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ABSTRACT

A general synthesis procedure has been developed by which
matching sections can be synthesized. A matching section is a section
of lossless nonuniform transmission line of finite length that provides
a match between a generator with complex internal impedance and a com-
plex load impedance, such that maximum power transfer is achieved over
a specified range of frequencies. The values of the internal impedance
of the generator and the load impedance can be given either in equation
form or in the form of measurements. Special cases that can be treated
with the general method include impedance transformers, for which gen-
erator and load impedance are both real, and driving point impedances
that must exhibit a certain behavior over a specified range of fre-
quencies. Existing methods to synthesize impedance transformers have
been extended.

The synthesis procedure is based upon approximate solutions
to the equations describing nonuniform transmission lines that have ap-
peared in the literature. Using these approximate solutions, the
matching problem is reduced to the problem of finding a real function,
the reflection-distribution function, whose complex Fourier transform
approximates a complex function, determined by the generator and load
impedances. The reflection-distribution function must be identically
zero outside a specified interval.

The reflection-distribution function is found by expansion
into a trigonometric series and subsequently determining the coefficients
in this expansion. A method is developed by which the complex function
to be approximated is first separated in real and imaginary parts. The
coefficients in the trigonometric expansion are then determined such that
these real and imaginary parts are approximated separately in a discrete
Chebyshev sense. By discrete Chebyshev sense is meant that the maxi-
mum magnitude of the approximation error is minimum at a discrete num-
ber of sampling points.

The approximation process mekes use of the theory of discrete
Chebyshev approximation. The theory of discrete Chebyshev approxi-
mation, subject to constraints, has been treated. The constraints
arise from the necessity to control the characteristic-impedance level
at the terminals of the uniform transmission line.

The result of this investigation is a general synthesis pro-
cedure which extends the methods presently available. Not only match-
ing between real impedances, but also matching between complex im-
pedances can be achieved.

Several examples have been given of the synthesis of impedance
transformers and matching sections.

xi



CHAPTER I

INTRODUCTION

The subJject of nonuniform transmission lines has sttracted
considerable interest with the development of microwave techniques dur-
ing recent years. Synthesis of conventional networks becomes increas-
ingly difficult at high frequencies because of the complications caused
by parasitic elements. Nonuniform lines offer a very attractive solu-
tion to this problem, since the upper frequency is limited only by the
occurrence of higher modes when the transverse dimensions of the line
are comparable with the wavelength.

An exact solution of the differential equations describing
the nonuniform line is*possible in only a few special cases. This has
led to the development of a number of approximate solutions. The most
widely used of these is the method developed by Bolinder (Refs. 2, 3),
because it provides the best approximation with regard to accuracy and
simplicity. The requirement, however, that the nonuniform line be
matched at the receiving end, has restricted the use of Bolinder's meth-
od to the synthesis of impedance transformers. An impedance transformer
is a nonuniform line that provides a match between two real impedances
of different value.

Recently, Orlov (Ref. 9) and Sharpe (Ref. 11) have developed
an approximate solution which is valid when an arbitrary mismatch exists
at the receiving end of the line. Their solution makes it possible to
consider the synthesis of matching sections for which both the load im-
pedance and the internal impedance of the generator are complex quanti-

ties.



The subject of this dissertation is the development of a syn-
thesis procedure based upon the approximate solution by Orlov and Sharpe.
The procedure involves the construction of a bounded real function,
which is identically zero outside a specified interval, whose complex
Fourier transform approximates a given complex function. The theory of
discrete Chebyshev approximation will prove to be a very powerful tool
in this approximation process.

The present method is particularly suited for the synthesis
of nonuniform lines whose behavior must be controlled over a given range
of frequencies. The method is completely general and can therefore al-
so be applied to the synthesis of impedance transformers and driving
point impedances.

The <treatment in this dissertation is subdivided into several
chapters. The next chapter, Chapter II, contains a brief statement of
the problem. In Chapter III a review is given of the pertinent litera-
ture. The literature is subdivided into two principal categories. In
the first the approximate solutions to the differential equations of
nonuniform lines are developed, in the second, some of these approxi-
mate solutions are applied to the synthesis of impedance transformers.
In Chapter IV, the general matching problem is considered and reduced
to an approximation problem, which can be solved using the theory of
discrete Chebyshev approximation, as developed in Chapter V. Chapter
VI is devoted to examples of the synthesis of impedance transformers

and matching sections. Conclusions are given in Chapter VII.



CHAPTER II

STATEMENT OF THE PROBLEM

The principal problem considered in this study is the synthe-
sis of matching sections. By & matching section is meant a nonuniform
line, of finite length, which can be inserted between a generator and a
load to obtain maximum energy transfer over a.given range of frequen-
cies. Both the internal impedance of the generator, Zl’ and the load
impedance, ZQ, are complex quantities, which are functions of fregquency.

The circuit configuration is shown in Fig. 2.1.

Z,(y)

GEN

"‘NONUN IFORM LINE —‘(

Fig. 2.1 Circuit configuration for the matching problem.

The synthesis problem can now be stated as follows:
given the internal impedance (Zl) of the generator, the
load impedance (ZE)’ and the frequency range over which
they are to be matched, synthesize the matching section.
The matching section that will be synthesized is a section of

nonuniform transmission line subject to the following restrictions:



a. The length, £, of the nonuniform line is finite.

b. The nonuniform line is lossless.

c. The taper is continuous.

The last restriction is equivelent to the requirement that the
characteristic-impedance function, Zo(y) be continuous. It will be as-
sumed that Zo(y) does not go to zero or infinity at any place in the
line.

The synthesis is completed when the characteristic-impedance
function has been determined. The characteristic-impedance function,
in turn, is uniquely determined by the reflection-distribution function,

p(y), which is defined by the relationship

1 950 1
5 -

(2.1)
Zoly) ay

]

o(y)

Because of the requirement (b) that the nonuniform line be
lossless, the function p(y) is a real function. Because of the require-
ment (a) that the nonuniform line is of finite length, the function
o(y), for mathematical convenience, is defined to be identically zero
outside the interval (0,1). The requirement that the taper be contin-
uous implies that the function p(y) is bounded.

The synthesis problem can be reduced to finding a function
o(y) such that its complex Fourier transform, G(s), approximates a com-
plex function Ii(s). The function Ii(é), as will be shown, can be de-
termined from the impedances Zl(s) and ZQ(S)’ which are given. The var-
iable s is defined by s = £/\, where £ is the length of the matching
section and A the wavelength. The variable s, therefore, is dimension-

less and proportional to frequency. It will be called the frequency



variable.

In general G(s) can only approximate Ii(s), because not every
" complex function Il(s) is the Fourier transform of a real function which
is zero outside the interval (0,1).

The function p(y) will be expanded in a trigonometric series:

N
oly) = L [a_cosnmy +b_ sin nny] (0<y<1)
n=0 g o
(2.2)
o) = 0 <o y>)

and the coefficients & and b will be determined such that Re{&(s)eazﬂs}
approximates Re {I]‘_(s)ngﬂs}, and Im{G(s)ngﬂs}approximtes Im{I;L(s)eJEﬁs}
in a discrete Chebyshev sense. A function f(s) is said to approximate

a function F(s) in a discrete Chebyshev sense when the meximum of the

magnitude of the error
mex |h(s)| = mex |F(s) - £(s)| (2.3)

is minimum at a discrete set of sampling points.

Once the values of the coefficients a, and bn are known, the
reflection-distribution function p(y) and, therefore, also the charac-
teristic~impedance function Zo(y) are completely determined. The de-
termination of the coefficients a, and bn, therefore, essentially com-
pletes the synthesis of the matching section.

Other problems that will be considered are special cases of
the general matching problem that was outlined above. These are the
synthesis of impedance transformers (Zl and 22 both real) and the syn-

thesis of a driving point impedance which approximates a given impedance

over a range of frequencies.



CHAPTER III

REVIEW OF THE LITERATURE

3.1 Introduction

The work on continuously tapered lines can be subdivided into
two principal categories. To the first belong attempts to find solu-
tions, exact and approximate, to the differential equations describing
the behavior of a nonuniform line. The second category consists of syn-
thesis procedures based on these approximate solutions.

The approximate solution that has played a major role in the
synthesis of nonuniform lines is the Fourier transform solution. In
short, it states that the input reflection coefficient of a nonuniform
line equals the Fourier transform of the reflection-distributién. func-
tion. This solution was proposed by Bolinder (Refs. 2, 3) and was used
by meny others to synthesize nonuniform lines to act as impedance trans-
formers between real impedances. The reason that only this kind of im-
pedance transformer has been synthesized lies in the fact that the Fou-
rier transform approximation is valid only when the line is properly
terminated at the receiving end.

Recently Orlov (Ref. 9) has developed an approximate solution
that is valid when an arbitrary mismatch is present at the receiving
end of the line. This solution was independently dérived by Sharpe
(Ref. 11) using a different approach.

In the following paragraphs a review of the pertinent litera-
ture will be given. The symbols used by the authors in their original
work have been modified, where necessary, to arrive at a uniform nota=-

tion throughout this review.



3.2 The Differential Equations for Nonuniform Lines

The basic assumption that is always made in the treatment of
nonuniform lines is that of the existence of a unique current I(x) and

voltage U(x), which at any point in the line satisfy the equations:

2 - - o) (3.1)
W) - -t (3.2)

where y(x) is the shunt admittance and z(x) is thé series impedance per
unit length.

These equationé are valid only when certain conditions are
Aimposed on the electromagnetic field and the line: (a) the mode of wave
propagation must be essentially transversal (TEM), which implies that
all wavelengths must be large in proportion to the transverse dimensions
of £he line; (b) there should be no rapid discontinuities in character-
istic impedance. |

By eliminating U(x) or I(x) from Egs. 3.1 and 3.2, two second-

order differential equations can be obtained.

2

ddléx) i lgzxy(X) d§>(<X) - y(x)z(x)I(x) = O (3.3)
X

2

d Uéx) _d IQXZ(X) dg§X) - y(x)z(x)U(x) = 0O (3.4)

ax

When y(x) and z(x) are constant along the line, Egs. 3.3 and 3.4 reduce
to the well-known equations for uniform transmission lines. In general,

however, (3.3) and (3.4) cannot be solved except in some special cases



such as the exponential line.

It is possible to reduce the order of the differential equa-

tions (3.3) and (3.4) by meking the proper transformations.

The following quantities are defined:

The characteristic-impedance function:

z(x)

%) = 3t
The propagation-constant function:
y(x) = Afz(x) y(x)
The reflection-coefficient function:
U(x)
R lich
Ux) , 2 (x)
I(x 0
Consider the identity:
N U(x
I(x) _ 1 du(x) _U(x) dI(x)
ax I(x) ax 2 dx

I(x)
Substituting (3.1) and (3.2) into (3.8), one obtains

a Ux) 2
I - L)+ v {;’(ﬁ}

From (3.7) it follows that

1 +[(x
1-7(x

Ulx

I(x ZO(X)

(3.5)

(3.7)

(3.10)



Substitution of (3.10) into (3.9) yields

LT T % 1 T T\
liré) “+fl-nmf (1 -T()] &aﬂ+[l+ﬂﬂ]7g— -

(3.11)

2
- z(x) + y(x) ZO(X)E {%3{}%}%%

Using (3.5) and (3.6) and rearranging terms, (3.11) reduces to

1-Tx)?% L %&) - o (319

aLx) |5 y(x)(x) + .
X

ax

|+

The reflection=-distribution function is now defined as follows:

d In Z (x)
olx) = 5—>— (3.13)
The differential equation (3.12) can then be written as follows:
416 2 y(lx) + - TP p(x) = O (3.14)

This is the differential equation in reflection coefficient for a non-
uniform iine. It is a first-order nonlinear equation known as a Riccati
equation. It is exact, and if it could be solved it would give exact
solutions for the problem of nonuniform lines. In the following para-
graphs the approximate solutions to Eq. 3.14 will be presented.

3.2.1 The Approximate Solution for Terminated Lines. Bolinder

(Ref. 3) proposed to study those nonuniform lines for which IIKx)le < 1,
everywhere on the line. This implies that there be no mismatch at the
receiving end of the line. With this assumption, the term I‘(x)2 can be

neglected in Eq. 3.14. One then obtains an approximate differential

equation:
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g‘.ﬂ}.{l -2 7(x) [(x) +p(x) = 0 (3.15)

ax

This is a linear first-order differential equation. It can be solved
X
using an integrating factor, exp [-2 [ (&) d¢l, in which the lower
a
limit of integration is arbitrary. The solution that satisfies the

boundary conditions is:

N
; = [ 7(e) at
X

[x) = | on) e dn (3.16)

X

The reflection coefficient at the input of the line equals

X
. - [ y(g) at
ax (3.17)

For lossless lines y(x) = jB(x). When the dielectric in the line is

homogeneous, y(x) is constant along the line:

yx) = g o= EE (3.18)

and (3.17) becomes

J4
[ = [ p(x) e %% ax (3.19)

0
The restriction that the dielectric be homogeneous can easily
be removed. For the case in which the dielectric is not homogenous, an
expression equal to (3.19) can be obtained in which the variable x has
been replaced by a new variable u, and the constant B by a new constant

B'. The variable u and the constant B' are defined by the relation
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X
B'u = [ p(x)dx. Introducing this variable u amounts to measuring
0
.the distance along the line in wavelengths.
To simplify the form of expression (3.19), a normalized coor=-

dinate, y, is introduced:

X
y = 7 (3.20)
where £ is the length of the nonuniform line.
A new frequency variable, s, is introduced also:
= L
s = g (3.21)

It is readily seen that s is a dimensionless variable, proportional to
frequency. With these new variables (3.19)'can now be written in its

final form.

T(s) = [ oly) ™™ gy (3.22)

This, then, is the well-known Fourier transform approximation for the in-
put reflection coefficient. The limits of integration on the Fourier
transform are - and +o. Because, however, the function p(y) is iden-
tically zero outside the region of the nonuniform line, i.e., p(y) =0
outside the interval (0,1), Eq. 3.22 does represent the Fourier trans-
form of the reflection-distribution function p(y).

It should be pointed out that (3.22) can also be derived by a
more direct approach. One can argue that the reflection generated by a

portion, dx, of the line, located at the point x, can be written as

Zo(x+dx) - Zo(x)

Zo(x+dx) + Zo(x) = olx) &
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A portion of length dx of the line, located at the point X, therefore |
contributes an amount d[ to the total reflection at the input of the

line, which can be written as:

al' = p(x) ax ¢ "J2B%

The total input reflection is then found by integrating the contribu-
tions from all points along the line. The result is Eq. (3.19).

The Fourier transform has become the most widely used and most
convenient tool in the synthesis of nonuniform lines. Due to its re-
strictions, small reflections and matched load, the synthesis effort
has been confined to nonuniform lines acting as impedance transformers
between real impedances. Some of the representative procedures will be
reviewed in section 3.3.

3.2.2 The Approximate Solution in the Presence of lLoad Re-

flections. Recently Orlov (Ref. 9) and Sharpe (Ref. 11) have developed
an approximate solution that is valid for the case in which an arbitrary
mismatch exists at the receiving end of the line.

Orlov considers the behavior of a line varying in small dis=-
crete steps. By letting the number of steps go to infinity, Orlov ob-
tains a solution for a continuously varying line which has an arbitrary
mismatch at the receiving end.

Iet the reflection at the load be equal to Ié:

%o = Zop

[, = 54—/ (3.23)
2 22 + oy .

where Z2 is the value of the load impedance and Zb2 is the value of the

characteristic impedance of the line at its receiving end.
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The load reflection can be referred back to the input of the

line. This defines the quantity I;, which can be written as:

1-2) = I-|2 e'jgﬁf - 1'!2 e"jll-ﬂs (3-2)-'-)

Orlov obtains a complicated expression for the input reflec-

tion coefficient, which in first approximation can be written as follows:

I(s) = ———5—— (3.25)

When the line is matched at the receiving end (I; = 0), this expression
reduces to the familiar Fourier transform (3.22).

Sharpe treats the problem of the nonuniform line, terminated
in a mismatch, as a one-dimensional scattering problem, using perturba-~-
tion techniques. An expression for the input reflection coefficient is
then obtained in the form of a Fredholm series expansion. The first-
order approximation to this series expansion agrees with Orlov's result
(3.25). According to Orlov it is required that |p(y)|max << 1. Ac-
cording to Sharpe the condition Ip(y)lmaX << 2xs should be satisfied.

From (3.25) both Orlov and Sharpe derive a synthesis formula,
which gives the relationship between the reflection-distribution func-

tion o(y) and the reflection coefficients at the input and output of the

nonuniform line:

1 "
[ ely) e "™ ay 5
0 1-T1° L

- in® - ne - )

|2 (3.26)
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This expression will be the basis for the discussion in Chapter IV,

where the synthesis of matching sections is developed.

3.3 Applications of the Fourier Transform

As was mentioned above, the synthesis of nonuniform lines has
been restricted so far to impedance transformers (between real imped-
ances) because of the requirement thet the line be properly terminated
at the receiving end. In this part of the literature review several of
these synthesis methods and their results will be discussed.

3.3.1 The Synthesis of Impedance Transformers. A method to

synthesize impedance transformers was presented by Willis and Sinha
(Refs. 13, 14). The same method was described by Bauwr (Ref. 1), who ob-
tained essentially the same results.

In this method the reflection-distribution function p(y) is
expanded in a trigonometric series containing either odd sine terms or
even cosine terms. The input reflection coefficient |[(s)| is then de-
termined using Eq. 3.22.

Let p(y) be expanded in a sum of odd sine terms:

N
oly) = X b sin nxy (3.27)
n=1
where n is an odd integer and the bn's are constants. Evaluating the

integral (3.22) one finds the input reflection coefficient of the line:

ID(s)| = Yy Emcos o (n o0dd) (3.28)
n=l n[(hs)2 - n2]

The reason given by Willis and Sinha for choosing only odd

values of n is the fact that only odd sine terms contribute to impedance
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transformation. The amount of impedance transformation is found by in-

tegrating p(y). It follows from the definition of o(y), Eq. 3.13, that

[ oely)ay = 51n o5 (3.29)

Therefore the amount of impedance transformation caused by even sine
terms is zero because
1
[ sinngydy = O  when n is even.
0

The amount of impedance transformation caused by the odd sine terms is

equal to:

o | -1 L2
of sin nny dy: = = cos nnyio = = for n odd. (3.30)
There is, however, a more important reason for using only odd
values of n, which is not mentioned by Willis and Sinha. The contribu-
tions to the input reflection coefficient by the odd sine terms are all
in phase and 90 degrees out of ,phase with the contributions from the
even sine terms. Using only odd values of n therefore has the advantage
that the input reflection coefficient |['(s)| can be written in the form
of a simple addition as expressed in Eq. 3.208.
Willis and Sinha also consider the case in which p(y) is writ=-

ten as the sum of even cosine terms. Written in this form:

N
oly) = X a cos nxy (n even) (3.31)
n=0



The input reflection coefficient |[(s)| resulting from this reflection=

distribution function becomes

T(s)| = ga 8s sin 2ns (n even)  (3.32)
n=0 ® x[(ks)® - n°]

Using either (3.28) or (3.32) Willis and Sinha then proceed
to determine the coeffiéients bn and a to obtain a high-pass charac-
teristic for |[(s)|, with a minimum amount of reflection in the pess
band. The coefficients in their method are determined by trial and er-
ror.

Figures 3.1 and 3.2 show two reflection patterns obtained by
this method. Figure 3.1 shows the reflection pattern for an impedance
transformer that is 0.75 A long at the lowest frequency of the pass band.

The corresponding reflection-distribution function is equal to

oly) = k(1L - 0.636 cos 2ny) (3.33)

Figure 3.2 shows the reflection pattern for a line which is 1 A long at
the lowest frequency of the pass band. The p(y) producing this pattern

is proportional to:
o(y) = k(1 - 0.899 cos 2xy + 0.0112 cos Lny) (3.34)

The maximum height of the side lobes is 0.031 for the 0.75 A line and
0.0056 for the 1 N\ line, for the case in which k = 1.

The proportionality factor k is selected to give the correct
amount of impedance transformation. For lines characterized by (3.31),
where only the constant term gives impedance transformation, the factor

k is determined by:
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Fig. 3.1 Reflection pattern for o(y) = 1 - 0.636 cos 2ny.
B
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Fig. 3.2 Reflection pattern for
o(y) =1 - 0.889 cos 2ny + 0.0112 cos Lxy.

2.5



18

1)
1 O(
k = 510 =5 (3.35)
0
Everywhere in the present discussion k will be taken equal to k = 1.
When the line is expanded in odd sine terms, (3.27), k' must be deter-
mined from the following equation, using the result (3.30):

20(1)

1n (n odad) (3.36)

o1l oy

Measurements were taken by Willis and Sinha on impedance transformers
synthesized by this method; Excellent agreement between theory and ex-
periment is reported in Ref. 1k.

Very similar work was reported by Feldshtein (Ref. 6), al-
though his method is less general. He considers a nonuniform line for
which the reflection-distribution function p(y) can be written in the

form

o(y) = k(1 +a,cos 2y) (3.37)

Somewhat arbitrarily he defines this function to represent an optimum
smooth transition. Feldshtein then proceeds in a manner similar to that
of Willis and Sinha and finds that minimum reflection in the pass band
is obtained for ay = - 0.632 in the case of a 0.75 A line and ay =

- 0.840 in the case of a 1 A line. The height of the side lobes thus‘
obtained is equal to 0.032 for the 0.75 A line and 0.0082 for the 1 A\
line. Feldshtein's result for the 0.75 A line is essentially equal to

that obtained by Willis and Sinha. His 1 A line gives slightly more re-

flection in the pass band, because only two terms are used in the
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expansion for o(y).

Another example of the use of the Fourier transform has been
demonstrated by Klopfenstein (Ref. 7). He reminds his readers of the
analogy between the uses of the Fourier transform in transmission lines
and in antenna pattern design, an analogy that was already pointed out
by Bolinder (Ref. 3). Klopfenstein then adapts to transmission lines
the work of Taylor, who studied the synthesis of Dolph-Chebyshev pat-
terns using continuously illuminated apertures. This procedure leads
to an input reflection pattern consisting of a main lobe and infinitely
many side lobes, all of equal height. The taper that produces this re-
flection pattern is characterized by two step discontinuities in Z(y),
one at the beginning of the line and one at the end.

The height of the side lobes equals ————ér————y , where S5 is

cosh (2ns
4

the value of s = - at the lowest frequency of the pass band. Thus it

x
is found that the maximum reflection in the pass band equals 0.018 for
the 0.75 N line and 0.0037 for the 1 A\ line, results that are signifi-
cantly better than those obtained by Willis and Sinha.

3.3.2 Nonuniform Lines as Filters. Feldshtein (Ref. 5)

studied and experimentally measured the behavior of lines whose tapers
vary rather violently. He shows that these lines exhibit the properties
of a band-rejection filter. In the theoretical derivations, the Fou-
rier transform approximation is used.

Consider a line for which the reflection-distribution function

is:
o(y) = 3.3 cos 2ny (3.38)

The ratio between the maximum and minimum value of the characteristic
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impedance [Zo(y)] of such a line is equal to 8.

When the Fourier transform of p(y) is taken an input reflec-
tion |[(s)| is obtained, whose absolute value exceeds unity. Since it
is impossible for a reflection coefficient to exceed unity, Feldshtein
defines |[(s)| to be equal to one for those values of s, for which the
absolute value of the Fourier transform of p(y) exceeds this value. The
reflection coefficients obtained by this process are shown in Fig. 3.3
and in Fig. 3.4 for the case in which p(y) = 6.6 cos Lny.

The broken lines in these figures show the results that were
obtained experimentally by Feldshtein. It is interesting to note that
the experimental values are reasonably close to the calculated values.
This is unexpected because the Fourier transform approximation is valid
only when |fﬂ2 K 1, a condition that is by no means fulfilled in this

example.



2l

Fig. 3.3 Theoretical and experimental filter behavior
for o(y) = 3.3 cos 2ny
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Fig. 3.4 Theoretical and experimental filter behavior
for p(y) = 6.6 cos Lny.



CHAPTER IV

THE SYNTHESIS OF MATCHING SECTIONS

4,1 Introduction

In this chapter the synthesis of matching sections will be de~
veloped. By matching section is meant a nonuniform line which can be
inserted between a generator and a load, to obtain maximum energy trans-
fer over a certain range of frequencies. Both the output impedance of
the generator and the load impedance are complex quantities, which are
functions of frequency.

The synthesis method developed in this chapter is based on the
approximate solution developed by Orlov (Ref. 9) and Sharpe (Ref. 11).
The matching segtions that are synthesized with this method are sections
of nonuniform line, which have the following properties:

a., The length of the nonuniform line, £, is finite

b. The nonuniform line is lossless and has a homogeneous di-

electric

c. The taper is continuous.

It will first be shown how the formula developed by Orlov can
be used to reduce the matching problem to the problem of finding a com=-

1

the reflection-distribution function. The requirement that the nonuni-

plex function I.(s) whose inverse Fourier transform is the function p(y),

form line be lossless and of finite length puts restrictions on the
function p(y). p(y) must be a real function and identically zero out=-

side the interval (0,1). In general the inverse Fourier transform of

I

l(s) will not meet these conditions. A complex valued function G(s)

will therefore be sought which approximates Fl(s). The inverse Fourier

transform of G(s) will be a real function, zero outside the interval

22
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(0,1). The error in the approximation will cause a slight mismatch,
giving rise to undesired reflections. In the synthesis procedure these

undesired reflections are minimized.

4,2 The General Synthesis Problem

When a complex load impedance is connected to a lossless trans-
mission line, there will always be a reflection from this load, because
the characteristic impedance of the line is real. Specifically, if the
line is a lossless nonuniform line, an approximate solution is required
that is valid in the case that such locad reflections exist. As was dis-
cussed in Chapter III, such an approximate solution has been recently

developed by Orlov (Ref. 9) and Sharpe (Ref. 11) (see section 3.2.2):

1 . Ir'a -|° |2) -T (1 -Il"lg)
-jlhnsy 0 0
Flo(y)] = [ oly) "™y , (k.1)
0 1 -[T)%L |
where p(y) is the reflection-distribution function:
d 1n 2 (y)
o(y) E;if — 9 (L.2)
dy

[', which is a function of the frequency variable s, is the input re-
flection coefficient of the nonuniform line and f; is the load reflec~-

tion (Ié) referred to the input of the line:

[ =T, e (¥:3)

o]

Furthermore the frequency variable s equals: s = % , i.e., the ratio
between the length of the nonuniform line and the wavelength. Therefore

s is proportional to frequency.
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The function Ii(s) will next be defined. It is equal to the

right-hand side of Eq. 4.1:

- 9H-Ta-rH
[.(s) = 2 2 bk
' 1 -IPPIT 7 .

The circuit configuration is illustrated in Fig. 4.1. Maxi-
mum power transfer is to be obtained from the generator, whose internal

impedance is equal to Z,, to the load (Z This matching is to be

1 2)'

achieved using a nonuniform line of finite length. The line extends

fromy =0 to y = 1, as shown in Fig. 4.1,

LOAD
GEN.C [] 7,

&Y

| »
y=0 y y

"~ NONUNIFORM L INE ‘D‘

Fig. 4.1 Circuit configuration for the matching problem.

The condition necessary to obtain maximum power flow at the
input of the line is well-known. The input impedance of the nonuniform
*
line, terminated in ZQ, must equal Zl , the complex conjugate of Z

This, of course, guarantees maximum power flow only across the point

lo

y = 0. However, together with the fact that the line is lossless, it

also implies maximum power transfer from generator to load.
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Let the characteristic impedance at the input of the nonuni-

form line be equal to ZO(O) =7

01 When the input impedance of the

*
line is equal to Zl , the input reflection coefficient (I') will be:
Z * Z
1 " “o1
= 4/ (4.5)
Zl + ZOl

Let the characteristic impedance at the receiving end of the

line be equal to Zo(l) =7 The load reflection (Ié) is then equal to

02°
Z, ~ 2
2 02
r, - 2% (1.6)
2 Z2 + 202

I; is the load reflection referred back to the input of the line, so
that

Z, -2

2 02  =jlhns
0 Z2 + 202

where [ Ié, I;, Z,, and Z_ are in general functions of frequency.

1 2

The discussion can now be continued as follows. Let the con-
figuration of Fig. L.l be given where the characteristic impedance of
the nonuniform line at the input and at the receiving end is equal to
ZOl and ZOQ’ respectively. The function rg(s) is then determined, and
the function]?(s), necessary for maximum power transfer, can be deter-
mined from Eq. 4.5.

The functions [ (s) andjro(s) completely determine the function
fl(s), as defined by Eq. 4.4. It seems that by taking the inverse Fou-

rier transform of Il(s), one could then find the reflection-distribution

function p(y):
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o) = FHLET = 2 [ Tls) Vs (1.6)

Unfortunately the situation is not that simple because of the
reétrictions imposed on p(y). These restrictions arise from the require-
ment that o(y) be the reflection-distribution function of a lossless
line of finite length. o(y) must be a real function Which is identical-
ly zero outside the interval (0,1). In general the inverse Fourier
transform of fl(s) will not yield such & function o(y).

In the following sections a method will be developed by which
a function G(s) can bé found which approximates the function rl(s) in a
Chebyshev sense over a given interval of frequency, at a number of dis-
crete sampling points. The most important property of G(s) is, that its
inverse Fourie£ transform is a function o(y) which is real and identi-
cally zero outside the interval (0,1). The error E(s) made in this ap-

proximation process will be:
B(s) = I'(s) - G(s) ' | (4.9)

E(s) equals the amount of undesired reflection between generator and
load when they are connected by the matching section.

4,2.1 The Case of a Real Generator Impedance. Before the

discussion is continued it will be of interest to consider as a special

matching problem the case in which the generator has a real intefnal im-‘
pedance (Zl = Rl)’ independent of frequency (see Fig. 4.l). By choosing
the characteristic impedance of the line at its input equal- to Rl (ZOl =

ZO(O) = Rl), maximum power transfer is obtained when [ = O.

The synthesis formula (L.1) then reduces to:
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Flo(w)1 = -T (4.10)

0

It is interesting to note the physical significance of this
result, which can also be arrived at using the following consideration.

Consider a nonuniform line matching a generator to a load im-
) of

pedance Z. as shown in Fig. 4.1. The characteristic impedance (z

2 0l
the line at the input equals Rl’ the internal impedance of the genera-
tor. For maximum power transfer, the input reflection coefficient of

the line mﬁst be zero.

The total input reflection of the line is principally gener-
ated by two sources. One is the reflection from the load (Ié). Referred
back to the input of the line, the load contributes an amount, equal to
fg, to the input reflection coefficient (Eq. 4.3). The other source is
the integrated reflection from the nonuniformities of the line. This
contribution can be expressed by Flp], the Fourier transform of the re-
flection~-distribution function.

The input reflection coefficient of the line will be zero
when these two.reflections exactly cancel each other. This occurs when

they are equal in magnitude and 180 degrees out of phase. In other

words, matching is achieved when

Flo(y)] = -T (4.10)

0

which is exactly the same result that was obtained above.

4.2.2 Synthesis of Driving Point Impedances. The synthesis

of driving point impedahces can be reduced to the same problem that a=-
rises in the synthesis of matching sections, i.e., to find a real func-

tion o(y) which vanishes outside the interval (0,1) such that its
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Fourier transform approximates a given complex valued function f%s).

To synthesize an impedance that behaves like a given impedance
Z(s) over a certain band of frequencies, it is sufficient to synthesize
a function ['(s) such that

Z(s) - 2

T(s) = 573 +zOl (4.11)

ol

where ['(s) if the input reflection coefficient of & nonunifofm line of
finite length, terminated at the receiving end.

The problem then becomes to find a function G(s) that approx-
imates ['(s). The inverse Fourier transform of G(s) is a real function

o(y) that is identically zero outside the interval (0,1).

4.3 The Determination of the Reflection-Distribution Function

In the previous sections the synthesis problem was reduQed to
the problem of finding a function G(s), which is the Fourier transform
of the reflection distribution function p(y) for a lossless nonuniform
line of finite length.

From the assumption that the line is lossless, it follows that
p(y) is a real function, because the characteristic-impedance function
Zo(y) is real. From the requirement that the line be of finite length,
it follows that the function p(y) must be identically zero outside the
interval (0,1).

In this section the nature of the function G(s) will be de- |
termined. It will be shown that a convenient expression for G(s) is ob-
tained when the function p(y) is expanded in a trigonometric series:

N
oly) = 2 [an cos nuy + b sin nry ] (4.12)
n=0
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One is in general interested in letting the matching section provide a
match over only a finite range of frequencies, and therefore a finite
nunber of terms will be used in the expansion (4.12). Of course o(y) is
identically zero outside the interval (0,1).

The function G(s) is the Fourier transform of p(y) and is

therefore equal to:
N
G(s) = Flpl = ¥ !a_ Flcos nay] + b Flsin nny]} (L.13)
0=0 n n

The coéfficients a, and bn must then be determined in such a way that
the function G(s) is a good approximation to the function I}(s).

In the following paragraphs the Fourier transforms of cos nmy
and sin nny will be evaduated.

4.3.1 Evaluation of F[cos nxyl. The Fourier transform of

cos nny is equal to

1
Flcos nxy]l = [ cos nny e
0

jhnsydy (L.14)

This integral can be calculated by first integrating by parts twice.

! =Jlhns

| cos nny e J ydy
"0

1 ily l-)_L 1 .

oy sin nny e JHnsy | + 98 [ sin nny e‘JuﬂSYdy

T n

0 0
R L1 > 1
%? sin nay e Jhrey | - Q%E cos niy e THmey | + e | cos nxy e'Ju“sydy

0 nx 0 n20
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This expression can be reduced to

2 1 . . .
1 - (hg) ] [ cos nny e-JLﬁSydy = Qgi [1 - cos nx e-JuﬂS]
n 0 nn
Because cos nx = (-l)n this can be written as:
L -jhnsy J bs n_=-jlhns
[ cos nny e dy = 5 5 [1 -(-1)"e ]
0 [0 - (ks)"Ix

A factor e-Jeﬂs can be brought outside the brackets in the

right-hand side of this equation, resulting in:

1 3 . -jens 0 .
f cos nny € Jhnsydy = Jhs € [eJaﬂS _(_l)n c JEns]

2 2
0 aln® - (bs)] (4.15)

For even values of n, the term inside the brackets reduces to
[eJE’ts - enJgﬂs] = 2J sin 2ns

For odd values of n, the same term reduces to:

[ngns + e-JEKS] = 2 cos 2xs

This completes the evaluation of the integral (4.1lL) which can now be

written in final form:

-

-8s sin 2xs -j2ns
e J for n even

) 2

-Jhnsydy _ ﬂ[n2 - (ks)"] (4.16)

j8s cos 25 _~jens
2 2, ©

L n[n® - (4s)"]

[ cos nny e

for n odd
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To achieve convenient expressions in the following paragraphs,
‘the following notation will be introduced. Even values of n are de-
signated by ne, odd values by no.

The functions C_ (s) and C_ (s) are now defined:
ne no

-8s sin 2xs

Cne(s) = n{nz - (AS)E] (n even) (k.17)
c (8) = jz;(.)s(i:j?] (n odd) (4.18)
Or written in slightly different form:
Cne(s) = sinnzns Is i =t I3 % = (n even) (4.19)
¢ (8) = ’Cosﬂz“s o i — 4 f - (n odd) (4.20)

Using the notation adopted above, the Fourier transform of a trigonomet-
ric cosine series can now be written as follows:
N N N Jjens
F| £ a cosnay| =| Z a_C (s)+J L a C (s)]e”

n=0 n=o 1€ 1€ n=] 1010 (4.21)

As an example, the function Cu(s) is plotted in Fig. 4.2.
The functions Cne(s) equal zero whenever L4s assumes an even

integer value, different from ne. When 4s approaches ne, Cne(s) ap=

proaches a limit that can be evaluated using de 1'HOpital's rule.

. -8s sin 2xs
lim 5 5
hs-»n g[n° - (4s)“]

1}

lim C_(s)
Ls»n 7€

-8 sin 2ns - léns cos 2xs

i higfn =32xs
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Fig. 4.2 Plot of the function Cu(s).

The denominator is non-zero when Ls approaches n, provided that n # 0.

Because n is even: sin 2ns = O when b4s =n

and cos 2xs = COS %; = (-l)n/2 when ks = n.
Therefore
1 n/2
lim cne(s) = 3 (-1) for ne # 0 (k.22)

hs-n

For the case in which n = 0, de 1'HOpital's rule has to be applied a

second time.

lim C.(s) = lim -8 sin 2xs - 163s cos 2;s  _

Lhs =0 0 s -0 -3ens

lim -16 cos 258 - 1l6ncos 2xs + 32ﬂ28 sin 2xs
ks -0 -3en




33

Therefore

lim Co(s) = 1 (4.23)
bs-0
Similarly, the function Cno(s) = O whenever Ls assumes an odd
integer value different from no. When L4s approaches no, Cno(s) approach-

es a limit whose value can be found using de 1'HOpital's rule.

lim ¢ (s) = lim 852°°s 2“52 =
s - n ks »n  g[n~ - (ks)7]
lim 8 cos 2rns - léws sin 2xs
4s -»n -32ns

The denominator does not vanish when 4s approaches n. Because n is odd:

cos 2nrs = 0 when 4s =n
and sin 2gs = sin =X = (-1) when 4s = n.
Therefore

. lin ¢ (s) = -35(-1)(“‘”/2 (h.24)
S->n

L.3.2 Evaluation of F[sin nxy]. The Fourier transform of

sin nxy is equal to
1

Flsin nny] = [ sin nny e-jhﬂsydy (4.25)
0

Like F[cos nmy] it can be evaluated by integrating by parts twice.
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1
[ sin nny e
0

-junsydy

1

. r ., .
L cos nny e TSV | - dis [ cos nmy o "IHTEYy
ns o 0o

J

1 1 2 1
- —ilrs . e 4 .
ﬁi cos nnty € Jhnsy | - Q%E sin nny e Jhasy | + Eég— [ sin nxy e 94y
n 0O nx 0 n 0
This expression can be reduced to:
2 1 . .
1 - LEE%—] [ sin nny e-Jhﬂsydy = %~ [1 - cos nx,e_Juns]
n 0] "
Because cos nx = (-l)n, this can be written as:
. =Jhnsy n n _-jhns
[/ sin nny e dy = 5 (1 -(-1)" e™¥7"]

. xln® - (4s)°)

Jens

Proceeding as before, a term e is eliminated from the brackets on

the right-hand side, giving:
1 -jens

[ sin nny e-Jhnsydy = 2
0 n[n

5 [ejgﬂs '(-l)n e"'JQT[S]
- (4s)°] (4.26)

o} @

For even values of n, the expression inside the brackets becomes
[I275 | ¢md2mS) 2j sin 2ns

For odd values of n, the same expression reduces to

[ngnS + e'Jgﬂs] = 2 cos 2nus
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This completes the evaluation of the integral (4.25). Written in final

form:
Jjen sin 2xs -j2ns
1 shrsy ﬂ[n2 - (us)zj e for n even
[ sinnny e dy = . (k.27)
0 2n_cos ons g mJems for n odd

[n® - (4s)?]

Using again the notation ne and no for even and odd values of n, respec-

tively, the functions sne(s) end sno(s) can be defined:

s (s) = 20 _sin 2ns (n even) (4.28)
ne ﬂ[nQ - (hs)g]
s (s) = 2n _cos ans (n 0dd) (4.29)

n® - (4s)°]

These functions can also be written in slightly different form:

i 1 1
Sne(s) - SIHngﬂs ks +n Ls - n (n even) (4.30)
_ cos 2ns 1 1 :
Sno(s) B T bs +n ks -n (n odd) (k.31)

With this notation, the Fourier transform of a trigonometric sine series
can be written in the following form:
N N N -0
F| 2 b sin nry | = X bnOSnO(s) +§ L bneSne(s) e™d
n=1 n=1 n=2 (L" . 32)
The function SS(S) is plotted in Fig. 4.3 as an example. As is appar-
ent, the functions Sn(s) behave essentially like the functions Cn(s).

The functions Sne(s) equal zero whenever Ls assumes an even
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. Fig. 4.3 Plot of the function SS(S>'

integer value, and the functions Sno(s) are zero when Ls assumes an odd
integer value, except in the case that 4s = ne and ks = no, respectively.
The limit of Sn(s) when lUs approaches n can again be evaluated

using the rule of de 1'HOpital.

1im Sne(s) - 1lim 2n251n 2n52
hs-n hs-»n x[n” - (4s)°]
. hsm cos 2sns 1 ngn
1lim ——————— = = = COS —
hs—n  "3°7S 2 2 (4.33)

Similarly
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2n cos 2ns

1im S (s) = 1lim

Lhs—n no‘ hs »n ﬂ[n2 - (hs)g]
. -bqn sin 2xs 1 . nx
ui.]inn -—-——:3-2-;[-5-——— =3 sin ) (14-.31&-)
-1)/2
- %(-1)(‘“ /2 (0 caa)

4.3.3 Impedance Transformation. Because the functions I'(s)

and.r;(s), which arise in the synthesis problem, depend on the value of
the characteristic impedance of the nonuniform line at its terminals,
it is of importance to know how ZOl and 202 are affected by the reflec-
tion-distribution function p(y).

From the definition of p(y):

d 1n Zo(y)
oly) = Ty (L.2)

it follows immediately by integration that

1 z.(1) Z
. 1 0 1 02
[ oly)dy = 51n = =ln — (4.35)
S 2 zo(oj 2 201

When p(y) is expended in a trigonometric series,

N
oly) = L [a_cos nay +b_sin nxy] (k.12)
n n
n=0
the amount of impedance transformation along the line can be expressed
in terms of the coefficients a, and bn.

First the amount of impedance transformation caused by the co-

sine terms, is evaluated:
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1 1 0 forngO
[ cosnmy dy = sinnry | =

0 0

sin nx

i 1 forn-=20

(4.36)

Thus it is seen that cosine terms do not contribute to impedance trans-

formation, except when n = 0, which corresponds to the constant term in

the expansion.

Secondly the amount of impedance transformation contributed

by the sine terms is evaluated:

1 -1 " 1l - cos nxn
[ sinngy dy = == cos nxy | = =——— =
0 nx ny (4.37)
0
1 _(_l)n _ 0 for n even
ng ) 2

— for n odd
nxn

The amount of impedance transformation resulting from a reflection-dis-

tribution function o(y) given by Eq. 4.12 , is equal to:

Z N
1 02 2
Zin—< = a,+ & b — (4.38)
2 ZOl 0 n=1 no nos

L.3.4 Summary of Results. The results obtained in Sections

4.3.1 and 4.3.2 can now be combined into a single equation. When the
reflection-distribution function o(y) is given by the trigonometric ex-

pansion (4.12), its Fourier transform Flp] can be written as follows:

1

Flo] = 6(s) = [ oly) e Vay
0
g [a_C (s) +b_8s (s)] +3 g [a C (s) +b_8S (s)] e'JQﬁS
n=0 ne ne no no n=l no no ne ne (Ll-.39)
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There now remains the determination of the coefficients a, and bn. The
first step will be the sepsration of the real and imaginary parts by re=-

writing the identity (4.39) as follows:

. N

Re { G(s) eJ2I(S = n‘éo[anecne(S) + bnosno(s)] (4.50)
. N

Im G(S) eJEKS = nEl[anoCno(s) * bnesne(s)] (}-I-.I-i-l)

In Chapter V it will be shown that the theory of discrete Chebyshev ap-
proximations provides a means by which the coefficients a, and bn can

be determined. By this method the coefficients a__ and bn0 are deter-

ne
mined such that Re{ G(s? ej2ﬂs} approximates Re{:Fl(s) e‘jgﬁs } in a
Chebyshev sense at a discrete number of sampling points in the frequen-

cy interval of interest. By Chebyshev sense is meant that the maximum
deviation of Re{ G(s) 3278 } fromVRe{I1l(s) ejgﬂs} is minimum. Simi-
larly the coefficients a ~and b are determined such that hn{CKs) ejgﬂs}
Jens }

 approximates Im{ [ (s) e in a Chebyshev sense at a discrete num-
1

ber of sampling points in the frequency interval of interest.

It will be recalled that the function rl(s) depends on ['(s)
and f;(s), which in turn depend on the characteristic impedance of the
line at its terminals, Z., and Z

0l 02°
pends on a knowledge of ['(s) and,ro(s). It is therefore important to

The whole synthesis procedure de-

control Z

o1 804 Zg, carefully. This means that the equation (k.38)

2 2
In == = a_+ X b (k.42)
ZOl 0 n=1 no no =«

o] e
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must be satisfied exactly. It will be shown in Chapter V that the the-
ory of discrete Chebyshev approximation can be used to satisfy some
equations exactly, while distributing the approximation error equally
over the remaining equations.

A special synthesis case arises in the construction of imped-
ance transformers. With the tools developed in this chapter the work
of Willis and Sinha (Ref. 13) (see also paragraph 3.3.1) can be extended
further. Willis and Sinha considered the case in which p(y) is either

of the form

N
oly) = Z a . COS nexy (4.43)
n=0
or of the form
N
o(y) = X b__ sin nomy (4.h4)
ne] DO

Better results can be obtained by considering functions p(y) of the form:
oly) = L [ane cos newy + bno sin nony] (L.45)

The input reflection coefficient of the line now becomes

N
= -Jjens
I'(s) = z [anecne(s) + bnosno(s)] e (h.46)
n=0
The coefficients 8 and bno can be determined to give a high-pass char-

acter to IYS) while at the same time minimizing the amount of reflection

in the pass band. The theory of discrete Chebyshev approximation
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provides a very convenient tool to determine the coefficients while at

the same time controlling the amount of impedance transformation in the

impedance transformer exactly. The amount of impedance transformation

is again given by Eq. 4.38. A synthesis example will be given in Chap-

ter VI.

This section will be concluded by a short summary of the steps

to be taken in the synthesis of a matching section.

Given are the internal impedance of a generator as a function

of frequency and & load impedance as a function of frequency. It is de-

\

sired to obtain a match, i.e., maximum power transfer, between genera-

tor and load over a band of frequencies which is also given.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Select the length £ of the matching section. A suitable choice
might be to make the nonuniform line one wavelength long at the
lowest frequency of the band of interest. This will determine
the frequency variable s.

Choose ZOl and ZO2’ the characteristic impedances of the line
at its terminals. The magnitudes of the reflection functions
['(s) and f;(s) depend on the values chosen for Z,, and Z,,.

It is, therefore, logical to choose ZOl and Z02 in such a man-
ner that the maximum values of the magnitudes of the functions
T(s) andI"O(s) are kept as small as possible.

Calculate the functions ['(s) (Eq. 4.5) and I;(s) (Eq. 4.7).
These functions are then used to calculate Il(s) (Eq. 4.k4).

) 927 o5 out-

Separate the real and imaginary part of Fl(s
lined in the discussion following Egs. 4.40 and L.4l1.

Determine the coefficients an and bn such that the real and

imaginary parts of G(s) 9278 give the best approximation to
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the corresponding parts of rl(s) Jems, (Egqs. 4.40 and 4.41)
This process also involves the selection of the terms that are
to be used in the trigonometric expansion (4.12) of the reflec-
tion-distribution function o(y). The coefficients &, and bn
must be determined in such a way that Eq. 4.38, which gives

the amount of impedance transformation, is satisfied exactly.

The determination of the coefficients an and bn essentially concludes
the synthesis procedure. When these coefficients are known, the reflec-
tion-distribution function p(y) is known exactly. The steps necessary
to construct a nonuniform line when p(y) is known, are outlined in the

next paragraph.

k.4 The Determimation of the Characteristic-Impedance Function

The characteristic-impedance function Zo(y) can be found im-

mediately by integrating the reflection-distribution function o(y).

fy (n) 21 W)y In i (4.47)
pln) dn = 3 ln = 3 In —— T
0 2 ZOZOS 2 Zo1
Therefore:
y
Zo(y) = 2y, exp [2 Of p(n) dn] (k.18)

With p(y) given by a trigonometric expansion (4.12), this becomes

N X N
- sin nxn 1l - cos nn
Zo(y) ZOl exp 2[a0y + 0 a, sihnay , ¢ b, -———5;————X]

n=1 nn n=1 4.49)

In other words, when the reflection-distribution function is known, the
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characteristic impedance is known at every point in the nonuniform line,
‘as given by (L4.48) and (k.49).

The physical dimensions of the line are determined directly
by Zo(y). In the case of a coaxial structure, for instance, Zo(y) de-

termines the ratio between outer and inner conductor at every point in

the line. For a coaxial structure:

d z.(y)
af (y) = exp Ne -%6—~ (4.50)

where:

do is the inside diameter of the outer conductor
di is the diameter of the center conductor

€ 1is the relative dielectric constant of the dielectric in
the line, whose relative permeability is assumed to be

unity.



CHAPTER V

THE THEORY OF DISCRETE CHEBYSHEV APPROXIMATION

5.1 Introduction

In Chapter IV the problem of synthesizing matching sections
was reduced to the problem of approximating two given functions, of the
variable s, by linear combinations of the functions Cn(s) and Sn(s),
which will be called the approximating functions. This is expressed
in Eqs. 4.40 and 4.41. 1In this chapter it will be shown how this prob-
lem can be solved by means of the theory of discrete Chebyshev approxi-
mation. This theory provides a numerical method by which the coef-
ficients a, and bn can be determined. It will also be possible to con-
trol the amount of impedance transformation, as given by Eq. 4.38, ex-
actly.

The theory of discrete Chebyshev approximation has also
proved useful in the synthesis of networks having a prescribed impulse
response. This method was recently developed by Ruston (Ref. 10).

The treatment in this chapter will follow along lines similar
to those used by Stiefel in his recent publication on the theory of

discrete Chebyshev approximation (Ref. 12).

5.2 Reduction to an Overdetermined System of Linear Equations

A function F(s) is to be approximated by a function f(s),
which is a linear combination of n approximating functions fj(s)

(1< j<n):

f(s) = xlfl(s) + xefe(s) S xnfn(s) (5.1)

vhere the coefficients X (1 < j < n) are to be determined such that

L
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the maximum velue of the magnitude of the approximation error h(s),

mex |h(s)| = max |F(s) - £(s)] (5.2)
is minimum.

The theory of discrete Chebyshev epproximation provides a
solution to this problem. The functions F(s) and f(s) are sampled at
an arbitrarily large number, m, of sampling points, where m > n. Let

the m sampling points be s, (1 <k <m), then the function F(s) has to

K (
be approximated, at the sampling points, by the function f(s), such

that the maximum of the values

max Ih(sk)l = max lF(sk) - f(sk)[ (5.3)

is minimum.
If the approximation of the function F(s) by the function
f(s) can be achieved without error at the sampling points, m linear

equations E (1 < k <m) cen be written, one for each sampling point:
E xlfl(sk) + nga(sk) e e . xnfn(sk) - F(sk) = 0 (5.4)

To simplify the notation, the quantities akj and e will be defined:

gy = f5(5) (5.5)

J
¢, = -F(s) (5.6)

For the error h(sk) at the sampling point ) the notation hk will be

used.
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The m equations (S.h) can now be written in the form:
E : T N I A 0 (1 <k <m) (5.7)

The set of equations (5.4) or (5.7) can be interpreted to
represent m planes in n-dimensional Euclidean space. Finding a set of

coefficients (xl, Xy oo oy xn) such that the approximation (5.4) is

2’
valid is equivalent to finding the coordinates (xl, Xgs + 0 v s Xn) of
a point in n-dimensional Eculidean space.

If the number (m) of equations equals the dimension (n) of the
space, the system (5.4) can, in general, be solved exactly. This means

that coefficients (xl, Xpog o o oy xn) can be found such that the func-

2’
tion f(s) (Eq.ﬂs.l) equals the function F(s) at the m sampling points.
In terms of the n-dimensional Fuclidean space it means that the m planes
(m=n) intersect in a point whose coordinates are (xl, Xgr + v 0 xn).
In the case under study, however, the number (m) of sampling
points exceeds the number (n) of approximating functions. In that case
the system (5.&) becomes overdetermined and it is no longer possible to
find a set of coefficients (xl, Xgs o v 0 Xn) such that all m equations
(5.4) are satisfied at once. Or, in other words, when there are m
planes in n-dimensional space (m > n), they do, in general, not inter-
sect in one single point whose coordinates are (xl, Xop v 0 v s xn).
This case will be studied in the remsinder of this chapter.

It will be assumed throughout this chapter, that no two

planes are parallel.

5.3 Theory of Overdetermined Systems of Linear Equations

If a solution exists to the system (5.7), it means that all
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m planes in the n-dimensional space intersect in a single point x,
whose coordinates are (xl, Xy o 0 v xn). In general this will not
be the case. Consider, therefore, a point P, with coordinates

(xi, xé, e ey xg), that does not lie on the plane represented by

equation E Substitution of the coordinates of P into the equation E

k. k)

will result in an error, or residue, hk’ given by:

aklxi + akgxé Fouoe . 4 aknxg te = by (5.8)

The approximation problem then becomes that of finding a point T, in
n-dimensional space, such that max [hkl (1 <k <m) is minimm. This
point T will be called the Chebyshev point of the overdetermined sys-
tem (5.7).

In the special case that the normal vectors, E&, to the m

planes

o= ey o o0 e o) (5.9)
have unit length, the residue hk represents the distance from point P
to the plane Ek’ and the approximation problem then becomes the de-
termination of a point T, whose largest distance to any of the m planes
is minimum.

To find the Chebyshev point, it will be shown that a point P
exists, such that the residues h, of a number (n+l) of the m equations

(5.7), have equal magnitude lhkl = |h

. When the selection of these
(n+l) planes is such that the magnitude of the error to the remaining
equations is less than |h|, the Chebyshev point has been found.

In the following paragraphs it will first be shown how the
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error to a set of (n+l) equations can be determined. Secondly, it
will be shown how a selection of (n+l) planes can be reached to yield
the Chebyshev point.

A reference will now be defined. A reference is a set of
(n+l) equations out of the set (5.7). Without loss of generality, the
first (n+l) equations of (5.7) can be taken to constitute the first
reference. The (n+l) planes represented by these equations have (n+l)
normals Ek. These (n+l) vectors in n-dimensional space must be depen-

dent, and therefore coefficients xk exist such that

MOy F A0, e e kA0 L= 0 (5.10)

This will be called the characteristic equation of the reference. Be-
cause of the assumption that no two planes are parallel, the coefficients
xk are nonzero constants.

The characteristic. equation (5.10) can also be written as a

set of simultaneous linear equations:

alEKl + aggxg + 0 e .+ a(n+l)2xn+l 0
) . (5.11)
alnkl + agnxg A a(n+l)nxn+l 0

When the coordinates of a point P(xi, Xhy o v e xﬂ) are substituted

into the (n+l) equations of the reference, (n+l) equations result:

Ek: aklxi + akexé oo e o+ aknxé te = hk (1 <k< n+l) (5.12)
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By definition, the point P will be called a reference point, when the

same condition either

1}

sgn A (1 <k <nvl) (5.13)

sgn hk

or

- sgn A (1 <k < n+l) (5.14)

sgn hk

is satisfied by all h, belonging to the reference.

k

The equations E_ of (5.12) are added together after having

k
been multiplied by their corresponding Kk's. Because of (5.10) and

(5.11), the result of this process is:

h+l n+l

z c. = L .
2 Nk & M (5.15)

Because for a reference point either (5.13) or (5.14) is valid, there

are now two possibilities. When (5.13) 1is valid,

n+l n+l
kzi chk ) kéi lkk] lhkl (5:16)

When, however, (5.1L4) is the case,

n+l n+l

Z NSy =-Z NS Iy ] (5.17)

The significance of the reference point, as defined by (5.13)
r (5.14), can be understood using the following argument. First it is
observed that, when two points are taken, each lying on different sides

of a reference plane, and if one of these points is a reference point,
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the other is not. This is true because the corresponding error hk
has a different sign for the two points, and if condition (5.13) or
(5.14) is satisfied for one of the points, it cannot hold for the
other. Therefore, the set of reference points forms a continuum,
bounded by the planes of the reference set and possibly by infinity.

Secondly, because the quantities c, are finite constants,

k
and because the coefficients Kk are finite nonzero constants, it fol-
lows from (5.16) and (5.17) that for all reference points Ihkl is
bounded. This proves that the reference points lie inside the vol-

ume enclosed by the (n+l) planes of the reference.

5.3.1 Determination of the Center of a Reference. The

center of a reference, by definition, is that reference point for
which all values {hk[ are equal. It follows from (5.16) and (5.17)

that the reference error, h, equals:

klcl + xecg + e e o 4+ xn+lcn+l (5.18)
MER AL o

n+l[

This equation combines Eqs. 5.13 and 5.14. It is easily verified that,
when (5.13) is valid, sgn h = +1, and when (5.14) is valid, sgn h = -1.

It also follows, using (5.13) and (5.14), that
h, = hosgnA (5.19)

When the reference error (h) has been determined, the coordinates of
the reference center can be calculated by solving the'following system
of linear equations:

E,: %y FBpXp t e o s e X o = hosga N (5.20)
(1 <k < n+l)
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In case the normals Ek have unit length, the reference center corres-
ponds to the center of the n-dimensional sphere that can be inscribed
in the (n+i) reference planes.

Of course, the question remains whether a solution exists to
the (n+l) equations of (5.20). From (5.11) and (5.15), it follows that
the (n+l) equations of (5.20) are linearly dependent, and therefore the
existence of the reference center is proved. Because of the assumption
that no two planes are parallel, any n equations of the set (5.20) will
be independent, and therefore the center of the reference is a unique
point.

The left-hand side of Eq. 5.16 has a constant value. There-
fore, a point P for which one of the errors Ihkl is smeller than |h]
must have at least one other error lhkl which is larger than |h|. From
this it follows immediately that the center of the reference is also the
Chebyshev point for the (n+l) planes of the reference.

5.3.2 Overdetermined Systems with Constraints. As was men-

tioned in Chapter IV, it is necessary to control the amount of impedance
transformation, from one end of the matching section to the other, ex-
actly. This implies that Eq. 4.38 must be satisfied exactly. Equation
4.38 also has the general form of Eq. 5.4, and therefore the require-
ment that it be satisfied exactly means that the equation E. be satis-

0
fied exactly:

Eqy: BoyKp * 8Ky v e o s tag X teo = 0 (5.21)

The equation (5.21) acts as a constraint on the overdetermined system
(5.7). It is now required that a point P (Xl’ Xy o v s xn) be found

such that max ‘hk' is minimum and such that the point P lies on the plane
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represented by equation EO,(5.21).

Again a reference is defined. It is a selection of n equa-
tions from the set (5.7). The first n equations of (5.7) will be
chosen to constitute the first reference.

The characteristic equation becomes

Nfig * MPy + A By + e . o H AT = 0 (5.22)

and because the (n+l) normal vectors in n-dimensional space must be
dependent (no two are parallel), a set of nonzero coefficients M
(0 < k < n) exists such that (5.22) is satisfied.

The point P, by definition, is a reference point, when either

sgn N, (1<k<n) (5.23)

sgn hk

or

sgn hk

- sgn N (1 <k <n) (5.24)

is true for all hk belonging to the reference.

The n equations of the reference and equation EO are added
together after having been multiplied by their corresponding xk's. Be-
cause of (5.22) and because h0 = 0, the result is:

n

n
A X = L .2
%o * 2 xkck 2 thk (5.25)

Because of (5.23) and (5.24) this can be written as follows:
y y Nt Iy
MCo * ¢, = * - (5.26)
oo * 2 Mk o el

where the positive sign is valid in case Eq. 5.23 holds, and the



negative sign when (5.24) is true.
The center of a reference is that reference point for which
all values lhkl are equal. The reference error h is found from (5.26):

KOCO + chl + A2c2 + 0. .+ hnc

h = - (5-27)
I T I I
and the errors to the individual equations equal:
n, = hosen (5.28)

The coordinates of the reference center can now be found by solving the

following set of simultaneous linear equations:

]
O

EO: alel + aoex2 + .. .+ aOnxn + CO

(5.29)

a

Ek: aklxl + akEXE + 0 0 .+ aknxn + ck

5

(L<k<n)

— —

As is apparent from the discussion above, the constraint does
not basically alter the procedure for finding the center of a reference.
The only difference, as was to be expected, is in the determination of
the reference error. Compare Eq. 5.27 with Eq. 5.18.

5.3.3 The Replacement Procedure. After the center of the

reference, consisting of the first (n+l) equations of (5.7), has been
determined, its coordinates can be substituted into the remaining
equations. This substitution gives a set of residues hk (n+2 <k < m).
When the magnitude of these residues is smaller than that of the ref-
erence error, the reference center is the Chebyshev point for the over-

determined system (5.7).
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Suppose, however, that one of the residues, designated by

hi’ has a magnitude larger than |h . A new reference must then be se-
lected. This second reference will be formed by replacing one of the
equations of the old reference by the equation Ei’ whose residue is

hi‘ When the correct equation is replaced, a new reference is gen-

. It

erated vhose reference error is larger than the old error |h
will be shown next that this is the case when the new set of (n+l)
reference planes is selected such that the center (A) of the old ref-
erence is a reference point of the new reference. In other words, the
(n+l) planes of the new reference must be selected such that the old
reference center (A) lies inside the volume enclosed by the new ref-
erence planes.

That this choice leads to a larger reference error is proved
as follows. The new reference consists of n planes of the old reference

and the plane E Assume that the plane Er has been replaced. When

il
the coordinates of (A) are substituted into these (n+l) equations, a
number n of the residues will have the magnitude Ih[, the remaining

. VWhen (4) is a

one will have the magnitude Ihil, where Ihi] > |n
reference point of the new reference, Eq. 5.16 or 5.17 holds.
Substituting (5.16) and (5.17) into (5.18), one finds the following
value for the magnitude of the new reference error h':

n+l
gl Il e nl T
| = kel kf (5.30)
NI Lo N

k=1; kfr

It follows immediately from (5.30), that

| < [n'] < |ny]| (5.31)
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This completes the proof that the new reference error (h') is larger in
magnitude than the old one (h).

It now remains to be shown that it is indeed possible to re-
place one equation by Ei in such a way that the point (A) is again a
reference point. By replacing the (n+l) planes of the old reference,
one at a time, one obtains (n+l) new references, from which a choice
must be made. For each of the (n+l) new references a characteristic
equation can be written which is of the form (5.10).

The characteristic equation for the old reference is:

AT + AT+ o o o AN + 4 o o + A
rr

1M+ Mo n1Psl = O (5.32)

The (n+l) normal vectors of the old reference and the normal Ei of the

plane E, which is to replace one of these, form a set of (n+2) vectors

i
in n-dimensional space. Therefore, coefficients e not all equal to

zero, must exist such that

T IR S W TR T LT T 0 (5.33)

By eliminating ﬁ; (1 <r < n+l) from (5.32) and (5.33), a set of (n+l)

characteristic equations is obtained:

M 8 M M
xl"xr }\lnl"'}\e'}\r }\2n2+0 . .+Onr+. . .
(5.34)
M 3]
n+l r - -
st PP T T O
n+l T

where 1 < r < n+l.
These are the (n+l) characteristic equations of all possible

references formed by replacing one plane (Er) of the 0ld reference by
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the plane E Let primes denote quantities belonging to the new ref-

io

erence. Then (5.34) can be written in the form:

1 1 - [ [y -
MBp H A, e+ 0D et MNPy TNy = O (5.35)

which is a linear combination of a total of (n+l) vectors.
Because the point (A) is a reference point of the old ref-

erence, the following condition is satisfied. From (5.19):
sgn A, = sgnh sgnh (1 <k < n+l) (5.36)

When the point (A) is also a reference point of the new reference, the

following condition must also hold:

sgn A, = sgnh' sgnhy (5.37)

where k assumes the following values
k = 1,2 «.., n+l, i ; kfr (5.38)

For the point (A), hy = h fork=1 2 ...,nt; k#r. Two pos-

sibilities now exist. First consider the case in which sgn hi = s8gnh

and observe that A; = +l. The condition (5.37) is fulfilled for all

values k of the new reference, as given by (5.38), when sgn N = san A

This condition will be fulfilled when that plane Er is replaced for which

M
the ratio X£ is minimum. This follows from the fact that, when

r

>’lH’C
AN

=
I

( = 1,2, ..., ntl; kir) (5.39)

then:
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— -=|>0 (5.40)

Secondly, when sgn hi = - sgn h, condition (5.37) will be satisfied

when sgn hi = - sgn xk. This can be achieved by replacing that plane

M

Er for which the ratio xz is maximum. In that case,
T

H

(k = 1,2 ..., ntl ; kfr) (5.41)

|

|

and

e I

T
T -5 <0 (5.k42)
r

This completes the replacement rule, which can be summarized as fol-

lows:
when sgn hi = sgn h, replace the plane for which ;i is minimum
(5.43)
when sgn hi = -sgn h, replace the plane for which ;ﬁ is maximum

After replacement, a new reference is obtained whose center can be de-
termined with the procedure discussed in paragraph 5.3.1l. The coordi-
nates of the new reference center are then substituted into the re-

maining equations of the overdetermined system (5.7). When any of the
resulting errors are larger than the reference error lh", the replace-

ment process must be underteken a second time.
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Every time the replacement process takes place, the new ref-
erence error is larger than the previous one. After a finite number
of steps, the feplacement process must terminate, because there are
only a finite number (m) of equations. Also, the same reference will
never be arrived at twice in this process, because the reference error
|h| increases monotonically. The center of the last reference is the
Chebyshev point for the overdetermined system (5.7).

When the overdetermined system is subject to a constraint,
the replacement process remains unaltered, except for the fact that the

constraint equation E. is not eligible for replacement.

0
5.3.4 Exemple. To conclude Chapter V, an example of an

overdetermined system will be given.

Consider the overdetermined system

El: X, ¥ 2 Xy ¥ 5 =0
EE: 3 X + X, +2 = O (5.44)
E3: 2 X +3 X, +7 =0
subject to the constraint that the equation Eo:
E_: X, + x,.-3 =0 (5.45)

be satisfied exactly.
The equations E_ represent planes (lines) in two-dimensional

space. The normals to these lines are:

HO = 1, 1
n, = 1, 2
il (5.46)
n, = 3, 1
n, = 2,3
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Let the first reference consist of the equations El and E2. Then the

characteristic equation can be written according to (5.22):

Mg * MBy * Ay, = 0 (5.47)

The coefficients kk are determined by solving the following set of

simultaneous linear equations, corresponding to (5.47):

it
o

ko + kl + 3x2

(5.48)

ho + 2%1 + K2

[}
o

The set of N's satisfying these equations is:

With these values, the reference error h can be calculated using (5.27).

(:5)(=3) + (2)(5) + (1)(2) _ (5.49)
2] + I//B”l

The errors to the reference equations are hk = h sgn hk. Substituting

these errors into the set of reference equations gives:

Eo xl + x2 -3 =0
El X+ 2 X, +5 = 9 (5.50)
E2: 3 Xt X, ¥ 2 = 9

The center of the reference is found by solving this set of equations.

One finds that:

X, = 2;%x, = 1 (5.51)
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It is easily verified that these valus for Xy and X, satisfy all three
equations (5.50).

The error of the remaining equation E3 is next determined.
Substituting the values (5.51) into E3, one finds chat the error h3
equals 1l, which is obviously larger than the reference error. A new
reference must now be chosen, using the replacement process.

First, coefficients p are determined such that
Bolg + BBy + Moy + 0y = 0 (5.52)

One of these coefficients u can be chosen arbitrarily. Let By = 0.

Then the following system of linear equations has to be solved:

p.l+3p,2+2 = 0
(5.53)
2+ Pyt 3 = 0
The following values of u satisfy (5.53):
- .1, - 1
ul = 5 H u2 = 5 (5'5”)

The ratio EE can now be determined for the two planes of the old ref-

erence.

! 7. Yo 1
= " T < -% (5.55)
N 10° X, 5

Because h = 9 (5.49) and h3 = 14, sgnh sgn h According to

30
rule (5.43), that plane has to be replaced for which EE is minimum. From

M

(5.55) it is found that equation E, has to be replaced. The new ref-

1

erence then consists of equations E2 and E_, subject to the condition E..

3 0
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The characteristic equation for the new reference is written

in the form of two linear equations as follows:

ko + 3 ka + 2 k3 = 0
(5.56)
ho + xg + 3 k3 = 0
The following values for Kk satisfy these equations:
N = m TN =k A =2 (5.57)
The new reference error h is calculated:
p oo LT(=3) ¢ (1)(2) + (2)(7) _ 37 (5.58)
i+ 12 3
The new reference center is found by solving the following set of
equations:
EO: xl + x2 -3 =0
1
E,: 3+ x,+2 = 12§ (5.59)
E: 2x +3x, +7 = 1o
3" 1 2 3
and the coordinates of the reference center are:
11 2
X, = 55 % = -3 (5.60)
As a final check, these coordinates are substituted into equation El’
which gives hl = 7% . This is smaller than the reference error, and

the Chebyshev point for the system therefore has the coordinates (5.60).



CHAPIER VI

EXAMPLES

6.1 Introduction

In this chapter some examples will be given of the synthesis
of nonuniform lines, using the tools developed in Chapters IV and V.

In Section 6.2 the theory of discrete Chebyshev approximation will be
applied to the synthesis of impedance transformers. In Section 6.3 a
matching section will be synthesized to provide a match between a gen-
erator, with an internal impedance of 50 ohms, and a 100-ohm load with
stray capacitance.

When a given function is approximated by a linear combination
of approximating f?nctions, using the theory of discrete Chebyshev ap-
proximation, the maximum error at the sampling points will be minimum.
One has essentially no control over the behavior of the function between
the sampling points. However, by choosing a sufficiently large number
of sampling points, spaced closely together, one can be confident that
the error between sampling points will not exceed the error at the points
by any appreciable amount, so that, for all practical purposes, a true
Chebyshev approximation is obtained. In the examples given in this
chapter the sampling points will be chosen at integral values of the in-
dependent variasble Ls. The approximating functions Cn(s) and Sn(s) ei=-
ther have the value zero at these points, or reach an extreme value in
the close vicinity of these sampling points (see Figs. 4.2 and 4.3).
Because of the smooth behavior of the functions Cn(s) and Sn(s), good
results are obtained using these sampling points.

The functions Cn(s), evaluated at integral values of the var-

iable 4s, are given in Table I. The functions Sn(s) are given in Table

62
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II. As can be seen from these tables and also from Figs. 4.2 and 4.3,
the functions Cn(s) and Sn(s) consist of a main lobe around the point
ks = n and smaller side lobes. The farther the side lobe from the main
lobe, the smaller its amplitude.

When a large number of functions Cn(s) and Sn(s) are used in
the approximation process, the amount of computation could be reduced
if some means could be found to let the amplitude of the side lobes ap-
proach zero more rapidiy. Danielson and lanczos have developed a trans-
formation by which the set of functions Cn(s) and Sn(s) is transformed
into a new set of functions whose side lobes approach zero more rapidly
than those of the original functions. Their method can be modified to

apply to the present problem. This process is treated in the appendix.

6.2 Synthesis of Impedance Transformers

The first two problems to be considered will be the synthesis
of two impedance transformers, one 0.75 A long at the lowest frequency
of the pass band, the other 1 A long. |

Results are obtained that represent an improvement over those
obtained by Willis and Sinha (paragraph 3.3.1), partly because of the
more general synthesis formula (Eq. 4.45 and 4.46), and partly because
of the use of the theory of discrete Chebyshev approximation. This the-
ory, developed in Chapter V, provides a very powerful tool, far superi-
or to the trial-and-error method used by Willis and Sinha. A large num-
ber of terms in the expansion (4.45) can be handled conveniently, while,
at the same time, the amount of impedance transformation (4.38) is con-
trolled directly.

6.2.1 0.75 A Transformer. To determine which terms should

be used in the trigonometric expansion (4.12) of the reflection-
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distribution function p(y), a qualitative argument can be used, involv-
ing Parseval's theorem and the equation giving the amount of impedance
transformation (L.35). Parseval's theorem, applied to the present prob-

lem, states that:

1

e [ ITG)2as - T 1) e (6.1)

When the amount of impedance transformation is given, the following in-
tegral (4.35) is determined:
1

[ oly)dy = =1in:22 (6.2)
0 0l

ON

N
N

where o(y), of course, is a real function. One can state that qualita-
tively the amount of impedance transformation, in first approximation,
determines the value of the integral (6.1).

If [(s) has a high-pass character, it immediately follows
from (6.1) that the area of the main lobe must increase when the reflec-
tions in the pass band decrease. To increase the value of |[(s)| out-
side the pass band, functions Cne(s) and Sno(s) can be selected such
that their main lobes fall outside the pass band. A suitable choice
for a 0.75 A transformer would be the functions CO(S), CQ(S)’ and Sl(s).

The reflection-diétribution function is then expanded as fol-

lows:
oly) = 8, +8, COSs 21y + b, sin xy (6.3)
It follows from (4.46) that

['(s) e 4 (s) +a.C

% 5 2(s) +D, Sl(s) (6.4)

The input reflection [(s) should approximate the value zero for all

values of the variable s equal to and greater than 0.75.
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Using Tebles I and II, one finds the following equations (Ej)
at the sampling points, where the subscripts correspond to the value of
ks at the sampling point.

The equation E. is the equation corresponding to Eg. 4.38, de-

0
termined by the amount of impedance transformation. This equation has

to be satisfied exactly and the error has to be distributed over the re-

maining equations. The amount of impedance transformation will be cho-
Z

sen equal to 92 = e2 so that:
Z
0l
Z
1
é-ln -2-9?- = 1 (6.5)
0l

A direct comparison is then possible with impedance transformers given

in the literature and discussed in paragraph 3.3.l.

EO: 1.0 8, +0.6366 bl -1.0 = 0
E3: =0.2112 & -0.3820 as = 0
EH: -0.0424 bl = 0
E5: 0.1273 g +0.1516 a, = 0
E6: 0.0182 bl = 0
E7: -0.0909 ao -0.0990 a2 = 0
E8: -0.0101 bl = 0
E9: 0.0707 a +0.0Thk 8, = 0
ElO: 0.006k bl = 0
Ell: -0.0579 ag -0.0598 &y | = 0



Eppf -0.00kk by = 0
Byt 0.0490 &y 40.0502 a, = 0
E: 0.0033 by =0
Eg -0.0k2k &, -0.0432 &, = 0 (6.6)

Obviously the set of equations (6.6) cannot be satisfied simultaneously.

A reference is chosen consisting of equations EO, E., Eh’ and E Four

3 5

equations are taken because the space is three-dimensional. Next, a

set of kj's are calculated such that

MNP + h3n3 N, xsns = 0 (6.7)

When these Aj's are known, the Chebyshev error for the chosen reference
can be determined. Equation 6.7 can be written in the form of a set of

simultaneous linear equations as follows:

1.0 N, -0.2122 x3 40.1273 x5 = 0
-0.3820 x3 +0.1516 xs = 0 (6.8)
0.6366 N -0.0k42k M, = 0

The set of xj satisfying these equations is:

Ko = 1 K3 = -9.2036; Xh = 15.0005; M. = =23.1935

The Chebyshev error is determined next (5.27):

MC~ + NC, + N C, + A-C
h o= 207733 WL D5 . .21 (6.9)
N1+ ]+ I
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The error of the jth equation, hj’ equals

hj = h sgn xj = =0.0211 sgn xj (6.10)

This error is applied to the equations of the reference, which leads to

a set of equations that can now be solved.

EO: 1.0 &, +0.6366 bl -1l.0 = 0
E3: -0.2112 &, -0.3820 a, = 0.0211
E -0.0424 b = -0.0211 (6.11)
L 1
ES: 0.1273 &g +0.1516 a, = 0.0211
The following set of coefficients satisfies these four equations:
a. = 0.6835; a, = =0.4350; b, = 0.4972 (6.12)

0 2 1

These values for the coefficients are substituted in the equations E6

through E,. to determine the error at the other sampling points. One

15

finds the following values for these errors:

he = 0.0090 h7 = -0.0191 hg = -0.0050 h9 = 0.0160
hy, = 0.0032 h, = -0.0135 h, = -0.0022 hl3 = 0.0117
hy, = 0.0016 hls = =~0.0102 (6.13)

It is easily verified that all these errors are smaller than the refer-
ence error (6.9). This, therefore, concludes the determination of the
coefficients &y 8 and bl'

The reflection-distribution function for this impedance trans-

former is equal to



0

o(y) = 0.6835 - 0.4350 cos 2ny + 0.4972 sin ny (6.14)

The reflection coefficient of the line is plotted in Fig. 6.1. As was
found above (Eq. 6.9), the maximum reflection in the pass band is

0.0211. This value can be compared with the results obtained by Willis

75—

0 5 1 1.0 15 2.0 2.5

Fig. 6.1 Reflection pattern for a 0.75 A transformer.

and Sinha and by Klopfenstein. The reflection in the pass band in the
example of Willis and Sinha, for an impedance transformer of the same
length, equals 0.031 (see Fig. 3.1). The present design compares favor-
ably with this and is almost as good as the Chebyshev taper which
gives reflections in the pass band equal to 0.018. The Chebyshev taper
has the disadvantage of having discrete impedance steps at the two ends
of the line. The line designed in this paragraph is smooth everywhere.,
From the reflection-distribution function the characteristic
impedance everywhere in the line can be calculated using Eq. 4.48. The

reflection-distribution function p(y) is plotted in Fig. 6.2. The
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ply)

Fig. 6.2 Reflection-distribution function for a 0.75 A transformer.

Fig. 6.3 Characteristic impedance function for a 0.75 A transformer.
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characteristic-impedance function for the whole line is plotted in Fig.
6.3.

6.2.2 1 A\ Transformer. The next example of synthesis will

be an impedance transformer which has a length of one wavelength at the
lowest frequency of the pass band. In this example the functions Co(s),
Ce(s), Cu(s), and C6(s) will be chosen to synthesize a reflection coef-
ficient [" with high-pass character. This implies that the reflection=-

distribution function p(y) is of the form:
oly) = 8, + 8, COS 21y + 8, cos hry + 8, cos 6ny (6.15)

The corresponding input reflection coefficient can be written according

to Eq. L.46:
[(s) e = aco(s) + aCy(s) +8,0,(s) +als(s)  (6.16)

The only term in the expansion of p(y) that contributes to impedance
transformation is the constant term (ao). The restriction placed on
the overdetermined system by the amount of impedance transformation now
becomes a trivial one. In this example, therefore, an overdetermined
system will be considered that is not subject to constraints.

The coefficient a, is directly determined by the amount of im=-

0
pedance transformation [Eq. 4.38]:

Z
a8, = % 1n 292 = 1 (6.17)
0l

Because only cosine terms are used in the expansion (6.15), the func-
tion ['(s) will be zero for even integral values of 4s larger than 6.

The corresponding equations, therefore, do not appear among the ones
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listed below. The following set of equations can now be written, using

Teble I.
E): 0.5000 &) = 0
Eg: 0.1516 &, +0.3537 &) =0.2894 a, +0.1273 = O
Eg: ~0.5000 &, = 0
Eji -0.0990 &, -0.1350 &), -0.3428 a; -0.0909 = 0
(6.18)
E9: 0.07k4k4 &, +0.0881 a), +0.1273 ag +#0.0707 = O
Ejp i -0.0598 a, -0.0667 &) -0.0824 a, -0.0579 = 0
Ejgi 0.0502 a, +0.05h1 & 10,0622 a; +0.0490 = 0
Ej5t -0.0432 &, -0.0457 &) -0.0505 ag -0.0k2h = 0

A reference is chosen out of this set, consisting of equations Eh’ E5’

E6, and E Four equations are taken because the space is three-dimen-

7°

sional. A set of xj's for this reference is calculated to satisfy:

MR xEnS + Nehg x7n7 = 0 (6.19)

This can be written in the form of a set of simultaneous linear equa-

tions as follows:

0.1516 x5 -0.0990 x7 = 0
0.5000 xh +0.3537 KB -0.1350 x7 = 0 (6.20)
-0.289 x5 =0.5000 A, -0.3428 x7 = 0

The following set of values satisfies these equations:
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ku = =0.1921 XS = 0.6534 h6 = =1.0637 A, = 1.0

The reference error is next determined (5.18):

N C), + ACo + NCoo+ NC
hoe SE 55 606 T L o007 (6.22)
ML+ gl g+ I

The error to the jth equation (hj)’ equals hj = h sgn xj. This error
is added to the equations of the reference, which leads to a set of e-

quations that can now be solved.

Eh: 0.5000 a, = 0.0027
E5: 0.1516 a, +0.3537 8 -0.2894 ag +0.1273 = ~0.0027
(6.23)
E6: -0.5000 ag = 0.0027
E7: ~-0.0990 8, -0.1350 ay -0.3428 ag -0.0909 = ~0.0027
The following set of coefficients satisfies these equations:
a., = 1.0; a, = =0.8998; a = 0.0053; a, = =0.0053

These values for the coefficients can be substituted in the remaining
equations to determine the error at the other sampling points. One

finds:

h9 = 0.0066; h), = -0.0063; h13 = 0.0058; hl5 = =0.0053 (6.25)

All these errors happen to be larger than the reference error. The syn-
thesis problem would now be solved if one were interested only in ob-

taining an impedance transformer over a frequency range corresponding
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to a range of valﬁes for s between one and two. In the problem consid-
ered in Section 6.3 such an impedance transformation will be needed,
and the coefficients given in Eq. 6.24 will be used.

In the present problem, however, a high-pass characteristic
is desired. The replacement process will then be necessary to determine
which of the equations of the reference (6.23) must be replaced. The
9° The equation E9 will therefore he

used to replace one of the equations of the old reference. Replacement

largest of the errors (6.25) is h

by the equation possessing the largest error does not guarantee success
in the next attempt, but it is the most appropriate choice under the
circumstances.

The replacement process starts by determining the coefficients

uj that can be found by‘solving the equation:

T HSEé + uéﬁé + u7ﬁf + ﬁé = 0 (6.26)

This equation can be written as a set of simultaneous linear equations.

0.1516 b -0.0990 e +0.074k = 0
0.5000 ), +0.3537 s -0.1350 b +0.0881 = 0 (6.27)
= 0

-0.2894 us -0.5000 K -0.3428 u7 +0.1273

The following set of uj's is one of the infinitely many that satisfy Eq.

6.27
W, = 0.0116; bg = 05 g = -0.260k; b = 0.7513 (6.28)
"3
Using these values, the ratio 5 cen be determined:

J
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»
— = -0.0603; = 0; x9 = 0.2450; = 0.7513 (6.29)

6

>‘|‘5:
-3

\Ji !\J‘

Because h < 0 (6.22) and h9 >0 (6.25), that equation from the old ref-

VN
erence must be replaced, for which the ratio xl is maximum, according

J
to rule (5.43). Therefore equation 7 has to be replaced so that the new
reference consists of Eh’ ES’ Eé, and E9.

Again coefficients Xj are determined such that

Ma,  + x5n5 + Nl + x9n9 = 0 (6.30)

This can be written as a set of simultaneous linear equations as fol-

lows:

0.1516 KS +0.0TkkL xg = 0
0.5000 N, +0.3537 KS +0.0881 x9 = 0 (6.31)
-0.289%4 AS -0.5000 hé +0.1273 xg = 0
The following Xj's satisfy these equations
N, = 0.1709; A = -0.4909; Mg = 0.5387; Ay = 1.0 (6.32)

These values are used to calculate the new reference error:

MC + AC. +N-C. + AN.C
h o= %55 667799 | 40037 (6.33)
N+ Mgl + Ingl |K9l

The set of reference equations can now be solved by introducing the er=

ror into the equations:
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E): 0.5000 &), = 0.0037
ES: 0.1516 a, +0.3537 a -0.2894 8, +0.1273 = -0.0037
. (6.34)
B ~0.5000 8 = 0.0037
E9: 0.07kkL a2 +0.0881 ah +0.1273 a6 +0.0707 = 0.0037

The solution of this set yields the following values for the coeffi-

cients:

a, = -0.8964; 8 = 0.0075; &, = -0.0075 (6.35)

These values are substituted into the remaining equations to determine

the error at the other sampling points. One finds:

h, = =0.0006; h.. = -0.0041; h

7 11 = 0.0039; hyg = -0.0037 (6.36)

13

It can be seen that hll exceeds the reference error, and therefore the
replacement process has to be undertaken a second time. Again coeffi-

cients “j are determined such that
uh;l-h + H555 + Mé-n_6 + |.19;19 +£ll = 0 (6.37)

Written as a set of simultaneous linear equations this becomes:

0.1516 u5 +0.0Thk p9,-0.0598 = 0
0.5000 b, +0.3537 b +0.0881 b -0.0667 = 0 (6.38)
-0.2894 u5 -0.5000 Mg +0.1273 Mg -0.0824 = 0
The following coefficients uj satisfy these equations:
W, = -0.008L; by = 05wy = 0.0L01; = 0.80k44 (6.39)

M9
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U,
The ratios Xi are then determined using (6.39) and (6.32):
J
U U u u
XE = -0.0L92; Xi = 0; Xé = 0.07hk; XQ = 0.80L44 (6.40)
L 5 6 9

Because h > 0 (6.33) and h,, <0 (6.36), that plane of the reference
M.

must be replaced for which the ratio Xi is maximum. Therefore equation
J
9 is replaced by equation 11, and the new reference consists of equa-
tions Eh’ E5, E6, and Ell'
First the coefficients xj are determined again such that

NPy, + x5n5 * A +Angy = 0 (6.41)

This leads to the«following set of equations:

0.1516 x5 -0.0598 Ny = O
0.5000 Ku +0.3537 xs -0.0667 Ay =0 (6.42)
-0.289k x5 -0.5000 N ~0.083k My = 0O

with the solution:

N, = -0.1459; x5 = 0.3949; N = =0.3933; Ay = 1.0 (6.43)

Using these values, the reference error is determined:

Kucu + xscs + x606 + M1
Myl o+ Pl + Ingl + I

-0.0039 (6.4k)
11l

The reference set is now written as follows, including the error:
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Eh: 0.5000 au = 0.0039
E5: 0.1516 a2 +0.3537 ah —0.2893 a6 +0.1273 = =0.0039
(6.45)
E6: ~0.5000 aé = 0.0039
Ell: -0.0598 a2 -0.0667 ah -0.0824 a6 =0.0579 = =0.0039

The solution is:

= 1.0; a, = -0.8991; 8) = 0.0078; a; = -0.0078 (6.46)

o) 2

These values are then substituted in the remaining equations to deter-

mine the error at the different sampling points:

= 0.0038; h,. = =0.0036 (6.47)

h, = -0.0003; h, =0.0035; h 15

T 9 13

All these individual errors are smaller than the reference error and
therefore the process is completed.
The reflection~distribution function for the impedance trans-

former is now equal to:

o(y) = 1.0 - 0.8991 cos 2ny + 0.0078 cos 4xy - 0.0078 cos 6bxy
(6.48)
The reflection pattern for this line is plotted in Fig. 6.4. According
to Eq. 6.44 the maximum reflection in the pass band equals 0.0039. This
value can be compared with the results obtained by Willis and Sinha and
by Klopfenstein (see paragraph 3.3.1). For a 1 A transformer Willis
and Sinha find a reflection in the pass band of 0.0056, and the reflec-
tions for the Dolph;Chebyshev taper are 0.0037. It is seen that the
line synthesized above is almost as good as the Dolph-Chebyshev line,

while it does not have the disadvantage of the discrete impedance jumps
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05—

Fig. 6.4 Reflection pattern for a 1 N\ transformer.

at the ends of the line.
The reflection-distribution function (Eq. 6.48) for the line
is plotted in Fig. 6.5. The characteristic-impedance function Eq.

4,48 1is plotted in Fig. 6.6.

6.3 Synthesis of a Matching Section

As a third example a matching section will be synthesized
that matches a generator, with real internal impedance (50 ohms), to a
complex load. The load is a 100-ohm resistor with 1 pf stray parallel
capacitance. A uniform line can be used to connect the generator to
the matching section, as indicated in Fig. 6.7. The matching section
will provide a match over a frequency range extending from 500 to 1000

Mc, and the length of the matching section will be 60 cm, which
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ply)

Fig. 6.5 Reflection distribution function for a 1 A transformer.

0 .25 .5 75 1.0

Fig. 6.6 Characteristic-impedance function for a 1 A transformer.



corresponds to one wavelength at 500 Mc, the lowest frequency of the
pass band.
When the load Zg, as shown in Fig. 6.7, is connected directly

to the terminals of the uniform line, omitting the matching section, it

will cause a reflection of magnitude

Z, = 50
rl = z, 75| 0% (6.49)
500
NN -O—
Zo = 500 Ipf 1000
GENERATOR UNIFORM LINE LOAD

MATCHING SECTION

Fig. 6.7 Circuit diagram for the matching example.

which corresponds to a voltage standing wave ratio (VSWR) of 2.26 in the
50-ohm line. If, instead of the matching section, a 1 A impedance trans-
former is used, best results are obtained when the impedance transformer
transforms from 50 to 84.7 ohms. (This fact will be discussed further
on in this section.) Using this optimum transformer, the VSWR in the
50-ohm line will equal 1.81.

In this section two matching sections will be synthesized,
giving standing wave ratios equal to 1.07 and 1.10, respectively.

The first step in the synthesis procedure is to choose the

length of the matching section. In this example the matching section
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will be one wavelength long at the lowest frequency, 500 Mc. The match-
ing section will therefore by €0 cm long. The frequency variable s is
then determined. s varies linearly with frequency, and s = 1 for 500
Mc, and s = 2 for 1000 Mc (Eq. 3.21).

The second step is to choose the value of the characteristic-
impedance function at the two terminals of the matching section, zbl
and Z. .. 2. will be chosen equal to 50 ohms, so that the section

02 ol

matches the generator. Z02 will be chosen such that the maximum value

reached by |Ié(s)l, as defined by Eq. 4.6, is minimum. Ié(s) can be

written as follovws:

zl_ - zl Zi_ - % - joC zi— - 0.01 - § 0.0031 s
02 %2 02 02
L(e) = =—F = T3 -1
S+t g+ E4+JeC g+ 0.0L+§0.003L s
02 2 02 02 ’ (6-50)

{Té(s)\ reaches its maximum value at the highest frequency of the pass
band, when s = 2. Setting s = 2 in Eq. 6.50, it can be shown that the

value of |[,(2)| reaches a minimum when

Zy, = 4.7 ohms (6.51)

This value on02 will be used in the example.
The functions ['(s) and I;(s), as defined in Egs. 4.5 and 4.7,
can now be calculated. Obviously [(s) = 0, and I;(s) is given by (com-

pare Egs. 6.50 and 6.51):

_ 0.0018 - j 0.0031 s _-jhns
I;(s) = 0.0218 + § 0.003L s © (6.52)

Ii(s), as defined in Eq. L.k, becomes (4.10):
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L) = - L) (6.53)

In the synthesis procedure, the real and imaginary parts of
Il(s) 2™ ore needed. They can be calculated using (6.52) and (6.53)
and are tabulated below for integral values of Us, which are the sam-

pling points, in the frequency range of interest.

Jems _ 0.0018 - j 0.003L s _-jens
L(s) e = = 0.0218 + 5 0.003L s © (6.54)
)-l-s Re{l-‘l(s) eJEﬁS} Im{I"l(s) ejEJ{S}
L -O-OSlg 0.1528
5 0.188 0.0490
6 0.0347 -0.2236 (6.55)
I -0.2567 -0.0183
8 0.0 0.2881

A function G(s) is to be found that approximates Il(s), where G(s) is
the Fourier transform of a real function p(y), which is zero outside the

eJQnS

interval (0,1). First, the real part of G(s) will be synthesized.

According to Eq. 4.40:

. N

Re {G(s) eJens} = nzg [anecne(s) + bnOSno(s)] (6.56)
It can be seen from the table (6.55) that Re{ Il(s) ejgﬂs} is small
for even values of 4s. Because of this, the functions 53(5), SS(S)’
87(3), and Sg(s), will be used for the approximation process.

There are five sampling points, and therefore the four chosen
functions lead to an overdeterminedbsystem. There is also the Eq. 4.38
which controls the amount of impedance transformation along the line.

This equation has to be satisfied exactly. When this overdetermined
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system, with constraint, is solved, the error will prove to be too large.
Therefore more approximating functions, for instance Cg(s), Cu(s), etc.,
are needed, leading to an overdetermined system of higher dimension.

To avoid the tremendous amount of computation involved in solving this
system, a slightly different approach will be taken in this example.
will be determined, without

First, the coefficients b3, b5, b, and b

7 9
regard to impedance transformation. The error in the impedance trans-
formation will then be corrected using the functions Co(s), Cg(s), Ch(sL
and Cé(s), without essentially disturbing the approximation.

The approximation process is started by writing the equations

for the sampling points, using Table II and (6.55).

Eh: -0.2728 b3 +o.§537 b5 +0.1350 b7 +0.0881 b9 +0.0610 = 0
ES: 0.5000 b5 -0.1888 = 0
E .:  0.0707 b, +0.289% b. -0.3428 b, -0.1273 b, =0.0347 = O
6 3 p) 7 9
(6.57)
E7: -0.5000 b7 #0.2567 = 0
Egt -0.0347 b3 -0.0816 b5 -0.2971 b7 +0.3370 b9 = 0

To determine the Chebyshev error for this system, coefficients xj must

be determined such that
thu + xsns + Moo k7n7 + gy = 0 (6.58)

This leads to the following system of simultaneous equations.

[t}
(@

-0.2728 Kh +0.0707 K6 -0.0347 KB

]
(@)

0.3537 hu +0.5000 A, +0.2894 A6 -0.0816 ke

p)
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]
(@]

0.1350 hu -0.3428 h6 -0.5000 KY -0.297L hg

0.0881 xu -0.1273 x6 +0.3370 AB

]
(@]

(6.59)

This set is satisfied by the following set of values for xj:

ku = 0.6812; A = -2.1236; K6 = 3.1187; h7 = -2.5483; h8 = 1.0

5 (6.60)

Using these values for )",j , the Chebyshev error for the system (6.57)
can be determined.
hhcu + hscs + K6C6 + x7c7 + x8c8

= = -0.0338 (6.61)
Myl o+ ]+ gL+ Il + gl

The error hj of équation EJ is then determined by hj = h sgn kj’ so that

the following set of equations results, that can now be solved.

E) -0.2728 b3 40.3537 by 40,1350 b7 +0.0881 by 40.0610 = =0.0338
Eg: 0.5000 b -0.1888 = 0.0338
i 0.0707 b3 +0.2894 by -0.3428 by <0.1273 by -0.0347 = -0.0338
Bt -0.5000 b, - +0.2567 = 0.0338
Eg: -0.0347 by -0.0816 bg =0.2971 b, +0.3370 Dby = -0.0338
(6.62)

The coefficients that satisfy these equations are:

b3 = 1.3181; b5 = 0.4451; b7 = 0.4458; b9 = 0.5363 (6.63)

The amount of impedance transformation was not controlled in the above

procedure. The amount of impedance transformation is given by Eq. 4.38,
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which becomes:

0.2122 b, + 0.1273 b

3 + 0.0909 b

+0.0707 b. = 0.414k9 (6.6L)

) T 9

The correct amount of impedance transformation is given by

Z
l 02 - ;L_ 8&‘07 - ]

A correction to Eq. 6.64, equal to -0.1496, is needed to obtain the cor-
rect amount of impedance transformation in the line. The first approx-
imation to the impedance transformer synthesized in paragraph 6.2.2 is
ideally suited for the purpose of providing the necessary correction
terms. One will recall that the coefficients for this transformer, as
written in Eq. 6.2k, pro?ide minimum reflection inside the frequency
band 1 < s < 2, while the reflections outside this band are larger. By
multiplying the coefficients, given in (6.24), by the factor -0.1496,
the following coefficients are obtained that will give the correct

amount of correction to Eq. 6.6k,

= -0.1496; a, = 0.1266; &, = -0.0008;

. = 0.0008 (6.66)

ao 3.6

By making this correction, an additional error is introduced in the
equations (6.62). This additional error is equal to 0.1496 x 0.0027 =
0.0004. This additional error is small compared to the error h = -0.0338
(6.61) and will therefore be neglected.
. . . . r Jj2ns
This concludes the approximation for the real part of € .
No replacement process is necessary because there were only five equa-

tions in the four-dimensional space.

Next, the imaginary part of Iierns must be approximated.
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From the tabulation (6.55) it can be seen that this imaginary part is

very small for odd values of the variable Ls. According to Eq. 4.L40:

N
Jans _
Im {G(s) e } = [énocno(s) + bnesne(s)] (6.67)
The functions Se(s), Sh(s), 86(3), and 88(s) will be chosen for the ap-
proximation process. The equations for the five sampling points can

then be written using Table II:

Eh: -0.5000 bh ~0.1528 = 0
E5: -0.0606 b2 -0.2829 bu +0.3k472 b6 +0.1306 b8 -0.0k90 = 0
E6: 0.5000 b6 40.2236 = O
_ (6.68)
E7: 0.0283 b2 +0.0772 bh +0.2938 b6 -0.3395 b8 +0.0183 = 0
E8: -0.5000 b8 -0.2881 = 0

To determine the Chebyshev error for this system, one must first find

coefficients kj such that:

Ny hsns + Ny + k7n7 +Aghg = 0 (6.69)

This leads to the following set of simultaneous linear equations:

-0.0606 ks +0.0283 K7 = 0

-0.5000 Xu ~0.2829 XS +0.0772 K7 = 0
(6.70)

0.3472 KS +0.5000 Xé +0.2938 K7 = 0

]
O

0.1306 hS -0.3395 k7 -0.5000 K8
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The following values for xj satisfy these equations:

= 0.4666; N

kh = =0.1097; A 6

: = -0.911T; A, = 1.0; Ag = =0.5572

1 _
(6.71)
Using these values the Chebyshev error can be calculated:

NC o+ ANCo + ANCr + ANyCr + ANgC
h o= k55 66 T %8 .0u00 (6.72)

a1+ ‘K5‘ + ngl o+ |K7| + gl

The error hj of equation Ej is found from hj = h sgn kj, and the fol-

lowing set of equations must then be solved to find the coefficients:

Eh: -0.5000 bh -0.1528 = 0.0102
ES: -0.0606 b2 -0.2829 bu +0.3472 b6 +0.1306 b8 -0.0490 = =0.0102
E6: 0.5000 b6 +0.2236 = 0.0102
E7: 0.0283 b2 +.0772 bh +0.2938 b6 -0.3395 b8 +0.0183 = =0.0102
E8: -0.5000 b8 -0.2881 = 0.0102
(6.73)

The following values for the coefficients satisfy these equations:

b, = -2.846M; b, = -0.3261; b = -0.4267; bg = -0.5966  (6.74)

This completes the synthesis of the matching section. The complete re-

flection-distribution function can now be written as follows:

oly) = = 0.1496 + 0.1286 cos 2xy - 0.0008 cos Lxy + 0.0008 cos 6ny
- 2.8464 sin 2xy + 1.3181 sin 3ny - 0.3261 sin Lxy
+ 0.4451 sin Sny - 0.4267 sin 6ny + 0.4458 sin Tny

-0,5966 sin 8xy + 0.5363 sin 9ny (6.75)
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This reflection-distribution function is plotted in Fig. 6.8. Using
Eqs. 4.49 and 4.50, the characteristic-impedance function and the ratio
of outer and inner conductor for a coaxial structure can be computed.
The characteristic-impedance function Zo(y) is plotted in Fig. 6.9.
Figure 6.10 shows a cross section of a matching section which has a re-
flection-distribution function equal to (6.75).

As can be seen from Fig. 6.8, the reflection-distribution
function has a rather large magnitude at a few points in the line. Al-
so, the general behavior of o(y) is such that the characteristic imped-
ance along the line varies between 8.5 and 85 ohms. The coefficient
b, = 2.846k4 in the expansion (6.75) is largely responsible for this be-

2
havior. By choosing different approximating functions to form the im-

aginary part of G(s) o278

, a design can be obtained in which the char-
acteristic impedance along the line does not vary over such a large
range. This will be demonstrated below.

The matching section, synthesized above, does not provide an
exact match over the pass band, as is apparent from the Chebyshev errors
found in Egs. 6.61 and 6.72. These are the errors in the real and im-
ej2ns

aginary part of Ii(s) , respectively. To calculate the total re-

flection from the maetching section, these two errors must be added vec-

torially. The total reflection is therefore equal to «/6.03382 + 0.01022

= 0.0353, which corresponds to a VSWR equal to 1.07, in the uniform
line connecting the generator to the matching section. See Fig. 6.7,

A general remark should be made regarding the total reflec-
tion error. In the example above, the total reflection error is equal
at all five sampling points. This is a consequence of the fact that the

nurber of sampling points exceeded the number of approximating functions



91
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Fig. 6.8 Reflection-distribution function for matching section No. 1.
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Fig. 6.9 Characteristic-impedance function for metching section No. l.
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by exactly one. In general, when a large number of sampling points is
taken, the maximum error in the real part will not necessarily occur at
the same sampling points at which the error in the imaginary part is
located. The only conclusion that can be drawn in such a case is that
the total reflection error does not exceed the vectorial sum of the
real and imaginary errors anywhere.

Jans i1

To conclude this chapter, the imaginary part of Il e
be constructed again, using & different set of approximating functions.
The approximating functions will be Su(s), Sé(s), 88(3), and C5(S)'
Using Teble I and Table II, the following equations can now be written

for the sampling points:

Eh: =-0.5000 bh +0.2829 a5 -0.1528 = 0

) ES: -0.2829 bh 40.3&72 b6 +0.1306 b8 +0,.5000 a5 -0.0490 = O

E6: 0.5000 b6 +O.3h72 a5 +.2236 = O
(6.76)

E7: 0.0772 1), +0.2938 b =0.3395 bg +0.0183 = 0

E8: -0.5000 b8 -0.1306 a5 -0.2881 = 0

To find the Chebyshev error to this system, the set of hj must first be

determined such that

Ny, Asns * Nhg + x7n7 + Aglig = 0 (6.77)
The coefficients kj can be found by solving the following set of equa-

tions:

-0.5000 Kh -0.2829 A +0.0772 N = 0

p) 7

0.3472 A

]
o

+0.5000 K6 +0.2938 A

p) T
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0.1306 N

I
(@]

5 -0.3395 A =0.5000 Ag

]
O

0.2829 kh +0.5000 A. +0.3472 Ké -0.1306 h8

> (6.78)

The following values of kj satisfy these equations:

A= 1.2165; A = =2.8504; A, = 3.4892; = =2.5689; Ag = 1.0
¥ 5 6 M 5 T6.19)

Using these values, the Chebyshev error for the system (6.76) can be

found:

Xucu + xscs + x6c6 + x7c7 + K8c8
Ixul + ‘hsl + Ixél + lh7| + ng‘

0.0358 (6.80)

The error hj of equation Ej equals hj = h sgn kj. The errors can be

substituted in the equations (6.76), resulting in:

Ey: =0.5000 b, +0.2829 8 -0.1528 = 0.0358
Eg: -0.2829 b) +0.3472 by +0.1306 bg +0.5000 a5 -0.0490 = -0.0358
Eg: 0.5000 b +0.3472 ag 40.2236 = 0.0358
E7: 0.0772 b, +0.2938 by -0.3395 by ' +0.0183 = -0.0358
Eg: -0.5000 bg -0.1306 ag -0.2881 = 0.0358
(6.81)

The solution of these equations yields the following values for the co-

efficients:

bh = 0.6851; b, = -1.6T9%4; D

6 = = -1.1382; a. = 1.8776 (6.82)

8 >

This completes the synthesis of matching section No. 2. Using Egs. 6.63

and 6.66, the reflection-distribution function can be written as:
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o(y) = - 0.1496 + 0.1286 cos 2xy - 0.0008 cos Lny
+ 1.8776 cos 5xy + 0.0008 cos 6xy + 1.3181 sin 3ny
+ 0.6851 sin 4xy + 0.4L451 sin 5xy - 1.6794 sin 6xy

+ 0.4458 sin 7xy - 1.1382 sin 8xy + 0.5363 sin 9xy (6.83)

In Fig. 6.11 and 6.12, the real and imaginary parts of I1 9™ ang

Jans are plotted. The approximation

those of the approximation G(s) e
errors are those given by Egs. 6.61 and 6.80. The total reflection at

the input of matching section No. 2 is equal to the vectorial sum of

these errors: «/6.03382 + 0.03582 = 0.0492. This corresponds to a
VSWR of 1.10 in the uniform line connecting the generator in Fig. 6.7
to the load. This standing wave ratio is slightly higher than that ob-
tained with matching segﬁion No. 1. Matching section No. 2, however,
exhibits much smaller variations in the characteristic impedance along
the line.

The reflection-distribution function for this matching sec-
tion is plotted in Fig. 6.13. Figure 6.14 shows the characteristic-im-
pedance function. A cross section of the}coaxial structure is shown in
Fig. 6.15.

It is of interest to determine the mechanical precision with
which the nonuniform line shown in Fig. 6.15 has to be manufactured to
produce the predicted result. An estimate of this tolerance can be made
by considering the deviation allowed in the individual coefficients in
the expansion (6.83) such that the resulting error in the input reflec-
tion of the line is an order of magnitude smaller than the input reflec-
tion itself. The input reflection coefficient of the line of Fig. 6.15
is equal to 0.05. One can then determine the deviation in the individ-

ual terms of the expansion (6.83) that would cause an error in the
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Re{l‘,ejz"s}———

Re{Ge
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Fig. 6.11 Plot

of the function Re {F Jons

1

} and its approximation.

lm{I‘,e

—_ Im{Ge

j21r5}
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Fig. 6.12 Plot

of the function Im {I1 e'jgﬂs

1

} and its approximastion.
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Fig. 6.13 Reflection-digtribution function for matching section No. 2.
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Fig. 6.14 Characteristic-impedance function for matching section No. 2.
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input reflection coefficient equal to 0.005.

An error in the coefficients of the expansion (6.83) will
cause an error in the diameter of the center conductor of the line.
When the inside diameter of the outside conductor (do) is equal to 1
inch, the deviations of the diameter of the center conductor, caused
by the error in the coefficients of (6.83), are of the order of a few
mills. For good results, therefore, the dimensions of the center con-
ductor of the line have to be accurate to within a few thousandths of

an inch.



CHAPTER VII

CONCLUSIONS

A general synthesis procedure has been developed for the syn-
thesis of matching sections. The matching section provides a match be-
tween a generator, with complex internal impedance, and a complex load
impedance, such that meximum power transfer is obtained over a given
range of frequencies. Because the method is essentially a numerical
one, the internal impedance of the generator and the load impedance can
be given either in equation form or in the form of measurements.

A special case of a matching section is the impedance trans-
former which matches two real impedances of different values. The syn-
thesis procedure can also be used, without essential modifications, for
the synthesis of ériving point impedances that must exhibit a certain
behavior over a given band of frequencies.

Nonuniform lines are synthesized which have the following
properties:

(a) The nonuniform line is of finite length

(b) The line is lossless and has a homogeneous dielectric

(c) The taper is continuous.

The synthesis procedure is based on the approximate solution to the non-
uniform-line equations that was developed by Orlov (Ref. 9) and Sharpe
F(Ref. 11). Using their approximate solution, the synthesis problem is
first reduced to the problem of constructing a real function, identi-
cally zero outside a prescribed interval, whose Fourier transform ap-
proximates a given complex function. It is shown that this problem can
be put into a convenient mathematical form when the reflection-distri-
bution function is expanded in a trigonometric series. This results in

100
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an approximation problem in which given functions have to be approxi=-
mated by a linear combination of approximating functions. To solve this
approximation problem the theory of discrete Chebyshev approximation is
introduced and is shown to be a very powerful tool, excellently suited
to the problem.

Several examples have been given which demonstrate how imped-
ance transformers and matching sections can be synthesized.

It appears that the general synthesis procedure can be ex-
tended to the synthesis of nonuniform transmission lines, behaving as
filters. A study of the cut-off characteristics of such filters would
present an interesting area for further investigation. The magnitude
of the reflection coefficient for filters, however, is no longer small
compared to unity, and therefore methods must be developed by which the
approximation errors can be evaluated.

Another question that arises for possible further investiga-
tion is whether the approximate solution to the nonuniform-line equa-
tions can be extended to cover the case of lossy lines. If this were
the case, the synthesis procedure developed in the present investiga-
tion might be extended to construct lossy nonuniform transmission lines

also.



APPENDIX
A METHOD FOR IMPROVED CONVERGENCE

As was mentioned in the introduction to Chapter VI, it is
possible to transform the set of functions Cn(s) and Sn(s) into a new
set of functions having improved convergence. By improved convergence
is meant that the side lobes of the new functions approach zero faster
than those of the old functions Cn(s) and Sn(s), as the point s moves
away from the main lobe. Use of the new functions will reduce the
smount of computation, in case a large number of functions is used in
the summation (L.39).

Denielson and Lanczos (Refs. 4 and 8) have published a trans-
formation method “that can be adapted to the present problem. The four
sets of functions, Cne(s), Cno(s), Sne(s), and Sno(s), have to be con-
sidered separately. It will be recalled that the symbol ne indicates
only even values of n, and the symbol no stands for only odd values of n.

First the summation

Ne

n§o anecne( s) (A.1)

is considered. It will be shown that the summation (A.1) equals the
summafion

Ne Ne
néb anecne(s) = n;b uneUne(S) (A.2)

when the coefficients ane and une are related by the following trans-

formation:
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0 0
u, = a, + Uy
Ye ° ane * Upe-2 (4.3)
uNe = aNe * uNe-E

The transformation (A.3) can also be written in the following, equivalent

form:

0 0

& = Y "%
Bre Ure ~ Yne-2 (A.L)
aNe = uNé - uNé-Q

Substituting these values for a  into (A.1), one finds:

uOCO(s) + (u2 - uo)Ca(s) e . (un )Cne(s) e

-u
e ne-2

st (uNe - uNe-Q)CNe(S)
(s)] + . .. (A.5)

ne ““ne‘”’ “ne+2
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By equating the corresponding terms in equations (A.2) and (A.5), it

follows that the functions Une(s) are defined by the following relation-
ship:

Une(s) = [cne(s) -C (s)) 0 < ne < Ne

ne+2

.6
Upe(8) = Cpels) .

The functions Une(s) can be evaluated using equations (A.6) and (4.19).

U (s) = sin 2ns 1 N 1 ) 1 . 1
ne - n th +1n bs - n bs +n+2 Ls -n-2
_ (A.7)
_ sin 2mns 2 _ 2
- 7 (hs+n)(l4s+n+2) (hs-n)(hs-n-Q)]
L (n even)

It is apparent from (A.7) that the functions Une(s) converge faster
than the functions Cne(s)'
The functions C_ (s), 8 (s), and S_(s) can be transformed
no ne no
in exactly the same manner as the functions Cne(s) gbove. The functions

Cno(s) are transformed into the functions Uno(s) such that

No No
ngl anocno(s) = n;i unoUno(s) (A'B)
where:

h R |
u3 = a3 + ul
) (a.9)
u = g + U0
no no no=2
uNo = aNo * uNo-2
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and the functions

Uno(s) = [Cno<s) - Cno+2(s)] 1 < no <o
~ (A.10)
UNo(s) = CNO(S)
It follows from (A.10) and (4.20)
_ = _Ccos 2ms 2 2
Upols) = x [(us+n)(hs+n+e) - (hs-n)(hs-n-27] (a.11)
(n odd)
For the functions Sne(s)’ it is found that:
Ne Ne
néé bnebne(s) = ngé vnevne(s) (4.12)
where:
Vo T b
vy = btV
. (A.13)
v = b +v
ne ne ne-2
Ne = PNe * Vie-2
and the functions
v (s) = [sne(s) - sne+2(s)] 2 < ne < Ne
(A.14)
vNe(s) - SNe(s)
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Therefore, from (A.14) and (k.30),

Vv (s) = sin 2ns 1 1 1 N 1
ne - T bes+n = bs+n+2 ~ Ls-n = Ls-n-2
L (A.15)
. 5in 2ns 2 + 2
T (bs+n)(4s+n+2) = (4s-n)(4s-n-2)
L n even)
And finally, the functions Sno'(s) are transformed as follows:
No No
b = .
ngl nosno(s) ng‘l vnovno(sf) (4.16)
where
Vi % Py
v3 = b3 * vy
- b 4y (A.17)
no no no-2
o = PNo T VNo-2
and the functions Vno(s) equal
= - !
Vno(s) = [Sno(s) Sno+2‘s)] 1 <no < No
(A.18)
VNO(S) = SNO(s)
And it follows from (A.18) and (4.31), that
cos 271s 2 2
no(s) N P [(hs+n)(hs+n+2) * (Hs-n)(hs-n-QjJ (4.19)

(n odd)
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