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THE UNIVERSITY OF MICHIGAN
7741-1-T

ABSTRACT

An analysis is presented of the problem of the numerical computation of
electromagnetic scattering from rotationally symmetric boundaries satisfying an
impedance boundary condition. This work extends the work of P. Schweitzer for

perfectly conducting boundaries and includes his results as a special case.
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THE UNIVERSITY OF MICHIGAN
7741-1-T

INTRODUCTION

This report investigates the scattering of a monochromatic electromagnetic
plane wave from a rotationally symmetric object satisfying an impedance boundary
condition. It is actually an extension of the work done by Paul Schweitzer at

Lincoln Laboratories™ and which includes his analysis as a particular case.

Many sections of this report have been taken mutatis mutandis from
P. Schweitzer's report. It seemed unnecessary to alter his presentation since

one could hardly hope to surpass him in clarity.

I am indebted to my colleagues Dr. Olov Einarsson, Dr. Vaughan Weston,
and Dr. Raymond Goodrich of the Radiation Laboratory for their assistance in
formulating the boundary value problem and for many helpful discussions on the

physics of the impedance boundary condition.

*

P. Schweitzer, '"Electromagnetic Scattering from Rotationally Symmetric
Perfect Conductors,'" Lincoln Laboratory, Project Report PA-88 (BMRS),
February 1965.



Section I: The Geometry

We consider a body whose axis of symmetry coincides with the z-axis. The
C 2 2
body extends from z = 0 to z = L. The surface is given by {x“+ y”~ = (z) .
More generally, one could parameterize by arc length instead of z if the surface

were re-entry, i.e., if f(z) was a multiple-valued function of z .

A point on the surface is given by two coordinates z and ¢, where 0z L,
and 0 ¢< 2w . In the usual cylindrical coordinates, a point T on the surface is

given by

f=z?+p6=f(z)cos¢§+f(z)sin¢§+z£ (1.1)

where 2 = (0, 0, 1) = unit vector in z direction

p=;/x2+y2 = f(z) (1.2)

p = (cos @, sin §, 0) = unit vector in x, y plane (1.3)

A
we can construct, at each point on the surface, the triad ﬁ, z’a‘., t of orthogonal unit

vectors
B = (cos § a(z), sin P a(z), - £(2) a(2))
= unit outward normal vector to surface (1.4
A_A A ) . .
a=zxp=(-sinfP, cosP, 0) = unit transverse (azimuthal)
vector in direction of increasing f (1.5)
f-nxa-= (f'(z) a(z) cos P, £'(z) a(z) sin P, a(z))

unit longitudinal vector, in direction of increasing arc length, (1.6)



where

1

a(z) =—=——=—=——=—== = cosine of angle between t and z (1.7)
/1 +[f’(z)]§

For these to exist, f(z) must be a piecewise - differentiable function of z .

The parameterization by z can be replaced by parameterization by the

normalized arc length

dw|/ 1+ [f'(w)]2

VA

0
t=1t =
(z) G (1.8)
where
L
c=| aw/ 1 +[rw]?
0
= half of transverse circumference. (1.9)

As z runs from 0 to L, t runs from O to 1. The surface element is

dz =dzdf f(z)J 1 +[f‘(z) 2. cat dp £(z) (1.10)

N
The ﬁ, Q, t triad is related to 9{, 9, 2 by

2 [cosPa(z) -sinp £(z) a(z) cos § n

| = |sinfpa(zd  cosp  £(2) a(2) sin ¢ a (1.11)
2 L -f(2) a(z) O a(z) t

A [cos § a(z) sin@ o (z) -f'(Z)Ot(Z)W 2

2] = |-sing cos § 0 § (1.12)
( | £'(2) a(z) cos p  f'(z) a(z) sin P a(2) 2z



These two matrices are transposes of each other because the linear transformation

is orthogonal.

Section II: The Incident Electric Field and Polarization Vectors
-iwt]

We use the convention real [ .. €
The incident radiation will be a plane wave given by

ik .T
O -ze 2.1)

€ points in the direction of polarization, and k0 is the propagation vector.

lEOI = ko = % -3 (2.2)

K-€=0 (2.3)

With no loss of generality, EO lies in the x, z plane and makes an angle 0 0 with

the z axis

EO = (ko sin 60, 0, k0 cos 60) . (2.9

For objects of rotational symmetry, there are two very special directions of
incident polarization, €I and €II , such that the directly-backscattered electric
field has the same polarization as the incident electric field (i.e., no depolarization).

These are given by

€I~EO x unit vector in direction of axis of symmetry (2.5)
A = A
€H kO X €I (2.6)

€II lies in the plane of incidence, while ’E\I is perpendicular to the plane of

incidence. More concretely



QI=9=(0,1,0) ' (2.7

A .
€ ° (-cos 6y, 0, sin 00) (2.9

The general case can therefore be written

I'T OT1u (2.9

A
Finally, the incident polarization can be decomposed along triad n s ,a\, t at

any point (z, ¢) on the surface of the object

<o {@H[6H R R DE 0]
+ @GR+ G-HE+ - HE]

@A DD+ 2H 1]

+ similar terms involving ay and EH . (2.10)
sin P e(z)
E'=aI [_ﬁ 2 ’t‘] cos P

Lsin § o(z) £'(z)

- cos 60 cos P a(z) - sin 90 a(z) £'(z)
A A A .
tag [n a t coseosm¢
- cos 90 cos P a(z) £'(z) + sin 90 a(z)

(2.11)



Section IIl: Decomposition of the Incident Electric
Field into Cylindrical Modes

In this section, we give expressions for the decomposition of the incident

electric field, evaluated on the surface of the conductor, into cylindrical modes.

The incident electric field is

ik - T
f0@-ze ©
On the surface,
T =(f(2z) cos P, f(z) sin P, 2) (3.1)
k0 = (ko sin 00, 0, k0 cos 90) . (3.2)

Note propagation vector is, with no loss of generality, in the plane y = 0, i.e. ,

p =o0.

0

Therefore

kov T = k0 f(z) sin 60 cos P + kO Z COS 90 (3.3)
Using the expansion
ixcosf < .m
e = Z € ! Jm(x) cos m @ (3.4)
m=0
where
€ =2~ 6m0 s



We can write

—(0) ikozcose0 .

f € i™ J_ (k, £(2) sin 6 ) cos mp (3.5)

T on surface.

Inserting (2. 11) into (3.5) and using the trigonometric identities

cos(m+1)p+cos(m-1)§

cos mf cos P = 5 (3.6)

cos mf sin § - sm(m+1)¢-2$m(m—1)¢ (3.7)
we obtain

—0) mlt mIf

E (T =a E (z) s1nm¢t+E(z) cosmpa

mIlt A mIp R .
+ani E(z) cosmPt+E (z) sihmfPa
m=0
—(0) A A -
+(E'"" (F)'n) n , Ton surface (3.98)
m, IorIl, torf

E (z) are given by somewhat complicated expressions involving

exponentials and Bessel functions. They are given in page 18 of P. Schweitzer's

report and it seems pointless to duplicate them here.



Equation (3. 8) contains the desired decomposition of the incident electric field
into different polarizations ( aI and a ; and different modes (different m). Note how,
by our special choice of QI and é\H , the various polarizations decouple so nicely. The
I mode has an angular dependence (sin m§ t, cos mf 2) while the I mode has an

A
angular dependence (cos m@ t, sin mf 2 .

Section IV: The Boundary Value Problem

We consider the following physical situation: We are given an electromagnetic

70 (0

field E" incident on a body of revolution. The total field satisfies a

Leontovich boundary condition
(/ﬁx'f])xﬁ=nzﬁxﬁ (4.1)

on the surface of the body. nand Z are constants characterizing the body and the

medium surrounding the body, respectively.

1
n = ; = (4.2)
[2(Gss)
Ko\ we,
v
7 = 6_0_ (4.3)
0

The scattered electric field is given in terms of the surface fields on the body

by the integral (see J.A. Stratton, Electromagnetic Theory, page 466).

£° - —J[iwu BAxH G+ @ xE) x VG + (R-E) VG]dS. (4.4)
S

We have assumed that the field vectors contain the time only as a factor exp (-iwt).

exp (i ko I? —f" )

G=G(F,T) = r-T (4.5)




The function ES defined above is discontinuous across S. The nature of the
discontinuity can be investigated by the methods used in potential theory, since G
becomes equal to 1/4,,,1"— F’l for small values of [I"—I"I . Some of the most impor-

tant results are

1) If A is a vector field tangent to S, and T‘O is a point on S, then the integral

I®™ =\ A(T) G(F, T ds'
is continuous for all T.

0
T'—)T'O

2) R (FJ x lim Lx(r') x V' G(T, T ds'
= i% A(T) + jﬁ(f‘o) x[K(?') x V' G(T,, i")]dS' .
S

In the left hand member, the approach T —-)‘1"'0

the right-hand member, the plus and minus signs correspond respectively, to an

is along the normal to S. In

approach from the outside and from the inside of S. The integral in the right-hand

member can be shown to be convergent.

3) The normal component of J A(F") x V' G(T, T')dS' is continuous on S.
S

The term

E3=j(ﬁ.E) vGdS
S

suffers a discontinuity on transition through S equal to 1 A]'E'3 , where AfB is the
difference of the values outside and inside. The third term in E° , therefore, does
not affect the transition of the tangential component, but reduces the normal

component of E to zero.



=(0)

Since the total electric field E* * + E'S is zero inside the scatterer, we obtain

from (4. 4)

O=ﬁxf(0) - lim ﬁ(fo)xj[iwu (ﬁxﬁ)G+

r—-)i"o S

+ (0 x E) x VG + (- F) ve]ds,

where the approach is from the inside.

Application of 2) gives

O=?1XE(O)+—;-ﬁxf—’ﬁx}[iwu(’r\lxﬁ)G+
S

+(ﬁx'E)xVG+(?1~I—E)VG]dS (4.6)
For a point just outside the surface of the scatterer
ﬁxE:ﬁx(E(0)+E's) . Hence

AxE=1x E'(O) - lim ,1\1(?0) xf[iwu(ﬁ xH) G+
?-—,TO S

+(MxE) xvG+ (D E) VGJdS,

where the approach is from the outside.

Application of 2) gives

3 — — -
—2-ﬁxE=ﬁxE(0)—?1xj[iwu(?1xH)G+
S

+@R xB) xve+ (@& B va]ds (4.7)

10



Adding Eqgs.(4.6) and (4.7) gives

nxE+ 2?1xL[iwu AxDc+r@xExve+r @B velas=28xE?

(4.98)
Use of the definitions

38
-

#xE=K ,0xH=-K, 0=-¢
and the relations
A
n

K:ﬁ=-r)Z xK, 0=—vK

in Eq. (4. 8) gives

-nZﬁxK+23xJ[—iwufG-nZ(’r\lxK)xVG
S

L (vR va]as=28xE?
1W€E

This can be written alternatively as

[—% nzﬁ+L[+iwu KG+nzZ@xK) xVG +

1
we

+ (v-K) VG] ds + E(O):I =0 (4.9)

tan

TonS.

This system of integral equations constitutes the mathematical formulation of our

boundary value problem.

Section V: Reduction of the integral equations for numerical solution

Following Schweitzer we will use the method of Galerkin to solve the integral

equations (4.9) .

We assume the (unknown) induced current is expanded in terms of the complete
set { K } :
n

R‘('f)=icn'fn(r) , TonsS. (5.1)
n=1

11



If this expression is inserted in (4.9), we have

1 o~ =
{5 nz> ¢ K (D
n=1
< - A
+nZ=1 C, L[iwu Kn(f‘) G+nZ(n xKn () xvG +

1
iwe

+ (v:K (")) VG]dS‘ + E(O)} =0
n
tan

If both sides are dotted with Km (T) and integrated over the surface of the

conductor, we obtain

1 | -
{—z—nz f:cn jdsKn ("E‘)'Km(i")

n=1 S

[0.0]
+> ¢ |asR_@-|[1unE (7 G+ nz BxE (7)) xvG
n=1 S S

y (v-K () VG] ds' + J E(O).T{m(?) ds:}= 0.

iwe
S

That is,

1 - —_
i Cn{? nz JdS Kn(f‘)' Km('f‘)
S

+j dSKm(Y")° ds! [iwu Kn (FYG+nz@® xﬁn (r)) x VG +
S S

__1._. 1 = - —(0)."'
b (V.KH(T))VG]}- LE R_(9ds, (5.2)

12



This is of the form

ic T =-b (5.3)
n “mn m

with

+J ds Em(f)- LdS'[iwu Kn(f') G+nzZ(Bx Kn(f) ) xVG +
S

1
iwe

+—— (V-E_(r)) va] (5. 4

b =JE(O)-K (7) ds (5.5)
m S m

We wish to transform the term involving the divergence of Kn . We write

I= X dSK (i")’f das'(v-X () ) vG
m n
S S

~

=-|dsK_(9-v JdS' (V'K (™)) G
Js S

=~ |ldSK () Vh (D
m
vs

(5.6)

where the gradient outside the integral sign operates with respect to the unprimed

coordinates. By use of a vector identity

13



I= —st {\7 -[Em () h(?)] —[V-Km (?)] h(T')} .
S
Invoking the result

v-V=0.-vx(hxV

if
2-V=0 ,

the first integral becomes

V' K T = 2 . H 174 = . A 574 =
st [R_® 0] JdSn vx(®xE_h) Jdvv (vxBxR_1)=0 .
Since the first contribution to I vanishes, we have left

I =j as[v-E_ (0] h(D) =J as[v-K_ (@) LdS'[V'Kn(r'):J G .
s s

Use of this result in Eq. (5. 4) gives

T =-;— nZz S dsﬁn(f)-'ﬁm(f) + iqu dSI—{m(i‘) J ds! Rn(f') G
S S S

+ L J ds (V'Km(r) ) J ds! (V-Kn(r') ) G (5.7)
S

iwe
S

Once Tmn and bm are available, Eq. (5. 3) constitutes an infinite system of simul-

taneous linear equations for C1 , 02 s e

14



In practice one approximates K by a finite sum
R(D wi c K () (5.8)
3 n o

and solves the N x N set of truncated equations

Z;T C =-b m=1,2,... N. (5.9)
= mn n m

for approximate values of the C's .

To show the reasoning underlying the Galerkin procedure, we note that the
error € (F) made in the right hand side by replacing the exact current in (4.9),

rewritten as

CK(F) = - E'(O) (T) tangentjal components (5.10)

by the approximation
ﬁ(f')ati C, K, (T) (5.11)
i=1
is
O

e(d = i cir R‘i(f) + (7) (5.12)
i=1

We now require that the N Ci's be chosen in such a way that the error, when averaged

with Ki(r) be zero:

deaf)-Ki(?):o i=1,2, ..., N. (5.13)
S

These N simultaneous equations are precisely Eqs. (5.9) .

15



Section VI;: Fourier Decomposition of the Kernel

We proceed next to expand the Green's function
k |Fop
el Olr T I
= Tr 1 =
G G(I’ ) T ) W

in a Fourier series.

R - |F-7| f (z-20° +[1(2]* +[1@] - 2 £(2) £(2) cos (P-p)

We write

ko—1 G(F, T = 12 i Gm(z, z') cos m (f - ")
4r m=0

so that

with

2 T

R =\l'(z -z + [f(z)_]2 + [f(z'):]2 -2 f(z) £(z") cos O .
Gm has the symmetry properties
1 - 1
Gm(z, zY) G_m(Z,Z)

Gm(z, z') = Gm(z' , Z)

16
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Section VII: Fourier Decomposition of the Current

It will be convenient to consider the currents as functions of the normalized
arc length t instead of the distance z along the axis of symmetry. The trans-

formation from z to t is one-one.

We write the fourier decompositions of the current as

- om -
K&f‘):i{K m l’I’t(t) sinm¢+K2m’I’t(t) cos mﬁ)}/t\
m=0

* D

®
m=0

{sz_l’l’p(t) sinmp + K2 B9 cos mp}é‘ (7.1)

and
i L | om-1, 10, t 2m, I, t
k72 -1, 2 . F} F) A
K (7) = E K (t) sihmP +K (t) cosmppt
m=0

(00)

N {sz_l’n’p(t) sinm¢+K2m’H’¢(t) cosm¢}3 (7.2)
0

m=

The superscripts I and II refer to the two principal directions of polarization discussed

in Sections I and III .

The trial shapes introduced in Eq. (5.1) we will assume to be of the form

5 zi i{chn—l,m, tp2m=-1, 0, ¢t
o5l n (t) sin mp +

2 t. .2
+ C m, I, Knm’m’t(t) cos mﬁ}%

n
2 2 1, I 2 1,1
> {Cm' 0 P21 I B sinm +
n n
m=0 n=1
N Crzlm,m,;éKim,m, ¢(t) cos m¢}g (7.3)

17



where III is a generic variable denoting I or II.

m, IorIl, torf
n
more detail below. The C's are unknown coefficients, to be obtained by solving

The K are known functions, the shapes of which we will discuss in

the simultaneous equations.

For convenience in setting up the equations on the computer, we make the

following simplifications:

1) We set N1 =N2 =N . Thatis, we use the same number N of trial functions
for both the longitudinal and transverse current. This seems reasonable because
in the sampling approach we would normally sample both K ¢ and K¢ at the same
points.

m, Ior II, tor

2) We shall insist that the trial functions K be independent of

n
polarization (I or II), mode m, and the direction (t or §) . This is reasonable
j2
since they are usually taken to be say polynomials in t , or exponentials, e’ mnt ,

which do not depend on polarization, mode, or direction.

3) We shall insist that the Ki (t)'s be dimensionless. The C's will have the dimen-

sion of current per unit length, per unit electric field.

4) We shall insist that the Ki's be real. This simplifies the splitting of the
quadratures for the b's and T's into real and imaginary parts. The C's will

carry the complex behavior of the current.

5) We shall renumber the ordering of the trial shapes so that the t and ¢ directions

are adjacent.

Putting this together, we are going to assume for each mode m exactly N trial

shapes

Ki(t) i=1,2, ... N

and construct a 4N -parameter trial function

18



N
_mlI,_ ml A ml A
K (D) i§=1 C,; _,sin m[15t+C2i cos m¢a}Ki(t)

N
ml A mlI . A
+iZ=:1{CZi+2N—1 cosmfPt+ 02i+2N sinm@a Ki(t) (7. 4)
and

Rmn(f)%i ™ cos mp T+ ™ sinmpl K (t)
=Y 2i-1 2i i

miI ) A, mll A
+§;{021+2N _y Sinmp s Cop oy cos mp %Ki(t) (7.5)

The exact shapes for the Ki(t) will be given later. For the present Eqs. (7.4) and
(7.5) completely describe the trial current. Note that C1 , CS’ cee C4N -1

C describe the transverse

describe the longitudinal current while 'Cz veees Cyy

current.
We will also assume that

6) The Ki(t) are independent of the angle of incidence 6 0" the C's will carry the

dependence on 6 The reason for this is that the T matrix will then be independent

0-
of the angle of incidence, and need be calculated only once while investigating several

directions of incidence.

From the symmetry of the problem and the linearity of Maxwell's equations, we
know that if the incident field has azimuthal dependence sin m§ or cos mf@ , then the

components of the induced current will have dependence sin m¢ and cos m¢ .

For a given mode then, the 4N-parameter trial function describing the induced

current is given by Eqs. (7.4) and (7.5) .

19



Section VIII: The Variational Equations

Let ["(T, T') be the dyadic Green's function which expresses the scattered

electric field in terms of the surface electric current

59 (5 :j [iou R(E) 67, 7 + nz2 B xK(x")) x VG(F, ) +
S

1
iwe

+—— ("R(¥)) VG (7, ™) ds" =Jp(f, ™) R(F) ds'. (8.1)

S
We assert that the quantity

[4] = {% n szs K%+ 2 st K(7)- ol (7) +
+jds K(D -de'l"(i", )" K(’r")} (8.2)

is stationary when the correct K is used.

Proof: Using the symmetry of I, we have

© () +

&[A] = Sds 6 R(¥) [n ZR(D+2E
+ 2de'r'(T, ) K(F)] =0 .

Since the tangential components of 8K may be varied freely 6[A] = 0 if and
only if

[% nZR(@ +| aS'rE, 7) R &) + TO '(f)] -0 (8.3)
tan
ronS,

which is precisely Eq. (4.9)

20



If the finite approximation (5. 8) is inserted into (8.2), we obtain
N
[A]=<2D c b +> >’c T ¢ (8.4)
n n m mn n
n=1 n=1 m=1

If we choose C 1 through CN to make [_A] stationary, we get the equations

that is

N Tmn+Tnm
E;_—z—_ C =-b m=1,2, ..., N. (8.5)
= n m

If N is sufficiently large, Eqgs. (5.9) and (8. 5) must lead to the same solution for the

C's. In other words the two systems of equations must be identical

=T (8.6)

from which it follows that

T =T (8.7)
mn nm

I have been unable to prove this statement directly for the third term of Eq. (5.7),
but hope to return to it later on. Notice that the symmetric character of the fourth
term, when written as in Eq. (5.6), is by no means obvious.

=(0)

If we insert (7.5) into (8. 2), but replacing E' ~ by the incident tangential

electric field for this mode-polarization, which is EmIII , we obtain
2
[Amm:I:{é- n zjds gmH, 2de go ML g,

+st g5 -st'r ., . g2 (T")} (8.8)

21



4N

4N
N{zz CanIII mIIIJr Z C m IIT mIII TmIII
i ij

1=1 i, j=1

where

bzin_ll =j‘ds E™ ()1 sin mp K.(t)

2i+ 2N -1

b st (5. £ cos mf Ki(t)

bg;l jds Eml(i')- 4 cos mf Ki(t)

ml A .
b21+ 9N st joR (f)- a sin m@ Ki(t)

j

(8.

(8.

(8.

(8.

(8.

with identical expressions for bmII but with all sin m@ replaced by cos m§ and

viceversa
T =inz dS sin® mp K, (9 K (1)
2i-1, 2j -~ 2
+ﬂ ds ds' [sin mf K, (t) ’E]-r'- [sin mf! Kj (t" ’t"]
ml 1 .
Ty _ 1, 2j+2N-1-2" Zjds sin mP cos mf Ki(t) Kj(t)

+ jjds ds! [sin mf Ki(t) ’t\]'r' '[COS mf’ KJ- (t" 2']

™ =ﬂds as' [sin mg K, (t) %) r-lsin mpr K, (t) M

2i-1, 2j+2N

Tgill_ 1, 2 =J-jds ds' [sin mf K.t /t\]'l"'l-_cos mf' Kj (t" 3‘]
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(8.

10)

11)

12)

13)

14)

15)

. 16)

17)



ml 1 2
- - t
ToiroN -1, 2j42N-1" 2 szs cos” mf K. (t) Kj( )

+ Jt[ ds dS'[cos mf Ki(t)'f]-r"[cos mf’ Kj(t') 3.'] (8.18)
I 4 3 1 1 1
leril+ ON -1, 2j+2N =Jt[dS ds [cos mf Ki(t) t]- f‘-[sm mf Kj (t" ﬁ] (8.19)
Tg:i_ 2N -1, 24 =ﬁ-ds ds'[cos mp K, (0 Ar-[cos mpr K, (t) A (8. 20)

ml 1 .
ToitoN, 2~ 2 ZJdS sin m@ cos mf K.(t) Kj(t)

+fjds ds! [sin mf K, (t) ﬁ]-r'{cos mf' Kj (t" Q'] (8.21)

ml

1 2
Toivon, 242N~ 2 " Zjds sin” mf K, (t) K, (t)

+Hds dS'[sin mf K. (t) a} I"{sin mf! K, (t) ﬁ'] (8.22)
ml 1 2
TZi, 2= 2" ZJdS cos” mf K. (t) Kj(t)

+ﬂ'ds ds' [cos mf K. (t) 3.} F'[cos mf* Kj (t" Q'] (8.23)

with similar formulas for TrindI but with all sin m¢ replaced by cos m¢ and vice-

versa.
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Section IX: Evaluation of the b's

The b's are given by the integrals (8.10) - (8.13). In order to evaluate the

angular integrals involved in calculating the b's, we will need the results

27
dp sin mp &1 X050 _ (9.1)
0
2
dp cos mf e_iXCOS¢ =27ri g
m(-x)
0
= —. m
2m (-i) I () (9.2)
m integral.

In order to calculate the integrals over t involved in evaluation of the b's it is

convenient to define three sets of d-functions by

).

- _ 1 . '
qa 1(6 o lwu € ™\ ae f(z" elkoz COSGO K. (t) .J (k. f(z") sin®
i O) 2 i "m0 0
0
m, 2 [ i
a7 %6, 1/2
a(z') f'(z") /2
3
i *(e,) o(2)
L N -
i=1,2, ..., N. (9.3)

These are all functions of the single angle variable 0 Using the relations

0"

sin (7r~60) = sin 90

cos(w —60)= -cos 90

it is easy to verify that
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d™ P (r-6) =(-)m“[drf"p(e >} i=1,2,..., N
i 0 i 0

p=1,2,3 (9. 4)

so that, when evaluating the d's for a range of 6 _ , it is sufficient to consider only

the set 6, E[O, 7r/2]. ’

We now possess the tools for evaluating both the angular integrals and t

integrals involved in the calculation of the b's .

The b's depend on the angle of incidence 6 , of the incident electric field, and

0
will be denoted by b(90) . We now proceed to evaluate the b's .

From equation (8.10) we have

bg;I_ (6 :st £ (74 sin mp K, (t) (9.5)

Invoking mode orthogonality,

-
-m'
= | ds i 'L (9. £ sin mp K, (t)
J m'=0
~ iEO-f N
= | ds 21 e ‘ sin mf K_(t) (9.6)
J

From (2.7) and (1.12) we have

é‘I-?= £1(2) a(z) sin § (9.7)

so that (9. 6) becomes, upon use of (3. 3)

1 2

mI ik zcose0
bZi_1 (90) =C| dt | dpf(z) e ' (2) a(z)
0 0
Tk, f(z) sin9000s¢
e sin@ sin mg Ki(t)
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Inserting

sin § sin mf - cos (m-l)g—cos (m+1) ¢

and performing the angle integral via (9. 2), this becomes

ik_ zcos0

mI - 0 0 f'(z) a(2)
bo. 1 (90) =27C | dt f(z) e >
0
m-1 . m+1 _
[i T o1l €@ sine) - 1™ 1y (k £() sin 90)] K, (1)

Evaluating the t integral by (9.3), we obtain the result

mI _ 4w [m—1,2 _ m+1,2 ]
by, _1(6p = Tos d; 6y -d, ®) (9.8)
Similarly,
mI _ =mI __, A
b21+2N_1(90) -J dSE" (Pt cos mff Ki(t) (9.9)
r iEO.F A
=|dSe le\I-t cos mf Ki (t)
J
1 2 ik zcos 60
=C | dt | dpf(z) e f'(z) ofz) Ki(t)
0 Yo
ikof(z) sin Gocosjb )
e (sin(m+1)¢-sin(m—l)¢)5=0

where we used Eq. (9.1). We have then the result

ml

Pai+an -1 (@)=0.

(9.10)
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Similarly,

mI o [ 4ggmI

b21+ 2N S E

-2 sin mp Ki(t)

~ikgT
=|dse €;-d sin mf K.(t)

So that

2m ik_zcos6

b2 ey=c |at| dp () e 0

2i+2N " 0 Ki(t)
0 0

ik, f(z)sin 6 cosf
0 0 .
e cos P sin m@

1 25 ik_ zcosH
=C | dt d¢ f(z) e

0 0

0
K, ()

ik, f(z) sin® cosf

—;— e [_sin(m+ 1) § + sin(m - 1) ¢] =0

where we have again used Eq. (9.1).
We have then the result

ml
Poi+on =0 -
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Similarly,

mI _ =ml _ A
b2i (90) —de E" (7): @ cos mp Ki(t)

ik, T
= |dse QI. 2 cos mp K.(t)

1 2T .
mi 1k0zcos90
bo; (60) =C |dt |\ dpf(z)e Ki(t)
0 *0
ik f(z) sin6_cosf
% e O 0 [cos(m—l) p + cos (m+1) jb:]
L ik zcose0 1
=27C | dt f(z) e Ki(t)—z- .
0
m-1 . m+1 .
[1 Jm -1 (kof(z) sm90) +1i Jm+1 (kof(z) s1n90)] (9.14)
or finally,
mI _ Ar [m—l,l m+1, 1 ]
b (6 = Ton d; 6y + d’ (60) . (9.15)
Similarly using
e t=sino_oal2) 6, 1'(2) a(2)
€ t=sinb, alz) -cos 6 f'(2) a(z cosp

we calculate
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mIl —mIl A .,
= L] t
b2i+2N—1 ‘dSE tsmmpKi()

ik T
A
=Sds e © ’e‘H. t sin mf K. (t)

dt | dpf(z) e 0 0.

Loem ik zcosf ik, f(z) sin60c0s¢
=C
0 0

(sin 6 @(z) - cos 6 f'(2) a(2) cos #) sin m@ K.(t) = 0

(9.16)

we have then

mII
b2i+2N—1 (90)_0 . (9.17)

mIl _ =mlIl _, A
b2i 1 (60) -st E (T)+ t cos mf Ki (t)
r ik.-T
= |dse @ . % cos mp K (t)
I i
~ ik, .T
=|dSe Ki( t) .

£1(2) a(2) cos(m-1) §+ cos(m+1) ¢:|

l:sin 90 a(z) cos mp - cos 0 >

0

ik zcosG0
=27C | dt f(z) e Ki(t) .

0

{sin 60 a(z) im Jm (kof(z) sin 60)

- cos 60 ﬂi)z_a_(_z_) [im_l Jm—l (kof(z) sin 90)

m+1

+1i Jm+l (kof(z) sin 60)]} (9.18)
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or finally

mII 4 . m, 3
b2i 1 (90) = Top {sm 90 di (90)
m-1, 2 m+1, 2 ]
- cos 60 [di (60) + di (60) } (9.19)

Similarly, using

2= cos 90 sin @ (9. 20)

>
uﬁ\

we calculate

~

b3 (0 = | as E™e)- £ sin mp K, (t)

= |dSe (QH- ) sin mf Ki(t)

ik - T
=00860dee 0 K. () COS(m-l)I(bT-cos(m+1)¢

1

ik zcoseo !
=cos O _27C | dtf(z) e K. (t) =
0 i 2
0
m-1 . .m+1 .
[1 Jm—l (kof(z) sin 60) -i Jm+1 (kof(z) sin GO)J (9.21)
or finally

mII _ 47 [ m-1,1 _om+1,1 J

b2i (60) = cos 90'———1.&)“ " (60) di (60) (9. 22)
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Analogously

mI B =mIl A
b2i+2N (60) —jds E d cos mf Ki(t)

1k0-r A A
=jd3e (€ a) cos mf K. (t)

11'{0-?
= cos Goj dSe sin § cos mp K. (t) =0 (9.23)
and we have
m II =
b2i+ IN (90) =0 (9.29)

Our results, equations (9.8, 9.10, 9.13, 9.15, 9.17, 9.19, 9.22, and 9.24)
explicitly show how the b's may be evaluated in terms of the d's . The d's are given
by the one-dimensional quadratures in (9. 3) and are presumed to be known. Hence,

the b's can be easily calculated.

Using (9. 4), equations (9.8, 9.10, 9.13, 9.15, 9.17, 9.19, 9.22, and 9. 24)
imply that

b’i‘rlI (r-6) = ()™} [b;nl ©) ] (9. 25)

b (r-6) = ()™ b (o) | (9.26)

so that the b(6) 's need be evaluated only for 6 € [0 , 7f 2] .
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Section X: The d-functions

The d-functions have been defined by equation (9.3) . The relation
m, p m+1| m,p *
d "’ " (r-6,) =(-) d.” " (6,) (10.1)
i 0 i 0

has been derived, showing the need to evaluate the d's only for the argument lying in
[0 , mf 2] .

Using the relation

I ®=(-)"J (¥ mintegral , (10.2)
-m m
we deduce
-m, p - m, p
di (60) = di (60) (10.3)
in particular,
-1 > P _ 1 s P
di (60) = di (60) (10.4)

L,p

This relation will be needed when attempting to evaluate d;n B withm =0 .

For Ki(t) of the form to be discussed later - namely piecewise linear in t - the
integrals in (9. 3) seem to be completely intractable analytically. Even for the
simplest geometries of interest, cones and spheres, there has been no success in

obtaining closed expressions for these integrals.

Consequently these integrals will have to be done numerically - numerical
quadratures, done preferably by a Gaussian quadrature scheme, should cause no
difficulty since the integrand is well-behaved.

ik, z'cos6

The only complex quantity within the integrand in (9. 3) is the e 0 B

which can be easily split into its real and imaginary parts. Hence, both the real

and imaginary parts of d are calculable by one-dimensional quadratures.
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The numerical quadratures should be fast, except the numerical generation
and/or table lookup of exponentials, £(z), and Bessel functions, since Ki(t) will

be a highly localized function of t .

Section XI: Curvilinear Coordinates on the Scatterer

We construct a set of orthogonal curvilinear coordinates which, on the surface

of the body S reduces to the §, t coordinates used so far. The three coordinates
would be

g, =9 (11.1)
52 =t (11.2)
g 3= g 3 (in direction of outward normal to S) (11.3)

A
and the corresponding unit vectors (Gl » Uy, {\13) = (Q. , ’é, ﬁ) form a right-handed

triad. The surface of the conductor is given by & 3= £ 30 " constant,

The element of arc length, using the orthogonality of the coordinate system is
2 2 2 2
(dS)” = (b d &))"+ (h, d )" + (hy d E,) (11.4)

where, for 83 = 5330 ,

h =p=pI(E) (11.5)
h, = C (11.6)
hg = hg (£5) (11.7)
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If an arbitrary vector V is decomposed along the triad as

where

v, = vi(El, €55 53),

then we can compute its divergence and curl via

1 0 vn
div’V¥ = ———— S -— [h h_h —]
h1 h2 h3 &= agn 17273 hn .

- 1 A o)
curl v =——m— h u[ (h v )J .
h1h2h3 %n 1 4 8§’m m m

123

231

312

Ifv =0,
n

then on the surface of the conductor we obtain from (11. 10)

ov
1 Q 1 9
2 = — +—._—
div v o op oo ot (pvt)

Section XII; Explicit formulae for the T matrices

The T matrices have been defined by (8.14 - 8.23, 8.7) .

we have
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(11. 8)

(11.9)

(11.10)

(11.11)

(11.12)

(11.13)

Using Eq. (5.7)



ml 1 .2
T2i 1, 2-1" 2 n Zjds sin” mf Ki(t) Kj(t)

+ﬂ\ds ds' (iwy) sin m@ sin m@* Ki(t) Kj(t') (’t‘-’t") G
+ nzﬂds ds' (sin mf) K,(0 ?-[(ﬁ' x % x v G] sin mg' K, (t)

+ 1:)—6 ﬁ ds ds' [v-[’t‘ sin m@ Ki(t)]] [v'-['t\' sin m@' Kj (t')]] G (12.1)

mI - t (3 3 1 1] A.A'
T2i—1, 2§+IN-1 -des dS' (iwu) sin m@ cos mp Ki(t) Kj(t) (t-tY) G

+n Z‘H‘ds ds' (sin mg K, (0 )’E'I:(ﬁ' x ) x v G]cos mf' K; (t)

+ 1(;6 jgds dst [V[? sin m¢ Kl (t)]] [Vl.[-%! cos m¢l KJ (t')]JG (12. 2)

mlI . ' . ' n M
T2i-1, 25+2N = 1qu‘J‘dS dS' sin m@ sin mf Ki(t) Kj(t) (t‘ a' G

+n Zﬂds d8' (sin m@ Ki (t))?'[(ﬁ' x3n x v G] sin mf' Kj (t"

= ﬂ ds ds' [v-[’t‘ sin mp K, (t)]] [v'-[a' sin mf' K, (t')]:l G

(12.3)
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mI . . A A
T2i—1, 2 = iwy SXdS ds’ [sm mf Ki (t) cos mf" Kj (t')] (t-a") G

+n Zﬂds ds' (sin mp K, (1) )/t\-[:(ﬁ' x &) x V' G|cos mp’ K, (¢

*ioe JI ds ds' [V['t\ sin mf Ki(t)]:l [V'- I-:z;.' cos mf" Kj (t')]:l G

(12. 4)
ml 1 2
2i+2n-1, 2j+2N-1 " 2 Zjds cos” mp K, (0 K (6
A
+ iquJdS dS' cos mf) cos m@’ Ki (t) Kj (t" (,t‘ t G
+n ZSXdS dS' cos mf Ki (t) ’1?-[(3' x?‘) x V! G] cos mf? K], (t"
+ -ltJI ds ds' [V'(cos mf K, (1) ’t‘)] [V"(cos mf' K (¢ ’t"):l G
(12.5)
21 = iw Hds dS' cos mf sin mf' K. (1) K. (t) (t-21) G
2i+2N-1, 2j+2N WM i
+ nZ‘UdS ds' cos mf Ki (t) £ [(ﬁ' xAn x v G] sin mf' Kj (t?)
+ li—ejj ds ds [v-(cos mf K, (1) 't‘)] [v'- (sin mg? K, (¢) ’a{')] G
(12.6)
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! = iwuﬁ ds ds' cos mf cos mf K, (0 K, (t) ¢-ina

2i+2N-1, 2j

+n Z\ﬂds ds' cos mf K, CXE [('r}‘ x4 x v G] cos mf’ Kj (t"

+ —iﬁ:ﬁds ds! [V-[:cos mp K (1) 'tj] [V'-[cos mf' K, (1) Qj] G

ml

=i i ' n (NN
2i+2N, 2j 1wuj:(ds dS' sin mf cos mf K, (1) Kj (t") (a-a)

+n Zﬂds ds' sin mf Ki (t) 4. [(ﬁ' x4y x v G] cos mf' Kj (t

+ T-:Te— XS ds dst [V‘[_sin mf Ki (t) ﬁ]] [V'-[cos mf* Kj (t" ﬁﬂ G

m] _ 1 2
T2i+2N, 2j+2N 2 n Zjds sin” mf K, (1) Kj (t)

+ iwuﬁ ds dS' sin m@ sin m@' K, (t) Kj (ty 3-2 G

+n ZSXdS dS* sin mf K, (0 4 [(n' xan x v G] sin mf' K (t"
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T - % 1 zSdS cos mp K, (0 K, (0
+ iwujg dsS dS! cos m¢ cos mﬂ' Ki (t) Kj (t") (Q. ﬁ')

+n ZB‘ dS ds' cos mf Ki (t) a [(ﬁ' xﬁ\‘) x V! G_] cos mf" Kj (th

+ EJLZJJ‘ ds dst [:V- (cos mf K, {t) '5.)] [V‘-(cos mff' Kj (t" 3)):] G.

(12.10)

Since 1 or

Sds =C | dtf(z) | dp . (12.11)

0 0
terms of the form
dS sin mf cos mf K, (0 KJ. (t)

. . . . mil
integrate to zero, and have not been explictly included above. Equations for T i

follow from those for T rind by replacing all sin m@ by cosm@ and viceversa.

We now proceed to simplify these expressions. Let us first note that when

n=0, Eq. (4.9) reduces to the well known boundary condition for a perfect conductor.

The T-matrix elements (12.1 - 12. 10) are made up of terms independent of n
and terms containing n as a factor. It follows then that the part independent of n should
correspond to the T-matrix elements for the perfectly conducting case. These T-
matrix elements have been calculated explicitly by P. Schweitzer. (See Schweitzer's

report, page 68). We shall write here then for future reference:
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mlI, p.c. . . . . L AN
= .tl
T21_1’ 25-1 iy ” ds ds' G {sm m@ sin m@' (t-t")

K. () K, (t')} + 136 ﬁ ds ds' G cliv[:’t‘Ki (t) sin m¢]

div[ K, (t) sin mg'] . (12.12)

. . A A
Tgli{,l PZ? = iwujjds dS' G sin mf cos mf' (t*a') Ki (t) Kj ("

+ s 1 Xj\ds ds' G diV[’t\ K, (t) sin m]b] div [ﬁ' Kj (t') cos m¢£|

we
(12.13)
.C. A
L p-c. iwg || dS dS' G cos mp sin mp' (-t K. (t) K. (t")
2i, 2j-1 1 )
1 . A A A .
tToe des ds' G dlv[a K. (t) cos m¢] dlv[t' Kj (t") sin m¢':,
(12.14)
Tr;jI,2pj.c. = iquXdS dS' G cos mp cos mp' (a-4") K. (t) Kj (Y
1 . [a . [a .
tToe SS ds ds' G dlv[a K, (t) cos m¢] div [a' Kj (t") cos m¢']
(12.15)

Similar expressions hold for TlinjII but with all sin m@ replaced by cos mf@ , and
viceversa. The superscript '"p.c.' denotes ""perfect conductor'. Use of these

results in Eqs. (12.1 - 12.10) gives
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mI 1 2
==nZ i t t
T2i—l, 2j-1° 2" \Yds sin” m@ K, (t) Kj (t)

+n szdS dsS' sin mf K, (t) ,t\l:(ﬁ' x ) x v G_] sin m@’ Kj (t"

ml, p.c.
*Toi1, 251 (12.16)
mlI _ s NA D ,
Tyt 2pron-1" " ZJJ\dS as' (sin mp K (6)T[(A x T x v 6]
cos mf’ Kj (t" (12.17)

The other two terms in (12.17) are identically zero. They are independent of n and

they do not occur in the perfectly conducting case, hence they must vanish identically.
This can be checked by direct calculation.

mI = 1 3 A. AI Al 1
TZi-l, gjroN = 1 ZS‘{dS ds' (sin mf K, ()t [(n xa') xV G]

sin mf' Kj (t"

(12.18)
mI = 1 i At AI Al 1
T2i—l, 2 n ZJXdS ds' (sin m@ Ki ()t [:(n xa") x Vv G]
. \ mI, p.c.
cos mf Kj (t" + T2i-1, % (12.19)

m1I 1 2
Toiron-1, 2peon-1"2 " ZSdS cos” mf K, (1) K, ()

1 Aldy DN 1 ' " + mI, p.c.
+ nZSKdS ds' cos mf Ki (t) t [(n xth xv G] cos mf Kj (t" Tgi_l, 2j-1

(12.20)
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ml = 1 /\‘ /\' /\' .
ToiaN-1, 2jeon " Zﬂds ds' cos mp K, (0t [ x%) x v d

mIl, p.c.

211, 2] (12.21)

sin mf"' KJ_ t+T

ml

= ! A. Ny
T2i+2N-1, 2 n Z\[st dS' cos mf K, ()t [(n xYH xv G]cos mf" Kj (t"

(12.22)
o1 =nZ|| ds ds' sin mp K_ (t) 3-[3‘ x2) x V' G]cos mf' K, (t)
20+2N, 2j i j
(12.23)
mlI 1 . 2
Toiron, 202N~ 2 Z,Y ds sin” mp K, (8 K, (8

+n ijds ds' sin mf Ki (t) Q[('ﬁl x & x V'G] sin mf' Kj (" + TmII, p.c.

2i, 2j
(12.24)
mI _ 1 2
T2i, 25 2 n zj dS cos” mf Ki (t) Kj (t)
+n ZJ‘J\dS ds' cos mf K. (t)a '[(ﬁ' x 2 x V' G] cos mff' Kj (t"
ml, p.c.
+ T2i, 2 (12.25)
Notice that the T matrix is of the form
- 7]
TI’ p.cC. 0
1

T - fnTh (12.26)

0 TII, p.c.

1
where TI arises from the impedance boundary condition.
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Similarly

TH, p.c 0
1
TII = +n TII
l_ 0 TI, p.c
J
As pointed out by Schweitzer
.C. i+j .C.
Tr.x?l,pc =(_)1 JTmH,pc , m> 1

ij ij

-1 -1
.C. it+j .C.
[Tml'p ¢ ] = (=) [TmH,p ¢ :I , mp1
ij ij

so that only TmI’ P-€ has to be calculated.

For m=0

T(g’ P-C - 0 unless i and j are both even,
and

T(z?’ P-€- - 0 unless i and j are both odd.

(12.27)

(12.28)

(12.29)

Note also that for either polarization the b-column matrix is of the form

42
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We now proceed to obtain explicit expressions for the elements of T' .

Section XIII: The T! Matrix

1
We will write down here the expressions for the elements of the TI matrix.

mI' _ 1 .2
TZi—l, 2i-1° 2 Zjds sin” m K, (0 Kj (t)

N
+ zj[ds ds' sin mf K, () ?-[_(ﬁ' xth x V' GJ sin mf" Kj (t"

(13.1)
TI;;E'L 2 Zj‘jds dS' sin mf K, (0 t- [(ﬁ' x 2" x V' GElcos mf' Kj (t"
(13.2)
mI' 1 2
2%, 2§ = 2 Zj‘ds cos” mf Ki (t) Kj (t)
A A
+ Z‘H‘ds dS' cos mf K, (t) a [(/l'\l' xa") x V' G] cos mf' Kj (t"
(13.3)
ml' . A .o ,
TZi—l, 2+oN-1 = Zﬂ.ds ds' (sin m@ K, (1) t'[(ﬁ xt) xV G]
cos mf' Kj (t" (13.4)
mI’ 1 3 ~ . T ] !
TZi—l, 2j+oN ZIJ\dS ds' (sin m@ K, (t)) t El‘/l\ x&) xV G]
sin m@"' Kj (t" (13.5)
TIZI;:;N, 2 = z‘ﬂ‘ds ds' sin mf Ki () - [(ﬁ' xan x v G]cos mf' K].(t')
(13.6)
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mI'

| 2
= = d t t
ToiraN-1, 2j+2N-1 = 2 ZJ Scos” mp K, (0 K, (1

+ Zﬂ‘ds ds' cos mf K. (t) t [(ﬁ‘ x ) x v G:l cos mf' K], (t)
(13.7)

mI'

= 1 Ay 0y 1 ; 1 '
T2i+2N-1, 2§+2N Z\‘U\ds dS' cos mf Ki (t) t [_(n xa') xV G]sm mgp Kj (t"

(13.8)

mI'

= 1 A. A' ,\l 1 1 1
T21+2N-1, % ZJJdS ds' cos mf K. (1)t [(n xa') x v GJcos mf Kj(t)

(13.9)
mI' _ 1 . 2
Toiran, 2j42n = 2 Zjds sin” mp K, () K, (8
+ ZJJdS dsS' sin mf@ Ki (t) 2. [:(’r\x' x4y x v G:I sin mf' Kj (tY
(13.10)

1

The expressions for T:r; I are given by Eqgs. (13.1) - (13.10) but replacing all

sin m@ by cos m@ and viceversa.

We have
1 T

st =C\| dtf(z) | af

0 0

so that

jds sin2 m f K, (t) Kj () = C | dtf(z) Ki(t) Kj ().

0
2T 1

dg sin’ mf =Cr | dt f(z) K, (9 Kj (t)

0 0 (13.11)
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and

1
dS cos> mf K, (t) Kj (t) =Crm \ dt f(2) K, (t) Kj (1) (13.12)
0
Also since
t-8xd
and ﬁx?= -2 ,
we have
1
mlI' _ 1
T2i_11 2j-1 ZCZWS dt f (z) K. (t) Kj (t)
0
A IA
- ijds ds' sin mf Ki (t) t- [a' x V! G] sin mf' Kj (t") (13.13)
mI' = 1 i A. Al 1 1 !
Toin1, 2 zﬂds ds' sin m@ K, (t)t [t XV G] cos mf K, (t"
(13.149)
1
mI' _ 1
21, 2§ 2CZ w| dt f(z) Ki (t) KJ, (t)
0
A A
+ zﬂds ds' cos mf K. () a -[t' XV G] cos m@' Kj (t" (13.15)

mI'

ANTA
= - 1 i . ] 1 1 1
T21—1, 2j+2N-1 ZﬂdS ds' (sin mf Ki (t)) t [a XV G£| cos mf Kj (tY)

(13.16)

mI'

AIA
= 1 i o ¢! 1 i 1 !
Toi-1, 242N ﬂds ds' (sin mp K. (t) ) t [t xV G] sin mf K; (t"

(13.17)
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1
! ZJinS ds' sin mp K_ (1) 2-[® xv' 6] cos m' K, (t)

2i42N, 2j
(13.18)
1
! -Lzer\datt) K (O K, ()
2i+2N-1, 2j+2N-1 2 i’y
0
A
- XXdS ds' cos mf K, () £- [a' x V! G] cos mf' Kj (t"
(13.19)

mI'

= 1 A% ' i 1 1
23+2N-1, 24+2N SSdS dS' cos mf K ()t [t xV G:I sin mf Kj (t")

(13.20)

mI'

= ! 2. 1 ' 1
ToraN-1, 2i ZSS dS dS' cos mp K. (1) t [f’ xV G] cos mf K, (t"

(13.21)
mI' _ 1
T2i+2N, 2+2N =3 CZnm | dtf(z) Ki (t) Kj (t)
0
A A
+Z ﬁds ds' sin mp K. (t) a -[t' xV G] sin mf' K, (t7
(13.22)
The gradient of a scalar function in curvilinear coordinates is
a i a
Vf=h—1—§%-+-l-1-2—8%§—+31—3%-- (13. 23)
1 1 2 2 "3 3

In our case we have
@ ,48.,0)=@&,% A) and
3 =p

E,=t
£ 3= g 3 (in direction of outward normal)
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Hence

AY N A
ve-206,% 86, & ac
p o T C ot h, of,
A A
txvg= -2 86, 2 098G | (13.24)
p 0 h3 o 3
N\ N
A oGt sa
axVG='6-5? —h—gg— . (13.25)
3 9%3
We also have
BP=ada(@) 1+ (2 £ () cos (§ - 1 ] (13.26)
A A
t-a' = @ (z) ' (z) sin (f - 9" (13.27)
2.2 = cos (P - # (13.28)
$-0' =2 () @ (2) [£ (2) cos (f - §1) - £ (2] (13.29)
a1 = -a (2% sin (§ - #7 (13. 30)

These results follow easily from Eq. (1.12). Hence

T.f ASA
’t\'[g'xv' G]: t'cn 9G _ t-t 8G
ot b 5E
3 3
= -% a(z) a(zY) [f' (z) cos (¢ -gn -1 (Z')] %?‘_
- ‘lT a (z) a(z") [1 + ' (2) f' (") cos (f - ¢t] ﬁf'_ ; (13.31)
h3 853
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t.2 oG s £.8' aa
p' 8¢Y 1 1
hy 9§

?'B' x V! G] = -

==L a2 a @[ (2 cos (B - ) - £ ()] 25 -5

+ —-—-;- @ (z) ' (2) sin (f - § ics

hg 38

AN A A
A T4 _ a-n' 9G a-a’ oG
a- [t’ X V' G] = - p’ ap, 1

.;)L z") sin (§ - 7 8¢'+:—c os (f - ¢');§—

(13.32)

(13.33)

It is convenient at this point to introduce the scalar function Gm(z, z') defined by

2T (2T ikOR
Gm(z’ Zl) = d¢ d¢| e elm(¢—¢')

4r k. R
0 0 0

where

= |r-7] =J(z-z'>2+ £+ [129)? - 280 121 cos (B9

More simply,

T ik R

cos mf

where

R =\1(z—z')2 + [f(z)]z + [f(z')]z -2 £(z) £(z") cos 6\
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(13.39)

(13.36)

(13.37)



Equation (13. 36) is seen to be identical with the Fourier coefficient (6. 4) defined in

Section VI .

The angular integrals occurring in the T' matrix elements can now be performed

k. G
0 m
1 ! =
jj‘ dp dp' G cos m@ cos mp [1 + 6m, 0] 5 (13.38)
\),[d’b df' G cos mf cos mf? cos (ff -§?) =
kO
- [1 + 6m0:] - [Gm_l + Gm+l] (13.39)
ji[ df df' G cos m@ sin mf' sin (p - @) =
kO
= [1 + 6m0:|—4—'[Gm+1 - Gm_]J (13. 40)
[ k0 Grm
! i i 1 = -
J) df df' G sin mf sin mp [1 émO] 5 (13.41)
~r kO
d§ df' G sin mP sin m@' cos (f - §') = [1 - émo] >y l:Gm-l + Gml-l}
JJ
(13.42)
kO
1 : 1 qi - 6N = - —_—
jj dp df' G sin mp cos mf' sin (f - @) [1 6m0jl 2 [Gm—l + Gm+1:l
(13. 43)
Eqgs. (13.38) - (13.43) have been quoted from Schweitzer.
Let us consider the expression
2T 2w ikOR
9 e im(fp - §7)
= 1
1= | df | ap [8¢' e R} e (13. 44)
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Integrating by parts we have

T ikOR 27
_ e im(p-p)
1= | df [ 4rk R € ]
) 0
2T 27 ikOR
- y & 9 1m(¢ '¢!)
A e kR of °©
0 Jo

T 2T ikOR
=im d¢ d¢l _Gf_____ eim(¢ -¢')
0 0

=imG (z,2") ,
m

that is
27 T ikOR
) e im(f-g" .
1 = 1
dap | dap liaw 41rk0R]e 1me(Z,z).
0 0
Also
T 27 ikOR
i -M
d¢ d¢' 9 - e elm(¢ ¢) = L G (Z, Zl)
o 47 k0 R BE' m
0 0 3 3
and

27 27 ikoR
9 e im(p-p) _ 9
1| 2 = = '
ap | df [:Bt’ ATk R:] € 50 G (% 2)
0o Jo 0

we have then from Eqs. (13.13) - (13.22)
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mI' 1

= — t

T2i-1, 24-1" 2 CZr } dt f (z) Ki (t) Kj (t)
0

1 Al
- -}I CZK, [1 - 6m(]§dtj‘dt‘[} (z) f(z") a(z) a(z") {' (2)
0vo

8
K (0K (8 g [:Gm-l ¥ Gm+1]]

1 1
+?12- CZk, [1 - 6m0] S dt Sdt'[f (z) £ (2" £ (2") a(z) a(zY)
0 0

1y 2
K, (0 K, () 55 c_]

1
+-15022k0[1 -5mo}Sdt§dt'[f(z)f(z')a(z)a(z’)zl-.
0

0 3

)
K (K, (t)h — G J
i b 853 m

1 1
+ 1 02 Z k, [1 - 6m0:| S dt S dat [f (2) (z") £(2z) f'(z") a (2) a (z")

4
0 0

: Ki (t) Kj (th . Gm-l + Gm+1
h3 883
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k
ml' 2 0
Tzi-l, 2j z2C 3 [1 6m0:]

1 1
' ' 1 () L
S dt &)dt [f (z) f(2') a(2z) a(z') 1 (2) o Ki (t) Kj (t"
0

[(m+1) Gm+1 + (m-1) Gm-l]:l +7Z 02 m %0- [1 - 6m0] .

1 1
X dt j dt? [f (2) £(z") @ (2) e (2) £ (2Y) - K, (0 K, (¢ Gm]

p!
0 0

k
+Zcz-49 [1—6m0]'

h

1 1
X dt j dt! [f (z) £ (2" a(2) £ (2) Ki (t) Kj (t" ‘1—. :
0 0 3

;iz [Gm-l ¥ Gm+1:]]

1

mI' 1

T21, 2 = 2 CZm jdtf(z) Ki(t) Kj (t)
0

k

1 1
+7c2 —5— S dt S dt! [f (z) £(z") '51‘,' a(z) K, (t) K, (t)-
0 0

[1 + amo] [(m+1) Gm+1 - (m-1) Gm-l]]

1 A

N c2-1—{9[1+a 11 at d‘[f ) £(zh) '

Z n mo t'1(2) £(z") = K, (1) K (t"
o Yo h3

-

[ -
2 el
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mI'

1 (i Al 1 1 1
T2i—1, 2§+2N -1 JX ds ds! (sin mf Ki ()t [a XV G]cos mf Kj ()

tlrxvicl= 5 ata ale) [1(2 cos (p-p) - 11 (2] 2F

o (2) a(z) [1+£(2) £(2) cos (B -9 | 2=
Bt
3

T
By
mI'

Toi-1, ojeon-1 ™ © (13.51)

mI' - ] 3 A. A! 1 3 1 1
TZH’ 25+2N = zjjds ds' (sin mf K. ()t [t XV G] sin m@ Kj (t")

@ (@) a(z) [ () cos (9 - g -1 (2)] 5 +

t [t' x V! G:] = - —,
+ —L,' @ (z) f' (z) sin (f -§")
h3 853
mI’ =0 (13.52)

Toi-1, 25+on

1
mI JT dS dS' sin mf K, (t) 'z}:[/t\' x V"' G] cos m’ K, (t)

Toiron, 2j
A
a I:t’ x V! G] ———, a (z") sin (f - ") — 8¢' + —cos p-¢n ——
3 0 E3
mI' =
T2i+2N, 2j 0 (13.53)
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1
! Locn 5 dt £ (2) K. (t) K. (t)
2 i j

1
k
—zc 2 [1 + 5m0] dt S dt' | K. (t) Kj (t) a(z) o (z") {' (2)

:
y 2
£(2) £(2) 5 [Gm—l ¥ Gm+1]_

1 1
k -
+zc 2 [:1+<s ]&dt&dt' f{z) f(z") K, (t) K, (t)
2 mO0 N i j
0

@ (2) @ () 1 (2) 5o Gm]

1 1
k
+zcz-—° |:1+6 ]Sodt Sdt'f(z) f(z") K, (t) K, (t")
2 mO i j
0 ,

1 9
— a(z) a(z) T G
h 98,

3
2 k0 :
+ZC [1+6 (J— dt
m0l 4

L c@ar@eeLle +a |,

h3 853

1
S dt! £ (z) £ (zY) Ki (t) Kj (tY
0
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1 A

mI' 21 [ O} \ .

Tosran-1, 25028 T2 € TR0y &dt j dt' £ (2) £ (2
0

51; a(z) a(z") ' (2) Ki (t) Kj (t" [(m+1) Gm+1 + (m-1) Gm—l]

2 k0 1
-ZC m[1+6m0:|—?:- dt

Ki (t) Kj (t" Gm

1
S dt! £(z) £(z?) # a(z) a (z') ! (zY)
0

1 1
k
vz 02[:1+ 5m0]70 &)dt j dt' £ (2) £ (2") - a(2) £ (2)
h
0 3
ny 2
K, 0 K, (1)~ . e, -c__] (13.55)
3
Tzr;1+12‘N-1, 9 * Z jyds ds' cos mf K. (1) ?[?' x V' G]cos mff’* Kj (t")
t- [?' x V! Cg] = _p—ll a(z) a(z") [f' (z) cos (f - #" -£'(z" —g—% +
+ ‘1-. @ (z) f' (z) sin (f - #" ﬁ
h, aE,
! =0 (13.56)
2i+2N-1, 2j :
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1
mlI'

1
== t £
212N, 22N S 2 C 27 | @ f(2) X, (1 Kj()
0

1 1
2 1 ! 1 L 1
+7C koz[l—éma] dt | dt' £ () £ () K, (O K, (8) - @ (2)

0 0

[(m+1) G oy~ (m-1) Gm_J

1

1
+ 7 c? K, %[1 - 5m0] at | at' £ () K20 K, (0 K, (t) -4

0 0 h3

9
, I:Gm_l + GmH] (13.57)
9,

In view of equations (13.51, 13.52, 13.53, 13.56) and Eq. (8.7), we see that
the T' matrix is of the form

v 0
A
It
T = (13.58)
I’
| © Ty
.
and - . r B
TII’ I
A 0 TB 0
1
TII = = (13.59)
m I'
0 T 0 T
2 B N A

What we have in fact shown is that the problem admits of a lower dimensional

representation than that assumed by Eqgs. (7.4) and (7.5) . In other words we have

(13.60)

&) zﬁ: c™ sin mf £+ ™ cos mp 2 K. (t)
= 2i-1 2i i

56



and

'Kmn('f)%i ™ cos mf £+ ™ gin mpay K, (t).
=i 2i-1 2i i

A direct proof of this would be desirable.

For the T matrix we have

and

1
I I, p.c. . nTI

-3
n

é—czﬂ at £ (2) K; (0 K, (9
0
K 1 1
- 02 Z TO [1 - Gm(J dt | dt! [f (z) £ (z") ' (z) @ (2)
0 0

n -9
Ki (t) Kj (t) 0 z! (Gm-l * Gm+1)]

2i-1, 2j

K 1 1
m 2,0 ] , .
T -C" Z 2 1 6m0 dt dt{f(z)a(z)a(z)
0

[f' (z) l:(m+1) Gm+1 + (m-1) Gm-l] -2 f1 (2 Gm m

+£(z) £ (2) £ (27 'a%'* G, ;- Gm+1)] K (K, (t')}

57

(13.61)

(13.62)

(13.63)

(13.649)

(13.65)



mIl

1
1
Thi 2= 3 C ZﬂSdtf(z) K, (0 K, (9
0

1
k
2
+c”z —49 [1 + émO] Ydt J dt! [_f(z) K; (0 K, (t)
0 Jo

{01 (z" [(m+1) G o1y (m-1) Gm_]] - £(z") f' (2") a(z').

2
527 Cm-1" Gm+l)} ]
1

1
T ,2j-1_ZCZ”thf(z)Ki(t)Kj(t)
0

1 1

k

_02 7 —‘19 [1+6m0]gdtjdt'[f(z)f(z') ' (z) a(2)
0 Yo

n O
K (O K () 557G+ Gm+1):]

K 1 1
mI 2 _o[ ]
T2i-1, 2 C zZ— |1t 6 o S dt S dt? {f (2z) a(z) a(z")
0

0

[f’ (z)[(m+1) Gm+1 + (m-1) Gm—l] -2f (zY Gm m

+HE0E) 1 (2 £ () 5 (G - Gmﬂ):l K, (0 K, (t’)}
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1

mIT! 1 .

TZi, % =5 CZm thf(z) Ki(t) Kj (t)
0

_ 1
+c’z L [1 -amo] dt | a0 @ (2) K, (O K, (t)

{(m+1) Gy -m-DG__ ~f() P ()56 + Gm+1)}:| (13.69)

Going from Eqgs. (13.48) - (13.57) to Eqs. (13.64) - (13.69), we made use of
the results

p! = £ (2 (13.70)
1+[f’ (zf)]2 -
a(zY)
and
o A
W = C tl.vl (13.71)
L _htAe (13.72)
' 3
9E,

From Egs. (1.12) we have

Peg (z") a (z') cos §* R+ (z9) @ {z") sin §* 9-&- a (zY) 2
and
A1 = cos #* @ (z) & + sin P a (2 G+(-1 (20 a(z)) 2

this together with

0 +/\ 9 A O
axt Y oy 92!

V=X

and the fact that Gm = Gm (z, z") , gives the results
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oG oG

—m _ 1
pyrll C a(z") 52t R (13.73)
aGm . 8Gm
—B =g £ (2) @ (2) — (13.74)
5 £ 0z
3

the b-column matrix is now, of course, made up of the elements bIII

I
1 through b2N

only.

Section XIV: Explicit Choice of the Trial Functions

The usual choice of the trial functions Ki(t) in a variational principle is of shapes
closely related to the expected shape of the current; in this way only a few shapes are

needed and N will be small.

The unfortunate part is that each of the matrix elements involves a laborious

quadrature over the entire unit square

1
dt | dt
0 0
These quadratures require an unacceptable amount of time. If N ~20, the T's will
be 40 x 40 symmetric matrices. io_zxﬁ = 820 of the matrix elements would have

to be evaluated for each mode m .

We conclude that global trial functions are unacceptable, since the T quadratures

are too time-consuming.

For this reason we shall pick localized trial functions so that the integrals go,

not over the entire unit square, but over a small subportion.
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A convenient choice of trial tunction is obtained by approximating the

K™ I t(t) and K™ IH¢ (t) by piecewise-linear functions of t . We break the unit

interval into N points, 0=t  <t_<...<t 1, and sample the current at these

1 2 N
N points. We define

mII _ _ mIIIt

eIl _ (t.) i=1,2 ..., N (14. 1)
2i-1 i
cg‘im _ gmIg (t) i=1,2 ..., N (14.2)

= sampled values of the current.
and draw straight lines connecting these sampled values.

The choice of piecewise-linear trial current is equivalent to the statement

mIllt m III

K (=2, Ch ) K (14.3)
i=1
gmII D o i 3 (14,4
; 2i i :
i=1
where
( t2 -t
t -t 0=t sty
K, (0= ¢ 2 (14.5)
.0 elsewhere
(t -t
t, -t 1:i--1<t\\t1
i i-1
Ki (t) = <
-t
i+1
t. Lt t,
i1 t;i i i+1
L 0 elsewhere 2Lig<N-1 (14.6)
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N-i

t Ltgt

tN - tN-i N-1 N
KNm=
0 elsewhere
SICH
1
g /
t1 1;2 tN—l
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This choice of trial function has the following convenient properties:

1. Most importantly, the K's are localized; the integrals for the T's are only over

a small portion of the unit square.
2. The Ki (t) are simple to generate and to differentiate.

3. The piecewise linear approximation is a good one: If one wished to approximate
a function with 10 maxima a 30th degree polynomial and a 30th degree linear fit are

probably equally good - - while the T's are much easier to generate in the latter case.

4. If the piecewise - linear approximation is used the C's have a very simple inter-
pretation via (14.1) and (14.2) - - they are the sampled values of the current (and not
merely the coefficient of Ki (t) in the sum (14. 3) and (14.4)) . Indeed a print-out of

the C's, once the variational equations are solved, is precisely a printout of the

sampled values of the current, these samplings being carried out at t 1° t2 s oo s tN .
Section XV: Classification of the Different Types of Matrix Elements
We define the cell C (i, j) as the rectangular region (t, t') with
t <ttt (15.1)
1
tj <t g th (15.2)

Most of the T integrals go over 4 cells. For example T59 goes over the 4 cells
c(3,5), C(3,6), C(4,5) and C(4,6) . However since Kl(t) and KN (t), are special,

some of the T's involve integrals over only 2 cells. For example T13 involves

integrals over C(1,1) and C(1,2) . Finally T11 , T12, T21 and T22 involve

integrals over the single cell C(1,1) whereas T2N-1, ON-1 ° T2N-1, 9N *

T2N, ON-1 and T2N, ON involve integrals over the single cell C(N-1, N-1) .
Thus the Tij can be classified by whether they involve integrals over 1, 2, or 4

cells.

63



We next distinguish between integrals which go over non-diagonal cells
€C(i,) i# j and integrals which go over diagonal cells C(i, i)

The 3 T's listed above which go solely over the cell C(1, 1) involve purely
diagonal cells. In addition, diagonal and almost diagonal terms like T33, T3 4’
T 43" and T 44 involve integrals over 4 cells, two of which are diagonal (here
C(1, 1) and C(2, 2) ) and two of which one non-diagonal (here C(1, 2) and C(2, 1)) .

Some integrals, say for T 3+ 80 over two cells, one of which is diagonal and the other

1

of which is non-diagonal. Some integrals, say for T 3 go over 4 cells (here c(1,2),

5
c(1,3, c(2,2, Cc(2, 3)) , one of which is diagonal and 3 of which are non-diagonal.

And finally most of the T's involve integrals over 4 non-diagonal cells.

Thus the Tij can be classified by whether the cells involved are diagonal or non-

diagonal.

Putting these classifications together, we find that for N > 4 there are exactly

10 types of T's, which we shall denote as types A, B, C, D, E, F, G, H, I, J.

These 10 types are shown in the next figure for the case N = 9, where T is an
18 x 18 matrix. Since T is symmetric, only the elements below or on the main

diagonal need be shown.

The classification is given in Table I. We assume that N > 4.
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A A

B B

B B |[H H

C C |E E

C C |[E E |[H H

C C |[F F |E E

C C |[F F H

C C EH

C C |[F F |F F |E E |H

C Cc |[F F |F F |F F |E EH
C Cc |[F F |F F |F F |E E |H
C Cc |[F F|F F |F F|F FlE
C C |\[F F |F F |F F|F F |E
C Cc |[F F |F F |F F|F F|F
C c [ F |F F |F F|F FI|F
D D |G G |G G |G G |G G |G
D D |G G |G G |G G|G G |G

The Ten Types of Matrix Elements if T is 18 x 18
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TABLE I

The Ten Types of T Matrix Elements when N > 4.

Description of Number of Cells Cell Cell
Type Matrix Elements Integrated Over Numbering Diagonal ?
(
T
A d T, b 1 c(1, 1) yes
T2z
\
rT31
T C(1, 1) yes
B {25 2
T41 c(2, 1) no
\T42J
(- .
T2i—1, l\
T,. C(i-1, 1) no
C ) 2i-1, 2 r 9
T2i, ) Cc(i, 1) no
\T2i, 2 )
3<1igN-1
\
rT2N-1, 1
T
9N -
D { N-1,2 ’ 1 C(N-1, 1) no
T2N, 1
(Ton, 2
D 1 i
rTZi-l, 9i-3 C(i-1, i-2) no
T.. ) C(i-1, i-1) yes
E < 2i-1, 2i-2 7 4
T2i, 9i-3 C(i, i-2) no
szi, 91-2 J C(i, i-1) no
3 i< N-1
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Type

Type

é T2i—1, 2j

Description of
Matrix Elements

Description of
Matrix Elements

(T

2i-1, 2j-1

Tai, 2i-1

T,. .
\21:2.‘, .)
<jgi-2

i«

A

2
4

VAN
Z,
R

~
rT2N-1, 2j-1

Ton-1, 2

Ton, 2j-1

Ton i )
2<jgN-=2

Toi-1, 2i-1

Toi, 2i-1
Toi, 21
2 < i< N-1

Ton-1, 2N-1

ToN, 2N-1

T2N, 2N

\
ToN-1, 2N-3

ToN-1, 2n-2

T2N, 2N-3

T

2N, 2N-2 J

Number of Cells
Integrated Over

Number of Cells
Integrated Over

67

Cell
Numbering

Cell
Numbering

C(i-1, j-1)
C(i-l) j)
C(i: j-l)

C(i, j)

C(N-1, j-1)

C (N—l) j)

C(i-1, i-1)
C(i-1, i)
c(i, i-1)

C(i, 1)

C(N-1, N-1)

C(N-1, N-2)

C(N-1, N-1)

Cell
Diagonal ?

Cell
Diagonal ?

no
no
no

no

no

no

yes
no
no

yes

yes

no

yes



Table I must be kept in mind while programming the computer to calculate the matrix

elements of T .

Diagonal Cells and Cells Bordering a Diagonal Cell

The T-matrix elements of types A, B, E, H, I and J involve one or more
integrals over diagonal cells. These integrals must be done analytically, due to

the integrable singularity in the Gm .

Also T-matrix elements involving integrals over cells bordering a diagonal
cell require special treatment since the integrand becomes singular on one of the
borders of the cell.

This analysis has been carried through in detail by the author for the elements

of TMP-C-

{See Appendix "Evaluation of T-matrix elements involving
integration over a diagonal cell and/or integration over a cell bordering a diagonal

cell.)

1
The T -matrix elements involve integrals of the form

ti+1 i+l 5
1 41 —— 1
dt | dt'F,({t) F, (t) 52 G (z, 2 (15.3)
t, t,
i i
and
ti+1 i+2 5
] 1 — t
dt dt F1 (tY F2 (t) 52" Gm (z, z") (15.4)
ti ti+1

Remembering the equation

vA

t=t(d=2 | aw/1+[1 W]’

0
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and

1

L[ r@f 2

we see that (15.3) and (15.4) can be put in the form

9
0z

Y1 il 5
1 1 — 1

X dt | dt' F(t) Fy(0) 5tr Om (t, t" (15.5)
t, t.

1 1

and
itl it+2
9
! 1 — !
St dt t at' F, (t) F, (1) pY® G_(t, t) (15.6)
i i+1

where F1 (t) and F2 (t) are different from those of (15.3) and (15. 4) .

Eqgs. (15.5) and (15.6) can be reduced to the form considered in the Appendix

by an integration by parts.

We have
i+1 i+1
)
1 1 = 1) =
St dt ) dt F1 (tY) Fz(t) pve Gm(t,t)
i i

L.

i+1 i+1
= X dt F2 (t) F1 (ti+L) Gm (¢, t. ) - dt F2 (t) F1 (ti) Gm (t, ti)

¢ i+l
i i
i+1 i+1
- ! 1 (40 1
St dt t;dt F2 (t) F1 (t") Gm (t, tY (15.7)
i i

The first two integrals in the right hand side of (15.7) can be handled as Eqgs.
(53) -(55) of the Appendix. The third integral is of the form of Eq. (1) of the Appendix.

An identical analysis is applicable to Eq. (15.4).
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Section XVI: Some Comments on the T'-matrix
For m> 1, we compare (13.64) with (13.67), (13.65) with (13.68), and
(13.66) with (13.69) to conclude

1 + 1
ml =(_)1 j TI.nII

T4 Gy m>! (16.1)

This result also holds for T "% as noted in Eq. (12.28). Hence for the elements
of the T-matrix (13.62) or (13.63) one has

mI i+j mIl
= ()" "

T, . .
1] 1]

(16.2)

WV
Nt

As indicated by Schweitzer, this result could have been anticipated by noting that (8. 14)
and (8.18), (8.17) and (8.19), (8.23) and (8. 22) differ only by the replacement of sin m§
by cos mf) and viceversa. This replacement could be achieved by the substitution, for
m>1,0 =-ﬁ - §" which sends sin mf into cos m@" , cos mf into sin m@"" . The
same transformation (which is a shift in the angle origin plus a reflection through the
plane of symmetry) sends (neglecting the shift in origin) 2 into - 4 and ,t\into'e . This
explains why the T and T which involve A r.% and ’t\f"/t\ maintain

2i, 2 2i-1, 2j-1°

their sign, whereas T2i—1 2] and T2i 2j-1 which involve’t\-f"-'a\t and Q-f" % , undergo a

change in sign.

From Eqs. (13.64) - (13.69) we have when m = 0

or 1
Tzi_l’ 2j-1 = 2 Czw|dtf(2)K, (1) Kj (t) (16.3)
0
or _
Tai-1, 2j 0 (16.4)
1
orr _1
2, 2) = 2 CzZr) dtf(2K, (0 Kj(t)
0
2 9Gy
+C"Zk, | dt | dtt{f(z) K, (t) K, (t") a(z" [G - f(z") ' (2" ]
0 i j 1 J z'

0 VO

(16.5)
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o Leza\at@k K. (@

2i-1, 2j-1 2 i j

1
~clzk \at |alf@ i@ P @e@K OK =S G ]
0 i j oz' 1
0 %o
(16.6)

om

Toi-1, 2 = © (16.7)
1

om 1

T2i, 2= 2 CZqx)| dtf(z) Ki (t) Kj (t) (16. 8)
0
We notice that the only elements different from zero are

or' _om or oIr

Toi-1, 2-1 = T, 2+ Tai, 25 » 22 Taip, 251 (16.9)
1
Hence for m = 0 we have to store only one matrix T0 whose entries are

~0' _or
Toi1, 2-1 = Tai-1, 251 (16.10)
~0! o1

2i, 2j Tzi, 2j (16.11)
~0! ~0! 1
70 - 70 -0 (16.12)

20-1, 2§ © 124, 2i-1 - 12i-1, 2j-1

1 !
from which both TOI and TOH may be recovered
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ij if both i and j are odd
1 ~0!
T‘:; . ng if both i and j are even (16.13)
L 0 if i odd and j even or viceversa
ol if both i and j dd
i, j#+1 if both i and j are o
1 ~0!
i T S if both i and j are even (16. 14)
ij i-1, j-1
L 0 if i odd and j even or viceversa .
1 i+i 1
Similarly, the result Tlind = ( -yt Tlinjn for m > 1 allows a great simplifica-
tion in storage, since only the T's for the II polarization need be put on tape - - to be

later withdrawn and inverted.

For the perfect conductor we have the results

T(g’ P-€ - 0 unless i and j are both even
and T??' P-C- _ 0 unless i and j are both odd.
Hence for m = 0 we store on tape the matrix elements TO’ L p-c. and TO 1L, p.c.
© v pe W o2i 2 M9 Teiin, 251

OIlp.c.

(which are the only matrix elements of TOI p.c. and T which are non-zero).

That is, we construct the matrix
T(?I,’ p.c. if i and j are both even
(16. 15)

TOH, p.cC.

i if i and j are both odd
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from which TOI’ P-C and T0 I, p. c'may be obtained
("~
T?; p- . if i and j are both even
oL P-e _ ¢ (16. 16)
ij
L 0 otherwise
“?5 p.c if i and j are both odd
0 p-C-_ (16.17)
1]
0 otherwise

In this fashion we can store on tape, for each m , a single matrix ™ from which both

TmI and TmH may be recovered.

More formally, for each m we shall compute a symmetric matrix T?;

™ = 7™ (16. 18)
ij ji
~ 1
™ = P P-C 7 (16.19)
1
™ - e p.ce ) pml m 1 (16. 20)

ij ij ij

from which both TmI and TmII may be recovered by

~0, p.c. ~0! . . .
+
( Ti i n Ti, i+1 if both i and j are odd
~0!
miI _ n T, . if both i and j are even
Tij = ﬁ i-1, j-1

0 if i odd and j even or viceversa

L T m>1

1)
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and
~ Cand '
f T(.)’. P-C 4y T0 if bothi and j are even

ij ij
~0t . .
mI =< n Tij if bothi and j are odd
ij
0 if 1 odd and j even or viceversa
"
()T m>1.

ij

The result (16. 2) is extremely convenient for two reasons. We have already discussed

how it halves, for m > 1 , the generation and storage of the T matrices for the two

polarizations.
Second, (16.2) also implies that a single inversion for each m > 1, gives both

-1 -1
[Tml] and [TmII] . This cuts the labor in inversion in half.

More concretely, it is easy to show that
-1 -1
4
E"ml]ij = (-) J[Tmﬁ_-lij m>»1. (16.21)

The proof, due to Schweitzer, is:

- -1 -1
mI] mI _ _yitk [mIIJ Kkt mlIl
Ej? ik Tkj - Z( ) T ik (-) Tkj
k k
. -1 o

Consequently the inversion of TmII for m > 1 automatically yields by (16.21)

the inverse of TInI .

At this point the reader can turn to Section XXXIII of P. Schweitzer's report,
for the consideration of the sequence used in generating the T matrix elements, and

the desired storage scheme.
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Section XVII: The case when the surface impedance n
is a function of the arc length: n=n(t) .

It is easy to see, by merely following the steps of the derivation, that Eq. (4.9)

is valid even when 7 is a function of the arc length t .
Similarly all the statements regarding the variational principle are also valid.

The only change brought about is the fact that n has to be kept under the sign

of integration.

The T matrix is now

TmIII - TmIII, p.c. + Tm]Z[I' (17.1)
The elements of Tm ' are
1
mI' _ 1
T2i—1, 95-1 = 2 CZm X dt £ (z) n(t) Ki (t) Kj (t)
0
K 1 1
- 02 Z TO- |-_1 - 6m0:| S dt | dt E(z) f(z") f' (z) @ (2) n(t)
0 0
1 _@_
K, (0 K () 5= (G )+ Gm+1)] | (17.2)
K 1 1
mI' = 2 _0- - 1 1 1
T21—1, 2 -C" Z 2 [1 6m0] dt | dt {f(z) a(z) a(z") n(tY)
0 0
[f‘ @[mtne_, +m-ve_]-21(=)mG_
1 1 1 1 8 - ]
+ £ (z") ' (2) ' (2" 5 2 (Grm_1 Gm+1)] Ki (t) Kj (t )} (17.3)
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1

mI' _ 1
Tzi, 2 = 2 CZm S dt f (z) n(t) Ki(t)Kj (t)
0

1 1

k

+ cz Z —4Q [1 + 6m0] S dt S dt! [f(z) Ki (t) KJ_ (t") n(tY
0 0

{a () [ G, -(m-DG__]-£() (@) al2)

9
527 Cma1” Gm+1)}:| (17.4)
1
. -Llcz dt £ (z) n () K. () K, ()
9%-1, 2j-1 2 4 AL R
0
. 1
- 02 7 —42 I:l + 6m0—_| idt S dt' [f (2) £f(z") ' (z) o (z) n(t"
0
N 0
K (O K, () 55 (Gm_1+Gm+1)] (17.5)

1 1
mII’ 2 kO [ ] . .
T2i—1, 2 C"Z Y 1+ 6m0 dt | dt' < f(z) a(z) a(z")
0 0

n (t" [f‘ (2) [(m+1) G ,q+(m-1) Gm_l] -2 (Y m G

m+

HE() (D) P (2) 2 (G| - Gmﬂ):l K, (0 K, (t')}

(17.6)
mil' 1
T2i, 25" 2 CZm jldtf(z) n (t) Ki (t) Kj (t)
0
1 1
2 k0
+CT g [1 - 6m0] S dt X dt' [f (2) a(z" Ki (t) Kj (t n(t")
0 VYo
1 1 1 .._a...
{(m+1) G_,,-(m-DG_ -2 ()55 (Gm_1+Gm+1)}]<
(17.7)
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APPENDIX

EVALUATION OF T-MATRIX ELEMENTS INVOLVING INTEGRA TION
OVER A DIAGONAL CELL AND/OR INTEGRATION
OVER A CELL BORDERING A DIAGONAL CELL

Introduction.

In P. Schweitzer's analysis of electromagnetic scattering from
rotationally symmetric bodies the T-matrix elements of types A, B, E, H,
I and J (see Schweitzer's report, pages 90-92) involve one or more integrals
over diagonal cells, and/or over cells bordering a diagonal cell. These inte-

grals must be treated analytically due to the integrable singularity in Gm .

A detailed treatment of this analysis is presented in the following pages.
The method used essentially imitates that used by TRG with only minor modifi-
cations dictated by the difference in approach. *

The values for the components of the surface field are very sensitive to the
values of their diagonal matrix elements, which involve precisely the integral over
the singularity. For this reason it is necessary that the analysis here presented
be dealt with extreme care, since errors in this part will be strongly reflected in

the answers.

*
M.G. Andreasen '"Scattering from Rotationally Symmetric Metallic Bodies, "
TRG Final Report.
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Evaluation of T-matrix elements involving integration over
a diagonal cell and/or integration over a cell bordering a

diagonal cell

A typical integral over a diagonal cell is of the form

i+1 i+1
™ =
S dt' F. (t" j dt F. () G (t,t) , (1)
1 2 m
t, t
i i
where
T jk R
o
Gm (z,2") = j do ek R cosm 6 (2)
o
0
and
R =y (z-20%+ [#2)]% + [€20)° - 2 £(2) £(2) cos 6 . (3)

In order to do integral (1) we expand F2(t) in a Taylor series about t = t' and keep

only the linear part
1
[} ' Y]
Fz(t)"Fz(t) + F2 (t (t -t (4)

and (1) becomes

m ti+1 i+1
T = dt' F, (t") F_ (t" dtG (t,t" +
1 2 m

ti ti
ti+1 ' i+l
1 - .
X dt’ Fl(t') F, (t") X dt(t -t" Gm (t,t" (5)
Y Y
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We will treat the integrals

t

141 .

1m=J dt(t -t G (t,t) , n=0orl (6)
n m

Y

analytically and then do

m ti+1 m ti+1 . m

= 1 ' 1 ' 1 '

T S dt Fl(t)FZ(t)IO+j dt Fl(t)FZ(t)Il )]
ti 1:i

by numerical quadratures.

From the geometry of the body it is seen that koR can be approximated by

k R B [0 - 6,00 + 4 2,9 1,06 atn” (£ [£,00 - 0]+ 4 2700 s10” (5)

(8)

The functions fl(t) " fz(t) , f3(t) and f 4(t) are defined in P. Schweitzer's report,
page 180.

We expand fz(t) in a power series about t = ti and neglect all terms of second

or higher order
1
£,(t) = £,(t) + £, (t) (t - t) (9

g0 that

k R =/ [t ]2 -7 + 41,60 1,09 s1n” (D) £5(8) (8-8) + 4£7(¢1) sin” (5)

(10)
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From (6) we then have

m ti+1 n
1 =j dt(t -t G (t,t)
n m
ti
ti+1 n ejkoR
- - t!
—S dt(t -t dée R cos m6
o
t,
i
T ti+1 ] e]koR
- - 1! —————
_jdecosmel dt(t - tY koR
0 i
-t i
i+1 t . e]kc.R
= d6 cos m#6 ds s koR (11)
_ 4!
0 i t

where

k R =[ [0 6%+ 41,0 £.00 £.08) sin” (9 s+ 4t %) sin” (2)  (12)

We want to introduce this expression in the amplitude factor of the wave function
exp (+ jkoR) / koR. In the phase factor, we shall introduce the following expression
which is obtained by expanding koR in a power series of s and retaining only the first

two terms of the series

kR =2£(t) sin (%) + (80 fz'(ti) sin (%) s . (13)
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We can write
kR 32 () sin) ' .
e ~e (1+]j f3(t') f2 (ti) sin (-2-) 8)

Let r'=|f2'(ti)
_ . N 2.6
N\= 4 fl(t) f3(t) f2(ti) sin (2)

Q=2 fl(t') sin (%)

so that
koR=/ M a2+ As+of
and
- 1!
ti+1 t
Ilfl=j”d6 echosmG ds s 3 21
0 b -t M e +Aa+
t -t
i+1
+jf3(t') fz(ti) do e’ "cosm®b sin(E) dsrﬁ===7
0 - F“s" +As+
i
Let
—t!
i+1 t
sn
v = ds -
n 2 2
ti _p ﬁ‘ s +As+ f?
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(15)

(16)

(17)

(18)

(19)

(20)



g

T
m i . ! i . ,0
= + 1 —
I o Lde e cos meszn Jf3(t ) f2(ti)Jd9 e’ cosm® sin( 2) wn+1 .
0

(21)
When Inll is evaluated l//2 can be neglected

~t!
t+1t

w = ds =
° /I-.Z sz+./\s+f22
ti-t’

!
t:i-l-l t

1
i log

2!"/!"2 sz+J\s+(22'+ 2r'28 +A

—t!
tit

2 4 2 1) 2 2 1
2fJP (t1+1't) +A(ti+1-t)+s?+2r‘ (ti+1-t) +A

1
= —log[
r ZPJPZ(ti-t')Zh/\(ti ) + oF + o2 (1) + A

~t!
t;i+1 t

(22)

1

ds - =
2 2 2| [~2 w2 X
ot {F‘ 8 +.A.s+&‘? r Ur‘ (tiﬂ-t) +/\(tﬂ_1-t)+f.f)

Yy =

204 02 ' A .
-/r' (4607 + A ) + F -2 Wo] (23)

Let us first consider Im
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T T
Im = 5 de Qcosm@ v+ Jde e] Qcosmegz/
o} o} o
0 n

m

T
) ' i . ,0
1 -
+j f3(t) fz(ti) j do e’ "cosm®b sm(2) d/l
0
where
r' = L » r’ - —-1!-— m = 1, 2, -

o 20 m 20m
For O=~0 s8inO~0 and we have

! 2
A= fl(t’) f3(t') fz(ti) 6

Q= fl(t’) 6.
Let

ti—t' = Bi , fl(t') f3(t') fz(ti) = §

1 ' 2 1\ -
fl(t’) f3(t) fz(ti) Bi + f1 (t) = A
' 2

£ () 15060 £5(6) By + 1 (W) =)

Then
ZPF‘ 92+ 2F'23+1+§62
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(25)

(26)

(27)

(28)

(29

(30)

(31)



Introduce the approximations

R ALISIN TAGY: (32)
cosm@ =1 -% m2 62 (33)
Define
n
m m jQ m
ATg = d6 ¢’ “cosm6 yy = | do g6) v, (34)
0 0
where
1 2 2 1 2 3
= i 1 - — - — f}
g(9) 1+]f1(t)6 5 m 6 -j 5 m fl(t)e (35)
Then
T
m_ .m jQ , ' o ]
= + ) —
Io AI0 @ e cosm6¢0+]f3(t)f2(ti) Ldee cosm®é e;in(z);lx1
"
(36)

To do integral (34) we will consider several cases depending on whether Bi and/or

B

1 are positive, negative or zero.

-(t,, . ~-t)

= -t! =
By=t -t i+l i

i i ti+ 1

-t! - - =
t (ti+1 ti) BH'I
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Case I Bi = 0 which implies Bi > 0.

We have then

5
il

2r BMJ F‘ZBZ 902 + o2 B

i+1

al"ﬁe+ge
2 2
i+1/B )" +E6

2P/~Ti‘e+gez

1
Vo= [Tlog

4:*23

ssrlrlog

Y., +EB
|4 il il o2

2 2
4T Bi+1

i

7By

1 Y1 S P £Byy log
4P2132 2 i+1

irl

v, +EB m U A
arp- 21 X" deg(e)ez—ﬁ".deg(O)logG/r-.; 9

3 2
4 B 0 Y% i+l

1
erlog

6

and

e TEB
m_] 11 3, 1, .. 4
Alg= 4"382 [3"m+34f1(t)"m]
i+1
7
-r108<ﬂ— > n +336t0 02 - m? "lﬂ
+|-v[n +jzf(t')n 316 m’ nn{l (37)
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Case I Bi+1 = 0 which implies Bi <0
Then
2
2r ‘,YH-ll 6+E6
Yo = Tlog 3
2 Y, 2 2 2
r |B| 1+ 0" +2r B +&6
i r.2 32 i

i

v, -EB

ZF'BJTH'__‘

~ hiog ZF‘/_;+S(1 28 0—%-log
<l——1+§> 2 i

n._s v+ 5| B
AT = - jeg(e)do——Jﬁg(e)lo<2r,B 0] a8

i+1

and

and

AI’:;:__L_ [-%n +jf(t')— 3]

2 m
2r Piﬂ

2
Y.+ E|B n
1 i m 1 2 3
- log n n_+if (t) —=-=m
r n
2I"‘[3i Yir1 m m 1 2 6 m
T)2
1 m 1 2 3
+ + N =/ . =
ad [nm @) 5= -71g m nm:l (38)
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Case III Bi < 0 which implies Bi+1 >0. Assume Bi+

already been considered

1>0 since Bi+1 =0 has

Y. N
2 i+l 2 2
—_— +
2r Bi+1 1+ 5 9 0” +2r Bi+1 £6
re B,
i+1

2

1
Vo= Tlog

¥, ‘
2F2]Bl 1+ ——02 +2r% B + £ 02
i I_.262 i
i

7.
2 i+l 2 2

. 4r Bi+1+Bi+16 +£6 . 2 2
~prlog ssr-rlog

Y

2 2
A% e E

and

n
m Y,., +EB,. m
arg= | g0 wode=—i+—13—irl gﬂ 82 g(0) do

2
0 4 B
m v, - €B ‘
2\ g@o L1 6] a
By

v+ E[ Bil

2
n
1 2 pym _1 23
I~ log Bi M l:nm+jf1(t) 5 5 M ”m:\
2
f2 )l eyrm o L2,3 (39
r nm j1 4 18m nm
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From Eqs. (36) and (23) we have
-Si—5/— A+ dOeJQcosmO d/o

T

+ ] £5(t) f;(ti)J

de {ejﬂcos m 6 sin (%) )
0

L l:\lr‘z(ti+1 - t')2 +j\(ti+1 -t + QT - y/r'z(t:i - t')2 +/\(ti -t + QTJ}

r.2

-% i=— | a6 e*®cos m 6 sin (—%) Y, (40)
£ (t,)
21
m
where
n
m m iQ 0 m
AII= dé e cosmesin(-z-) woz h(B)x//odO (41)
0
0 2 1 2.3 .1 2 4
= — — y w— - 1
h(O) 2+jf1(t’) 3 g 0 jzm fl(t)G . (42)

Equation (41) can be treated in an identical manner to Eq. (34). Cases I, II and III

now give
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Case I

1 F
L 10g Ea [%— nni T ARGE ]

Case II

2 3

1| "m . "m

Tl I g (43)
3

g 1

2 3
——-F 2oy () 2

4 1 6
12|"2 l/‘yi_*_l‘

772 T73
1
t [%n*'] £ (t" TB—} (44)

A 7 -8B

lo

Case IIT

+jf (t) — . (45)
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All the integrals in Eq.(40) can be done by numerical quadratures. This fact together

with the expressions (37) - (39) and (43) - (45) completes the evaluation of In(;(t')

Let us now consider Inll(t') .  From Eq. (21) we obtain

m_ 1 i 2 n2 ] )
= — - - +
I 1 r‘2 d6 e cosm 9[{r‘ (ti+1 t?) +A(ti+1 t" 3‘22
0

1 £, () £5(t7)

2 "2 . ) m
-Jr‘ (ti—t) +/\(ti-t)+f22] 5 Al

]
f2 (ti)
2 f (t" £_(tY) .
- —}———3— de ¢’ Qcos m6 sin2 (-9-)«// s (46)
£ (1) 2°70
21
m

where

n
m .
AIHZ1 = 4] de e Qcos mé sin2 (%) x//O (47

~ | dok(O)y,
0

where

2 3 2 4

Y (S LA |
k(6) =50 +jf(t) - -2m 0" . (48)

We again have to consider three cases. Proceeding as before we obtain
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Casel B, =

-Floglor g . "m T2 VI T "0 ™ My
© Uit
773 774
1 :__ 1 25
+r‘[36 ]f (t) 500 ™ nm} (49)
Case II Bi+1=0

4 5
n_ n_
AR = —5— "'—+Jf(t’) ]

2 2 16

2r 1+1

3 4

R YR [nm+jf(t’)ﬁr-l-——1—m2nﬂ
r 2rB|/_“1 1 16 40 m

n3 n?

pnom 1 25

+rr[ +]f (tY 54 " 200 ™ nm] . (50)

Case III Bi <0

3 4
p2| m, £, (1) mom S 51)
| 3t B2 " 200 'm (



All the integrals in Eq. (46) can be done by numerical quadratures. This fact together
with Egs. (49) - (51) completes the evaluation of In:(t') )

Substitution of Irg(t') and Inll(t') in Eq. (7) and evaluating the integrals by

quadratures completes the integration over a diagonal cell.

Integration over a cell bordering a diagonal cell

A typical such integral is of the form

ti+2 ti+1
T = dt' F_(t"
1 dtF_(t) G (t,tY) (52)
¢ 2 m
i+1 i
Let
m i+l
1y - '
I (t) dt F2 (t) Gm(t, t") (53)
ti
For t'= ti +1 the integrand of ™ (t") becomes infinite and the integral inust be treated

analytically. For t' other than 1:i +1 the integrand is everywhere well behaved and Im(t')

can be done by ordinary numerical methods.

Tm is given by
ti+2 m
T = dt! Fl(t') I(t) . (54)

ti+1
Proceeding as before we obtain

m m ! m
™ (b, )+ Folt, DTk, ), (55)

o) = Folti ) Tolty,
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where

£.(t,. )
m _ . 1. 3 i+l m
I 0 (ti+1) = AIO(tH_l)- 5 ) ———f,(t ) Al l(ti-i-l)
2 Vi+1
T

+ X dé eJQcos m 6 d/o
n

m

. ' iQ 1l
+j f3(ti+1) fz(ti+1) f’ de{e cos m 0 sin (2)
0

r%i [Igl -Jrz(tiﬂ ) ti)2 Ay -y 7 :l}

£(t. ) ("
- ';- j -—?—ltl— dé eJQcos m 6 sin (%) Yo (56)
£ (t )
2 i+1 nm
Q=2£(t,. ) cin (2 (57)
1%4+1 2
1
r= |f2 (t,, ) (58)
A=4f (. )L (L, ) E(t..) sin® &) (59)
157 13! Bl 5
3 3 '
1 ZPV/P T AN T T i -2r (t =) A
Vo= ~Flog 2r [+

(60)
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and

arg(t, )= —— ST () 3]
0 i+l 2!" {—| 2 m

1 (B T L
F 2B, [T T "m 72 % 6 ™ "m
nz
1 m 1 2 3
+ = — e ——
F [nm+jf1(ti+1) s 18 ™ "m] (61)
3
Enm
Al = 2
12070
2
A -SB n "n?
1
og it ) s
112 1 3
+r*[ 8 "m*I g f ) "m] .
and
v/
m -1 if2
Il(ti+1) "y dé e cosme[lﬂl
0
A2 02 Yo h) )
{r' ey ) 'A(ti+1'ti)+ﬂz]'2 £ ) AIz“m)
2 i+l
2f (t, )fE (t. ) ("
1+ 3V
- '1 i1 de ejQ cos m 0 sin2 (%) ¢/0 (63)
£y (g n
m
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where

m £ 1 4 1 5

AL, ()= [16 Mt 130 £ (44 ) "m]
or
Yi+1
3

~ 108 12 1 ey 20 ™ 'y

11 3, 4 1 2 5|
iy [36 n 64 £, T~ 200 ™ "m] (64)

in the above formulas

B=t -ty

E=1(t, )it )1 (t1+1

7 =) 3 f2(ti+1) B+ 1( )

fz 1Y)

Egs. (56) and (63) when substituted in Eq. (55) complete the evaluation of Im(tl +1)
Eq. (54) can now be done by quadratures.
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