Jjust been con-
structed become useful because of the following theorem.
Theorem:

The functioms gv'(v), g,(v) are orthogonal for v # v'.
Proof:

We rewrite (14) and (26) in the forms

[ee]

velv) = veg,(v)+nlv) / g lviav' (141)
and
VA = v ¢ [ ) Baleae L (260)

Multiplying (14') by g,:(v), (26') vy g,(v), subtracting one from

the other, and integrating over all v gives

Gov) [ Bl gyfvav = o, (34)

which proves the theorem.

To apply this orthogonality theorem to an eigenfunction expansion,
it is necessary to know the value of the orthogonality integral for
v = v'. Since we have the explicit form of the functions, these may be
calculated directly.

There are three cases of interest.

10



A. DISCRETE EIGENVALUES

We have
[ B g = ey (35)
with
. =me<1Y_
1 L (v-v3)2

It may be readily verified that the assumption that v; is a simple zero

of the characteristic equation

1 +f°° I](V)dv - 0

V—Vi

=00

implies that C; # O.

B. v IN CLASS 1b
n(v) =0, N(v) # 0, v real. We find on substituting from (18) and

(31) that

f gy (v) gy(viav = ¢, s(v-v') (36)

with

¢, = NMv) # 0 . (37)

C. v IN CLASS 1la

A little care is needed in performing the integrals since we are in-
tegrating the product of two quite singular "functions'" - namely, the
two principal value functions. However, an application of the Poincarg-

Bertrand transformation formula (3) gives the result of (36) where now

11



2V 4 oo . (38)

VI. COMPLETENESS THEOREM

To use the normal modes of Section III for expansion purposes, it
is, of course, important to know that we have found "enough" functions.
That this is so is shown by the completeness theorem which follows. The
proof is but a slight modification of one given in the special case of
a Maxwell distribution by Van Kampen (2).

Theorem:
The functions g (v), g;1(v) constructed in Section III are complete
. 2 . .
for functions defined on -0 < v < «,
Proof:
i * 1'2 2 .
We want to show that an "arbitrary function g(v) can be written

in the form

B) = Zag(v) + [ A gviav . (59)

The orthogonality results of the previous section show that if it is pos-

sible to write g(v) in the form of (39), then
2 = X fgi(v) e(v)av . (40)
i

Then to prove (39), it is sufficient to show that it is always possible

to solve the equation

' (v) = fA(v> g,(v)av (41)

12



for A(v) when

g'(v) = aglv) - 2 ajei(v) (42)
i

with a; given by (L0).

1

Inserting the expressions for gv(v) from (16) and (18), we see that

(L1), which we are to solve, is

g (v) = Av) A(v) + n(v) Pf alvlay (43)
where
AMv) =1+Pf 1%)—?’—'. (Lk)

Let us now define three functions of a complex variable z by the

equations
Mz) - L [ alev (45)
1l V-2
1 n{v')av'
az) = g [oabwae (16)
mz) = b [eller (17)

Here we have assumed that the unknown function A(v) exists and is
well-behaved. Then it is readily seen that these three functions are an-
alytic in the complex plane with branch cuts along the real axis. More-
over, they vanish at infinity at least as fast as l/z. (This, of course,
assumes that [ A(v)dv, [ n(v')av', [ g'(v')dav' all exist.)

+ + + .. .

Let N=(v), Q@ (v), M~ (v) denote the limits of these functions as z

approaches the real axis from above and below, respectively. Then we

have

15



NH(v) - N (v) = A(v) , (L8)

i [NH(v) + N (v)] = PL/m é%%%%z , (49)
Qf(v) - Q7 (v) = n(v) , (50)
wi [@7(v) +Q7(v)] = P\/ﬁ D%ﬁ?%l , (51)
and hence
Mv) = 1+xi(QF+Q7) . (52)
Finally we have
MA(v) - M (v) = g'(v) . (53)

Inserting these expressions into the integral equation (43) gives

(N (v) [1+2n1 @F(v)] - MY(v)} - (W (v) [L+27i @ (v)] - M (v)) = O .
(5k4)

Hence, to summarize, if we can find a function N(z) which is an-
alytic in the complex plane with cuts along the real axis, which van-
ishes at infinity and whose jump along the real axis satisfies (5k4), we
can find A(v) using (48).

Let us suppose such an N(z) exists. Then the function

J(z) = N(z) [1 +2ni Q(2)] - M(2) (55)
has the properties:
(a) It is analytic in the cut plane.
(b) It has zero discontinuities along the cuts.
(c) It vanishes at infinity.

From properties (a) and (b), we see J(z) is analytic everywhere.

1k



Since it is zero at infinity, it is then zero everywhere (Liouville's
Theorem) .

Hence

2) = M(z)
n(z) 1+ 2rni Q(z) (56)

Thus, if a well-behaved solution A(v) of our equation exists, the
corresponding N(z) is given by (56). Conversely, if N(z) given by (56)
is analytic in the cut plane and vanishes at infinity, then the solution
A(v) is given by (48). Therefore the question of the existence of a so-
lution A(v) comes down to whether N(z) of (56) has the requisite proper-
ties. Since M(z), Q(z) have the properties of analyticity and vanish-
ing at infinity, the only singularities of N(z) in the cut plane that
can occur are poles due to the zeros of the denominator. Where do these

occur? From the definition of (L46), we see that

v'-z

1 + 2ni Q(z) =1+fM. (57)

The zeros of this quantity are just our v;. Hence a solution A(v) ex-
ists provided the numerator in (56) vanishes at these points v;: Thus
sufficient conditions for a solution are:

M(vy) = 0 ,

JF g'(v')av’ - 0 i=1,2,00.n . (58)

! .
v —Vl

Inserting the expression for g'(v') from (42), we find that the condi-

tions are
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\jl
O
-

d/\ g(V')dv’ _ Z a.L/ﬁ gj(v)dv i (,
v vy J ’ V- vy

But

and thus, using the orthogonality properties of the discrete solutions,

we have
t)av! ~
JF ég%L%—XF = L aj b/N -gigsdv = - aj Ci, (60)
V"I/i j
or

o
I

) 1 5 (v Vs
. fgl< ) glvy)av

f gi(V) g(V)dV . (61)
] Ei(v) giv)av

However, from (L40) we see that these conditions are indeed satisfied.
(It is fortunate that we were also able to show that C; #£0.)

There is also a useful corollary of this theorem. It can be stated
in the following form:
Corollary:

The functions gj(v) (i = 1,2,.-.n) and gy(v) (v € 1) are complete
for functions g(v) defined on 2.

Proof:

A straightforward proof as above is apparent. A slightly simpler
proof can, however, be constructed. Let g(v) be equal to the given

function in 2, and zero in 2. (Here 2, is the set of real points not in

16



7. and not a vi.) Then the expansion coefficients A(v) for v e Y, are:

Alv) = X f gu(v) glv)av

Cy
= éz L/h 8(v-v) g(v)av = gé:) = 0 (62)

(v e i)

N
VII. GSOLUTION OF THE INITTAL VALUE PROBLEM A LA VAN KAMPEN

The problem of interest is to find the solution of (11) with a pre-
scribed initial value g(v,o0). Let us use the completeness result and ex-

pand in terms of eigenfunctions.

a(v,0) = Toagg(v) + fA(v) g (vV)av . (63)

i

Using the orthogonality property with respect to the adjoint functions,

we have
_fg(V,O)dV
a = 2 [ B emolar - ___"___ , (6w
Cy n(v dv
(v-v3)2
and

- 1 >
A(v) = E_V f g (v) g(v,0)av

1 N n(v)g(v,o0)dv :
O ) ,}(V)g(v,O) - n(v) Pf — J . (65)

(It may be noted that (65) is correct for v ¢ L or 2..) The solution

g(v,t) is then simply obtained from (63) by inserting the appropriate
time dependence of the eigenfunctions. Thus

17



e(v,t) = Tay e Vb gi(y) +fA(v) e o (vav . (66)

Furthermore, since

\/hgv(v)dv = 1 and #(t) = Lne L/Wg(v,t)dv ,

we have

Blr) = dmely g ooikvit +fA(v) eHEVE g L (67)

VIII. THE INITTAL VALUE PROBLEM A LA LANDAU

Let us treat the problem of the previous section by the Laplace
Transform method as suggested by Landau (l)c It is convenient, however,

to use two-sided transforms. Thus we want to solve

(o)

%% + ikvg(v,t) = -ikn(v)foo g(v',t)av’ (11)

subject to the condition that g(v,0) is prescribed. Let us decompose

g(v,t) into two functions gy(v,t) such that

g (v,t) = glv,t) t>0 , (68)
lim

o gwt) = e(vo)

g (lv,t) = 0 t<o0O ,

and

g_(v,t) = 0 t>0 , (69)
B o (v,1) = glv,o)

t"O- - ) J )

g_(v,t) = glv,t) t<oO

18



Clearly g, (v,t) satisfies (11) except in the vicinity of t = O.

Since

3
f 3% _ g (v,4e) - glv,-e) = elv,0)
0-¢ Ot
we have the equation

gy . . ”
—* + ikvg, (v,t) = g(v,0)8(t) - ikn(v) g, (vt,t)av . (70)

dt oo

Define the Laplace Transform h+(P) of g+(t) by
a(v,P) = f g, (v,t) e ap . (1)

-0

It is assumed, and must later be verified, that Re P can be and is chosen
so that the integral exists and that all singularities of the function of
a complex variable h+(p) so defined lie to the left of the value used in
(11).

Multiplying (70) by e Pt and integrating gives
o0

(P + ikv) h, (v,P) = g(v,0) - ikn(v)\/q h(v',Plavt . (72)
-0

Solving for h (v,P) gives

_glv,0)  ikn(v) fm . ,
alv,P) = P +ikv P+ikv J __ ny(vi,Plavt (73)

The integral which occurs here may be found by integrating over v and

solving the resulting equation. Thus:

Jfg(v,O)dv
fh+(v',P)dv’ - P+ 1kv . (71s)

1+ ikk/qHSZilézl
J PHikv'

19



Inserting the result into (73) gives h,(v,P). Finally, for g,(v,t), we

have the inversion formula

g (v,t) = —— h,(v,P) et ap (75)
2ni c
+

where C, is a line parallel to the imaginary axis and to the right of
all singularities of h,(v,P).

Similarly we can show that

_ ['glv,0)av
fh_(v',P)dv' - f P+ ikv (76)

1 + ik
{ f P+1kv }

g (v,t) = L n_ (v,P) ef ¥ ap (77)

2ni C

where the line C_ is parallel to the imaginary axis and to the left of
all singularities of h_.

For simplicity we restrict the comparison with the calculations of
the preceding section to the expressions for the scalar potential. Us-

ing (74) through (77), we here have found that

ePt< gfvzo)dv> 4P

#(t) = brel 1 P +ikv

k.2 2ni ')d
C-i— 1 + lkfl——L
P+ikv'

—

ePt fg(v)o)dv d.P
- L P+ikv . (78)
2ni 1 1
C- {1 + ikk/qﬂii_léii}
P+ikv'

20



Now let us deform the contours Ci+ to contours C! which run parallel to
and Jjust to the right and left of the imaginary axis, respectively. Clear-
ly the only singularities which are encountered arise from zeros of the

denominator. These occur where

dv' _ .
1 +\/p V! 4—P/1k =0 (79)

Alternately, we can say that the integrands in (78) have simple poles at

points P = -ikvi where
1 1
1 +\jp ﬂ&¥_léz_ = 0 (1 = mym+l,-+-n) . (&0)
v'o- vy
i

Applying the Cauchy Residue Theorem, we readily find that the

n
Contribution to @(t) from Complex Poles = Eﬂg Lo eVt o

i=m+1

(81)
with aj given by (6L4).

We still must find the result of the integrations over Ci. First
there are contributions from the poles at Vi with 1 = 1,2,-..m. Just
as above, these give

m
Contribution of Imaginary Poles = e 2z e-ikvit a; . (82)
i=1

Finally we must consider the integrals over Ci where there are no

poles. On C; we have

1 .
Hence on Ci we find

21



1+ ik\/ﬁ nlvt)avt > Aw) * in n(v) , (84)

P+ikv'
and
Jf glvyoldv 1 \/n P Lo 8(v-v)| glv,o)dav . (85)
P+ ikv ik V-V
Hence we obtain that the
s ) . Lae -ikvt
Contribution of Imaginary Axis to @(t) = = A(v) e dv ,

(86)
with A(v) as given by (65).
Adding the contributions of (81), (82), and (86), we find that @(t)

is precisely given by (67) of the preceding section.
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FOOTNOTES

lSupported in part by the Office of Naval Research, U. S. Navy Department.

2

For full mathematical rigor we should state conditions on the function to
be expanded. A sufficient condition is that it satisfy a H8lder condition.
However, on examining the proof given, it seems to hold for considerably

weaker conditions on the function.
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