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EXISTENCE IN THE LARGE OF PERIODIC SOLUTIONS OF
HYPERBOLIC PARTTAL DIFFERENTIAL EQUATIONS

by

Lamberto Cesari *

The problem of existence of solutions é(x,y) periodic in x and in y of
period T for an hyperbolic partial differential system of the form

Uy = f(X>YJu:ux:uy): (l)

where u = (uz,...,uy} and £ = (fi,...,fyn) is periodic in x and y of period
T, presents a number of difficulties when no damping of any sort is assumed.
In this paper we analyze this difficult problem in the line of our previous
work on ordinary and partial differential equations. We conclude with
criteria of existence for solutions to the problem above. These criteria
can then be used for the analogous problem for the equation

Uxx = Yyy = g(X)Y)u)ux)uy)' (2)

*Research partially supported by NSF Grant G-57 at The University of Michigan,
Ann Arbor, Michigan.



1. THE MODIFIED PROBLEM

1. MODIFIED PROBLEM

We shall first associate to (1), thé analogous weaker problem, or mod-
ified problem:

Given two periodic functions ug(x), vo(y) of class C* in (-w0,+®) and
of period T,

uo(x+T) = uo(x), vo(x+T) = vo(x),

determine a Function @(x,y) continuous with its partial derivatives QX,Qy,QXy,
two functions m(y) and n(x) both continuous, and a constant p, such that

O(x+T,y) = O(x,y) = o(x,y+T), n(x+T) = m(x), n(y+r) = n(y),
7 FT (3)
m(y)dy = O, n(x)dx = O,
(6] O
and
®xy = f(X)Y)Q)QX)ﬁy) - m(Y> - n(x) - u. (k)

For this modified problem we shall prove theorems of existence, uniqueness,
and continucus dependence on the boundary values and parameters. In (h) we
assume

f(X+T>Y)Z}P)Q) = f(X)YJZ)PJQ) = f(XJy+T:Z)P)Q)°

Then the function é is a periodic solution of the original problem (1) if
and only if we can determine uy(x), vo(y) in such a way that

L o= 0, m(y) = O, n(x) = O.

Criteria for this occurrence are given in Section 2.

2. THEOREM I (existence theorem for the modified problem)

If T >0, and N,Np,Nz,L,M,by,b2,M;,M2,M3 > O are constants, if A and R
are the sets



A = [0<x<T, 0<y<Tl, R = [0<x<T,0<y<T, lz]< My,

Ipl< Mz, lql< Ma],
if
My >N + (Np#Np)T/2 + 3L T°,  Mp >Ny +3LT, Mg >Np +3LT,  (5)
if
uo(x), 0<x<T, vb(y), 0<y<T,

are vector functions which are continuous with ug'(x), vo'(y), if

f(XJY)Z)P)Q)y (X:Y;ZJP:Q)GR,

is continuous in R, and

uo(T] = uolo), vo(T) = wvolo) = O, u'(T) = uo'(O), ©

o' (T) = vo'(o),

hug(o)|< N, luo(x1)uo(x2) < Nafx1-x2], |vo(y1)-vo(y2) I< Nalyi-yal,
(7)

f(T)Y:Z:P)Q) = f(O:Y)ZJP;Q); f(x)TJZ)P}Q) = f(X:O)Z;P:Q)) (8)

|£(x,7,2,2,0) < L, 1£(x,7,2,01,32)-2(x,7,2,P2,02) |< b1|pa-pzl+b2]a1-az] (9)
then for

oT by < 1, oT by < 1 (10)
there exist a vector function ¢(x,y), (x,y)eA, continuous in A together with

$x By, Pxy, continuous vector functions n(y),o <y <T,n(x),0 <x<T, and
a constant p, such that

o(x,0) = o(x,T) = uo(x), oy(x,0) = ©oy(x,T), (11)
2(o,y) = o(T,y) = uslo) +v(y),  dxloy) = #x(T,¥), (12)
m(o) = m(T), n(o) = n(T), (13)
by (x,y) = £(x,¥7,8(x,5), $x(x,¥), By(x,¥)) - m(y) - n(x) - u, (14)



T T ’
JF m(n)dq = O Jf n(€)dt = o0, (15)

T T
o= T2 d/\ u/\ £(&,m,8(6,n), fx(&,n), by (&,n))dk dn, (16)
T
m(Y) = Tt f f(g)Y:ﬁs(éJY))ﬂéx(g:Y)J Ysy(E:Y))dé - M (17)
e}
T
n(x) = Tt f f(x,n:ﬁ(xm);?ﬁx(xm);¢y(x’ﬂ)))iﬂ - M, (18)

for all 0 < x < T, o <y <T. Thus, by extending all functions 4(x,y),

n(y), n(x), f(x)Y)Z)p}Q) for all -» < x,y < 4o, Izls M, |PIS<M2) IQ|S Ms,

by means of the periodicity of period T in x and y, Equation (lh) is satisfied
in the whole xy-plane.

3. PROOF OF THEOREM I

First let us note that relations (11), (12), (14), (15), imply (16),
(17), (18). 1Indeed, by integration of (14) on A, we deduce (16). Then, by
integration of (14) again ono < x < T, or on o <y < T, we deduce (17) and
(18) respectively. Note that (8), (11), (12), (17), (18) imply (13), and
that (14), (16), (17), (18) imply (15).

let us first prove that every vector function é(x,y), (x,y)eA, satisfying

SIS(X:O) = ¢(X,T) = U.O(X>, ?S(O,Y) = ﬂS(TJY) = U.O(O) +VO(Y))

(19)
|6(x1,y1) - p(x1,y2) = d(xa,y1) + ¢(X2;Y2)|§ 6L|x1-x2] |y1-y2l
also satisfies the relations
|¢(X;Y)IS Ma, |6(x1,y) - é(X2:Y)|S Mo|x1-x2|,

(20)
lo(x,y1) - o(x,y2)< Maly1-yal.

Indeed, we have, for o < x <T,o<y<T,
|4(x1,y) = B(x2,5) - $(x1,0) + f(x2,0)|< 6L|x1-x2|y,
where
l¢(X1:O) - é(xz,0)| = |uo(X1)-uo(X2)| < N1|X1-X2I,
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and hence

|6(x1,y) - ¢(X2;Y)|S (N1 +6Ly) | x1-x2]

Analogously, we have

|6(x1,y) = ¢(X2;Y)l§ (N1 +6L(T-y) ) | x1-x2] .

Since, either o <y < T/2, or o <T-y < T/2, we have

|6(x1,y) = plxz,y)I< (N #H31IT) | x1-x2|< M2|X;-X2|-

Analogously, we prove that

[6(x,71) = d(x,y2)|< (No43LD) |y1-yal< Msly1-yal.

Finally, for 0 < x,y < T/E,

16(x,y) I<|(0,0)| + |6(o,y) - 4(0,0)| + |B(x,5) - do,y) <N + Np y + (N1+6Ly)x
<N + (Np#Np)T/2 + 3112 < M.

Anglogous reasoning holds for (x,y) in the remaining quaadrants of A. Thus

|#(x,y)|< M1, (x,y) A. We have proved that relations (19) imply (20). Also,

the vector functions ¢(x,y) satisfying (20) are all Lipschitzian in A, and

hence have partial derivatives ¢X,¢y a.e. in A satisfying |dy|< M2,I¢y|§ Ms

a.e. in A.

The vector function f(x,y,z,p,q) is continuous in R. Hence, there are
continuous monotone functions wi(a), ws(B), ws(y) in [0, +») such that
wy(0) = wa(o) = az(o) = 0, and
If(XlJy,’ZJPJQ) - f(x2:y)Z)p;Q) IS wl(lxl“xal):
|f(X)Yl:Z:PJQ) = f(X)YZ:Z:P)Q) IS we( IYI‘Y2| ): (21)
|f(X)Y)Zl;PJQ) = f(x;y,’ZZ)p)Q) lf_ wS(IZl‘ZZ| )}
for all
0 < X,X1,X2,¥,¥1,72 < T, IZ‘;izll;Izal < M, [PI < Mg, |QI < Ms.

The vector functions uy'(x), vo'(y) are continuous in [0,T]. Hence,
there are continuous monotone functions wg(a), ws(B), o < @,B < + ®, with
wge(o) = ws(o) = o, such that

lug' (x1) - U (x2) [< wal|x1-x2]), lvo' (y1) - Vo' (y2) < ws(|y1-ya] ). (22)



Let

1]

n1(8) (1-2T bo) lws(B)+2T wa(B)+2T ws(MaB)+12IT byB], (23)

I

n2(a) (1-2T b1) " *lwg (@)+2T wy(0)+2T ws (Ma)+12LT bol]. (2lk)

Both n1(B) and no(), o < @,B < + ®, are continuous monotone functions with
ni(o) = nalo) = 0.

Let E be the linear space of all vector functions ¢(x,y (x ,y)€EA, con-
tinuous in A together with their partial derivatives éx, éy with norm
Hé” = max |¢| + max |¢X| + max [éyl where max is taken in A.

Let K be the subset of E made up of all vector functions o(x,y)eE
satisfying relations (19) and in addition

?sx(o;.Y) = ﬁx(T;Y); éy(x,o) = éy(x;T)) Mx(xlyb") - éx(XZ:Y)I .
< ﬂz(lxl-xal), Iéx(X;Yl) - 5x<X;Y2)|S 6L'Y1-Y2|: |¢y(X1:Y) - éy(XE;Y)]
< 6L|y1-y2!, lféy<x)§’l) - ﬂgy(X;Y.e)lS n1)lyi-yal). (25.)

Then the vector functions ¢sK satisfy relations (20) and then ]¢I< M,,
Ié ]< Mo, |¢y|< Mz everywhere in A. As a consequence the vector function

F(X:Y) = f(x).Y) é(X:Y): 7$X(X;Y) é X,y )) (X;Y)GA-) (26)

is defined everywhere in A and is continuous in A.

For geK the vector functions m(y) and n(x) defined by (17) and (18) are
continuous in [o,T]. With p defined by (16), the vector function

X ny
Wow) = wol® o)+ [ [ ) - at) < alt) - wlaan (en)

is continuous in A together with its partial derivatives

y
bloy) = a0+ [ [RGen) - al) - ale) - wlan, (28)
W) = v+ [ IR(Ey) - aly) - n(e) - ulat. (29)

Thus, relations (16), (17), (18), (26), and (27) define a map € : ¥ =5 4,



or C: K~E. Let us prove that actually™¢o ¢ K - K.
Since ]flf L, by (16), (17), (18) we deduce
lulgz,  In()], In(x)lg ez,

On the other hand, by (6), (8), (25), (26), (27), (28), (29), we have with
the usual convections

F(O;Y) = F(T)Y)) F(X)O) = F(T:O)) m(o) = m(T); n(o) = n(T))

T T (30)
f m(n)dn = O, f n(£)dt = oO.

(o)

W(X,O) = W(X)T) = uo(x): Wy(X,O) = WY(X)T)) W(O,Y) = W(T)Y)
= ug(o) + voly), Vx(o,y) = Ux(T,y), (31)

W(x1,y1) - Vauya) - ¥(xz,yi) + ¥(xz,y2)]

A

X2 n¥a
- 1) [ e - ala) - a(e) - wlat anls 6nlxaenal lysval.

X1 Jyi

(32)

In other words V¥ =’tj¢ for ¢€K satisfies reactions (19) and, hence, relations
(20) as proved in No. 3. Also, we have
Ya
lf [F(x,n) - m(n) - u(x) - wlan,
NA

!Wx(x)Yl) - Wx(X)YE)|

[y (x1,5) = ¥y(xa,y)] | f [F(&,y) - m(y) - n(E) - ulag,
X1

and hence

W (x,71) = ¥y (x,52) | < 6Lly1-yal, ¥y (x1,y) - ¥ (x2,5) | < 6Llxa-x2].

(33)

We have further, from (17),



| T
n(y1) - my2)| = ]T'lf (208,52, (8,51) 85 (8,51) 18, (,51))

0]

T
- £(&,y2,8(8,y2) ,8x(E,y2), dy(E,y2))hEl< T"lf [wa(ly1-yal) + as([4(E,y1)-(&,y2)])

+ b1l (E,y1) - Ay(E,y2)| + baldy(E,y1) - 4,(8,y2)[lat

<wz(lyi-yal) + es(Malyi-yal) + 6L bilyi-yal + bz nally1-yal),

and analogously

In(x1) - n(x2)|< w1(]x1-x2]) + ws(Malx1-xa]) + by nal|x1-x2]) + 6L ba|x1-x2] .

We have now, from (29)

[y (oya) - b Gore)l = v (ya)-ve ' (v2) + f [£(8,71,8(8,71) 6 (8,51) ,8,(&,51))

(¢}

- m(y1) - £(8,52,6(6,72),85(8,y2) B, (§,52)) + m(ye) Jat|< ws(lya-val)

' T
+ u/\ [wz(IY1-Y2|) + ws(lé(£;¥1)-¢(£;¥2)l) + bllﬁx(EJY1)-¢x(§;Y2)l + b2|¢y(§:Y1)

- (&y2)| + In(ya)-n(y2)[1a8 < ws(lyi-yal) + 2T wa(lya-yal) + 2T ws(Mslya-yal)
+ 12IT bafy1-y>| + 2T b ma(lyi-yal) = (1-20 b2)na(lyi-yal) + 2T be n2(lyi-yal)

= nu(lyi-yel). (34)

Analogously, we have

Wy (x1,5) = ¥y (x2,5) I< mallx1-x2]). (35)

Relations (31), (32), (33), (34) show that ¥ =€ § for geK satisfies all
relations (19) and (20). Thus ¥ € K, and 7> : K =K.

The transformation htf: K~»X, XKC E, is continuous in K with respect
to the norm Hé” of E. Indeed, for two vector functions éjeK, J=1,2, we

have Wj =(T? éi, Fj = Fé_, my = mé_(y), nj = néj(x), “j = “ﬁj’ J=1,2, and
from (17), J J

T AT
IHl'HZI = ‘T-gf f f(ﬁ;n,él(ém),ﬁﬁlx(ﬁ;n),ﬂély(ﬁ,ﬂ))

e} 0]

- £(&,M,82(8,n) ,2x(€,n) ,62y(&,n) ) 1dE dﬂlf [ws[|p1-Boll+b1lld1-d2ll+balld1-gall 1.
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Then from (18) we have

T
m()nay)] = [T [ el galor) daxton) bay(er)

0

- £(x,¥,02(%,5) ,62x(x,¥) b2y (x,y Ndx + p1 - uz

2lag ([|1-p2ll ) +o1llp1-Bol+b2lld1-p2ll]
and analogously from (19),
Iny (x |< 2[wg ([|[g1-g2ll ) +ollg1-gall+b2ll1-d2ll 1.

We reduce from (27)

X py
[a(x,y)-valx,y)| = |Jf 4{ (F1(&,m)-m1(n)-n1(€)-p1-Fo(&,n)+ma(n)+na(E)

+ uzl dé dﬂ|< 6r° las ([|1-p2ll) +(b1+b2)||f1-B2ll]

Analogously, from (28) and (29),

IV 1x (2,5 ) Vg (x,5) |< 6T (lIf1-p2ll)+(b1+b2) |62-2ll 1,

Wiy (x,y)- Yoy (x,y) )|< ér wB(Hél ol )+(br+b2) h1-p2ll 1.

Thus ||¥1-¥2| + O as ||#1-@2| + O uniformly in K. Finally, the set K is ob-
viously convex, closed and compact with respect to the norm Hﬁ” of E. By
Schauder's fixed point theorem we conclude that there is an element §(x,y)eK

such that ¢ = 'Z? é, or

X y
Bow) = uylrg(r | [ TE(6,n,8(5,0) e (2,1),85(8,0)) -m(n)-n(e)-ulat an,
(@] @]

2
N
I

T
T-lf f(g:Y;¢(§:Y):éx(g;Y))YSy(g;Y))dg - M,

o]

T
n(x) = Tt L/h f(x,ﬂ;é(x,ﬂ),¢x(x,ﬂ):¢y(x,n»dﬂ - M,

T AT
Bo= 72 U/\ u/w f(ﬁ;n,¢(§,ﬂ),¢x(é,n);%y(ﬁ,nbdi dn,
(0] 0

for all o < x,y <T. Obviously g, éy, ¢xy exist everywhere in A, are con-
tinuous in A and, everywhere in A, we have

8



75 = f(XJY:fé:?gX:?éy) - m(Y) - n(x) - K.

Xy

Theorem I is thereby proved.

4. REMARK 1

If f is Lipschitzian with respect to all variables x,y,z,p,q in R, and
if uy'(x), vo'(y) also are Lipschitzian, then m(y), n(x), as well as §, fx,
éy, éxy are Lipschitzian. Indeed, if wi(Q) = k10, wa(B) = ko, ws(y) = boy,
we(0) = kaa, ws(B) = kB, then

n1(B) = (1-2T b2) *(ks*2T k2T by Mz+l2LT by)B = keB,
n2(a) = (1-27 by) " (kgt2T k1+2T by Mo+12IT bo)a = ko,
and then

Im(y1)-m(yB) < (katboMa+6L b1+bke)B = keB
In(x1)-n(x2) |< (k1+boMatbik7+6L bo)a = ket

Formulas (33), (34), (35) show that @, ¢y are also uniformly Lipschitzian
and so is éxy = fom-n-y.

5. REMARK 2

The conditions of Theorem I do not assure uniqueness, as the following
example gows Teke T = 1, uy(x) = 0, vo(y) = O,
f= |z| sin 2 x sin 2ny, for o < x,y <1, and all y;z,p,q. Then the equa-
tion

/2 _
Uyy = [ul sin 2nx sin 2ny (36)

besides the trivial solution ¢1(x,y) = 0, has also the solution

po(x,y) = (16x%)"t sin*nx sin*ny, o < x,y < 1, and both satisfy the boundary
conditions. We have here my(y) = ma(y) = O, nl(x) = npo(x) = 0. Note that
wemaytakeN=Nl=N2=O,L=l,M1-l,M2-M3=2,b1=b2=0. All
conditions of Theorem I are satisfied.

6. THE LIPSCHITZIAN CASE

We shall assume now that wg(y) = by|y|, so that f is now Lipschitzian
in z,y,q with constants bgy,b;, bs. In thls situation, for given boundary
values u,(x), vo(x) and different functions g1, $» €K we have



|ns-nzl< (botortoo)gi-dal, Imi(y)-na(y)], Ini(x)-na(x)]< 2(bo*bytbs)llg1-gal,
IV1(x,y)-¥a(x,y) [< 6T%(bo+b1+02) [61-dall, 1Vix(x,y)-Yax(x,y) ], [Way(x,y)-Yoy(x,y)]
< 6T(botba+bz) |f1-pal -

Thus

la-vall = | Cha-T bell 61(242) (botba+b2) [da-dell

If we assume now that

6T(T+2) (bo+b1+bs) < 1, ’ (37)

then Zf: K - K is a contraction into. This remark yields:

7. THEOREM II (uniqueness)

Under the same hypotheses of Theorem I, if ws(y) = bolyl, and (37) holds,
then ¥ : K + K is a contraction and problem (11-18) has one and only one
golution.

The boundary values are represented by the pair of functions w = (ug(x),
Vo(y)) of class C! and satisfying (6) and (7). Therefore, they form a subset
@3 of the linear space of all w of class C! satisfying (6) only, and we take
in this linear space the norm

Wil = max|ug(x)| + max[us'(x)| + max|vo(y)| + max|ve'(y)]. (38)
The solution of the problem (11-18) is actually the system W = [4(x,y), m(y),
n(x), ul]. These quadruples also can be thought of as inbedded in a linear
space on which we take the norm

Wl = max[g] + max|dy| + max|gy| + max|m| + max|n| + [u]. (39)

We shall prove that the solution, or system W, is a continuous function q??
of the boundary values, or system w, and we write

Fu w3

W =
We ghall need the numbers
A = (1-6T by)(1-6T ba) - 36T%1bs, k = 6T2b, + 72T by(brtbs)
' (ko)

10



8. THEOREM III (continuous dependence upon the boundary values)

Under the conditions of Theorem II, if in addition A > 0, and 0 <k <1,
then the solution W = (4,m,n,u) of problem (11-18) is a continuous function
d;z of the boundary values w = (uo,vb)€<22 in the topology determined by the
norms (38) and (39).

9. PROOF OF THEOREM III
Let w1 = [uo1(x),vo1(y)], wo = [uoa(x),vos(y)] be a pair of boundary

values as in Theorems I and II, and let Wi = [#1,m1,n1,u1), Wo = [fo,mp,np,psl
be the corresponding solutions. Let

€ = |wi-wol = max|uoi(x)-uoa(x)| + max|uoi'(x)-uocs'(x)| + max|voi(y)-voa(y)l

+ max|vo1'(y)-voa'(y)],

Q& = max Iél(xyy') - ?SE(X)Y)L B = max IélX(X)Y) - éax(x,-b’”:
y = max |piy(x,y) - bay(x,¥)|, 5 = max |m(y) - ma(y)l,
8' = max |ni(x) - na(x)|, 8" = |ui-naf.

We shall denote by F; and Fo the functions F relative to él and 62. Then we
have

TAT
8" = |pi-po| = IT-ZU/\M/1 [F1(x,y)-Fa(x,y)lax dy|< b + biB + bay,
o o©

T
iT'l\/n [Fa(x,y)-Fa(x,y)ldx - p1 + pa|< by a+ bif + by + 8",
o

Iml(y)‘m2(Y)I

T
[T-l\/m [F1(x,y)-Fa(x,y) lay-patusl< Dol + b1f + by + 8",
o

Iny(x)-na(x)|

Hence
8" < bot + b1 + by, 8,8' < bo + bif + by + 2. (k1)

Analogously,
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|1 (x,y)-d2(x,y)] =

XAy
luo1 (x)+vo1(y)-uoa(x)-voa(y) +k/ﬁ /« [Fy(x,y)-m1(y)-n1(x)-p1-Fo(x,y)ma(y)

[N
o ©

rna(x)+uzldx dy|< e + T2(bg0tb1B+ooy+6+8'+8" ), [Bax(x,¥)-pax(x,y) |
< € + T(botb Btbay+8+8'+8"), |h1y(x,y)-bay(x,y) [< € + T(bo0ib1B+boy+0+0'+0"),
and hence
a<e+ T2(boa+b15+b27+6P6'+6"), B,y < € + T(b otb1Ptby+0+d'+0").  (42)
Relations (41), (42) yield
8" < (bg@tb1B+bay),  ©,8' < 2(boatb1Btbay), @ < € + 6T%(botb1B+bay),

(L3)
B,y < € + 6T(bo0tb1B+boy).
The last relation can be written in the form
B = 6T’bo§1a + 6Tb1E1B + 6Tbobyy + €, 7 = 6T bobs + 6Tb1EoB + 6Tboboy + €
where o < €1, &5 <1 are convenient numbers, and then
(1-6Tb1E1)B - 6Tbob1y = 6Tbob10 + €ky,- 6TboboB + (1-6Tbobo)y = 6Tbokotets

If A' is the determinant of this system we have A' > A > o0, o 6Tbj <1l, J =12,
and

B = A TH{(1-6Tbaots)(6Tbok 10+ek1)+(6Tbot ) (6Tbot uteln) ) < 2071 (e+6Tbot) .
Analogously, we have
7 < eA-l(e+6Tboa);
Finally, by (43)
o < € + 36T° MyA™Y(bytbo)a + 6TMQ.
Since the number k defined in (4O) is o <k < 1, we have
a < (1-k)"1(1+1287 T2 (b1+bo)e.

This proves that Q,B,7,5,8',8" = 0 as € + O uniformly in K. Theorem III is
thereby proved.
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10. A METHOD OF SUCCESSIVE APPROXIMATIONS

Under the hypotheses of Theorem III, the usual method of successive
approximations defined by ¢k+l = Ték,k = 0,l..., converges toward the solution
é of problem (11-18), where ¢o is an arbitrary element of K. It may be con-
venient to useas first approximation

O = uolx) + voly).
Then
T AT
Fo(x,y) = £(x,57,u0(x)+o(y), uo'(x), vo'(y)), vo = T'gu/\ Fo(&,n)at dn,
(e} (e}

T T
mo(Y) = T_If Fo(g)}’)dg) uo(x) = T_lf FO(X;Tl)dT\;
@] O

Xpy
brl6y) = wol0roly) + [ | [Ro(t,n)mo(n)-no(E)-solat an,

and successively,

Fk(XJ.Y) = f(X)YJYSK(X:Y):ékx(X:Y)ﬁéky(X)y}):

5 TAT T
o= T \jf u/‘ Fr(&,n)at dn, m(y) = T‘lb/\ Fi(&,y)dE,
O e} (e}

T
n (x) = T'lk/ﬂ B (x,n)an,  drarlx,y) = uolx)+vo(y)

0]

T AT
+[[ [Fk(§,T])—mk('r])-nk(g)-uk_]dg dn, k = 1,2,..

Then we have gy > §, frx > fx, Pky > by, M > m, nc> n, bk > p uniformly for
0<x<T, o<y<T, and consequently we have also ¢kxy > gxy as k >
uniformly.

11. GSMOOTHNESS OF THE SOLUTION

Two theorems can now be stated concerning the smoothness of the solution
(f,m,n,n) of the problem (11-18).

(o) Under the conditions of theorems I, II, III, if f(x,y,z,p,q) is of
class C* in R and uy(x), vo(y) of class C2, then m(y), n(x) are of class C!

i)



and p(x,y) of class C2.

This statement was essentially proved in Section 12 of [2a]. A more pre-
cise statement is as follows:

(B) Under the conditions of Theorems I, II, III, if f(x,y,z,p,q) is of
class C' with Lipschitzian first order partial derivatives, if u,(x), vo(y)
are of class C2 with Lipschitzian second order derivatives, then m(y), n(x)
are of class Ct with Lipschitzian first derivatives and ¢(x,y) of class C2
also with Lipschitzian second order partial derivatives.

The proof is the same as for (a). An analogous statement holds:

(y) Under the conditions of Theorems I, II, III, if f(x,y,z,p,q) is of
class C™T in R with Lipschitzian partial derivatives of the order l+r, if
uy(x), vo(y) are of class c2T yith lipschitzian derivatives of the order
2+r, then m(y), n(x) are of class ¢'™ with Lipschitzian derivatives of order
l+r, and ¢(x,y) is of class 02+r with Lipschitzian partial derivatives of the
order 2+r.

2. CRITERIA FOR THE EXISTENCE OF PERIODIC SOLUTIONS
IN THE LARGE OF THE ORIGINAL PROBLEM
12. A DIFFERENTTIAL EQUATION CONTAINING A SMALL PARAMETER
et us consider the differential equation
Uy = f(X)Y)u}uX:uy): f = G[W(X;Y)"“Cu"‘\l!l(y)ux+\lfa(x)uy] +€2g(x;y)u)u){zl)i)6f§1

where € is a small parameter, and V¥, Vi1, Vo, g are periodic functions of period
T in x and y. The Fourier series of V¥, V1, Vo will be denoted by

¥(x,y) ~ (amn cos mbx cos nwy + by, cos mbx sin nwy + c
m, =0
+ dyp sin mox sin nwy),

nn Sin mox cos nwy

(ee]

Va(y) ~ e + Z (en cos nwy + £, sin nwy),
1

00

Va(x) ~ go + }: (gn cos nww + Ay sin nwx).
1

1k



If uo(x), vo(y) denote arbitrary boundary values, with vo(o) = O, and uo, Vo
both of class Ct and ug', Vo' Lipschitzian with constants ki, ko respectively,
then it is convenient for us to denote their Fourier series as follows:

[oe]
U (x) ~ oy + j{j (o cos nww - Q + By sin nwx),
1
[e0]

Vb(Y) ~ j{: (7n cos nwy - yp + Oy sin nwy ) ,
1

where both series Zomj Zyn are absolutely convergent. With this notation we

have
(o)

T
uo(o) = 0, VO(O) = 0, T-lk/ﬁ uo(x)dx = QO - zgi Qn»
o ' 1
0

7™+ fTvo(Y)dy = - Z Tn-

1

If we apply formally the method of successive approximations of No. 10 to
Equation (46) with initial values ug(x), vo(y), we obtain—at the first ap-
proximation and preserving only the terms in €-a quadruple [éo,emo,eno,euo],
with ¢o: Mo, Ng, Mo given by

XnYy
Polx,y) = uolx) + voly) + ¢ [Fo(&,m)-mo(&)-n5(n)-polat dn,
0 o o %f\%{\ o) 0 0
T T
(v) = Tt Fo(E,y)dE - p, no(x) = T Fo(xyn)dn - M,
Mo 4{ o] o) 4(

(48)

T AT | -
bo = T2 ff Fo(&,m)at an, Folx,y) = ¥(x,y)-Cuo(x)-Cvo(y)-¥1ly)us' (x)
(0] O
- Va(x)vo' (y).

If we write
[e]

[o0]
mo(y) ~ j{j (Bp cos nwy + Cp sin nwy), no(x) ~ j{j (Dp cos nwx + Ep sin nox),
1 1

15



we obtain

0 ©
Ho = Ay = a8y ¥ c(a, - }: Qg - ;Z 7s)s
1
(o]
mo(Y) = agg * % l(Y) + C<ao - z as) + CVo(Y) + 800 (.Y) - M, ()"'9)
1
(o)
no(x) = ago + a(x) + Cup(x) + eguot(x) + C(- }; rs) - K,
. :
T [o0]
wuly) = 17t \/F V(E,y)dE - ago ~ j{l (aon cos nwy + bop sin nwy),
o) 1
. (50)
T
HKa(x) = T L/ﬂ V(x,7)dy - ago ™ j{i (app cos nux + cop sin nwx).
o 1
In terms of the Fourier constants relations (49) become
[o0] 0
Ay = ago * (A }: Qg - }: 75), Bp = Cyp + nwg, By + agp,
1 1
(51)

Q
]

n Cop - ngy 7 * bon, Dp = COp + nwgayn + bop,

=
(=]
I

CBn - neqg Qp + Cno., n = 1,2,-..

We shall denote by u(x), v(y) the same functions ug(x), vo(y) up to a
constant so as to make them with mean value zero, or

o

—
>

~
1)

o] (o]
u(x) - 0o + Z Og ~ Z (0g cos swx + Bg sin swx),
1 1

<
~—
<
N~—’

i

0 00
vo(y) + }: Ts ~ }Z (7g cos swy + dg sin swy).
1 1

If we require po = 0, mo(y) = 0, no(x) = 0, then relations (48) reduce to

16



cviy) +eov'(y) = - aaly), Cu(x) +equ'(x) = - &x).

for eo # 0, we have

X
u(x) = exp(-eq Cx) [Ktey f exp(eo” CE) FA(E)dt],
(e}

(54)

-1 T b
K = - eo-2C(l-exp(-eo-lCT)) u/\ exp(e,”*Cx)dx k/ﬁ exp(e, *CE) &=(t)at,
0 °

T
where the constant K is determined in such a way that \/ﬂ u(x)dx = 0.
o)
Analogous relations hold for V(y). This determines all the coefficients
Qps Bps 7ns On» 0 = 1,2,... . Actually, relations (53) (54) are equivalent
to those we obtain from (51) by taking Bp, = Cp = Dy = Ep = O and solving with
respect to Qn, Bn, ¥n, On:

a, = (C®mn%w% ®)™ (-Capotnwescns), By, = (CP%%e®) ™ (-mwepano-Ceno),
7n = (CFn%%,%)™Y (-Cagntnogobon), 8n = (C®n*0%o®)™" (-nwgo-Chon),
n = 1,2,...

The coefficients On, Bn, Yn, on, n = 1,2,... , being so determined, then
equation py = Ay = 0 yields

0 0
a, = -¢"? + O +
o = - =Yelo) s 7ss
1 1

provided the series Zas, Zys converge. This will be the case under the
hypotheses of the criterion I below. We shall denote the corresponding
functions ug(x), vo(y) so determined, say U(x), V(y), or

o] o0

U(x) = UO(X) *t Qg - j{: Qg ~ Oy + j{: (as cos swx - Og + Bg sin swx),
1

o (55)

vo<y) - }: Bg ~ }Z (7s cos sWy - yg *+ dg sin swy).
1 1

<

~

<

~—r
I

17



Under the conditions of Criterion I we shall require that these functions
are interior points of the set defined by relations (6) of Theorem I.

15. CRITERION I

If the function f given in (46) for all l€|§ €, satisfies all conditions
of Theorems I, II, III with given constants T, N, N;, Np, L, M, M;, Mo,
Mz, bo, by, bo, and in addition f is Lipschitzian with respect to x and y in
R, if C # 0, and the functions HKi(x), H=(y), U(x), V(y) defined in (50)
and (55) are of class Cl with Lipschitzian first derivative, and

IU(O)IS No <N, ]U(Xl)-U(Xz)lf Nio|x1-x2|, Nio < Ny,
IV(yl)-V(Ye)S Nzolyi-yzl, Ngo < Ng,
then there is some Eg, 0 < E; < €, such that Equation (46) for all |€|§ 25,

possesses at least one periodic solution 6(x,y) of period T in x and y, which
is Lipschitzian in Ep together with d, éy, éxy:

¢(X)Y) = ¢(X:Y+T)-

The periodic functions uo(x) = ¢(x,o) é(X,T), vo(y) = ¢(0;Y) - ¢(O,O)
= ¢(T,y) - #(T,T), satisfy moreover relations (6) of Theorem I.

1

éxy = f(XJY)éyéxJéy): ¢(X+T)Y)

1. PROOF OF CRITERION I

Let us denote by k4o, kso the Lipschitzian constants of U(x) and V(y)
respectively, and let k4, ks be arbitrary numbers kg > k40, ks > kgo. Let
us denote as usual by ki, kg the Lipschitzian constants of f with respect
to x and y respectively in R.

Let S be the set of all pairs w = [ug(x),vo(y)] of functions ug(x),
vo(y) periodic of period T, of class Cl, with derivatives uy'(x), vo'(y)

Lipschitzian of constants kg4, ks, and satisfying relations (6) of Theorem I,
that 1is

luo(o)|s NJ |u0(X1)-U.O(X2)I_<_ Nllxl'x2| ) Vo(o) = O)

[Vo(Y1)-Vo(Y2)|§ No|yi-yol -

Then w = (U,V]eS. We shall consider S imbedded in the Banach space of
all pairs of periodic functions of class Cl with norm

vl = max|u(x)| + max|u'(x)| + max|v(y)| + max|v'(y)]. (56)
For every w = [uy(x),vy(y)]eS we shall determine the solution W = [#,em,en,eu]

18



of the modified problem relative to (46). Since this solution can be de-
termined by the method of successive approximations of No.10, we see that W
can be written in the form

~

o(x,y,e) = éo(x)Y) + €z(X;y,€), m(y,e) = mo(Y) + m(y,e),

n(x,€) = HO(X) + E(X)E): U(€> = Mo t ﬁ(€),

~

where g, m, n, L = 0(1) uniformly as € ~ 0, and fos my, 0y, My are given by
formulas (48).

Using the functions u(x), v(y) as in No. 8, equations u = O, m(y) = 0,
n(x) = 0 reduce to

cv(y) + gv' (y)

Cu(x) + equ'(x)

1]

(57)
age + C(0 -j{: oy - zg: 7.) - i(e) = o.
1 1
For ey = O we have
u(x) = -Cr@fa(x)+n(x,e€); (58)
for eg # O we have
ulx) = expl-eg x)[Kre,™ [ exnleq™CE) () (e €))at,
' o)
(59)

T

X
K = - ep -C(l-exp(-eo™CT))™" HZ\ exp(eo” cx>akaf exp(eo™ "CE)( Ha(t)

+n(k,e))at,

and hence

u'(x) = - ¢ (d/ax)( b(x)#i(x,€)) if e, = O,

u'(x) = - ey, T(Cu(x)+ ob(x)+R(x,€)) if e, # O. )

Analogous formulas hold for v(y).

This determines u(x), v(y) and hence all coefficients Gn, Bn, Yn, On,
ns=1,2,... . By Remark 1 we know that m, n are Lipschitzian functions, and
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so are m, n as well as 1, &%. Thus u(x), u(y) are periodic functions
of mean value zero, of class C1, with Lipschitzian first derivative. Thus,
the series 10y, Lyp are absolutely convergent, and (47), (57) yield

Ay = C-l(aOO'ﬁ(e) + Z Qg + Z 7sh
1 1 (61)

- - ¢ Mage-F(e)) - ulo) - v(o),

[e¢]

u(x) +ao - }za;s: voly) = v(y) - }: 7s- (62)

§

—~

z
1}

Note that these functions, when we take m = @ = 0, reduce to U(x) and
V(y) respectively, and thus the convergence of the series Zah, Zyn of No. 8
is proved above.

Actually, for every w = [u (x),v (y)]eS, we can first determine m,
n, uw as in theorems I, IT, ITI, and the method of successive approximations
of No. 10, then we determine m, N, and finally the second members of formula,
(58), (59), (60), (62) and analogous ones determine new functions, say

—

w = [U5(x),¥,(y)]. Thus, we have a mapc?z s
w = “Fw, weS,

whose fixed elements w =C;7'w, if any, have the property that p = O,
m(y) = 0, n(x) =0

We have already chosen the uniform topology of class Cl on w and W by
means of (55). Iet us choosethe uniform topology of class c® on m, n as
in Theorem III, as well as on m, Nn. We know already from Theorem III that
m, n are continuous functions of w, and so are E, n. The second members of
(58), (59), (60), (62) defines continuous functions of %, . Thus 7 is a
continuous function of w for weS in the topology defined by (55).

By Theorems I, II, III we know that m(y,e), n(x,e) are Lipschitzian
functions. The same property holds for m(y,e), n(x,e), but these functions—
as well as their Lipschitzian constants—have a uniform bound of the form
Me for some M > 0 and all |€|§ €. Then, by choosing convenient constants k,
ki, we have
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]H(Y)€)]) IH(XJQ)‘S ke, lalf ke, IE(YI)€>'E(Y2J€)]S kelYl'YZl:
[fW(x1,€)-U(xz,€) < kelxy-x2|, [T5-UI< ke, [Fo-VIS kue, [To'-U'I< Kae,
[Fo'-V' < ki, [To(x1)-U)x1)-To(x2)+U(x2) < ki€, IVb(yl)-V<Y1)-V(Y2)+V(Y2)15316;

1Tt (x1)-U" (x1)-To' (x2)+U" (x2) |< k1e, [Fo'(y1)-V' (y1)-' (y2)+V' (y2) I< ki€,

If k4, ks are the Lipschitzian constants of U', V', and
i -1 -1 -1
€, = minleg,k; (N-No), ki ~(N1-Nio), k1 (No-Nxo)
then for |e|< &, we have
Iab(o)lf U(o) + ki1e <No + ki€ <N, lab<xl)-uo(xz)|§ (Niotkie) |x1-x2|

< Ni|x1-x2/, ‘|ﬁo'(X1)-uo'(X2)|§ (katkie) |[x1-x2], lvb(Yl)-VO(YZ)|f

IN

(Nootkie) [y1-val< Nalyi-yal, [¥'(y1)-vo' (y2)|< (kstki€) |y1-val.

This shows that, for [€|§ €, c?z maps S into itself,cjz : S+ 5, and S is
a convex closed compact subset of a Banach space. By Schauder's fixed point
theorem % possesses at least one fixed element w = F weS, w = lug(x),vo(y)],
with up(x), vo(y) satisfying relations (6) of Theorem I. Criterion I is
thereby proved.
15. EXAMPLE

The equation

Uxy = e(1+u) + 628(XJY)u)uX:uy)

where g is periodic of period 2x in x and y, has a periodic solution
#(x,y) of the same period

$(x,y) = 1+ 0(e)

The analogous equation
Uyy = €(sin x - cos y - siny + cos y + u + uy - uy) + €2g(x,y,u,ux,uy)
with g as above has a periodic solution

d = cos x - cosy + 0(e).
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16. ANOTHER EQUATION CONTAINING A SMALL PARAMETER

Let us consider the differential equation
Uy = f(x,y,u,ux,uy), (63)

f = W(X;Y) + Cu + Wl(Y)ux + wz(x)uy + eg(nyJu)uX)uy))
where € is a small parameter, and V¥, V3, VYo are as in No.12. We assume here

that, for € = 0, Equation (63) possesses a known periodic solution of period
T in x and y,

Bo(x,57) = up(x) + vo(y),
where uo(x), vo(y) have Fourier series (47), and hence

V(x,y) = - Cuy(x) - Cvg(y) - valy)ug' (x)-valx)vy' (y).

Under the hypotheses below, we shall prove that for |€|#O sufficiently small,

(63) possesses a solution #(x,y) = fo(x,y)+0(e) which is periodic of period
T in x and y.

17. CRITERION II

If the function f defined in (63) for all Ielf €, satisfies all con-
ditions of Theorems I, II, III with given constants T,N,N;,Np,L,M,M;,M5,Ms,
bo,b1,b> and in addition f is Lipschitzian with respect to s and y in R, if
C # 0, if (63) possesses for € = 0 a solution go(x,y) = U(x)+V(y) with u, v
periodic of period T, if the functions U(x), V(y), os#(x), =(y) are ot
class C! with Iipschitzian first derivative, and

| ulo) < N, <N, |U(x1)-U(x2) |< Niolx1-x2], Nio < Ny,
IV(Yl)-V(Yz)IS Neolyi-yal, Neo < Ng,
then there is some €,, 0 <€, < €,, such that Equation (63) for all le|l< €,

possesses at least one periodic solution é(x,y) of period T in x and y,

which is Lipschitzian in Ep together with éx, éy, éxy:

éxy = f(X:Y)¢)¢X)¢y): é(X+T)Y) = é(X:Y) = ¢(XJY+T)-

The periodic functions up(x) = #(x,0) = d(x,T), vo(y) = #(0,y)-4(0,0)
= #(T,y)-$(T,T), satisfy moreover relations (6) of Theorem I.
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18. PROOF OF CRITERION IT

As in No.1l2 let us apply formally the method of successive approxima-
tions of No.lO to Equation (63) with arbitrary initial values uy(x), vo(y).
Then the quadruple [ﬁ,m,n,uL solution of the modified problem for Equation
(63), is given by

é(x:y;e) = éo(x;y) + ¢(XJY)€): m(Y)e) = mo(Y) + m(Y)e):

n(x,e) = ny(x) + Alx,e), ule) = uo + f(e),

where é,m,n,p = 0(1) uniformly as € + O, and éo,mo,no,uo are given by
formulas (48). In addition we know that for ug(x) = U(x), vo(y) = V(y), we
have po = 0, mo(y) = 0, no(x) = 0. We can now repeat with obvious variants
the argument of the proof of Criterion I.
19. EXAMPIES

The equation

Uy = - l+u+ wl(Y)ux + ¢2(X)uy + eg(X)Y)u)uxJuy)

for € = 0 has the obvious solution u = 1. Since C % O the same equation has
a periodic solution ¢ of period T in x and y for all Iel sufficiently small.

Analogously, the equation
Ugy = = cos x ¥ sinx +tcosy -siny +u+uy + uy + eg(x,y,u,ux,uy)
has, for € = 0, the obvious solution u = cos x - cos y. Since C # 0, the

same equation has a periodic solution of period 2x in x and y for every |€]
# 0 sufficiently small.

20. APPLICATION TO THE WAVE EQUATION

Iet us consider the differential equation

Upg - gt = f(t,é,u,ut,ug), (6k)
where f is periodic in t and & of period T. Then the transformation

t = x+y, & = x-y, x = 27%t+t), y = 2-1(’0-5), (65)
changes (64) into

Uy = F(XJY;u:ux;uy),
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where

-1 -1 -1 -1
F = f£(xty,x-y,u,2 uyt2 52" uy-2 uy) (66)
and F is periodic of period T in x and y. The theorems I, IT, III and
the criteria should now be applied to (66). Other transformations beside

(65) can be used.

As an example, let us consider the equation

Wy - uge = €IN(t,E)HCourha(t,E)ugtha(t,E)ug] + g(t,E,u,up,ue),  (67)
Mt,E) = A +By cos 2T + Cy sin 2t + Bp cos 2§ + Co sin 26

+ Dy cos(t+t) + By sin(t+t) + Dy cos(t+8) +Ep sin(t-£), (68)
Mty &) = A+ Bcos(t+t) + C sin(t+£) + D cos(T-£) + E sin(t-¢&),

Ao(t,8) = A' - B cos(t+t) - C sin(t+E) + D cos(t-8) + E sin(t-£),

where Ay, B,..., E are constants, Cy # O, and g is of period u in t and &.
By the transformation

£ = 27M(xty), E=2"(xy), x = t+f, y = t-§, (69)
Equation (67) is changed into
-1 2 , -1 -1 -1 -1
ugy = el¥(x,y)+ Courba(y)uytva(x)uy] + e g2 x+2 y,2 "x-2 y,u,uxtuy,
' (70)

ux—U.y>

}
where the second member has period 2x in x and y, and with

w(x,y) = aoo * a1o0 cos x + Cpy sin x + apy cos y + bo1 sin y + az1 cos x cos y

+ by1 cos x sin y + ¢33 sin x cos y + d11 sin x sin Y,

¥1(y) = eo + ey cosy + f1 siny, Yo(x) = go *+ g1 cos x +hy siny,

(71)

Aaoo = Ao, halo

Dy, kheor = Ei, bapy = Do, Uboy = Ep,

la;; = By+Bo, lbiy

[}

C1-Co, heyy = C1#Cp, h4dyy = -B1+Bp, keo = A+A',
ey = D, 2f, = E, ll-go = A-A.', le = B, 2h; = C.
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By Criterion I we conclude that, if Cg % O and Iel sufficiently small then
Equation (67) has at least a periodic solution ¥(x,y,€) of period 2¢ in x
and y, and then Equation (64) has at least a solution

u(t,t,e) = p(t+8,t-8,¢e),

also of period &tin t and §.

21. ANOTHER EXAMPLE

Iet us consgider the differential equation

Upy - UgE = }\.(t,é)'*' Cou + Xl(t,g)udc + Xg(t,é)ug + eg(t}gyu)ut)ug); (72)
where N, N1, Ao are given by (68) and again Cg, # 0. By the same trans-

formation (69) Equation (72) is changed into

Uxy = \V(X:Y) -hh.-lcou + ‘lfl(Y)uX""l’Z(X)uy + 68(2-13("“2-ly,ve-lx'g—lY:u)ux+uy}ux'uy):
(13)

where V¥, V1, Vo are given by formulas (71). It is immediately seen that (73)
for € = 0 has a solution of the form

u(x,y) = U(x) + V(y), U(x) = Qo + Qy cos x + B sin x,

V(y) = 71cosy +0d1siny

if and only if

By = A3Co(-ED1+DEy)+A 1 (A+A") (DD1+EF; )+A oCo(CDo+BES) 4 2 (A-A'" ) (BDo-CEp),
Bo = A3Co(ED1+DE;)+A1(A+A")(DDy-EE)+A sCo(-CDo+BES)+Ao(A-A" ) (BDoHCER),
Cy = A1Co(-DD1-EEq1)+A1(A+A')(-ED1+DE1)+A 5Co(-BDo+CEs)+A 5(A-A" ) (CDo+BES) ,

Co = A1Co(-DD1+EE;)+A1(A+A"') (ED1+DE1)+ASCo(BDo+CES)+As(A-A" ) (CDo-BES),

Ay = (CoP+(A+A1)3)-1, bo = (Cy2+(A-A)2)"1, (74)

In this situation, then

(02} Al(-CODl'I‘(A'l'A ! )El) s 51

b1(-CoE1-(A+A")Dy),

I

71 Ao(-CoDat(A-A')E2), 831

Ao(-CoEp-(A-A')Dp), G = - Co *Ag.
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By Criterion II we conclude that, if Cgq # 0, le] sufficiently small, ard
relations (74) hold, then Bquation (73) has a periodic solution $(x,y) of
period 2 in x and y, and (72) has a solution
u(th)e) = ¢(t+§}t'§)€)
also of period 2x in t and E.

For instance, for the equation
upt - ugg = Dy cos(t+f) + Ey sin(t+€) + D cos(t+8)+Ez sin(t-£) +u + ug
* eg(t,é,u,ut,ug)}

where Dy, Ei, Do, Ep are arbitrary constants, and g periodic of period = in
t and £, we see that relations (T4) are all satisfied with

]
I}

By =C; =Bp=Cs=0, B=C=D=E=0, Ay =0, Co=1, A=1,

A

I}

O, A1= A2=2-l..

The corresponding Egquation (73) is
huxy = Dy cos x +E; sin x +Dacos y +Exsiny +u+uy+uy + €.

For € = 0 this equation has the periodic solution éo(x,y) of period 2x
in x, y given by

-26o(x,y) = (D1-Ex)cos x + (D1+E1) sin x + (D2-Eg)cos y + (DotEp) sin vy,

and hence (75) for € = O has the periodic solution
uo(t,8) = -277(D1-Ey)cos(t+E)-27%(D1+E1)sin(t+E)-27*(Do*Ep)cos(t-¢)

-2"1(DotEs)sin(t-E).

Thus, for all |e| sufficiently small Equation (75) has a periodic solution
of period 2x in t and & of the form u(t,t) = uy(t,&)+0(e).
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