CcAcvgmsb 6-N.

ENGN
UMR0929

Report 013514-2-M

CONSYS: A Collection of FORTRAN Subroutines
to Produce Contour Maps of Data Surfaces
Defined on Rectangular Grids

G. N. Cederquist
COOLtY ELECTRONICS LABORATORY

Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109

July 1976

Technical Memorandum No. “2

Approved for public release; distribution unlimited.

Prepared for

OFFICE OF NAVAL RESEARCH
Department of the Navy
‘Arlington, Virginia 22217

SECURITY CLASSIFICATION OF THIS PAGE (Phen Date Enfersd)

READ INSTRUCTIONS

I, REPORY NUMBER _ 2, GOVT ACCES3ION HO.| 3. RECSPIEHT'S CATALOG NUMBEN
013514-2-M _ ,
8, TITLE (and Sudlitle) 8. YYPX OF REPOAT & PERIOD COVERZD

CONSYS: A Collection of FORTRAN Sub-
routines to Produce.Contour Maps of Data

Surfaces Defined on Rectangular Grids 8. PZRFOAMING ORO, REFORY NUMDEA

T™ 112 :
7. AUTMHOR(e) 8. CONTRACY O GRANT HNUMDZR/(s)
Gerald N. Cederquist : '
q N00014-75-C-0174
9. PERFORMING ORGANIZATION HAME AND ADDREZ33 10. PROGRAM ELEMENT, PROJECT, TASY

. - ARZA & WORK UNIT NUMRERS
Office of Naval Research

Department of the Navy
Arlington, Virginia 22217

11, CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
July 1976

13. NUMBER OF PAGE3

54
13. MONITORING AGENCY HANG & ADDﬁE!S{M ditierent trom Conirolling Olllce) 1 18. SECURITY CLAS3, (ol thiz repert)

Unclassified

T6a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE -

13. DISTRIDUTION STATEMENT (of this Rapori)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the adairect ontsred In Bleok 20, 11 ctliesrent from Repert)

19. SUPPLEMEZNTARY NOTZS N :
Although care has been taken to ensure the correct

functioning of the CONSYS system, neither the author nor The
University of Michigan shall be liable for any direct or indirect
incidential, consequential, or specific damages of any kind or

19. KEY WORD3 (Cenlinue en raveras alde i necessary and Isentily by blocX numdsr)
Contour Maps ' .
Computer Graphics
Device Independence
FORTRAN

20, AB2TRACT (Continus en roveras olde 11 nsesasay ond dsniily dy diock ruerdsr)

The CONSYS routines produce coordinate pairs for the straight-
line vectors forming a contour map. The routines operate on user
supplied samples of the x, y, and z coordinates that specify
the data surface to be contoured. To reduce processing time,
the routines assume that the data samples are available on a
rectangular grid; surfaces represented by randomly scattered
samples cannot be directly contoured by CONSYS. The routines

ronx
DD Nan 7y 1473 eoimion or 1 hov 63 13 ousoLeT
¥/H 0102-934-8391 }

SICUMITY CLAISIPICATION OF THI3 PAGS (Men Dete Sntdrs

SZCUAITY CLASSIZICATION OF THIS PAGE {hon Doia Entarad)

18.

from any cause whatsoever arising out of or in any way .connected
with the use or performance of the CONSYS system or its documen-
tation. '

20.

are device~independent in the sense that at execution time the
user must supply the names of subroutines that CONSYS can call to
dispose of contour line coordinate pairs. CONSYS works entirely
in the user's coordinate system, and the user is responsible for
any scaling and translation necessary to map the coordinate pairs
into a viewable area on the plotting: dev1ce or graphlcs terminal
being used

© BREUMTY CLASIFICATION OF THIZ PAGI(TAw Data Jarored)

DISCLAIMER

Although care has been taken to ensure the correct
functioning of the CONSYS system, neither the author nor The
University of Michigan shall be liable for any direct or
indirect, incidental, consequential, or specific damages of
any kind or from any cause whatsoever arising out of or in
any way connected with the use or performance of the CONSYS
system or its documentation.

APPLICABILITY

This document describes version 1.2 of CONSYS, dated 15
May, 1976.

iii

'TABLE OF CONTENTS

IntrOdUCtion ® 060 co0 0000000000000 000CEOOESIOCEOEOSROOOOROOIEOIOEOREOEODES l

Type Of Routine © 00 0 0 0006600 0000000 0000000 OO ORELIEOECEOSLEOSECEOEOESIEODL 1

Availability © 9 008 00000 0T OO VOO OO OO O SO O0L0LOOOLEOLOLIEOSOSEEPSLEOIEOSEOEOSIEOSEOSETOES 2

FaCilitieS Provided ® 6 66 0208 000000 0CtOOOOEOOSEOEBLELOILEOSLOIECOIEOSEONECSOEEOSTDS 2

How to Use CONSYS ®© © @ 6 © 0 ©© O 5 0O OO QOO OO OO OO OO OSELOEOSOEOIEPOEOIECLEOEEOES OO 3

How to Call CONSET 0 & © 5 0 © O 0000 OO0 00O COC OEC O OO OO S ECES OEOSEOOOOECEEDO 4

The Contour Labeling Scheme .ceeeeecececececscccscencncns 5

How to Call CONLBL ®© & 0 000 & 000 S0 00 O 0 68 0 C O SO OSSO OLOOSCLEIEOESPOIGESTOSES 5

How to Call CONTUR ® 06 © 0 0 0@ 6 0@ 005 0000 OO0 OO SO0 ECE eSS SCEEOO PSP EC 7

HOW to Call CONEND .l...‘...'l...l............C..O.....'.lﬂ

Logical I/O Unité Referenced l.......0..0'..'............11

Subprograms Loaded .I....O.......l......ﬁll..............ll

Subprograms Required ...O..l.......l..'..l.‘.'.'...‘.'...ll

Storage RequirementsO.I......0‘0..3.........'!0000012

Error Handling eooooooooooo.oooosooooo--0000.....0--..-..12

Summary of Coordinate System Conventions ...eceeeeeeccesssal3

Examplel ..l..l.IO.‘.0‘9....0.....00‘.....‘I.lllﬁ.......14

Examplez l.‘...O....C.......O..lD..D'Ol..........OO..I..]—S

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Getting the Data
Onto a Rectangular Grid c.eececececcssccsecsesld

Method I..'.....I."..'.....l....‘...‘.'.....zs

The Structure of the Contour
Map Display File Q..O....l.‘.......l........027

Harding's Method for Dynamic Allocation
of Arrays Used in CONSYS ceceeeeecccoccssssess?8

Appendix E: Listing of the Source Code R)

References o.oooo.o.ae-ooeooo-aeoa-o.ouoooooc.oooo.o.ooo.47

Bibliography ..cconoeoaoc‘owo.ooo.o.o.0-0..»-0-..0......048

Figure

Figure

Figure

Figure

Figure

Figure

Figure

70

LIST OF ILLUSTRATIONS

Specification of the data grid by’
thexandYarrays ® © 6 0 0 5 5 00 00 0° " 00O 0O OO O e o0 00 8

Association of Z(I,J) values with the
data grid ' EEEEEEERENREXENNE NN E I B B S B EE R I 2 I 8

Example rectangular coordinate grid
representation for a data surface with

IX=8and IY=5 ..OGO...-..‘.0..........3....13
Example Programl 0l.OD...-....QG..'...'...‘....]-S

The computer terminal interaction with
Example Program 2 which produced Figure 621

Example contour plot. Eleven contours at
intervals Of ﬂ.s from —3 to +2 eco.eoooocoooooozz

Example contour plot. Three contours at
intervals of 5 from 5 t0 15 secececccccoeccocesl3

Figure Bl. Hartwig’s numbering convention for the lines

overlaying a grid cell ..c.iecececcccancccaesslb

Figure B2. A contour line crossing line segments

].' 2’ 4’ andS uo...ooo.000000000000000000000026

vi

CONTOUR MAPS OF DATA SURFACES

INTRODUCTION

Quite often in the course of analyzing a data surface:

z = £(x, y) (1)

(where x, vy, and z are chosen from the real numbers), one
wishes to produce a map in the x - y plane of the curve
defined by letting z be a constant. More formally, one may
choose to fix z at some value, say z°, and solve for y as a
function of x:

y = 9g(x, z) (2)

A contour line is defined as a set of connected points in
the plane z = z° which satisfy equation (2). Since g may be
multiple-valued, a single value of z° may generate more than
one contour line. The set of all contour lines generated by
a value of z° is called the contour set of g at z = 2", A
family of contour sets can be generated by a family of 2z’
values. The projection of a family of contour sets onto the
x-y plane is termed a contour map of the data surface f£.

The routines 1in this package produce coordinate pairs
for the straight-line vectors forming a contour map. The
routines operate on user-supplied samples of the
(presumably) continuously variable x, y, and 2z coordinates
that constitute the data surface to be contoured. The
routines place restrictions on the input values to reduce
processing time. The routines are device independent in the
sense that the user must supply the names of subroutines
that CONSYS can call to dispose of contour 1line coordinate
pairs.

TYPE OF ROUTINE

CONSYS is the collective name for the contouring
routines; CONSYS is a collection of IBM FORTRAN IV
SUBROUTINE and FUNCTION subprograms. The public entry
points are CONTUR, CONSET, CONLBL, and CONEND. The routines
are not in ANSI Standard FORTRAN (1966), and thus would need
some modification before they could be transported to a non-
IBM installation. Moreover, the routines do dynamic storage
allocation of some work spaces and thus are somewhat
operating-system-dependent; this latter objection to
transportability could be removed by fixing the dimensions

of the work arrays and recompiling the source modules. .

The object modules for CONSYS were produced by the H-
level IBM FORTRAN Compiler.

AVAILABILITY

For use on the Michigan Terminal System (MTS) at The
University of Michigan, the 1link-edited object module
library containing these subroutines is in the file
UNSP:DIGLIB. The user may use the routines by concatenating
this file to the other object file(s) in the SRUN command
which invokes the user s program.

For potential users outside The University of Michigan,
CONSYS is available on magnetic tape; address inquiries to

the author,.

FACILITIES PROVIDED

CONSYS will produce coordinates for a contour map of a
data surface which is defined on a rectangular grid. The
rectangular grid representation of a data surface stores the
z data values as might be expected, in a two-dimensional
array Z(I, J). Separate X and Y one-dimensional arrays hold
the x- and y-coordinates of the data surface. Recall that f
is the function mapping an x-y pair into a z value; then the
relationship between the X and Y vectors and the Z array
inside the computer is:

z(I,J) = £(X(1), Y(J)) (3)

Suppose for example that values of z have been collected at
all possible combinations of x =1, 2, and 4, and v =1, 4,
and 9. The data can then be fitted into a rectangular grid
representation by letting X(1) =1, X(2) = 2, X(3) = 4,
Y(1) =1, Y(2) = 4 AND Y(3) = 9. The Z array would be
filled with values using equation (3) above.

Surfaces which are represented by scattered data points
or nonrectangular grids may not be directly contoured by

these routines (but see Appendix A - "Getting the Data Onto
a Grid").

CONSYS contains a primitive contour labeling facility
which the wuser may invoke by setting a switch in the
subroutine calling parameters. For the applications
envisaged for CONSYS (large data surfaces), the CPU time
necessary to produce "nice" 1labels was considered an

extravagance. (The CPU time would increase by a factor of
at least 1.5.) With a small amount of extra work, the user
may collect the contour map coordinate pairs produced by
CONSYS and reformat them before plotting, generating nice
labels in the process.

CONSYS does not require that a user have all the data
to be contoured present in memory at one time. Thus the
user may produce very large maps by calling CONTUR
repeatedly, once for each different region of the data
surface. The wuser has control over the drawing of border
lines for the map and can thus omit the border 1line when
another map section is to be adjacent to the one currently
being produced.

Since its work areas are dynamically allocéted, CONSYS
effectively imposes no limit on the number of data points in
the data surface to be contoured.

To keep CONSYS device-independent, the user must write
a labeling routine if he/she desires to invoke the 1labeling
option of CONSYS. This routine is often only 10-29
statements long, but is usually dependent upon the graphical
output device to which the user sends the map coordinates.

CONSYS works entirely in the user’s coordinate space.
In particular, contour map coordinate pairs produced by
CONSYS are all in the user’s coordinate space. The user is
responsible for any scaling necessary to map the coordinate
pairs into a viewable area on the plotting device or
graphics terminal being used.

HOW TO USE CONSYS

The user must call subroutine CONSET once to initialize
CONSYS before <calling upon CONTUR to produce contour line
coordinates. Once CONSET has been called, it need not be
called again unless the user wants to change the value of
one (or more) of the CONSET parameters.

If the user desires to use the labeling facility in
CONSYS, he/she must call subroutine CONLBL to specify values
for various labeling parameters. CONLBL must be called
after CONSET has been called, but before the first call to
CONTUR which specifies that labeling is to be done.

The user may then call on subroutine CONTUR to produce
coordinates for a contour map. The coordinates produced are
in the coordinate system and value range which the user
specifies in the parameters to the call to CONTUR; thus the
user may make repeated calls to CONTUR either to produce new

contours on an existing map or to map new data regions
adjacent to those already mapped.

When the user 1is finished producing contours, he/she

must call the routine CONEND to release the storage
dynamically acquired during the contour labeling process.

HOW TO CALL CONSET

None of the calling parameters to CONSET is changed by
CONSET in any fashion. The calling sequence for CONSET is

CALL CONSET(PNUP, PNDN, IOUNIT)
where

PNUP is the name of & subroutine which CONSYS can call to
dispose of an (x, y) contour line coordinate pair.
~ CONSYS calls PNUP via the statement

CALL PNUP (X, Y)

The subroutine should cause the beam or pen to be
positioned invisibly to the point (x, y) in the
user ‘s coordinate space. X and Y are of type REAL.
Examples of routines which perform such a function
in MTS are CKMA (Computek and Tektronix routines),
IGMA (Integrated Graphics (*IG) routines), and PENUP
(Calcomp Plotter routines). PNUP must be declared
EXTERNAL in the calling progran.

PNDN is the name of a subroutine which CONSYS can call to
dispose of an (x, y) contour line coordinate pair.
CONSYS calls PNDN via the statement

CALL PNDN(X, Y)

The subroutine should cause a visible 1line to be
drawn from wherever the beam or pen is positioned
prior to the call to the point (x, y) in the user’s
coordinate space. X and Y are of type REAL.
Examples of routines which perform such a function
are CKVA (Computek and Tektronix routines), IGDA
(*IG routines), and PENDN (Calcomp Plotter
routines). PNDN must be declared EXTERNAL in the
calling program.

IOUNIT 1is an integer constant or an INTEGER*4 expression
which specifies the FORTRAN data set reference
number (DSRN) on which error comments from CONSYS
are to be written. If the value of IOQOUNIT is less

than zero or greater than nineteen, then error
comments will not be written. Conversely, if IOUNIT
is within the range 0 to 19, then in the event of
errors, error comments will be produced via FORTRAN
WRITE statements which look like

WRITE(IOUNIT, format)...

THE CONTOUR LABELING SCHEME

CONSYS ™ primitive contour labeling facility may prove
adequate for a large number of applications, With this
facility, the user specifies in his/her coordinate system a
number of lines of constant x and a number of 1lines of
constant y. Whenever a contour enters a cell in the
rectangular grid which contains one of these constant-
coordinate 1lines, the contour becomes a candidate for
labeling in that cell. If the center of the grid cell is
more than a user-specified distance (in user coordinate
space) away from the centers of all other grid cells which
have already been 1labeled, the contour is declared a
successful candidate for labeling. In this event, CONSYS
calls a user-specified subroutine with three parameters: the
center coordinates of the grid cell (x and y), and the z-
value of the contour which entered the grid cell; the user-
specified routine is then responsible for producing a label
for the contour and sending the label to the graphical
output device. .

The values of the constant coordinate lines, the name
of the labeling routine, and the distance parameter for
declaring a labeling candidate to be successful are passed
to CONSYS by calling CONLBL.

HOW TO CALL CONLBL

If the user does not wish to use the labeling facility
of CONSYS, he/she does not need to call CONLBL or to read
this section. None of the calling parameters to CONLBL 1is
altered in any fashion by CONLBL. The calling sequence for
CONLBL 1is

CALL CONLBL(LABELR, DIST, NXL, XLOC, NYL, YLOC)
where
LABELR 1is the name of a subroutine which CONSYS will call

to produce a label for a contour line. LABELR will
be called with the FORTRAN statement

DIST

NXL

XLOC

NYL

YLOC

CALL LABELR(XC, YC, 7)
where

XC and YC are the type REAL x- and y-coordinates of

the center of the grid cell containing the contour
to be labeled, and

Z is the type REAL value of the z-coordinate of the
contour line which is to be labeled.

LABELR must be declared EXTERNAL in the calling
program.

is a REAL constant or a REAL expression giving the
minimum distance in the wuser’s coordinate space
which will allow a labeling candidate to be declared
successful. If the distance from the center of a
cell which is a candidate for labeling to any other
cell which has already been labeled is greater than
DIST units, then the candidate cell will be labeled
by calling LABELR. If each label takes at most N
characters with width S coordinate wunits per
character, then a good value for DIST 1is S times
(N+1). DIST must be > 0.

is an integer constant or an INTEGER*4 expression
giving the number of constant-x lines to be used in
the 1labeling process. NXL must be greater than or
equal to zero.

is a REAL vector at least NXL entries long. (Even
if NXL 1is =zero, an argument must be supplied;
however, in this case the argument will not be
used.) Each entry in XLOC is the x coordinate in the
user’s coordinate space of a line of constant x
value (i.e., a vertical line) to be used during the
labeling process to determine candidate cells for
labeling. (See "The Contour . Labeling Scheme"

- above.)

is an integer constant or an INTEGER*4 expression
giving the number of constant-y lines to be used 1in
the 1labeling process. NYL must be greater than or
equal to zero.

is a REAL vector at least NYL entries long. (Even
if NYL 1is =zero, an argument must be supplied;
however, in this case the argument will not be
used.) Each entry in YLOC is the y coordinate in the
user s coordinate space of a line of constant y

value (i.e., a horizontal line) to be used during
the 1labeling process to determine candidate cells
for labeling (see "The Contour Labeling Scheme"
above).

Note: NXL and NYL may not both be zero at the same time.

HOW TO CALL CONTUR

Once CONSYS has been initialized by a call to CONSET
(and, optionally, a call to CONLBL), the wuser may call
CONTUR to produce coordinates for contour lines. None of
the calling parameters to CONTUR is changed in any way by
CONTUR. The calling sequence for CONTUR is

CALL CONTUR(X, IX, Y, IY, Z, IDX, CZ, NC, SWCHES)

where

X is a vector of x coordinates at least IX entries long.
Each coordinate marks a vertical 1line which 1is the
vertical boundary of a grid cell; see Fig. 1. The
coordinates in X are in the user’s coordinate space and
must be in strictly ascending order with increasing
subscript.

IX is an integer constant or an INTEGER*4 expression
giving the number of x coordinate values in the X
vector to use, 1i.e., the number of points along the
first dimension of the Z array to be considered in the
contouring process. IX must be within the range 2
through IDX inclusive.

Y is a vector of y coordinates at least IY entries 1long.
Each coordinate marks a horizontal line which forms the
horizontal boundary of a grid cell; see Fig. 1. The
coordinates in Y are in the user’s coordinate space and
must be in strictly ascending order with increasing
subscript.

IY is an integer constant or an INTEGER*4 expression
giving the number of y coordinate values in the Y
vector to wuse, 1i.e., the number of points along the
second dimension of the Z array to be considered in the
contouring process. IY must be greater than or equal
to 2.

Note: The data grid upon which contours are to be produced
need not be regular. The corners of the grid are located by
the values in the X and Y arrays, as indicated by Fig. 1.

Y (5)
Y(4)

Y(3)
Y(2)

Y(1)

Fig. 1 Specification of the data grid by

(Nx
()%
(8)x
(67D:4

the X and Y arrays.

(e)x

Fig. 2 Association of 7% (I,J) values with

the data grid.

(9)x

Note:

is a two-dimensional array of REAL values which are the
z coordinates of the data surface. The first dimension
of 2 is IDX while the second dimension of Z must be
greater than or eqgual to IY. Each number in array 2
gives a height associated with one position in the x-y
plane as shown in Fig. 2. 2Z(I,J) gives a value for
the surface at the Ith grid line in the x-direction and
the Jth grid 1line in the y-direction; i.e., the
correspondence between the Z array and the X and Y
vectors is that

Z2(I,J) = £(X(I), Y(J))

The X-y-2 coordinate system conventions are

summarized in a later section for quick reference.

IDX

Note:

an integer constant or an INTEGER*4 expression which
must be equal to the value of the first subscript of
the array Z as set in the DIMENSION statement. 1If Z is
declared

DIMENSION Z (52, 39)

then 1IDX should have the wvalue 52. The data grid
itself need'not be the same size as array Z although it
may not be larger (i.e., IDX must be greater than or
equal to IX). The actual size of the grid is given by
the arguments IX and IY. The restriction that IDX must
be greater than or equal to 2 is imposed by CONSYS for
error-checking purposes.

Incorrectly specifying IDX is a major source of

error. IDX need not, in general, be equal to the value of

IX.

If the map contains unusual jagged contours which don’t

belong, the cause is usually an incorrect IDX.

CZ

NC

is a vector of REAL values, at least NC entries long,
which contains the z-coordinate values at which
contours are to be produced. The coordinates in CZ are
in the user’s coordinate space.

is an integer constant or an INTEGER*4 expression whose
value is the number of values in the CZ vector for
which contours are to be produced. NC must be greater
than or equal to 1; although CONSYS will work for
NC = 1, it will function more efficiently on a per-
contour basis when NC 1is greater than one since the
overhead involved in contouring is not dependent upon
the number of contours produced.

10

SWCHES 1is a type LOGICAL vector having five elements ‘used
to control various contouring options. The
assignment of values is as follows:

SWCHES(1) T: Draw a border 1line between (X(1),Y(1l)) and
(X(IX),Y(1)).
F: Do not draw the above border line.

SWCHES(2) T: Draw a border line between (X(1),¥(1l)) and
(X(1) ,¥Y(IY)).
F: Do not draw the above border line.

SWCHES(3) T: Draw a border line between (X(1),Y(IY)) and
(X(IX),Y(IY)). _
F: Do not draw the above border line.

SWCHES(4) T: Draw a border line between (X(IX),Y(IY)) and
(X(IX),Y(1)). :
F: Do not draw the above border line.

SWCHES(5) T: Label contours using the 1labeling scheme

described above.
F: Do not label contours.

HOW TO CALL CONEND

CONEND is called when all contouring of a specific data
surface has been completed. It deallocates the dynamically
acquired arrays which were used in the labeling process
during calls to CONTUR to remember the center coordinates of
cells which were labeled. (These arrays are not
automatically deallocated when CONTUR returns, thus insuring
that successive calls to CONTUR will not place labels too
closely together.) 1If CONSYS was used with labeling turned
off (i.e., SWCHES(5) 1is .FALSE.), then CONEND need not be
called; if it is called, the call will be ignored and no
diagnostic message will be generated.

All three parameters to CONEND are altered by CONEND to
return information regarding the performance of the dynamic
storage routines for labeling. Consequently, all three
CONEND parameters must be the names of INTEGER variables;
the parameters may not be integer constants or integer
expressions. The wuser may choose to do nothing with the
values returned in these variables, but if he/she calls

CONEND, they must be supplied. The calling sequence is

CALL CONEND (NREGEN, MAXSIZ, NUSED)

where

11

NREGEN is the INTEGER number of regenerations of dynamic
storage which took place.

MAXSIZ is the INTEGER number of bytes of storage
allocated by the labeling routines.

NUSED is the INTEGER number of bytes of storage
actually used by the labeling routines.

LOGICAL I/0 UNITS REFERENCED

CONSYS references the I/0O unit (Data Set Reference
Number) IOUNIT passed into CONSET. If CONSYS must produce
an error comment and CONSET has not been called (this is
caused by calling the routines out of order), the unit 19 is
used.

SUBPROGRAMS LOADED

CONSYS consists of three control sections, each of
which has additional entry points. A COMMON region named
CONCOM is also used. Thus CONSYS contributes the following
symbols to the load map:

Control Section Name Entry Points
CONTUR CONSET
CONLBL
CONEND
DISTOK DSINIT .
DSFINI
CTQQ CTQOIN

CONCOM (COMMON section)

SUBPROGRAMS REQUIRED

CONSYS uses the following MTS routines:

RCALL and ADROF in *LIBRARY.
IBCOM#, GETSPA and FREESP in the resident system.

12

RCALL, ADROF, GETSPA, and FREESP are used to perform dynamic
allocation of temporary work arrays (see Appendix D).
IBCOM$# is part of the MTS FORTRAN run-time system and
implements the WRITE statements wused to output error
messages.

STORAGE REQUIREMENTS

Statically allocated storage:

CONTUR 5024 bytes
DISTOK 1228 bytes
CTQQ 2432 bytes
CONCOM 56 bytes

Total: 8740 bytes
Dynamically allocated storage:

2*NC bytes for sorting contour values
8 bytes per label

ERROR HANDLING

Extensive checks are made to see if parameters supplied
by the user are within prescribed ranges. If an error is
detected, then if TIOUNIT is within the range @ through 19
inclusive, an error comment is written on DSRN "IOUNIT". A
nonzero RETURN statement 1is then executed and the call is
ignored. A summary of the error handling is given below.

Module Type of Return Cause
CONLBL RETURN 1 CONSET not yet called.
RETURN 2 DIST, NXL, or NYL out of range.

CONTUR RETURN 1 CONSET not yet called.
RETURN 2 SWCHES (5) set, but CONLBL not
called.
RETURN 3 IX, IY, IDX, or NC out of

range, or X and/or Y not
sorted into ascending order.:

In the event of an error, the user may send control to a
different statement 1label in his/her calling program by
using the "& statement label" construct at the end of the
parameter list. For information on this, see "“RETURN
Statements in a SUBROUTINE Subprogram"” on page 98 of the IBM
FORTRAN IV Language manual, IBM form GC28-6515 (Ref. 2).

13

SUMMARY OF COORDINATE SYSTEM CONVENTIONS

To recapitulate, Fig. 3 shows how a grid is described
by the X, Y and Z arrays. The z value in Z(I,J) corresponds
to the point (X(I),Y(J)) in the x-y plane.

Y(5) e
Y(4) 4
Y(3)
Y (2) . 4
Q) | d
x(1) x@[X®) X@| X6 X6 X0 X@)
Z(2 4) Z(4, 2) Z(,1) %(8, 5)

Fig. 3 Example rectangular coordinate grid representation
for a data surface with IX = 8 and IY = 5.

The data grid in the x-y plane does not have to be
regular. The positions of the corners are established by
the values in the X and Y arrays. The user must be careful
to store the data points in the Z array in the correct
orientation, i.e.,%(I,J) corresponding to X(I);Y(J).

The grid may be of any size. 1In practice a 58 by 58
grid (only 2,500 points) plotted on a 18 by 18 inch graph
produces satisfactorily smooth looking contour lines.

14

EXAMPLE 1

An architect has some elevation measurements taken on a
300° x 300 parcel of land, for which she would like to draw
a contour map of constant elevations. The elevation
measurements were taken on a square grid at 18 foot
intervals.

She wishes to display the map on a Tektronix 4610
storage tube graphics terminal which has an x-axis range of
p-1923 and a y-axis range of @#-768. The map is to have all
four border lines drawn and is to be both centered on the
screen and as large as possible. No labeling of contours is
needed. Contours are to be produced at elevations of 4440,
410 and 420 feet.

Since there are 31 elevation measurements in each
direction, the % array should be dimensioned 31 by 31. The
values in the X and Y arrays can be used to position the map
on the screen, since CONSYS always works in the wuser’s
coordinate system. Thus the Y array should contain 31
entries, equally spaced between @ and 768 (which results in
an inter-entry spacing of 25.6). The X array similarly will
contain 31 entries, equally spaced between 128 and 896.
These entries 'will thus be centered about the x-axis, and
the square shape of the parcel will be retained in the map.

The T4010 routines in AERO:TEKLIB supply two routines,

CKMA and CKVA, which may be used to dispose of map
coordinates.

The declarations for the program could be written as
follows:

REAL X(31), Y(31), Z(31, 31)

REAL CZ(3)/400., 410., 420./

LOGICAL SWCHES(5)/4*.TRUE., .FALSE./
EXTERNAL CKMA, CKVA

Assuming error messages are to be written to I/0O unit
6, the call to CONSET reads :

CALL CONSET(CKMA, CKVA, 6)
The X and Y arrays could be filled as follows:

DO 14 I =1, 31
VALUE = (I - 1)*25.6
X(I) VALUE + 128.
Y(I) VALUE
19 CONTINUE

Finally, the call to CONTUR reads:

15

CALL CONTUR(X, 31, Y, 31, Z, 31, CZ, 3, SWCHES)

A stylized version of the completed program is shown in

Fig. 4. Obviously one would want to make provision for more
interactive capability then this simple example provides.

C Example Program 1 showing the use of CONSYS
C
REAL X(31), Y(31), 2(31, 31)
REAL CZ(3)/400., 410., 4206./
LOGICAL SWCHES(5)/4*.TRUE., .FALSE./
EXTERNAL CKMA, CKVA

CALL CONSET(CKMA, CKVA, 6)

DO 10 I =1, 31
VALUE = (I - 1) *25.6
X(I) = VALUE + 128.
Y(I) = VALUE

10 CONTINUE

L]

. Here, read the elevation data into the 3 array

CALL CKER
CALL CONTUR (X, 31, Y, 31, Z, 31, CZ, 3, SWCHES)
CALL CKTRAN
READ 100, DUMMY
100 FORMAT (Al)
STOP
END

Fig. 4 Example Program 1,

EXAMPLE 2

On the following pages are a driver program and a
labeling subprogram, an example printout showing the
interaction with the driver program (Fig. 5), and two
example contour maps produced with CONSYS (Figs. 6 and 7).

Subroutine ARRSET(N, X, A, B) simply stores N real

16

numbers evenly spaced between A and B inclusive into the
vector X. Subroutine TC converts a timing measurement by
the system routine TIME into minutes, seconds, and
milliseconds for printing. All the rest of the subroutines
called are available either in the MTS resident system, in
the MTS system library *LIBRARY, or in the MTS Calcomp
Plotter routines in the file *PLOTSYS.

The example contour maps were produced from two files
of actual data taken in the field. They were originally
plotted eleven inches wide and photo-reduced for inclusion
here. For both plots, the following variables in the driver
program had the values shown:

FIRSTL=1

LASTL=45

XSIZE=11

HGHT=0.0875

WIDTH=2 ‘
NXL=3, YHOLD values=16, 31, 46
NYL=2, YHOLD values=20, 40

Values which changed from one plot to another are noted in
the contour map captions.

The terminal interaction used to produce Fig. 6 is
shown in Fig. 5.

17

C Example Program 2 showing the use of CONSYS
C
REAL Z(61,274)
REAL XP(6l), YP(274), CZ(50), XLBL(20), YLBL(20)
REAL*8 FMT(2)
INTEGER*4 WIDTH, HOLD(20)
INTEGER*4 T(2), NSPECT/274/, NLINES/61/
INTEGER*2 INLEN
INTEGER*4 RECLEN
INTEGER*4 INUNIT/6/, MODS/16386/
INTEGER*4 FIRSTL, LASTL, INC, NBRPLT
EXTERNAL PENUPS, PENDNS, LABELR
LOGICAL SWCHES(5)/5*.TRUE./

Global initialization:

eNoNoXoKke)

RECLEN = 4 * NLINES v
CALL CONSET (PENUPS, PENDNS, 8)
YMAX = FLOAT(NSPECT-1) / 16.
CALL ARRSET(NSPECT, YP, 0., YMAX)
PRINT 100

10 CONTINUE
PRINT 191
READ(5, 201, END=99) FIRSTL, LASTL, XSIZE
NBRPLT = IABS(FIRSTL - LASTL) + 1
CALL ARRSET(NLINES, XP, #., XSIZE)

Read the data into Z.

eNoXeXe!

INC = 190649
IF(FIRSTL .GT. LASTL) INC = -1000
LINE = FIRSTL*1008
DO 11 I = 1, NBRPLT
CALL READ(Z(1, I), INLEN, MODS, LINE, INUNIT,
+ &99)
IF(INLEN .NE. RECLEN) GO TO 99
LINE = LINE + INC
11 CONTINUE

12 CONTINUE
PRINT 102
READ(5, 202, END=1§) NC, CMIN, CMAX
CALL ARRSET(NC, CZ, CMIN, CMAX)

15 CONTINUE
CALL SETPFX(°’
PRINT 163
READ(5, 203, END=12) HGHT, WIDTH, FMT
CALL LABELI (HGHT, FMT)

g

r 1)

17

+
19
21

+
23
C

C Call CONTUR
c

C

18

CONTINUE
CALL SETPFX(® °, 1)
PRINT 104
CALL SETPFX(°?2°, 1)
READ(5, 204, END=15) NXL, (HOLD(I),
I =1, NXL)
DO 19 I = 1, NXL
XLBL(I) = XP(HOLD(I))
CONTINUE
CONTINUE
CALL SETPFX(~ “, 1)
PRINT 105
CALL SETPFX(°?°, 1)
READ(5, 205, END=17) NYL, (HOLD(I),
I =1, NYL)
CALL SETPFX(" °, 1)
DO 23 I =1, NYL
YLBL(I) = YP(HOLD(I))
CONTINUE

to do the plot.

CALL PGNHDR

CALL PLTXMX(XSIZE + 7.5)

CALL PXMARG(4.0)

CALL PLTOFS(8.,1., 8.,1., 4., 1.)

CALL CONLBL(LABELR, (WIDTH+2)*HGHT, NXL,
XLBL, NYL, YLBL, &99)

PRINT 120

CALL TIME(0)

CALL CONTUR(XP, NLINES, YP, NBRPLT, Z, 61,
Cz, NC, SWCHES, &99)

CALL TIME(3, @, T)

CALL CONEND(NREGEN, MAXSIZ, NUSED)

C Put tick marks along the lower and right-hand edges.

C

25

27

YL = YP(1)

YLM = YL - §.15

DO 25 I = 1, NLINES, 5
XI = XP(I)
CALL PENUPS(XI, YL)
CALL PENDNS(XI, YLM)
CONTINUE

XR = XP(NLINES)

XRM = XR + 0.15

DO 27 I = 1, NBRPLT, 5
YI = YP(I)
CALL PENUPS(XR, YI)
CALL PENDNS (XRM, YI)
CONTINUE

CALL PLTEND

C
C
C

100
101
102
1083

104
1065

120
121

122

123

203
204
205
201
202

OO0

19

Compute how long it took and how much storage was used,
and print these numbers out. : :

CALL TC(T(l), M, S, MS)

PRINT 121, M, S, MS

CALL TC(T(2), M, S, MS)

PRINT 122, M, S, MS

PRINT 123, NREGEN, MAXSIZ, NUSED
GO TO 21

CONTINUE
CALL MTS
GO TO 190

FORMAT (“~SPECTRAL CONTOURING PROGRAM®,/,”)
FORMAT (“&ENTER FIRST #, LAST #, & XSIZE IN INCHES:")
FORMAT (“&ENTER # OF CONTOURS, MINVAL, & MAXVAL:')
FORMAT (“&ENTER CHARACTER HEIGHT, # OF CHARS, & ~,
+ “FORMAT W/ *:°)
FORMAT (° ENTER FOR X AXIS, # OF LABEL LINES & GRID °,
+ “LOCN OF THOSE LINES.")
FORMAT (° ENTER FOR Y AXIS, # OF LABEL LINES & GRID °,
+ "LOCN OF THOSE LINES.")
FORMAT(° CONTUR WILL NOW BE CALLED.")
FORMAT (“@CPU TIME: ,T26,I13,° MINS, ,I3,7.7,I3,
+ “ SECS.”)
FORMAT ("ELAPSED TIME: ,T20,13,°
+ * SECS.”)
FORMAT(¢, I5, REGENERATIONS; °,I5,

+ ‘ALLOCATED, °,15, USED.")

MINS, ,I13,°.7,13,

4 4

BYTES ,

FORMAT (F16.2, 118, 2A8)
FORMAT (21110)

FORMAT (21110)

FORMAT (2110, F10.5)
FORMAT (I10, 2F10.5)

END

SUBROUTINE LABELR(XC, YC, Z0)

LABELR is called from CONTUR to output a label on a
contour. XC and YC are the coordinates of the cell which
contains the contour, and %@ is the contour value.

REAL*8 FMT (1)

REAL XC, YC, Z0

REAL*4 PNUMBR, PSYMLN, DONT/-1.0/, RELATV/1.0/
INTEGER*4 NCHAR

OO0

OO0

OO0

20

NCHAR = PNUMBR(9¢., 0., HGHT, 20, 0., FMT, DONT)
X@ = XC - @.5*PSYMLN (HGHT, NCHAR) '

Y0 = YC - @.5%HGHT

NCHAR = PNUMBR(X@, Y@, HGHT, Z#, 9., FMT, RELATV)
RETURN

ENTRY LABELI (HGHT, FMT)

LABELI is called from the display driver program in order

to pass in the values of the HGHT and FMT parameters
to LABELR.

RETURN
END

21

« 1793ndwod L9-99€/ WII ue 10J ST u3aatlh
SWI3 NdD @Yl 9 °*btad psonpoad ydTym ¢ weiboad
oTdwexd Y3TM UOTIORISIUT T[RUTWIST zoandwod ayr & °*b1a

-ggsn pgE ‘aIIVOOTIV SALAL 9LS {SNOIIVYANTOAY T
*SDES 9ZL°ST ‘SNIW T :AWIL aFsdvid
*SDES TLL"E ‘SNIW @ $AWIL 0dD
-QgIIY) 99 MON TTIIM ¥NINOD
‘gyipzize
«SENIT HSOHI 40 NOOT AI¥d 3 SANIT TIEYT J0 # ‘SIXVY X Y04 ¥HLNA
19pTEY9T €L

*SANIT ISOHL 40 NDOT AI¥D ¥ SHANIT Td€EVT 40 # ‘SIXV X ¥04d ¥YILNA

xP T TALM’ZGL80°0 *x /M IVWHOd B ‘SYVHD 40 # ‘ILHOITH ¥HLOVIVHD dALNA
fegzdec 41T IVAXYW 3 ‘TIVANIW ‘S¥QO0OINOD 40 # JHLNEH

4+TT'GH’T :SHHONI NI HZISX ® ‘4 ISVI ‘# LSYId ¥ILINA

WYYO0dd SONI¥YNOLNOD TVYLOEdS

.22

*pasn 2a3Mm P@E

‘pPo3eDOTTR 219M sS33AQ 9LG {22uUop sem uorjlraauabazx
9bevi1o3s burTaqel auQ °*a93ndwod [L9-g9E/ WII ue uo
pesn 91I3M SpPu0dds NdD TLL°E °Z+ 03 €~ woxy G*°g 3Jo

STRAIS®3UT 3® SINO3U0D uaAdTd °*307d anojuoo o7dwexy 9 °*H1J

1 | l L
]

i
° mw LY

23

*pasn 21aMm

V7€ ‘po3edolIe 219M S°3AQ 9.LG {oUOpP Sem uoTjeISULHII

obeao3s buriaqel a2uo °*a93ndwod £9-99¢/ WAI

ue UO PIOSN 9I9M SPUODSS NdD Z99°€ °GT O3 § WOIJ §
JO STRAJD3UT 3B SINO3UO0D 921yl °30T7d ianojuod ordwexy

| 1
Y

=g

‘st

"~ 'St

‘st

24

Appendix A

GETTING THE DATA ONTO A GRID

Often it is impossible to gather data on a rectangular
grid, 1let alone a regular grid. 1In these cases, before
using CONSYS the user must find some way of generating
equivalent gridded data from the data on hand. Some
commonly used methods for this purpose are linear
interpolation, Fourier series band-limited interpolation,
polynomial interpolation, cubic spline interpolation, and
membrane-with-point-loads interpolation. It would be
impossible to do justice to any of these methods here, and
they are still the subject of much ongoing research.
Nonetheless, the user should be aware that the method he/she
uses must be both mathematically and physically justifiable
(i.e., it must be good science), ‘and further that many
interpolation methods place constraints on the data which
the user must observe at the time the data are taken. 1In
other words, an interpolation method must be scientifically
chosen before the data are taken and not afterward.

Three potentially useful sources 1in the area of
interpolation onto a grid are Refs, 3-5. In addition,
workers in the fields of architecture, civil engineering,
geology, and geography (among others) may be of some help in
choosing an interpolation method. Further, Jjournals in
these fields often contain papers on interpolation.

25

Appendix B
METHOD

CONSYS wuses an algorithm that is a modification of the
algorithm of Hartwig (Ref. 1). The modifications appear to
have cut the time required to contour large surfaces by a
factor of two. The modified algorithm reads approximately
as follows:

sort the values in CZ into ascending order;
for each cell in the grid do;
" for each contour value in CZ do;
if the cell intersects the contour value at all
" then do;
using the fact that CZ is sorted, find the
smallest and largest values in CZ which do
intersect the cell;
call CTQQ (which utilizes Hartwig’s
algorithm) to produce the contour
coordinates for the cell;
end;
end;
end;

The speedup is over Hartwig’s original algorithm is attained
in the step "if the cell intersects the contour value at
all," wherein the «cell is very quickly rejected if no
contours pass through it; this is the case most of the time.

In the subroutine CTQQ, contour coordinates are
produced for a rectangular cell according to Hartwig’s
method. Briefly, the center coordinates of the cell are
computed as averages of the corner coordinates. The corners
and the center are then imagined to be connected with line
segments which are in turn numbered 1 through 8 in a
clockwise direction; see Fig. Bl.

Each segment is then tested in turn to see 1if the
required contour intersects with it. If there 1is an
intersection, then linear interpolation along the 1line
segment is used to find the x and y coordinates of the
intersection, and the coordinates are saved temporarily in
an array. After all 8 line segments have been processed in
this way, the coordinate values which were saved are sorted
into proper order to form contour lines and are output by
calling the user specified output routines. Figure B2 shows
an example of a contour line crossing line segments 1, 2, 4
and 5. For more information, consult Ref. 1.

- 26

3 Ve g9 B - '
(xl’ j+1 1,]+1) 5 (xi+1’ Yie1? zi+1,j+1) _

iy Vs Zose :
Op Yy Bpg) Bippr yr 40q ¢

Fig, Bl Hartwig' numbering convention for the lines
overlaying a grid cell.

Fig. b2 A contour line crossing line segments.
l, 2, 4, and 5,

27

Appendix C

THE STRUCTURE OF THE CONTOUR MAP DISPLAY FILE

Because of the method wused (see Appendix B), the
graphical output (called a display file) of CONSYS consists
of many short visible lines interspersed with nearly as many
invisible moves. If the graphical output device is capable
of good resetability (and most are quite adequate), this
sort of display file will produce a satisfactory map.

‘ However, the display file will occupy more room in
memory and take longer to draw than necessary. (The choppy
character of the display file is a consequence of the fact
that cheap display file storage was traded for expensive CPU
time in the implementation of CONSYS.) As a remedy, it
would be possible to construct a routine which would accept
the CONSYS display file and quickly delete most of the
invisible moves. Such a routine has not yet been written,
however, and it is unclear that it would be cost effective
especially when its development costs are considered. If
someone wishes to construct such a routine, he/she is urged
to contact the.author for ideas on implementation.

28

Abpendix D

HARDING'S METHOD FOR DYNAMIC ALLOCATION OF ARRAYS
USED IN CONSYS

Leonard J. ~Harding of the University of Michigan
Computing Center has related a method of allocating and
using arrays whose length is determined at execution time.
Harding’s method is wused within CONSYS to dynamically
allocate temporary work arrays. The method is known to be
suitable for FORTRAN programs compiled under the IBM G- and
H-level FORTRAN compilers and may be suitable for other
programming language/compiler combinations as well. The
method depends «critically upon the lack of run time bounds
checking for arrays, and thus is not suitable for use with
the WATFOR and WATFIV FORTRAN systems. -

The basic trick is to recognize that if no run time
checks are made on array bounds, it is possible to address
any location in available storage by an appropriate choice
of subscript. By taking advantage of this trick in a
disciplined .manner, we - can build an algorithm for
dynamically allocating, accessing, and deallocating arrays
having any number of dimensions. The discussion below is
restricted to one-dimensional arrays; the extension to
multi-dimensional arrays is basically trivial.

The four steps in using the Harding method are 1)
Allocation, 2) Offset Value Computation, 3) Array
Referencing, and 4) Deallocation. Each of these steps is
illustrated below wusing FORTRAN. In subroutine calling
sequences, those parameters which are 1irrelevant to the
problem of transporting the CONSYS code will be denoted by
"XXX" .

ALLOCATION

On the System/360 and /370, the addressable unit of
storage is the 8-bit byte. FORTRAN data types which can be
used in arrays can have 1, 2, 4, 8, or 16 bytes per array
element. Here we assume that we are allocating an array of
4-byte floating point numbers, which are declared using the
"REAL*4" keyword in IBM FORTRAN. Suppose for example that
we wish to allocate an array whose name is to be "R" and
whose length (in array elements) is found in the INTEGER
variable "NR". The following statements will invoke the
system routine "GETSPA" to allocate space for the array.

29

EXTERNAL GETSPA
CALL RCALL(GETSPA, xxXxx, XxX, SEGNO+NR*4, xxx, XXX, RADR)

Note that NR participates as part of the fourth parameter,
which indicates the size of the storage region wanted; we
multiply NR by 4 because storage 1is allocated in bytes
rather than array elements. SEGNO is added because in the
Michigan operating system, one can specify a storage segment
number in which storage is to be allocated; in this case,
because of an anomaly in the code produced by the FORTRAN
compilers, we force the segment 1in which the storage is
allocated to 1lie at a higher storage address than the
program in which the so-called "base address" for R is
situated (base address is explained below) . This
restriction on the position of the allocated storage may not
be present in other machine/compiler designs; the problem is
associated with the generation of negative numbers as
storage addresses during the array accessing process,

"GETSPA returns the storage address of the allocated
region in the variable RADR, which must be declared to be of
INTEGER type.

In addition to calling GETSPA to allocate space for the
array, the user must also statically allocate one element
for the array in his FORTRAN program. This can be done
using the DIMENSION statement or one of its variants,
Allocating this element does two things: 1) it tells the
compiler that subscripts are legal constructs to follow the
name of the array, and 2) it causes the compiler to assign a
unique storage address, called the base address, to the
first element in the array. For example, the following
statement statically allocates one element for R:

REAL*4 R(1)

As a consequence of the static allocation of R,
whenever the user references R with a subscript, the
compiler produces code which adds the value of the subscript
(suitably adjusted for the fact that R is composed of 4-byte
elements) to the storage address of the first element of the
statically allocated R (the base address).

ARRAY OFFSET COMPUTATION AND ARRAY REFERENCING

Once the value of RADR is known and R has been
statically allocated, one can compute a so-called "array
offset" which is needed to reference an individual array
element.

30

The array offset for a dynamically allocated array is
that numeric 1integer value which when added to an array
subscript causes the computer to access the dynamically
allocated area 1instead of the statically allocated array.
For example, let the array offset for the array R be stored
in the variable ROFS. Then the usual array reference R(1l)
to the first element of a statically allocated R is written
as R(1+ROFS) to access the first element position in the
dynamically allocated array area. Similarly, to refer to
the Ith element of the dynamically allocated R array, we
write R(I+ROFS).

To compute the value of the array offset, we must have
access to an INTEGER-valued function subprogram which
returns the storage address of its single argument.
Borrowing from the Michigan operating system, we will call
this function ADROF. The array offset for the R array can
then be calculated by the following assignment statement:

ROFS = (RADR - ADROF(R)) / 4

In this statement, we divide the distance in storage address
space between the first element of the dynamic R and the
static R by the number of addressable storage locations per
array element: If the method is used on a word-oriented
machine such as the PDP-10 or the <CDC 6600, the division
need not be done since there is a one-to-one correspondence
between array elements and storage addresses.

DEALLOCATION

In code using Harding’'s method and which is written to
run on the Michigan system, storage can be deallocated by

calling the system storage deallocation routine FREESP. The
form of the call is
CALL RCALL(FREESP, xxX, XXX, RADR, XXX)

where RADR is the storage address of a region acquired by a
call on GETSPA.

CONVERSION OF PROGRAMS

Programs which use Harding s method can be converted to
run on other machines in two different ways: 1) change each
dynamically allocated array into a statically allocated
array by inserting the appropriate DIMENSION statement, or
2) if possible, write and install the subroutines which will
allow the Harding method to be used on the new machine.

31

In the first conversion method, one removes all the
calls to GETSPA and FREESP, and then dimensions all arrays
to some acceptably large size. One may then use a text
editor to change all array references of the form R(J+ROFS)
to R(J). Alternatively, one may use a DATA statement to
preset the value of ROFS to zero, leaving all array
references unchanged; this will of course cause the compiler
to produce an extra add instruction for every subscript
calculation (the effect of which is to add in a zero ROFS
value), but this conversion of the program text takes much
less time. This last tack has much to recommend it if the
storage burden for the extra add instructions can be borne,
and 1if there is not a plethora of dynamic array references
in the innermost loops of the program to be converted.

In the second conversion method, one must have a run-
time environment in which it possible to allocate storage
from within a running FORTRAN progranm. In addition, one
must have an ADROF function and a compiler/machine
architecture which can form the proper storage address for
the dynamically allocated array. If the second conversion
method is possible, it has much to recommend itself, since
dynamically allocated arrays are quite useful in themselves,
conversion of code which uses dynamically allocated arrays
to use static arrays is quite simple, and the method is
simple to learn, explain, and use. Moreover, it is easy to
discipline oneself in the wuse of dynamically allocated
arrays so that the errors which occur due to their use are
acceptably few in number; i.e., they are not an especially
error-prone construct. _

eXoNeXeXoekekekeXo ke ko ke keke ke ke ke ke ke ke ke Koo ke ke koo Ko KR

32

Appendix E

LISTING OF THE SOURCE CODE

SUBROUTINE CONTUR(X, IX, Y, IY, Z, IDX, CZ, NC, SWCHES)

Although care has been taken to ensure the correct
functioning of the CONSYS system, neither the author
nor The University of Michigan shall be liable for any
direct or indirect, incidental, consequential, or
specific damages of any kind or from any cause
whatsoever arising out of or in any way connected with
the use or performance of the CONSYS system or its
documentation.

CONTUR produces coordinate pairs for drawing a picture
which is a contour map of the data in the array 2. % is a
data surface, i.e., Z(I, J) = £(X(I), Y(J)).
The basic algorithm for this routine was suggested by:
G. W. Hartwig, "CONTUR - A Fortran IV Subroutine for Plot-
ing Contour Lines," Ballistic Research Laboratories Memo-
randum Report # 2282, Aberdeen Proving Ground, Maryland,
March, 1973. (NTIS accession number AD-760 437).
This routine comprises the first half of Hartwig’'s algorithm;
it has been modified to reflect the fact that the most com-
putationally efficient procedure is to quickly reject surface
cells which contain no contours. If a cell does contain one
or more contours, subroutine CTQQ is called to complete
Hartwig's procedure, i.e., actually form the coordinate pairs
for the contour lines.

The following code is for version 1.2 of CONSYS, produced
15 May, 1976. GNC

REAL 2 (IDX, IY), X(1), ¥(1), CZ(1)
REAL MINDIS, XLOC(NXL), YLOC(NYL)
LOGICAL NOWRIT/.FALSE./
LOGICAL SORTED, SWCHES(5), SETUP1l/.FALSE./,
+ SETUP2/.FALSE./
LOGICAL LBLLOC, DISTOK
INTEGER*4 IOMAX/19/, ERRUNT/19/
INTEGER*4 PARERR, CONCNT, CCPl, NTEMP
SEGA tells GETSPA to allocate storage in segment 10 - which
is a reasonable guarantee that the storage will be allocated
at a higher storage address than CONSYS.
INTEGER*4 ADROF, GETGR@/3/, SEGA/Z0A000999/, PTRADR
INTEGER*4 PL, PH
INTEGER*2 PTR(1)
EXTERNAL GETSPA, FREESP, LABELR, CKMA, CKVA

33

OO0 0O0

C
COMMON /CONCOM/ LOWER, UPPER, OFS, XL, XR, Xc, YL, Yu, YC,
+ ZLL, Z2UL, ZLR, ZUR
INTEGER*4 LOWER, UPPER, OFS
Check for obvious errors in the parameters.
IF(.NOT. SETUP1) GO TO 980
IF(SWCHES(5) .AND. .NOT. SETUP2) GO TO 983
C
PARERR = 0
IF(IX .GT. IDX) PARERR = PARERR + 1
IF(IX .LT. 2) - PARERR = PARERR + 1
IF(IY .LT. 2) PARERR = PARERR + 1
IF(IDX .LT. 2) PARERR = PARERR + 1
IF(NC .LT. 1) PARERR = PARERR + 1
IF(PARERR .NE. @) GO TO 986
c
C Check X and Y to ensure they are in strictly ascending
C order. Note that the error message which is written if they
C are not scares the user into checking both arrays, even
C though the code doesn’t check Y if X is bad.
C

DO 884 I = 2, IX
IF(X(I) .LE. X(I-1)) GO TO 988
880 CONTINUE
DO 881 I = 2, IY
IF(Y(I) .LE. Y(I-1)) GO TO 988

881 CONTINUE

C

C Sort the array of contour values.
C

IF(NC .EQ. 1) GO TO 5
CALL RCALL(GETSPA, 2, GETGRO, SEGA+2*NC,
+ 2, TRASH, PTRADR)
OFS = (PTRADR - ADROF (PTR))/2
DO1M=1, NC
PTR(M+OFS) = M

1 CONTINUE
M = NC-1
2 CONTINUE
SORTED = .TRUE.
DO 4 K=1, M
PL = PTR(K+OFS)
PH = PTR(1+K+OFS)

IF(CZ(PH) .GT. CZ(PL)) GO TO 3
PTR(K+OFS) = PH
PTR(1+K+0OFS) = PL
SORTED = .FALSE.
3 CONTINUE

OO0 0O0000

34

CONTINUE
IF(SORTED) GO TO 6
M=M-1
IF(M .GE. 1) GO TO 2
GO TO 6
CONTINUE
OFS = 0
PTR(1l) =1
GO TO 6
CONTINUE
CZMAX = CZ (PTR(NC+OFS))
CZMIN = CZ(PTR(1 +OFS))
CALL CTQQIN(PTR, CZ, CKMA, CKVA)

Begin the contouring process by looking at each cell in the
surface in turn. For each cell, we ask the question, "Does
this cell contain any contour lines at the user-specified
values in the CZ array?" If the answer is no, we immediately
proceed to the next cell. If the answer is yes, we find

the lower and upper limits in the sorted CZ array of contour
values which intersect this cell, and pass this information
and the cell coordinates to subroutines CTQQ (via CONCOM)
where the coordinates for the contours are produced.

IYMlI = 1Y - 1

YU = Y(1)
DO 38 J = 1, IYM]
YL = YU
YU = Y (J+1)
YC = @.5* (YL + YU)
XR = X(1)
ZLR = Z(1, J)

ZUR = Z(1, J+1)
DO 37 1 = 2, IX

XL = XR

XR = X(I)

ZLL = ZLR

ZUL = ZUR

ZLR = Z(I, J)
ZUR = 7Z(I, J+1)

gMIN = AMINI (ZLL, ZUL, ZLR, ZUR)
IF(ZMIN .GT. CZMAX) GO TO 37
gMAX = AMAX1(ZLL, ZUL, ZLR, ZUR)
IF(ZMAX .LT. CZMIN) GO TO 37
IF(ZMAX .EQ. ZMIN) GO TO 37
DO 12 CONCNT = 1, NC
70 = CZ%(PTR(CONCNT+OFS))
IF(20 .LT. ZMIN) GO TO 12
IF(Z8 .GT. ZMAX) GO TO 37
LOWER = CONCNT
UPPER = LOWER
IF(UPPER .EQ. NC) GO TO 14
CCP1l = CONCNT + 1

11

12
14

BoYe o Re ke

22
23

26
27

28
29
37

QOO 0O0

QOO 00

35

DO 11 II = CCPl, NC |
IF(ZMAX .LT. CZ(PTR(II+OFS)))

+ - GO TO 14
UPPER = II
CONTINUE
GO TO 14
CONTINUE
CALL CTQQ

If the user specified via SWCHES(5) that labels are to be
drawn, find out here if this cell is a candidate for
labeling, and if it is, call LABELR to draw the label.

IF(.NOT. SWCHES(5)) GO TO 29
LBLLOC = .FALSE.
IF(NXL .EQ. 6) GO TO 23
DO 22 M = 1, NXL
IF(.NOT. (XL .LE. XLOC(M) .AND.
+ ' XLOC(M) .LT. XR)) GO TO 22
LBLLOC = .TRUE.
GO TO 27
CONTINUE
CONTINUE
IF(NYL .EQ. 6§) GO TO 27
DO 26 M = 1, NYL
IF(.NOT.(YL .LE. YLOC(M) .AND.
+ YLOC(M) .LT. YU)) GO TO 26
LBLLOC = .TRUE.
GO TO 27
CONTINUE
CONTINUE
IF(.NOT. LBLLOC) GO TO 28
IF(DISTOK(XC, YC))
+ CALL LABELR(XC, YC, 7@)
CONTINUE
CONTINUE
CONTINUE
CONTINUE

Now give back the space we acquired in order to sort the CZ
array.

CALL RCALL(FREESP, 2, 0, PTRADR,)

Draw border lines, if the user indicated via the SWCHES
vector that they are wanted.

XL = X(1)
XR = X(IX)
YL = Y (1)
YU = Y(IY)

IF(.NOT. SWCHES(1l)) GO TO 42
CALL CKMA(XR, YL)

36

CALL CKVA (XL, YL)
42 CONTINUE :
IF(.NOT. SWCHES(2)) GO TO 44
CALL CKMA (XL, YL)
CALL CKVA (XL, YU)
44 CONTINUE
IF(.NOT. SWCHES(3)) GO TO 46
CALL CKMA (XL, YU)
CALL CKVA(XR, YU)
46 CONTINUE |
IF(.NOT. SWCHES(4)) GO TO 48
CALL CKMA(XR, YU)
CALL CKVA(XR, YL)
48 CONTINUE
RETURN

C
C
C Handle bad parameters in the CONTUR call here.
C
9

80 CONTINUE
IF(. NOWRIT) GO TO 981
WRITE (ERRUNT, 995)
WRITE (ERRUNT, 999)
981 CONTINUE
RETURN 1

983 CONTINUE
IF(NOWRIT) GO TO 984
WRITE (ERRUNT, 996)
WRITE (ERRUNT, 999)
984 CONTINUE
RETURN 2

986 CONTINUE
IF(NOWRIT) GO TO 987
WRITE (ERRUNT, 997) PARERR, IX, IY, IDX, NC
WRITE (ERRUNT, 999)
987 CONTINUE
RETURN 3

988 CONTINUE
IF(NOWRIT) GO TO 989
WRITE (ERRUNT, 994)
WRITE (ERRUNT, 999)
989 CONTINUE

RETURN 3
C
C Format statements for CONTUR error comments.
C
994 FORMAT(® **** ERROR: SUBROUTINE "CONTUR" HAS BEEN CALLED’,
o+ ‘WITH EITHER THE X OR’,/,6X, THE Y VECTOR (OR °,
+ BOTH) NOT IN STRICTLY ASCENDING ORDER. ')

995 FORMAT (°~ **** ERROR: SUBROUTINE "CONTUR" HAS BEEN CALLED’,

37

4

+ WITH NO“,/,6X, "PRECEDING INITIALIZATION CALL TO~,
* SUBROUTINE "CONSET".") :

996 FORMAT(~ **** ERROR: SUBROUTINE "CONTUR" HAS BEEN CALLED’,
° WITH SWCHES(5) ",/,6X, SPECIFYING CONTOUR °,
"LABELING TO BE DONE, BUT AN INITIALIZATION®,/,6X,
"CALL TO SUBROUTINE "CONLBL" HAS NOT YET BEEN °,
“MADE. ")
997 FORMAT(**** THERE ARE “,I1, ERROR(S) IN THE PARA’,
"METERS IN A CALL",/,6X, TO SUBROUTINE “"CONTUR".’,
° DIAGNOSTIC INFORMATION FOLLOWS: ,/,6X, IX = 7,
115,° 1y = °,115,/,6%X, IDX = *,I115,° NC = 7,
115)
999 FORMAT(**** DUE TO THE ABOVE ERROR, CONTUR WILL NOT °,

+ ‘DRAW A CONTOUR MAP,",/,6X, BUT WILL INSTEAD °,
“IGNORE THE CALL.")

+

+ 4+ ++ A+ +

+

QOO0 0

ENTRY CONSET(CKMA, CKVA, IOUNIT)

CONSET is called to set up the names of the functions to
dispose of picture coordinates, and to pass in the logical
I/0 unit upon which error comments (if any) will be written.

QOOQOOO0O0O00O000n

ERRUNT
NOWRIT
SETUP1
RETURN

IOUNIT
ERRUNT .LT. # .OR. ERRUNT .GT. IOMAX
+TRUE.

OO0

ENTRY CONLBL (LABELR, MINDIS, NXL, XLOC, NYL, YLOC)

CONLBL is called to set up CONTUR for outputting labels of
contour line values somewhere near the contour line itself.

OO0 00

IF(.NOT. SETUP1) GO TO 1996
PARERR = §

IF(MINDIS .LT. 0.) PARERR
IF(NXL .LT. 9) PARERR
IF(NYL .LT. 0) PARERR
IF(NXL+NYL .LT. 1) PARERR
IF(PARERR .NE. 8) GO TO 1993

PARERR +
- PARERR +
PARERR +

+

1
1
1
PARERR 1

38

SETUP2 = .TRUE.
NTEMP = MAX@ (NXL, NYL, NXL*NYL)
CALL DSINIT(NTEMP, MINDIS)

RETURN
C
C Handle errors in parameters to CONLBL here.
C

1999 CONTINUE
IF(NOWRIT) GO TO 1991
WRITE (ERRUNT, 1997)
WRITE (ERRUNT, 1999)
1991 CONTINUE
RETURN 1

1993 CONTINUE
IF(NOWRIT) GO TO 1994
WRITE (ERRUNT, 1998) PARERR, MINDIS, NXL, NYL
WRITE (ERRUNT, 1999)
1994 CONTINUE
RETURN 2
C
C Format statements for CONLBL error comments.
C
1997 FORMAT(**** ERROR: SUBROUTINE "CONLBL" HAS BEEN CALLED’,
+ ° WITH NO’,/,6X, PRECEDING INITIALIZATION CALL °,
+ “TO SUBROUTINE "CONSET".")

4 4

ERROR(S) IN THE °,
+ ‘PARAMETERS IN A CALL T0°,/,6X, “SUBROUTINE °,
+ ‘"CONLBL". DIAGNOSTIC INFORMATION FOLLOWS: ,/,6X,
+ ‘MINDIS = °,Gl3.6,/,6X, NXL = °,I15,° NYL = ,I15)
1999 FORMAT(® **** DUE TO THE ABOVE ERROR, CONLBL WILL NOT °,
+ “INITIALIZE THE’,/,6X, CONTOUR LABELING ROUTINES, ’,

4

+ BUT WILL INSTEAD IGNORE THE CALL.")

1998 FORMAT(® **** THERE ARE *,I1,

QOO0

ENTRY CONEND (/NREGEN/, /MAXSIZ/, /NUSED/)

CONEND is called after a complete contour map has been
produced in order to release dynamically acquired storage.

oo NeXe

CALL DSFINI(NREGEN, MAXSIZ, NUSED)
RETURN
END

LOGICAL FUNCTION DISTOK(X, Y)

a0

Although care has been taken to ensure the correct

OO0 0O00O00O0000n0

OO0

oNeXe)

O woouU

39

functioning of the CONSYS system, neither the author
nor The University of Michigan shall be liable for any
direct or indirect, incidental, consequential, or
specific damages of any kind or from any cause
whatsoever arising out of or in any way connected with
the use or performance of the CONSYS system or its
documentation.

CONTUR calls DISTOK to see whether a contour label can

be placed at (X, Y) and be more than MINDIS units away
from any other label previously placed on the contour map.
If a label can be safely placed on the map, DISTOK returns
the value .TRUE. after saving the values of X and Y in a
dynamically allocated local array. If the label would
fall within MINDIS units from a previous label, DISTOK
simply returns the value .FALSE.

The following code is for version 1.2 of CONSYS, produced
15 May, 1976. GNC '

REAL X, Y, MINDIS

REAL COORD(1)

INTEGER*4 ADDR/#/, NEWADR, OFS, NEWOFS, ADROF

INTEGER*4 CURLEN, MAXLEN, NEWLEN, REGEN
SEGA tells GETSPA to allocate storage in segment 1§ - which
is a reasonable guarantee that the storage will be allocated
at a higher storage address than CONSYS.

INTEGER*4 GETGRO/3/, SEGA/ZOAQ000006/

LOGICAL DSINIT, DSFINI

EXTERNAL GETSPA, FREESP

DISTOK = .FALSE.
IF(CURLEN .LT. 1) GO TO 9
DO 8 I =1, CURLEN, 2
XI = COORD (I+OFS)
IF(ABS(X-XI) .GT. MINDIS) GO TO 5
YI = COORD(1+I+OFS)
IF(SQRT((X-XI)**2+(Y-YI)**2) .LE. MINDIS)
+ RETURN
CONTINUE :
CONTINUE
CONTINUE

DISTOK = .TRUE.
IF(CURLEN+2 .LE. MAXLEN) GO TO 15

REGEN = REGEN + 1
NEWLEN = 2*MAXLEN
CALL RCALL(GETSPA, 2, GETGR@, SEGA+4*NEWLEN,

+ 2, TRASH, NEWADR)
NEWOFS = (NEWADR-ADROF (COORD)) / 4
DO 12 I = 1, MAXLEN

49

COORD (I+NEWOFS)
12 CONTINUE ‘
CALL RCALL(FREESP, 2, @0, ADDR, 0)
ADDR = NEWADR
OFS = NEWOFS
MAXLEN = NEWLEN
15 CONTINUE

COORD (I+OFS)

COORD (1+CURLEN+QFS) = X
COORD (2+CURLEN+OFS) = Y
CURLEN = CURLEN + 2
RETURN
C
C
C
C
C
ENTRY DSINIT(NUM, MINDIS)
C _ .
C DSINIT is called from CONTUR to make an initial allocation of
C space for the array to save label coordinates, and to
C 1initialize variables which describe the state of the
C coordinate-saving buffer.
C
MAXLEN = 12*NUM
CALL RCALL(GETSPA, 2, GETGR#, SEGA+4*MAXLEN,
+ 2, TRASH, ADDR)
OFS = (ADDR - ADROF(COORD)) / 4
REGEN = 0
CURLEN = @
DSINIT = .FALSE.
RETURN
C
C
C
C
C
ENTRY DSFINI(/NREGEN/, /MAXSIZ/, /NUSED/)
C A
C DSFINI is called from CONTUR to deallocate the space which
C was dynamically acquired to hold the label coordinate
C values. If the user did not specify labeling, then there
C will be no space to deallocate; therefore, we must be a bit
C careful:
C
IF(ADDR .NE. 6) CALL RCALL(FREESP, 2, 6, ADDR, 0)
ADDR = @
NREGEN = REGEN
MAXSIZ = 4*MAXLEN
NUSED = 4*CURLEN
DSFINI = .FALSE.
RETURN

END

OO0 000O00O000000

OO0

41

SUBROUTINE CTQQ

Although care has been taken to ensure the correct
functioning of the CONSYS system, neither the author
nor The University of Michigan shall be liable for any
direct or indirect, incidental, consequential, or
specific damages of any kind or from any cause
whatsoever arising out of or in any way connected with
the use or performance of the CONSYS system or its
documentation.

CTQQ is called from CONTUR to produce contour coordinate
values for the grid cell bounded by XL and XR, YL and YU, and
ZLL, ZUL, ZUR, and ZLR. Coordinate pairs thus produced are
disposed of via calls to the user-specified routines CKMA

and CKVA. The Z values to be contoured are stored in

CZ (PTR(LOWER+OFS)) ,+..,CZ (PTR(UPPER+OFS)) .

The algorithm for this routine was taken from:
G. W. Hartwig, "CONTUR - A Fortran IV Subroutine for
Plotting Contour Lines," Ballistic Research Laboratories
Memorandum Report # 2282, Aberdeen Proving Ground,
Maryland, March, 1973. (NTIS accession number AD-768 437).

The following code is for version 1.2 of CONSYS, produced
15 May, 1976. GNC

REAL CZ (1)

LOGICAL KCHK(8), CENTER

REAL PX(8), PY(8), PTEMP

EQUIVALENCE (PX(1l), PX1l), (PX(2), PX2), (PX(3), PX3),

+ (PX(4), PX4), (PX(5), PX5), (PX(6), PX6),
+ (PX(7), PX7), (PX(8), PX8)

EQUIVALENCE (PY(1), PYl), (PY(2), PY2), (PY(3), PY3),
+ (PY(4), pY4), (PY(5), PY5), (PY(6), PY6),
+ (PY(7), PY7), (PY(8), PY8)

INTEGER*2 PTR(1)
COMMON /CONCOM/ LOWER, UPPER, OFS, XL, XR, XC, YL, YU, YC,

+ ZLL, ZUL, ZLR, ZUR
INTEGER*4 LOWER, UPPER, OFS

XC = 0.5* (XL + XR)

XLMXR = XL - XR
XLMXC = XL - XC
XRMXC = XR - XC
YLMYC = YL - YC~

42

YLMYU YL - YU

YUMYC YU - YC

ZC = @.25*% (ZLL + ZUL + ZLR + ZUR)
DO 120 LEVEL = LOWER, UPPER

Z2@0 = CZ(PTR(LEVEL+OFS))
TLL = ZLL - 70
TUL = ZUL - 70
TLR = ZLR - 70
TUR = ZUR - Z0
TC = ZC - 70
C
IC =0
CENTER = .FALSE.
DO 11 M =1, 8
KCHK (M) = ,FALSE.
11 CONTINUE
C
C Segment 1:
C
IF(TLL*TLR .GT. 8.) GO TO 19
KCHK (1) = .TRUE.
IF(TLL*TLR .EQ. 6.) GO TO 12
IC = 1IC + 1
PX(IC) = TLL * XLMXR/(ZLR-ZLL) + XL
PY(IC) = YL
GO TO 18
12 CONTINUE
IF(TLL .EQ. #.) GO TO 15
IC = IC + 1
PX(IC) = XR
PY(IC) = YL
GO TO 17
15 CONTINUE
IC = IC + 1
PX(IC) = XL
PY(IC) = YL
IF(TLR .NE. #.) GO TO 16
IC =1IC +1
PX(IC) = XR
PY(IC) = YL
16 CONTINUE
GO TO 17
17 CONTINUE
GO TO 18
18 CONTINUE
19 CONTINUE
C
C Segment 2:
C

IF(TLL*TC .GT. 6.) GO TO 29
KCHK(2) = .TRUE.
IF(TLL*TC .EQ. #.) GO TO 22
IC = IC + 1

22

25

28
29

32

35

38
39

49
C
C
C

43

FAC = TLL/(ZC - ZLL)

PX(IC) = XLMXC*FAC + XL
PY(IC) =
GO TO 28

CONTINUE

YLMYC*FAC + YL

IF(TC .NE. #.) GO TO 25
CENTER = .TRUE.

IC =

PX(IC)
PY (IC)

CONTINUE
GO TO 28

CONTINUE
CONTINUE

Segment 3:

IC+ 1
XC
YC

IF(TUL*TLL .GT. 6.) GO TO 39

.TRUE. ‘

IF(TUL*TLL .EQ. #.) GO TO 32
IC = 1IC + 1

KCHK(3) =

PX (IC)
PY (IC)

o

XL
TLL * YLMYU/(ZUL-ZLL) + YL

GO TO 38

CONTINUE

IF(TUL .NE. @.) GO TO 35

IC =

PX (IC)
PY (IC)

CONTINUE
GO TO 38

CONTINUE
CONTINUE

Segment 4:

IC+ 1
XL
YU

IF(TUL*TC .GE. #.) GO TO 49

KCHK (4) =

IC = IC + 1
FAC = TUL/(ZC - ZUL)

PX(IC)
PY(IC)
CONTINUE

nou

Segment 5:

TRUE.

XLMXC*FAC + XL
YUMYC*FAC + YU

IF(TUL*TUR .GT. f.) GO TO 59

KCHK(5) = .TRUE.
IF(TUL*TUR .EQ. @#.) GO TO 52
IC = IC + 1
PX(IC) = TUL * XLMXR/(ZUR-ZUL) + XL

PY (IC)
GO TO 5

8

YU

52

55

58
59
C
C
C

69
C
C
C

79
C
C
C

OO0

44

CONTINUE
IF(TUR .NE. @#.) GO TO 55
IC = IC + 1
PX(IC) = XR
PY(IC) = YU
CONTINUE
GO TO 58
CONTINUE
CONTINUE

o

Segment 6:

IF(TUR*TC .GE. 6.) GO TO 69
KCHK (6) = .TRUE.
IC = IC + 1
FAC = TUR/(ZC - ZUR)
PX(IC) = XRMXC*FAC + XR
PY(IC) = YUMYC*FAC + YU
CONTINUE

Segment 7:

IF(TLR*TUR .GE. 6.) GO TO 79
KCHK(7) = .TRUE.
IC = IC + 1
PX(IC) XR
PY(IC) TUR * YLMYU/(ZUR-ZLR) + YU
CONTINUE

non

Segment 8:

IF(TLR*TC .GE. 8.) GO TO 89
KCHK(8) = .TRUE.
IC = IC + 1
FAC = TC/(%ZC - ZLR)
PX(IC) = XRMXC*FAC + XC
PY(IC) = YLMYC*FAC + YC
CONTINUE

Now derive the line segments to be drawn from the contents
of the PX and PY arrays.

IF(IC ,LE. 1) GO TO 117
IF(IC .GE. 6 .OR.
+ (IC .EQ. 5 .AND. CENTER)) GO TO 104
IF(.NOT. KCHK(8)) GO TO 95
DO 94 L =1, 7
IF(.NOT. KCHK(L)) GO TO 93

PX (IC+1) = PX(1)

PY(IC+1) = PY(1)

DO 92 M = 1, IC
PX(M) = PX(M+1)
PY (M) = PY(M+l)

92

93
94

95

97

98
100

104

105

108

109
117
120

O0O0n

IF(

45

CONTINUE

IF(MOD(L, 2)

CONTINUE
CONTINUE
GO TO 97

.EQ. 1)

.NOT. CENTER .OR. KCHK(1l))

PTEMP =
PX1 =
PX2 = PTEMP
PTEMP = PY1l
PY1l = PY2

PY2 = PTEMP
GO TO 97

PX1
PX2

CONTINUE
CALL CKMA(PX1, PY1)

DO 98 M = 2, IC

GO

PXM
PYM

PX (M)
PY (M)

CALL CKVA(PXM, PYM)

CONTINUE
TO 109

CONTINUE

IF(

a

IC
PX6
PY6
PX5
PY5

.GE. 6)
PX5
PY5
PX2
PY2

CONTINUE

IF(

KCHK(2))
CALL
CALL
CALL
CALL
CALL
CALL
GO TO 108

CONTINUE

CALL
CALL
CALL
CALL
CALL
CALL
GO TO 198

CONTINUE

GO

TO 189

CONTINUE

CONTINUE
CONTINUE
RETURN

GO

CKMA (PX5,
CKVA (PX6,
CKVA (PX1,
CKMA (PX2,
CKVA (PX3,
CKVA (PX4,

CKMA (PX1,
CKVA (PX2,
CKVA (PX3,
CKMA (PX4,
CKVA (PX5,
CKVA (PX6,

GO TO 104

TO 185
PY5)
PY6)
PY1)
PY2)
PY3)
PY4)

PY1)
PY2)
PY3)
PY4)
PY5)
PY6)

GO TO 95 -

GO TO 97

@]

OO0OO0O0O0O00O0n

46

ENTRY CTQQIN(PTR, CZ, CKMA, CKVA)

CTQOIN is called from CONTUR to initialize the addresses of
certain very commonly used variables and subroutine entry
points so that the prologue of the routine CTQQ will be as
short as possible. (CTQQ is effectively in the innermost
loop of the contour computation.)

RETURN
END

47

REFERENCES

Hartwig, G. W., CONTUR - A FORTRAN IV Subroutine for
Plotting Contour Lines, Ballistic Research Laboratories
Memorandum Report #2282, Aberdeen Proving Ground,
Maryland, March 1973. (NTIS accession number AD-
768 437

IBM System/360 and System/37@8 FORTRAN IV Language, Form
number GC28-6515, IBM Corporation, Programming
Publications, 1271 Avenue of the Americas, New York,
New York 10620, January 1971.

Akima, H., "Algorithm 474 - Bivariate Interpolation and
Smooth Surface Fitting Based on Lccal Procedures,"
Communications of the ACM, January, 1974.

, "A Method of Bivariate Interpolation and Smooth
Surface Fitting for Values Given at Irregularly
Distributed Points," OT Report 75-78, U. S. Department
of Commerce/Office of Telecommunications, Boulder,
Colorado, 1975.

Tobler, We, "Tuning an Interpolated Lattice,"
Department of Geography, The University of Michigan,
Ann Arbor, 1976.

48

BIBLIOGRAPHY

Herzog, Bertram, DRAWL in MTS, Compgraph Publishers, Ann
Arbor, October 1971.

Conklin, James W., and Mark Barnett, A Basic Software
Package for the Computek Terminal on MTS, Center for
Research on Learning and Teaching, The ~University of
Michigan, Ann Arbor, 1971.

Phillips, Richard L., "Extensions to the Computek Routines
for Storage Tube Terminals," Department of Aerospace
Engineering, The University of Michigan, Ann Arbor,
1972.

, MTS Interactive Graphics Subroutine Libraries
AERO:CKLIB, AERO:TEKLIB, and AERO:T4002, Department of
Aerospace Engineering, The University of Michigan, Ann
Arbor, 1972.

; "Software Tools for Computer Graphics," Department
of Aerospace Engineering, The University of Michigan,
Ann Arbor, 1976.

Van Roekel, John, MGI User’s Guide, Department of Aerospace
Engineering, The University of Michigan, Ann Arbor, May
1972.

Blinn, James F., The Integrated Graphics Systen, The
University of Michigan Computing Center, Ann Arbor, May
1972.

Newman, W. M., and R. F. Sproull, Principles of Interactive
Computer Graphics, McGraw-Hill Book Co., New York,
1973.

Walters, R. F., "Contouring by Machine: A User’s Guide," The
American Association of Petroleum Geologists Bulletin,
vol. 53, No. 11, November, 1969, pp. 2324 - 2340.

A

47 5020

