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ABSTRACT

To calculate the signal-to-noise ratio of the
signal resulting when a number of antenna voltages
are combined, it is necessary to know the degree of
correlation between the individual noise components.
In this report mathematical expressions are derived
for the correlation between two noise voltages, in-
duced in two antennas placed a known distance apart,
assuming that the intensity of the noise arriving
from each direction is known.

The correlation coefficient is also derived
for the noise voltages generated in two channels of
a direction finder.

The results are applied, as an example, to the
case of a two-element rotatable Adcock antenna.
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CORRELATION BETWEEN NOISE VOLTAGES IN ANTENNA SYSTEMS

1. INTRODUCTION

In the course of a study of the effect of random noise on direction
finding systems, some mathematical expressions were developed for the corre-
lation coefficient of two noise voltages in certain situations. It is the
purpose of this memorandum to summarize these results. A possible application
of these expressions is the calculation of noise in direction finding systems,
when antenna noise is dominating. An example of such a calculation is given in
Section L.

The fact that correlation exists between two random noise voltages
indicates that these twp voltages are not independent of each other. The
correlation coefficient is a measure of the degree of dependence of the two
noise voltages. To be able to calculate for instance the rms value of the
noise voltage that results when the two noise voltages in question are combined,
one must know the value of the correlation coefficient. To clarify this state-
ment a few definitions and examples will be given here. These fundamental
relations can also be found in Reference 1.

When e, and e, denote the instantaneous values of two random noise

1 2

voltages, their correlation coefficient (C) is defined as:

¢ = ; 22 (1)
€1 ° %

A bar placed over a quantity denotes the time average of that quantity.



ei and eg are proportional to the average noise powers of the two

signals, and the rms values of the two noise voltages can be written as:

\/fzg and *//:Er;

1 2
When the two noise voltages are added, a new random noise voltage is formed whose

instantaneous value (e) is given by: e = e, +e For the average noise power

5
of this voltage (e) we find:

I
(o)

B
el + 5 +2C el . e2

This shows that when two independent (uncorrelated) noise voltages (C = 0)
are added, the average power of the resulting noise voltage is equal to the sum

of the average powers of its components. This is a well known result.

— | —

When the two voltages e and €5 have the same rms value (ei = eg),

their sum-voltage (e = e; + e2) will have an average noise power proportional to:

AN

e = (e:L + eg) = 2 ;? (L +0) (2)

and their difference-voltage (e! = e - e2) will have an average nolse power

proportional to:

etc = (el - 62) = 2 e—f (L-0) : (3)

These examples show the importance of the correlation coefficient when
noise voltages are combined.
In this memorandum expressions for the correlation between two noise

voltages are derived for the following two cases:



(1) The noise voltages generated in two identical antennas that are
placed a known distance apart. The noise spectrum is assumed to
be a narrow rectangular band (see Section 2).
(2) The noise voltages generated in two crossed antenna systems; such
a configuration is common in radio direction finders. A case of
special interest for a two-channel direction finder occurs, when
the orientation between the antenna systems is exactly 90O (see
Section 3).
In Section 4 the results of Section 2 (see 1 above) are applied to a two-element
rotatable Adcock direction finder to show the result of antenna spacing on the

signal-to-noise ratio at the receiver input.

2. TWO ANTENNAS IN A NOISE FIELD

2.1 The General Case

In this section a general expression is derived for the correlation
coefficient of two noise voltages generated in two identical antennas which are
placed a distance d apart.

For the derivation of this expression the following assumptions and

definitions will be made:

(1) Usually a radio receiver having a narrow bandwidth, will be used
with the antenna system. Therefore we shall only consider noise
having a narrow bandwidth.

(la) It is assumed that the noise has a narrow "rectangular" frequency
spectrum, extending from.aﬁ = Enfl to Wy = 2nf2 and having a
center frequency @ = (aﬁ_+-ab)/2.

(1b) It is further assumed that the bandwidth is small with respect to

the center frequency: (“b - ai) < 0.0l w,.
3



(2) Random noise signals are arriving from different directions.

(2a) The noise arriving from a small angular segment do in the direction
Q, contributes an amount f(c)-da to the average noise power at the
output of each antenna, where f(o) is a known function.

(2b) Tt 1s assumed that there is no correlation between noise signals

arriving from different directions.

(3) The two antennas, whose noise outputs are compared, are assumed to
be identical, and to have no mutual coupling whatever.

(3a2) If the two antennas do not have an omnidirectional pattern, then
it is assumed that the directional patterns of the two antennas are
oriented in the same direction. This will make f(¢) as defined in
(2a) equal for the two antennas.

(3b) The two noise voltages generated in the antennas will have the same
average power, in other words, they have the same rms value. This

will be shown in Section 2.1.3.

(4) The distance between the two antennas "d" is assumed to be smaller
than 5\, where A\ is the wavelength corresponding to the center

frequency @y of the noise band.

The expression for the correlation coefficient in the general case will
be derived in Section 2.1.3. Sections 2.1.1 and 2.1.2 are devoted to deriving
expressions that form the basis for the derivation in Section 2.1.3.

2.1.1 Single Noise Source. Consider two antennas, whose output voltages

are Vl and Vé respectively. They are placed a distance d apart and receive a
signal radiated by a single noise source. The noise signal is arriving from a

direction o which is the angle between the wavefront and the line connecting the

two antemmas (Fig. 1).



Figure 1 Two Antennas and Wavefront

Both antennas now receive the same noise voltage except for a time delay 1, which
is a function of the angle of arrival . From Fig. 1 it can be seen that the
signal is received later by antenna 1, and the time delay 1 is given by

d sin ¢ - 2nd sin
c a%h

The noise is confined to a narrow frequency band according to assumption (1).
Let the bandwidth be v, = (“b - “i)' Then the correlation coefficient C(t)
of the two noise voltages Vl and V2’ which are equal except for the time delay 7,

is found by using the autocorrelation function for noise:
sin(Wﬁ;/e)

er / 2

(see Ref. 1). It follows from assumptions (1b) and (4),

¢(r) = cos W,

wa;/e < 5 x/100
and consequently the following approximation is accurate to within 1/2%:
sin(whg/E)

Az St

w

With this approximation we find the following expression for the correlation

coefficient C(1): _
¢(r) = cos @ -

p)



This can be written as a function of the angle q:

Cla) = cos [g%g-sin a] (4)
This expression gives the magnitude of the correlation coefficient of the two
antenna voltages Vl and V2 when a single noise signal is received from a

direction .

2.1.2 n Noise Sources. Let us now consider the two antennas of the

previous section placed in a noise field generated by n different noise sources.
These n nolse sources are assumed to be uncorrelated and to contribute the same
amount of average noise power to the output of the antennas. This last restriction

will be removed later in this section.
Let the jth noise source (lS{erQ_contribute an instantaneous voltage

elj to the output of antenna no. 1. Then the total instantaneous voltage E. of

1
antenna 1 will be equal to:

E. = ) e

PR

Similarly we define the voltage egj and E2 for antenna 2, so that:

In general there will be some correlation between elj and e2j as we have already

seen in the previous section (2.1.1). If this correlation coefficient is Cj’

then by definition:

e, . * €.,
C, = ——%gzr——ggzr' (1)
! 62 62
13 2J

It will now be shown in this section that the correlation between El and E2

can be found by taking the arithmetrical average of all the correlation coeffi-

cients Cj' However to show this we must first establish the following relations.
Because we assumed that each of the n noise sources contributes the

same amount of average noise power to the antenna outputs, and because of

6



assumption (3a), the following quantities are equal

e2 = e2 = 62 = 62 = e2
13 ~ 23 © Tlk T T2k T
which defines the new quantity e2. Having established this, we can now write:
€ . . ..
Cj - lJ__ 2J
e2

Since the n noise sources were assumed to be uncorrelated we know that

elj . e2k = 0 and

€15 " %1

O when J % k.

These last expressions allow us to calculate the average noise powers of the

aritenna voltages E, and EQ:

—_ n c n - -
Ei =l Z el = L ei. = n.e®
jr j=L

1

N PO

In the same fashion we find that E;5 is equal to

n
2 2
E, = 325 epy = Bee

and this shows that also:

With these results the correlation between El and E2 can be calculated immediately.

. E,°E, i (% elj)'(z egj)
= = —
L) (2 e2)
— —-§ n
_ Zelj-egj _ ch'e _ jgl c )
% e n.e? n



and this shows that the correlation coefficient C can be found by taking the arith-
metical average of the individual correlation coefficients Cj’ provided that all
noise sources contribute the same amount of average noise power to the antenna
signals.

As mentioned earlier, this restriction will now be removed. Let the jth
noise source contribute an average power equal to Pj’ to the antenna signal. This
noise signal can then be thought of as the sum of the unit contributions of a
number of Pj uncorrelated noise éources of equal power. Asvwas shown in the
introduction,noise powers can be added if the noise signals involved are uncorre=-
lated. All of these Pj noise sources are situated at the location of the jth noise
source and each contributes unity average power to the antenna outputs. Also the
correlation coefficient Cj as defined above, is the same for each of these Pj

noise sources. By this reasoning the problem has now been reduced to one in which
all noise sources contribute an equal amount of power to the antenna outputs.

Equation 5 is applicable to this situation. Using Eq 5 we find the following

value for the correlation coefficient of the two antenna voltages:

n
C=£LPEE_ (6)

n
% P,
j=1 Y
This then gives the correlation coefficient for the more general case that the n
noise sources do not have equal strength.

2.1.3 Arbitrary Noise Distribution. With Eq 6, developed in the

previous paragraph, it will only be a small step to calculate the correlation
coefficient for the case that the noise distribution is arbitrary; Let the noise
distribution be given by the function f(q) as defined in Section 2 (assumption
(2a)). Then it will be clear that f(q)-dq corresponds to Pj in the previous

section (2.1.2). The assumption that noise signals arriving from different

8



directions are uncorrelated (assumption (2b)), corresponds to the statement that
th t
the j  and k n noise sources (Jj % k) are uncorrelated.
Since noise signals arriving from different directions are uncorrelated

the average noise power output of antenna 1 will be:

The average noise power at the output of antenna 2 will be given by the same

expression so that Ei = E2

> (see assumptions (3) and (3a)).

The correlation between the two antenna voltages El and E2 can now be

found by substituting f(g)-dy for Pj in Eq 6
T
[ (o) Cla) do

c = =X

1
[ fla)da
-1

In Section 2.1.1 an expression was derived for C(z). Using this expression we

Tind: fK f(a) cos (xsina) do
-1

c = - (7)

[/ f(a) do

where x = 22@ -ﬁ
A

This expression will now be written in a different form, by using the

Fourier expansion of the function f(q):

a o0
fla) = —%- + (an cos ng + bn sin no)
n=1l
vhere: & = % " (o) da
-1
s = % fﬂ f(a) cos(na) da
n T
-1
L T .
b, = = [ £(a) sin(na) do
-7

(n=1, 2, 3, «vvvy @)



Substituting this expression for f(q) in Eq 7 and at the same time reversing the

order of integration and summation, yields:

% T a Lﬁ cos(xsing) do
C = °- +

a
T )

_;_ % a, fﬂcos(na) cos(xsing) do +
n= -5

(o]

% bn fﬁ sin(ny) cos(xsina) do
n=1 -7

a
£D|I—'
o

This expression can be simplified by using the following equalities:

(l)» fﬂsin(na) cos(xsinq) da = O,
-1t

because the integrand is an odd function of the variable «.

(2) fﬂc05(na) cos(xsing) doy = 2 fﬁ cos(ng) cos(xsinq) da,
- 0

because the integrand is an even function of a.

(3) [Tcos(na) cos(xsing) da = = Jh(x) for even values of n
0
(n=0,2, % ...). J is the Bessel function of order n.

When n is odd (n =1, 3, 5, «..)¢

fjI cos(ng) cos(xsing) do = O
0

For the proof of these relations see Reference 2.

Using these equalities, we find the following expression for C:

™8

C = J(x 2 8, Jda (X a
() g2 Loy, 2n<)(ngﬂ) (7a)
N

This then is the desired expression for the correlation coefficient between the

noise voltages at the output of two antennas placed a distance d apart.

10



2.2 Special Cases

In the next two paragraphs Eq Ta will be applied to two special cases.

In Section 2.2.1 two omnidirectional antennas, which are placed in an
isotropic noise field, will be considered.

In Section 2.2.2 Eq Ta will be applied to the case of a single noise
source. Because this case was already treated in Section 2.1.1, resulting in Eq 1,
the application below should be regarded as a verification of our calculations.

2.2.1 Isotropic Noise Field. Consider two omnidirectional antennas

placed in an isotropic noise field. In such a field an equal amount of average
noise power is received from all directions. Together with the statement that
the antennas are omnidirectional, this implies that f(a) is a constant, independ-

ent of .

With f(a) = K = constant, the Fourier coefficients of f(a) can be

calculated and we find:

a = K
o

3

n 0(n=1,2,3 co0ov, )

Substituting these values in Eq Ta, we find that the correlation coefficient of

the two antenna voltages is equal to

c = J,(x) (8)
where x = EEQ_
A

This function is shown in Fig 2, where d/A has been chosen as the variable.
If two antennas that do not have an omnidirectional pattern, are placed

in an isotropic noise field, Eq 8 does not apply. In this case noise coming
from different directions will not contribute the same amount of average noise
power to the antenna output, and consequently f(q) is not a constant. f(a) in
this case is determined by the antenna pattern as will be apparent from the

definition of f(q) (assumption (a), together with assumption (3a)).
11



FIG.2 CORRELATION COEFFICIENT IN ISOTROPIC NOISE FIELD



2.2.2 gingle Noise Source. It has already been shown (Section 2.1.1)

that the correlation coefficient of the two antenna voltages is equal to

Cla) = cos(xsing)

when only one noise signal is arriving from a direction q. In this paragraph it
will be demonstrated that the application of Eq 7a to this situation leads to
the same result.

When a single noise signal is arriving from a direction oy f(a) =0
whenever ¢ # oA However f(ao) is infinitely large in such a way that
fﬂ f(a)+do = P, where P is the average noise-power at the outputs of the antennas.
Eg other words f(q) assumes the character of the Dirac delta-function. For the

*
Fourier coefficients of this function we .find:

a, = P/n and
_ P
a, = cos(nao)

These values are substituted in Eq Ta, giving
o0
Cla) = I (x)+2 §1 I (%) cos (2na),
and it can easily be shown that this is equal to:

Cla) = cos (xsing)

To show this we use the generating function for Bessel functions:

- Xy -4 = e
6(t) = ep[E(6-D] = L g (x)
Nmx =co
(See Reference 2)
For t we now substitute t = exp (jao) =cos g, +J sina .
Then:
+c0
G [exp (Jao)] = exp (Jx sin a) - L J,(x) exp (§ na)
= =00

When the real part of both sides of this equation is taken, it is found that:

* The Fourier series representation of the delta function does not converge.
The representation of C(g) by a series of Bessel functions using these
Fourier coefficients, does converge. 13



Re { G [exp(jadj]} = cos(xsinao) = _Z Jn(x) cos(nao)

Because cos(nao) = cos(-nao) and because J_n(x) = (-1)* J+n(x), the equation above

reduces to: cos(xsinao) = J(x)+2 L Jgn(x)-cos(Enao),

which completes our proof.

3. TWO CHANNELS OF A DIRECTION FINDER

In this section the correlation between noise voltages generated in two
chammels of a direction finder will be studied. Consider 4 antennas (11, 12, 21,
22) as indicated in Figure 3. The lines 11-12 and 21-22 bisect each other at the
point O and we shall call the angle between these lines ¢. These antennas may be
the four masts of a L4-element Adcock in which case the angle ¢ = 900. But when the
four antennas are part of a different antenna system, the angle ¢ may have other

values.

HnO-

Figure 3 Geometry of Two Channel Antenna System
In direction finders the voltage of channel 1 (El) is obtained by

taking the difference of the voltages of antennas 1l and 12, so that:

1h



B = By - By

Similarlys E2 = EEl - E22

As is well known, the antenna pattern resulting from doing this 1is approximately
a cosine pattern. This approximation is valid provided the distance between the
antennas is reasonably small, e.g. < %/8. We shall assume in the following
derivations that both channels under consideration have a cosine pattern.

The noise power received from a small segment do in the direction a%,
will be given by the function g(q):da. Note that this function g(x) is in general
not the same as the function f(a), as defined in Section 2, because g(a) does
not take into account the directivity pattern of the antenna system (compare
assumptions (2a) and (%a)).

As before it is assumed that noise signals arriving from different
directions are uncorrelated (compare with assumption (2b)).

3,1 Arbitrary Noise Distribution

3,1l.1 General Case. In this paragraph a general expression will be

derived for the correlation coefficient of the noise voltages generated in two
antenna systems. As described in Section 3, both antenna systems will have a
cosine pattern, and also the noise power per radian, arriving from the direction
a, is given by the function g(a).
To derive the general expression, it will first be necessary to consider
the correlation coefficient in the case of n discrete uncorrelated noise sources.
Let the jth noise source be located in the direction aj. It will

generate the voltage e,. in channel 1 and the voltage e.. in channel 2. These

1j 2J

* The angle ¢ is defined as the angle between the direction of arrival of the
signal and the perpendicular to the line 11-12, connecting the two antennas of
the first channel. 15



voltages will be equal to (See Fig. 3)

e = e sin
a (0]

1 .
J 3 J
5 = %y sin(aj + )
J
7 th
The quantity ea is proportional to the average power of the j ~ noise source, and

J
it corresponds to g(aj)'da. The proportionality constant will be neglected in

these derivations because it is the same for all noise sources and will therefore

cancel out in the final equation.

The total instantaneous voltage generated in channel 1 can be written

as: n
E, = § e, sin ay 9)
J= J
Similarly we find for channel 2:
n
E, = X e_ sin(a, +¢) (10)
2
1%

The correlation coefficient of these two noise voltages, by definition,

is given by: ’ ——

E,E
C = = | 1)
/2 2
B - B
Using Eqs 9 and 10, it is easy to evaluate the quantities El-E2 3 Ei and Eg .

To evaluate these we have to use the assumption that different noise sources are
uncorrelated, corresponding to the assumption that noise signals, arriving from

different directions are uncorrelated. Because of this assumption all terms of

the form e - e (J # k) are zero.
aj ak
= [ o ]2 5 3 9
E = i N = i N
1 J;i eo‘j sin a, ng eaj sin” o

16



And similarly:

- I

2 2 . 2
B, = jZﬁ e a, sin (aj + )

For the time average of the product of El and E2 we find:

e s B
E.'E. = .Z e sin aj~sin(a.

+ )
1% ’

The transition from the discrete case, with n noise sources, to the

continuous case, where the distribution of noise power is given by g(a), can now

be made. g(q)-do is substituted for eé. and the summation signs are replaced
J

by integrals. This gives:

-7
1 @ ;] T
=3 /] egla) da - 5 [ &g(a) cos 2a du
-7 -
- X -
= L (s, -ay) (11)
where a, and a, are Fourier cosine coefficients of g(a) defined by
1 n 1 T
8, = % [ gla) da and a, = = [ gla) cos 2a do
x T
=7 -7
2 .
For E2 we find:
- +1t 5
B, = [ gla) sin"(a+9) d
-7
1 o
= § f g(a) da - E f gsa) COSQ(a-l-q)) doy
=7( "Tf
> 1 +7 1 +1
= 5 8 "% /| gla) cos2a cos2p da + 5 | g(a) sinog sin2p do
-1‘[ -ﬁ
= = (a_-a, cos 2p + b,sin 2) (12)
T 2 T2 P+ Dy \J

where b, is a Fourier sine coefficient of the function gla):

L7



1 +7
b, = % 1Tf g(a) sin 2o da

—

And finally the following expression is found for El'E2 :

10
[ gla) sina « sin(a + ¢) do
-5

=3l
=
]

nof =

+1t 1 T
= [ ela) cosp da - 5 [ &la) cos (2a + ¢) da
-7 -7

;T
= 5 & cosp -5 [ &(a) cos 2a cosp da
-
L
+5 g(a) sin 2¢ sing da
T o=x
7
=3 (ao cosp - a, cosp + b, sing) (13)

With Egs 11, 12, and 13 the correlation coefficient can now be readily found:

E ‘E (a_-a,) cosp + b, sing
- o 2 2 (14)

i
l no

\/r(ao—ag)(ao—a2 cos 2¢ + b, sin 2p)

l__l

Equation 14 then, gives the correlation coefficient of the two noise
voltages generated in the two channels of a direction finder when the
distribution of noise power is given by gQg).

3.,1.2 Perpendicular Antenna Systems. Equation 14 that was derived in

Section 3.1.1, gives the correlation coefficient for the more general case that

the angle between antenna systems is equal to ¢. In two-channel direction

finders, using a four element Adcock antenna, this angle ¢ is usually equal to
0

90~. In that case the correlation coefficient can be determined by substituting

this value for ¢ in Eq 1k, giving:

18



C9OO = . (15)

For the special case that the nolse field 1s isotropic, the Fourier coefficient
b2 becomes zero, and consequently the noise voltages are uncorrelated. This

will also be shown in Section %.2.1.

3.2 Special Cases

In the following paragraph expressions will be derived for some known -
noise distributions, using Eq 1l4. These known distributions will be the isotropicc
noise field, and the case of a single noise source.

3.2.1 Isotropic Noise Field. Consider that the antenna system of Fig.3

is placed in an isotropic noise field. In such a field an equal amount of average
noise power is received from all directions. This means that g(a) is a constant.
The Fourier coefficients &y and b2 will then be equal to zero, so that the

following value is found for the correlation coefficient of the noise voltages

in the two channels:

Cijy = cosp (16)
It immediately follows that the nolse voltages in the two channels of
a direction finder, using a four-element Adcock, are uncorrelated, when the

antenna system is placed in an isotropic noise field. For in that case ¢ = 900.

3.2.2 Single Noise Source. In the case that a single noise signal is

received, arriving from a direction ao, the function g(p) assumes the form of the
Dirac delta function, as was previously discussed in Section 2.2.2. The Fourier

coefficients of this function will be:

o
\V)
]
o
o
Q
o
«
o

o’
no

It

©

2]

e

[n
£



Substituting these values in Eq 14, we find for the correlation coefficient:

(1 - cos 20;)) cosp + sin 2 - sing

«//(l - cos 2@0)(1 - cos 2g_+ cos 2p + sin 2 * sin 2p)

By the use of trigonometric formulae, this expression can be reduced to:

cC = +1
for all values of ¢ and Q. That the correlation coefficient is equal to +1
or -1, also follows from the fact that the voltages in the two channels differ

only in amplitude, if only one noise signal is received (see Section 3.1.1).

4, SIGNAL TO NOISE RATIO IN A TWO ELEMENT ROTATABLE ADCOCK ANTENNA

In this section the signal to noise ratio at the output of a rotatable
Adcock antenna will be considered. This Adcock antenna consists of two identical
monopoles, placed a distance d apart. To use this rotatable pair of antennas for
direction finding, the difference of the two antenna voltages is taken.

Let a radio signal of frequency w (corresponding to a wavelength N)

arrive from a direction o (see Fig. 4). Then the two antenna voltages, Vl and Vg,

W,
il/é\/b&

\Ofl/f

N
\ N
Y T\ k
AN
= d RN -

Figure 4 Rotatable Adcggﬁ Antenna Configuration



will have the same frequency but different phase angles. Iet the phase difference

between the two voltages be equal to 2u, which is a function of the direction of

arrival o
2u = g%g sin o or
u = %2- sin a.
For the difference voltage VA = Vl - V2 we find:
V, = A cos(wt - u) - A cos(at + u)
YA = 2A sinu -« sin wt

where A is the peak value of the signal amplitude of each of the two monopoles.

The direction of arrival of the signal can be determined by rotating
the antenna system until the signal VA disappears. This occurs when the angle q=0.

If there i1s noise present, due to an isotropic noise field, the signal-
to-noise ratio will golto zero when ¢ does. It will therefore only have meaning
to talk about the signal-to-noise ratio when the angle ¢ is different from zero.
Indeed, to find the position of the null, the operator will have to rotate the
Adcock antenna slightly away from the null position. In the following,the signal—
to noise ratio of the Adcock signal VA will be calculated when the antenna system
is moved away from the null position by amounts of 50, 10° and 20°. This signal~
to noise ratio will then be compared to that obtained by a non-directional single
monopole, identical to the ones used in the Adcock antenna. ILet this antenna be
called the monitor antenna.

Assume that the average noise power at the output of this monitor antenna
is proportional to N, = Eﬁ' The signal output of this antenna will have the

M

same smplitude as each of the monopoles of the Adcock antenna, namely,

VM = A cos at

2l



The signal power of this signal is then equal to:
2

_A
Sy="3

From this it follows that the signal-to-noise ratio of the monitor antenna is

equal to: SM A2
Ry=1-="—= (17)
M 2E2

Iet us now consider the signal-to-noise ratio of the output signal of

the rotatable Adcock antenna. As was shown above, the output signal will be:

Vp=V -V

= 2A sin u -+ sinwt
The signal power is then equal to:

5, = 2 A% sinu.
To calculate the noise power of the difference signal, it is necessary to know
the correlation coefficient of the two noise voltages, generated in the two
elements of the Adcock antenna. This was pointed out in the introduction. The

average noise power at the output of each of the two monopoles is proportional

o—po—

to Ee, because each of the monopoles is identical to the monitor antenna. The
correlation coefficient of the noise signals in the two antennas is equal to

2rd,
x

because the noise field was assumed isotropic (see Section 2.2.1).

C=JO(

It follows that the noise power of the Adcock signal N, is equal to

A
Eq 33 )
: N, = 2E (1-0)
< e F [1- 0,

And consequently the signal-to-noise ratio at the output of the Adcock antenna

will be:
_ SA A2 sineu
RA = N_ = (18)
A -2 2nd
E [1 B Jo(T)]

22



This signal-to~-noise ratio can be expressed in terms of the signal-to-

noise ratio of the monitor antenna, giving the following equation:

Ry 2 sine(ﬁ% sing)
E& = (19)
2nd
L- Jb(7X‘

This equation is plotted in Fig. 5 as a function of d/x for three different
values of q: 50, 10° and 20°.

Figure 5 shows that when d<0.2 A, as is or'ten the case in a practical
direction finder, the signal-to-noise ratio of the antenna signal is almost
independent of d. In other words, not much is gained or lost by making d larger
or smaller. It must be kept in mind however, that Fig. 5 applies only to the
output signal of the antenna system and that noise originating in the receiver is
not taken into account. Because of the receiver noise it will be advantageous

to choose the distance between the two antennas as large as practically possible.

5. CONCLUSION

Mathematical expressions have been derived for the correlation
coefficient of two noise voltages generated in two antennas, which are placed a
known distance apart. It i1s shown that this correlation coefficient depends
on the intensity of the incldent noise as a function of direction.

An expression for the correlation coefficient of two noise voltages
generated in two channels of a direction finder has also been derived.

These expressions are useful to calculate the noise output of different
antenna systems, because the noise power resulting when a number of noise voltages
are combined, strongly depends on the amount of correlation between these noise
voltages. This point is illustrated in Section 4 of the report, where the equations

developed in Section 2 were applied to the case of a rotatable 2-element Adcock
direction finder. 23
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