Technical Report No. 22

CONVEXITY OF THE RANGE OF CERTAIN INTEGRALS

Lamberto Cesari

ORA Project 024160

submitted for:

UNITED STATES AIR FORCE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
GRANT NO. AFSOR-69-1662
ARLINGTON, VIRGINIA

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1971
ADDENDUM III. CONVEXITY OF THE RANGE OF CERTAIN INTEGRALS

Lamberto Cesari

In this appendix we consider any vector function \(f(t) = (f_1, \ldots, f_n) \) whose components are \(L \)-integrable in \([a, b]\), and prove that the set function
\[K(E) = \int_E f(E) dt \]
has for range a convex closed set when \(E \) describes all measurable subsets of \([a, b]\). This result, which is proved here rather elementarily through a set of lemmas, is actually a particular case of an analogous one concerning nonatomic vector valued measure functions and due to A. Lyapunov [76].

III 1. SOME PRELIMINARY LEMMAS

If \([a, b]\) is any given interval of length \(l = b - a \), and \(\alpha, 0 \leq \alpha \leq 1 \), any number, then the point \(t = a + \alpha(b - a) = a + \alpha l \) divides \([a, b]\) into two parts of measures \(\alpha l \) and \((1 - \alpha)l\). If we divide \([a, b]\) into two equal parts, and we divide each part as above, the corresponding set
\[D^2_\alpha = [a \leq t < a + \alpha l/2] \cup [a + l/2 \leq t < a + l/2 + \alpha l/2] \]
has still measure \(\alpha l \), and is the union of two disjoint intervals. In general, if we divide \([a, b]\) into \(2^k \) equal parts, and in each part we take corresponding subintervals, then the set
\[D^k_\alpha = \bigcup_{i=1}^{2^k} \left[a + 2^{-k}(i - 1)l, a + 2^{-k}(i - 1 + \alpha)l \right] \quad (III. 1.1) \]
has measure \(\alpha l \), and is the union of \(2^k \) disjoint intervals. Also, for
\[0 \leq \alpha < \alpha' \leq 1 \text{ and the same } k \text{ we have } D^k_\alpha \subseteq D^k_{\alpha'} \text{ and meas } |D^k_{\alpha'} - D^k_\alpha| = (\alpha' - \alpha)l. \]

(III 1.1) Given any vector function \(f(t) = (f_1, \ldots, f_n) \), \(a \leq t \leq b \), whose components are \(L \)-integrable in \([a, b]\), and any \(\varepsilon > 0 \), there is an integer \(K \) such that for all \(k \geq K \) and \(\alpha \), \(0 \leq \alpha \leq 1 \), we have

\[
\left| \int_{D^k_\alpha} f(t)dt - \alpha \int_{a}^{b} f(t)dt \right| \leq \varepsilon.
\]

In other words, if \(a^\circ_o = (a_1^{\circ_o}, \ldots, a_n^{\circ_o}) \) denotes the integral of \(f(t) \) on \([a, b]\), then the integral on \(D^k_\alpha \), thought of as a function of \(\alpha \), \(0 \leq \alpha \leq 1 \), is uniformly approximated by the linear function \(a^\circ_o \alpha \), \(0 \leq \alpha \leq 1 \).

Proof. It is not restrictive to assume \(a = 0 \), \(b = 1 \). We know that there is a continuous vector function \(g(t) \), \(0 \leq t \leq 1 \), such that

\[
\int_{0}^{1} |f(t) - g(t)|dt \leq \varepsilon/4.
\]

Then \(g(t) \) is uniformly continuous in \([0, 1]\), and hence there is \(\delta > 0 \) such that \(t, t' \in [0, 1], |t - t'| \leq \delta \) implies \(|g(t) - g(t')| \leq \varepsilon/4 \). Let \(K \) be the smallest integer with \(1/2^k < \delta \). For any \(k \geq K \) let \(g_k(t) \), \(0 \leq t \leq 1 \), be the step function defined by \(g_k(t) = g(t_{i-1}) \) for all \(t_{i-1} \leq t \leq t_i, i = 1, \ldots, 2^k \), where \(t_i = i/2^k \). Then \(|g(t) - g_k(t)| \leq \varepsilon/4 \) for all \(0 \leq t \leq 1 \). Thus

\[
\triangle = \int_{0}^{1} |f(t) - g_k(t)|dt \leq \int_{0}^{1} |f - g|dt + \int_{0}^{1} |g - g_k|dt \leq \varepsilon/4 + \varepsilon/4 = \varepsilon/2,
\]

and
\[
\int_{D_k}^k f(t) dt - \alpha f_0^1 f(t) dt \leq \int_{D_k}^k g(t) dt + \int_{D_k}^k g_k^1 g(t) dt - \alpha g_0^1 g_k^1 f(t) dt = s_1 + s_2 + s_3.
\]

Here

\[
s_2 = \sum_{i=1} g_k(t_i)(\alpha/2^k) - \alpha \sum_{i=1} g(t_i)(1/2^k) = 0,
\]

\[
|s_1| \leq \int_{D_k}^k |f - g_k| dt \leq \int_{D_k}^k |f - g| dt \leq \varepsilon/2,
\]

\[
|s_3| \leq \int_{D_k}^k |g_k - f| dt \leq \varepsilon/2,
\]

and finally \(\Delta \leq \varepsilon/2 + 0 + \varepsilon/2 = \varepsilon \). Statement (III 1.1) is thereby proved.

Statement (III 1.1) has a stronger form which of course is less easy to prove.

(III 1.ii) Given any vector function \(f(t) = (f_1, \ldots, f_n) \), \(a \leq t \leq b \), whose components are \(L \)-integrable in \([a, b]\), then for every \(\alpha, 0 \leq \alpha \leq 1 \), there is a measurable subset \(E_\alpha \) of \([a, b]\) such that

\[
\int_{E_\alpha} f(t) dt = \alpha f_a^b f(t) dt, \quad 0 \leq \alpha \leq 1.
\]

(III. 1.2)

In other words, if \(f_\alpha = (a_1, \ldots, a_n) \) is the integral of \(f \) on \([a, b]\), the integral at the first number of (III 1.3) thought of as a function of \(\alpha \), is a linear function of \(\alpha \), say \(a_\alpha \), \(0 \leq \alpha \leq 1 \).

This statement is a particular case of the following one which we shall prove below.
(III 1.iii) Given any vector function \(f(t) = (f_1, \ldots, f_n) \), \(a \leq t \leq b \), whose components are L-integrable functions in \([a, b]\), and any measurable subset \(A \) of \([a, b]\), then for every \(\alpha, 0 \leq \alpha \leq 1 \), there is a measurable subset \(B_\alpha \) of \(A \) with

\[
\int_{B_\alpha} f(t) \, dt = \alpha \int_A f(t) \, dt, \quad 0 \leq \alpha \leq 1.
\]

(III. 1.3)

Proof. The proof of (III 1.iii) is made up of parts. (a). Let us prove (iii) for \(n = 1 \) and \(f \) a nonnegative scalar function. If \(\varphi(t) \) denotes the characteristic function of \(A \), say \(\varphi = 1 \) on \(A \) and \(\varphi = 0 \) otherwise, then

\(f(t) \varphi(t) \) is L-integrable in \([a, b]\), and hence \(F(t) = \int_a^t f(\tau) \varphi(\tau) \, d\tau \), \(a \leq t \leq b \), is a continuous function taking all values from \(F(a) = 0 \) to \(F(b) \).

Thus, there is some \(c, a \leq c \leq b \), with \(F(c) = \alpha F(b) \), and, if \(B_\alpha = [a, c] \cap A \), also

\[
\int_{B_\alpha} f \, dt = \int_a^c f \varphi \, dt = F(c) = \alpha F(b) = \alpha \int_a^b f \varphi \, dt = \alpha \int_A f \, dt.
\]

Thus, (III 1.iii) is proved for \(n = 1 \) and \(f \) scalar nonnegative.

(b) Let us assume that we know how to determine \(B_{1/2} \) for every \(A \) and a given vector function \(f = (f_1, \ldots, f_n) \) whose components are nonnegative L-integrable, and let us prove that we can determine all sets \(B_\alpha \), \(0 \leq \alpha \leq 1 \), and that we can determine them in such a way that \(\alpha < \alpha' \) implies \(B_\alpha \subset B_{\alpha'} \).

For the sake of simplicity we shall use the notation

\[\mu(E) = \int_E f \, dt, \mu_i(E) = \int_E f_i \, dt, \quad i = 1, \ldots, n.\]

(III. 1.4)

First, for \(B_{1/2}' = A - B_{1/2} \), we have
\[\mu(B'_{1/2}) = \mu(A) - \mu(B_{1/2}^I) = \mu(A) - (1/2)\mu(A) = (1/2)\mu(A). \]

Then let us determine sets \(B_{1/4} \subset B_{1/2} \subset B_{3/4} \subset B_{1/2} \) such that

\[\mu(B_{1/4}) = (1/2)\mu(B_{1/2}), \quad \mu(B_{3/4}') = (1/2)\mu(B_{1/2}') \]

and then, for \(B_{3/4} = B_{1/2} \cup B_{3/4}' \), also

\[\mu(B_{1/4}) = (1/4)\mu(A), \quad \mu(B_{3/4}') = (3/4)\mu(A), \]

and if \(B_0 = \emptyset, B_1 = A \), we have \(B_0 \subset B_{1/4} \subset B_{1/2} \subset B_{3/4} \subset B_1 \).

By repeating this process we obtain sets \(B_{i/2^r}, i = 0, 1, \ldots, 2^r, r = 1, 2, \ldots, \)
so that \(\mu(B_{i/2^r}) = i/2^r \), and for \(i < j, \lambda = i/2^r, \lambda' = j/2^r \), also \(B_\lambda \subset B_{\lambda'} \).

Now let \(\alpha \) be any number \(0 < \alpha < 1 \), and let \([\lambda_s], [\lambda'_s] \) be sequences of numbers
\(\lambda_s = i/2^r, \lambda'_s = j/2^s \), such that \(\lambda_s < \lambda_{s+1} < \alpha < \lambda'_{s+1} < \lambda'_s, \lambda \rightarrow \alpha, \lambda' \rightarrow \alpha \). For

\[B_{\lambda \alpha} = \bigcup_{\lambda_s} B_{\lambda_s}, \quad B'_{\lambda \alpha} = \bigcap_{\lambda'_s} B_{\lambda'_s} \]

we have \(B_{\lambda \alpha} \subset B'_{\alpha} \) and

\[\lambda_s \int_A f \, dt = \int_{B_{\lambda \alpha}} f \, dt \leq \int_{B_{\lambda \alpha}} f \, dt \leq \int_{B'_{\lambda \alpha}} f \, dt \leq \int_{B'_{\alpha}} f \, dt = \lambda'_s \int_A f \, dt, \]

where \(\leq \) means that such a relation holds for each component. As \(s \rightarrow \infty \) we obtain

\[\alpha = \int_{B_{\lambda \alpha}} f \, dt = \int_{B'_{\lambda \alpha}} f \, dt, \quad 0 \leq \alpha \leq 1. \]

This proves (b).
(c) Assume that (iii) has been proved for some vector function $f = (f_1, \ldots, f_n)$ whose components are nonnegative L-integrable. Let E, F be any two measurable subsets of $A \subset [a, b]$. Then for every α, $0 \leq \alpha \leq 1$, there is some subset $C(\alpha)$ of $E \cup B$ with $C(0) = E$, $C(1) = F$, such that

$$\int_{C(\alpha)} f \, dt = (1 - \alpha) \int_{E} f \, dt + \alpha \int_{F} f \, dt, \quad 0 \leq \alpha \leq 1,$$

$$\left| \int_{C(\alpha)} f \, dt - \int_{C(\alpha')} f \, dt \right| \leq |\alpha - \alpha'| \left(\int_{E-F} f_1 \, dt + \int_{F-E} f_1 \, dt \right) \quad (III.1.5)$$

$$0 \leq \alpha, \alpha' \leq 1, \ i = 1, \ldots, n.$$

Indeed, let us apply (iii) to the sets $E-F$ and $F-E$, and the number α. Let $B_\alpha \subset E-F$, $B'_\alpha \subset F-E$ be the corresponding sets and take

$$C(\alpha) = (E \cap F) \cup (E-F-B_\alpha) \cup B'_\alpha.$$

Then

$$\mu(C(\alpha)) = \mu(E \cap F) + \mu(E - F) - \mu(B_\alpha) + \mu(B'_\alpha)$$

$$= \mu(E \cap F) + \mu(E - F) - \alpha \mu(E - F) + \alpha \mu(F - E)$$

$$= \mu(E \cap F) + (1 - \alpha)\mu(E - F) + \alpha \mu(F - E)$$

$$= (1 - \alpha)\mu[(E \cap F) \cup (E - F)] + \alpha \mu[(E \cap F) \cup (F - E)]$$

$$= (1 - \alpha)\mu(E) + \alpha \mu(F).$$

In addition, for each component f_i and $0 \leq \alpha, \alpha' \leq 1$, we have
\[|\mu_i(C(\alpha)) - \mu_i(C(\alpha'))| = |(-\alpha + \alpha')\mu(E - F) + (\alpha - \alpha')\mu(F - E)| \leq |\alpha - \alpha'| (\mu(E - F) + \mu(F - E)), \ i = 1, \ldots, n.\]

Thus (c) is proved.

(d) Statement (iii) has been proved for \(n = 1\) and \(f\) scalar nonnegative. Assume that (iii) has been proved for \(n = 1\) and vectors \(f\) with nonnegative components, and let us prove it for \(n\). Let \(\tilde{f}\) be the \((n - 1)\) -vector
\[\tilde{f} = (f_1', \ldots, f_{n-2}', \tilde{f}_{n-1})\] with \(\tilde{f}_{n-1} = f_{n-1} + f_n\), and let \(\tilde{\mu}, \mu_1, \mu_i\) be the set functions defined by (III.1.4) with \(f\) replaced by \(\tilde{f}, f_1', \tilde{f}_i\). First by (iii) with \(\alpha = 1/2\) applied to \(\tilde{f}\) there is a subdivision of \(A\) into two parts \(E, F\), with \(E \cap F = \emptyset, E \cup F = A\), and
\[\tilde{\mu}(E) = \tilde{\mu}(F) = (1/2)\tilde{\mu}(A).\] (III 1.6)

Also, by force of (c), there are sets \(C(\alpha) \subset E \cup F = A, 0 \leq \alpha \leq 1,\) with
\(C(0) = E, C(1) = F,\) and
\[\tilde{\mu}(C(\alpha)) = (1 - \alpha)\tilde{\mu}(E) + \alpha \tilde{\mu}(F) = (1 - \alpha)(1/2)\tilde{\mu}(A) + \alpha(1/2)\tilde{\mu}(A)\]
\[= (1/2)\tilde{\mu}(A), \quad 0 \leq \alpha \leq 1.\] (III 1.7)

Let us prove that \(\mu_{n-1}(C(\alpha))\) is a continuous function of \(\alpha\) in \([0, 1]\).
Indeed, \(\mu_{n-1}(C(\alpha))\) is a scalar, namely the integral of \(f_{n-1} \geq 0\) over \(C(\alpha),\) and
\[|\mu_{n-1}(C(\alpha)) - \mu_{n-1}(C(\alpha'))| = |\mu_{n-1}[C(\alpha) - C(\alpha')] - \mu_{n-1}[C(\alpha') - C(\alpha)]| \]

\[\leq |\mu_{n-1}[C(\alpha) - C(\alpha')] + \mu_{n-1}[C(\alpha') - C(\alpha)]| \]

\[\leq |\tilde{\mu}_{n-1}[C(\alpha) - C(\alpha')] + \tilde{\mu}_{n-1}[C(\alpha') - C(\alpha)]| \]

\[\leq |\alpha - \alpha'| \left(\tilde{\mu}_{n-1}(E - F) + \tilde{\mu}_{n-1}(F - E) \right) \leq 2|\alpha - \alpha'| \int_A (f_{n-1} + f_n) \, dt. \]

This proves that \(\mu_{n-1}(C(\alpha)) \) is a continuous function of \(\alpha \) for \(0 \leq \alpha \leq 1 \). On the other hand, \(\mu_{n-1}(C(0)) = \mu_{n-1}(E), \mu_{n-1}(C(1)) = \mu_{n-1}(F) \). Since \(E \) and \(F \) are complementary in \(A \) then \(\mu_{n-1}(E) \leq (1/2)\mu_{n-1}(A) \) according as

\[\mu_{n-1}(F) \geq (1/2)\mu_{n-1}(A). \]

Thus, as \(\alpha \) describes \([0, 1] \), \(\mu(C(\alpha)) \) describes an interval which contains \((1/2)\mu_{n-1}(A) \). We conclude that there is some \(\alpha \), \(0 \leq \alpha \leq 1 \), such that \(\mu_{n-1}(C(\alpha)) = (1/2)\mu_{n-1}(A) \). For this particular value of \(\alpha \), we have from (III 1.7)

\[\int_{C(\alpha)} f_i \, dt = (1/2) \int_A f_i \, dt, \quad i = 1, \ldots, n-2, \]

\[\int_{C(\alpha)} (f_{n-1} + f_n) \, dt = (1/2) \int_A (f_{n-1} + f_n) \, dt, \]

\[\int_{C(\alpha)} f_{n-1} \, dt = (1/2) \int_A f_{n-1} \, dt, \]

and hence, by difference, also

\[\int_{C(\alpha)} f \, dt = (1/2) \int_A f \, dt, \]

or

\[\int_{C(\alpha)} f \, dt = (1/2) \int_A f \, dt. \] (III 1.8)
We have proved that for the n-vector \(f = (f_1, \ldots, f_n) \) we can determine a subset \(B_{1/2} = C(\alpha) \subset A \) satisfying (III 1.6), where \(A \) is any measurable subset of \([a, b]\). Thus, by (b), we can determine analogous sets \(B_\alpha \) for all \(\alpha \), \(0 \leq \alpha \leq 1 \), and (III 1.iii) is proved for vector valued functions with non-negative components.

(e) We have now to prove (III 1.iii) for vector functions \(f = (f_1, \ldots, f_n) \) with L-integrable components of arbitrary signs. For every \(i = 1, \ldots, n \), and \(j = 1, 2 \), we consider the sets \(A_{ij} \) where \(f_i \geq 0 \) and \(A_{ij} \) where \(f_i < 0 \). We divide \([a, b]\) into \(2^n \) disjoint measurable sets

\[
A_r = A_{i_1 j_1} \cap A_{i_2 j_2} \cap \cdots \cap A_{i_n j_n},
\]

where \(r \) denotes any one of the \(2^n \) systems \((j_1, j_2, \ldots, j_n)\) of indices 1 and 2. On each set \(A_r \) the components \(f_i \) have constant signs, and there are, therefore, sets \(B_{r\alpha} \subset A_r \) with \(\int_{B_{r\alpha}} f \, dt = \alpha \int_A f \, dt \), \(0 \leq \alpha \leq 1 \). The sets \(B_{r\alpha} = \bigcup_{r\alpha} B_{r\alpha} \) then satisfy the requirements of (III 1.iii). Statement (III 1.iii) is thereby proved.

(III 1.iv) Given any vector function \(f(t) = (f_1, \ldots, f_n) \), \(a \leq t \leq b \), whose components are L-integrable in \([a, b]\), and any two fixed measurable sets \(E, F \subset [a, b] \), then for every \(\alpha \), \(0 \leq \alpha \leq 1 \), there is some set \(C(\alpha) \subset E \cup F \), with \(C(0) = E \), \(C(1) = F \), and

\[
\int_{C(\alpha)} f \, dt = (1 - \alpha) \int_E f \, dt + \alpha \int_F f \, dt.
\]

This statement is a consequence of parts (b) and (c) of the proof of (III 1.iii).
III 2. THE MAIN STATEMENTS

(III 2.1) Given any vector function \(f(t) = (f_1, \ldots, f_n) \), \(a \leq t \leq b \), whose components are L-integrable, and any measurable subset \(A \) of \([a, b] \), then

\[
\mu(E) = \int_E f(t) dt \quad \text{(III 2.1)}
\]

describes a convex set \(H \) as \(E \) describes all possible measurable subsets \(E \) of \(A \) (in other words, the range of \(\mu(E) \) is convex).

Proof. If \(\mu_1, \mu_2 \in H \), then there are measurable sets \(E_1, E_2 \) in \(A \) such that \(\mu_i = \mu(E_i) = \int_{E_i} f \, dt \), \(i = 1, 2 \). Among all measurable subsets of \(A \) there certainly are the sets \(C(\alpha), \ 0 \leq \alpha \leq 1 \), defined in (III 1.iv). Then

\[
\mu(C(\alpha)) = (1 - \alpha) \int_E f \, dt + \alpha \int_F f \, dt = (1 - \alpha)\mu_1 + \alpha\mu_2,
\]

that is, all points of the segment \((1 - \alpha)\mu_1 + \alpha\mu_2 \), \(0 \leq \alpha \leq 1 \), belong to \(H \), and \(H \) is proved to be convex.

(III 2.1i) Given any two vector functions \(f(t) = (f_1, \ldots, f_n) \), \(g(t) = (g_1, \ldots, g_n) \), \(a \leq t \leq b \), whose components are L-integrable, let \(E \) denote any measurable subset of \([a, b] \) and \(h_E(t) \), \(a \leq t \leq b \), the function \(h_E(t) = f(t) \) for \(t \in E \), \(h_E(t) = g(t) \) for \(t \in F = [a, b] - E \). Then

\[
\mu(E) = \int_a^b h_E(t) dt \quad \text{(III 2.2)}
\]

describes a convex subset \(H \) of the space \(E_n \) as \(E \) describes all measurable subsets of \([a, b] \).
Proof. For every E as above and $F = [a, b] - E$, we have
\[
\mu(E) = \int_a^b h_E dt = \int_E f dt + \int_{F_E} g dt = \int_E (f - g) dt + \int_{a}^{b} g dt.
\]
If μ_0 is the fixed value of the last integral, and we apply (III 2.i) to the function $f-g$, we see that the set H of (III 2.ii) is simply a translation of the convex set H of (III 2.1) relative to $f-g$.

(III 2.iii) The set H of statement (III 2.1) is closed.

Proof of (III 2.iii) for $n = 1$. We have $\mu(E) = \int_E f dt$ where f is a scalar. If $f \geq 0$ the statement is trivial since the values taken by $\mu(E)$ fill the closed segment $[0, \mu(A)]$. Otherwise, let A^+, A^- be the subsets of all $t \in A$ where $f \geq 0$, or $f \leq 0$, and then $A^+ \cap A^- = \emptyset$, $A^+ \cup A^- = A$. For every set $E \subset A$, let $E^+ = E \cap A^+$, $E^- = E \cap A^-$, and then $\mu(E) = \mu(E^+) + \mu(E^-)$. Then $\mu(E)$ takes on its maximum value $\mu^+ = \mu(A^+) \geq 0$ for $E = A^+$, and its minimum value $\mu^- = \mu(A^-) \leq 0$ for $E = A^-$, and the values taken by $\mu(E)$ fill the segment $[\mu^-_E, \mu^+]$. We shall prove (III 2.iii) for $n > 1$ below.

(III 2.iv) If H is the convex set of (III 2.1) and $\Pi: p \cdot x - c = 0$ any supporting plane for H with $\Pi \cap \text{cl} \ H \neq 0$, then $\Pi \cap H \neq 0$, that is, there is some $\xi \in H$ with $p \cdot \xi - c = 0$, and some measurable set $E_0 \subset A$ with $\xi = \int_{E_0} f dt$.

Proof. We may assume $p \cdot x - c \geq 0$ for all $x \in H$, and hence also for all $x \in \text{cl} \ H$. Thus, $(\text{cl} \ H) \cap \Pi \neq 0$ implies $c = \text{Inf} (p \cdot x)$ where Inf is taken for all $x \in H$, that is, $c = \text{Inf} p \cdot \int_E f dt = \text{Inf} \int_E (p \cdot f) dt$, where Inf is taken for all measurable subsets E of A. On the other hand $\nu(E) = \int_E (p \cdot f) dt$ is our usual function μ relative to the scalar function
\[g(t) = p \cdot f(t), \; t \in A. \] By (III 2.iii), \(\nu(E) \) takes on its maximum and minimum values. Thus, there is some measurable set \(E_0 \subset A \) with \(C = \nu(E_0) = \int_{E_0} (p \cdot f) dt = p \cdot \int_{E_0} f dt \), that is, \(p \cdot \xi - c = 0 \) for \(\xi = \int_{E_0} f dt \).

Proof of (III 2.iii) for \(n > 1 \). We have proved (III 2.iii) for \(n = 1 \). Let us assume that (III 2.iii) has been proved for \(1, 2, \ldots, n - 1 \), and let us prove it for \(n \). Let \(f(t) = (f_1, \ldots, f_n), \; t \in A \), \(A \) measurable, and let \(H \) be the range of the function \(\mu(E) = \int_E f dt \) as \(E \) describes all measurable subset \(E \) of \(A \). By (III 2.1) we know that \(H \) is convex, and we have to prove that \(H \) is closed. Suppose that this is not true, so that \(\text{cl} H \cap H \neq \emptyset \), and let \(\zeta \) be a point \(\zeta \in \text{cl} H - H \). Then \(\zeta \in \text{bd} H \), and by (Vol. I, App. C2) there is a supporting hyperplane \(\Pi: \; p \cdot x - c = 0 \) through \(\zeta \), thus \(p \cdot x - c \geq 0 \) for all \(x \in H \), and \(p \cdot \xi = c \).

By (III 2.iv) there is a point \(\xi' \in H \) on \(\Pi \), that is, \(p \cdot \xi' - c = 0 \), and since \(\xi' \in H \), there is a measurable subset \(E_0 \) of \(A \) with \(\xi' = \int_{E_0} f dt \). Thus

\[c = p \cdot \xi' = p \cdot \int_{E_0} f dt = \int_{E_0} (p \cdot f) dt. \]

Then for every measurable set \(E \subset A \) we have

\[\nu(E) = p \cdot \mu(E) - c = p \cdot \int_E f dt - p \cdot \int_{E_0} (p \cdot f) dt = \int_{E_0} p \cdot f dt + \int_{E_0} (-p \cdot f) dt. \]

If \(g(t), \; t \in A \) denotes the scalar \(g(t) = p \cdot f(t) \) for \(t \in A \), then

\[g(t) = - p \cdot f(t) \]

for \(t \in E_0 \), then

\[\nu(E) = \int_{(E_0 - E)}^{(E_0 - E)} g(t) dt \geq 0 \]

for every measurable subset \(E \subset A \). This implies that \(g(t) \geq 0 \) almost everywhere.
where in A.

Let $A_o [A_\delta, \delta > 0]$, be the set of all $t \in A$ with $g(t) \leq 0 [g(t) \leq \delta]$. Then all sets A, A_δ are measurable, $A_o \subset A_\delta \subset A_o$, $A_\delta - A_o \rightarrow 0$, meas

$(A_\delta - A_o) \rightarrow 0$ as $\delta \rightarrow 0 + 0$. Let μ', μ'' be the functions $\mu'(E) = \mu(E - A_o) = \int_A f \mu o \partial, \mu''(E) = \mu(E \cap A_o) = \int_A f \mu o \partial$, both defined for all measurable subsets $E-A_\partial$ of $E \cap A_o$ of E. Let H', H'' be the ranges of μ' and μ''. Since $p \cdot \mu''(E) = \int_A (p \cdot f) dt = 0$, we see that the range H'' of μ'' is contained in the hyperplane Π: $p \cdot x = 0$. By a change of coordinates we could, therefore, represent H'' by means of an $(n-1)$-vector function, that is, as the range of the values $\int_A f(h) dt, h = (h', \ldots, h^{n-1})$, for an L-integrable $(n-1)$-vector function g. By the induction argument, H'' is therefore a convex closed subset.

Let us prove that $(*) \nu(E_s) \rightarrow 0$ implies $\mu'(E_s) \rightarrow 0$ for any sequence $[E_s]$ of measurable subsets of A. Let $E' = E_s - A_\delta$, and let us assume that this statement is not true. Then there is some $m > 0$ and a sequence, say still $[E_s]$, with $|\mu'(E_s)| \leq m > 0$, and hence also $|\mu(E')| = |\mu(E_s - A_\delta)| = |\mu'(E_s)| \leq m > 0$. Since f is L-integrable in A, there is some $\sigma > 0$ such that $\int_A |f| dt < m/2$ on every measurable subset E of A of measure $\leq \sigma$. This implies that meas $E_s \geq \sigma$ for every s, since otherwise $|\mu(E')| = \int_A f dt < \int_A f dt < m/2$, a contradiction. Finally, if we take $\delta > 0$ so that meas $(A_\delta - A_o) < \sigma/2$, we see that the set $E'' = E_s - A_\delta = E_s - (A_\delta - A_o)$ has measure $\geq \sigma/2$, and hence $p \cdot f \geq \delta$ everywhere in E'', and $\nu(E_s) = \nu(E') \geq \nu(E'') \geq \delta \sigma/2$, while $\nu(E_s) \rightarrow 0$, a contradiction. We have proved $(*)$.

Since $\xi \in \text{bd } H$, there is a sequence $[\xi_s]$ with $\xi_s \in H, \xi_s \rightarrow \xi$, and hence
a sequence of sets \(B_s \subset A \) with \(\mu(B_s) = \xi_s, s = 1, 2, \ldots \). Then \(\nu(B_s) = p \cdot \mu(B_s) - c = p \cdot \xi_s - c + p \cdot \xi - c = 0 \). By force of (*) we have then \(\mu'(B_s) \to 0 \) as \(s \to \infty \), or \(\mu(B_s - A_o) \to 0 \). On the other hand \(\mu''(B_s) = \mu(B_s \cap B_o) = \mu(B_s) - \mu(B_s - A_o) \to \xi \) as \(s \to \infty \). This proves that \(\xi \in \text{cl } H'' \).

Since \(H'' \) is closed we have \(\xi \in H'' \), that is, there is some set \(E_1 \subset A \) with \(\xi = \mu''(E_1) = \mu(E_1 \cap A_o) \). This proves that there is some measurable subset \(E = E_1 \cap A_o \subset A_o \subset A \) with \(\mu(E) = \xi \), that is, \(\xi \in H \). We have proved that \(H \) is closed, and thus, by induction argument, (III 2.iii) is proved for every \(n \).
