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5. EXISTENCE THEOREMS FOR f LINEAR IN u OR IN x

5.1. LINEAR PROBLEMS
We briefly consider in this chapter problems of minimum in which the sys-
tem has some linear character, say f(t,x,u) = (fl,l..,fn) is either linear in

u, or in x, or both,

dx/dt = B(t,x) u + C(t,x) , (5.1.1)
dx/dt = A(t,u) x + C(t,u) , (5.1.2)
dx/dat = A(t) x + B(t) u + C(t) , (5.1.3)

while the functional has one of the usual forms

I[x,u] = g(t1,x(t1), to,x(t2)) , (5.1.4)

Ihx,u] = J¢2 £ (t,x(t),u(e))at . (5.1.5)

In case the functional has the Lagrange form (5.1;5), the particular cases

f = Bo(t,x) u + Co(t,x) (5.1.6)
fo = Ao(t,u) x + Co(t,u) (5.1.7)
f = Ao(t) x + Bo(t) u + co(t) (5.1.8)

are of some interest. Above A,B,C denote matrices of the types n x n, n x m,
n x 1 respectively, and Ao’ Bo’ CO of the types L xn, 1 xm, 1x 1.

Problems as above are all particular cases of those considered in Chapter
3 and 4, and the existence theorems already proved apply.

Nevertheless, for problems with f linear in u (systems (5.1.1) and



(5.1.3), functionals (5.1.L) or (5.1.5),we list below (5.2) a few corollaries.
For problems with both f and fo linear in x, namely of the forms f = A(t) x
+ C(t,u), fo = Ao(t) x + Co(t,u) (particular cases of (5.1.2), (5.1.3), (5.1.7),

(5.1.8)), or alternatively for f as stated and functional (5.1.4), a completely

different theorem will be stated and proved in (5.3).

5.2. EXISTENCE THEOREMS FOR f LINEAR IN u

B a subset of the

As usual, A denotes a subset of the tx-space El+n’

T1xX1toxs - space B U(t,x) a subset of the u-space Em’ g, fo are scalars,

2n+2’
f an n-vector, and M,Q,Q are the usual sets M = [(t,x,u)|(t,x) ¢ A, u e U(t,x)],
o

Q(t,x) = £(t,x,U(t,x)) c En and z(t,x) = [; = (z ,z)’zo = fo(t,x,u), z

= f(t,x,u), u ¢ U(t,x)]CEn+ Finally, Q denotes a class of admissible pairs.

1
(5.2.i) (A corollary of theorem 1). If A is compact, B closed, M com-
pact, f = B(t,x) u + C(t,x), B,C matrices with entries continuous on A,
g(t1,%x1,t2,%x2) continuous on B, Q closed and not empty, then the functional
(5.1.4) has an absolute minimum in Q.
If A is not compact but closed, then (5.2.i) still holds under conditions
(a), (b), or (a), (b), (c), of (3.3), according as A is contained in
a slab [(t,x)lto <t<T, xe En], to’ T finite, or not. If A is contained in
such a slab, and the entries of the matrices B = (b, (t,x)), C = (ci(t,x))

1)
satisfy relations lbi (t,x)], ’ci(t,x)’ < H + K|x| for some constant H,K and
J
all (t,x) e A, then certainly condition (ao) of (3.3) is satisfied, and so is
(a). If A is not contained in such a slab, it is enough to know that the rela-

tions above for all (t,x) e A with |[t| < N and constants H,K depending on N.

This is certainly the case if f is of the form (5.1.3) with matrices A(t),



B(t), C(t) continuous on the real axis. For alternate conditions see (3.3).

(5.2.i1) (A corollary of Theorem 2). If A is compact, B closed, M com-
pact, f = B(t,x) u + C(t,x), B,C matrices with entries continuous on A,
fo(t,x,u) continuous on M and convex in u, Q closed and not empty, then the
functional (5.1.5) has an absolute minimum in Q.

If A is not compact but closed, then (5.2.ii) still holds under conditions
(a), (b), or (a'), (b), (c), of (3.4), and the same remarks hold as
before. For alternate conditions see again (3.4). If fo is linear in u, say
of the form (5.1.6) or (5.1.8), then certainly f_ is convex in u.

(5.2.ii1) (A Corollary of Theorem 3). Let A be compact, B closed, M
closed, f = B(t,x) u + C(t,x), B,C continuous matrices with entries continuous
on A, fo(t,x,u) continuous on M, convex in u, satisfying (V) fo(t,x,u) > y(t),
where ¥ is a locally L-integrable given function. Let us assume that the sets
a(t,x) satisfy condition (Q) at all (t,x) € A with exception perhaps of a set
of points in A whose t coordinate lie in a set of measure zero on the t-axis.
Let Q be a closed nonempty family of admissible pairs satisfying a relation
fti [.x'(t)|p dt < L for some p > 1 and L > O. Then the functional (5.1.5) has
an absolute minimum in Q.

Condition (V) can be replaced by the much weaker condition (y*) of (2.10).
Condition (Q) and condition (y*) and (V) are certainly satisfied under con-
ditions (@) and (X) of (2.12). (The last situation is an extension of the so-
called "normal convexity" case for free problems.)

If A is not compact, but A is closed, then theorem (5.2.iii) (and variants

above) still holds provided condition (b), or conditions (b), (a') of (4.3)



hold, according as A is contained in a slab [to <t<T, xe En], t, T finite,
or not. TFor alternate conditions see (L4.3).

(5.2.1v) (A Corollary of Theorem 3). Let A be compact, B closed, M closed,
f = B(t,x) u + C(t,x), B,C continuous matrices with entries continuous on A,
fo(t,x,u) continuous on M, and convex in u. Let us assume that the sets a(t,x)
satisfy condition (Q) at all (t,x) e A with exception perhaps of a set of
points in A whose t coordinate lie in a set of measure zero on the t-axis. Let
us assume that the following growth condition is satisfied: (y) given € > 0
there is a locally integrable function Wg(t) such that |B(t,x) u + C(%t,x)]
< we(t) + € fo(t,x,u) for all (t,x,u) e M. If Q is a closed nonempty family
of admissible pairs, then the functional (5.1.5) has an absolute minimum in Q.

Condition (Q) is certainly satisfied under conditions (o) and (X) of
(2.12), this situation being an extension of the so called "normal convexity"
case for free problems.

If a growth condition hold as (0): there is a scalar continuous function
®(g), 0< &<+ w, such that ®(£)/¢ >+ ©» as & >, and fo(t,x,u) > o(|u|) for
all (t,x,u) € M, then certainly condition (y) holds, and all sets a(t,x) have
pr5perty Q).

If A is not compact, but A is closed, then theorem (5.2.iv) (and variants)
still holds provided conditions (a), (b), or conditions @', (b), (c') of
(4.3) hold, according as A is contained in a slab [to <t<T,xe¢ En], to’

T finite, or not. For alternate conditions, in particular conditions (aa'),
see (4.3).
Analogous corollaires of theorem 4 and others are left as exercises for

the reader.



5.3. EXISTENCE THEOREMS FOR f LINEAR IN x

Let us consider first problems with system of the form (5.1.2), or
dx/dt = A(t,u) x + C(t,u)

Existence theorems 1 to L4 of Chapters 1 and 2 naturally apply. However, un-
like the case of f linear in u, these theorems do not yield statements which
are in any way simpler than the original ones, and therefore, we do not re-
state them.

0f some interest may be the remark that, if the entries of the matrices
A= (a,.(t,u)) and C = (ci(t,u)) are bounded, say 'aijl <M, [ci] < M, than

i
the condition (a) of (4.3) is satisfied:

N - . - .
X ek X =0 a L xxd 4L cx <MY |xxd| +M T |x|
n iJ 1iJ i i - o 1ij o 1

< MO(|xl| et Ixn|)2 + Mb Zi ((xi) + 1)

i2
< (Mon2 + Mo)(zi(x ) +1) .

An analogous remark holds for condition (a').
Let us consider now problems where the system has the more particular

form
dx/dt = A(t) x + C(t,u) (5.3.1)

with compact control space U, A closed of the form A = [tO,T] X En’ or A
= By x B, and functional of the (Mayer) form (5.1.4). (Below we shall con-

sider the analogous case with functional of the form (5.1.5) and fo = Ao(t) X

+ Co(t,u)).



(5.3.1) Existence Theorem (for Mayer problems and linear systems (5.3.1)).

Let A = [tO,T] X En’ to’ T finite, U a fixed compact set of the u-space Em’
f=A(t) x + C(t,u), A,C matrices with entries continuous in [tO,T] and
[tO,T] x U respectively. Let B be a closed subset of the tixitoxo-space and
g(t1,X1,t2,X2) a scalar function continuous on B. Let P be a compact subset
of A, and let r be the class, which we suppose not empty, of all admissible
pairs x,u whose trajectory x possesses at least one point (t*, x(t*)) e P.
Then the functional (5.1.L4) has an absolute minimum in Q.

If A = Ey x E_then (5.3.1) still holds under the additional condition
(d) of (3.3) (or alternates). Note that conditions (a) and (a') hold here
automatically as consequences of the hypotheses (U compact, A,C continuous).
Proof. Let A(t) = [?ij(t)] (i,j = 1,...,n), C(t,u) = [ci<t,u)], i=1,...,n.
Let X(t,t*) denote the fundamental solution of the homogeneous system dx/dt
= A(t) x(t) which satisfies X(t*,t*) = I, the unit matrix, in other words the
n columns of X are independent solutions of the homogeneous system with initial
values at t* given by (1,0,...,0),...,(0,...,0,1) respectively. Then we know
from differential equation theory that any solution x(t) of the cagonical sys-

tem (5.3.1) satisfies the relation
x(t) = X(t,t%)[x(%) + [, X (r,t%)0(r,u(r))ar] .

Since (t*, x(t*) ¢ P, P compact, and the vector functions and matrices C(t,u),
X(t,t*), X"*(t,t*) are uniformly bounded for t,t* e [tO,T], and u ¢ U since U
is compact, we conclude that x(t), t1 < t < tp, with [tl,tgjc{to,T], admits of

a uniform bound. Then, there is some constant N such that |x(t1)| <N, |x(t2)]



< N for all admissible pairs x(t), u(t), t1 <t < ta. Also, A(t) x(t)
+ C(t, u(t)), t1 <t < tg; admits of a uniform bound, say still N, and then
]dx/dtl < N, and the trajectories x(t), t1 <t < ty, are uniformly Lipschitzian
with constant N.

Let us prove that the set B  of all (t1,x(t1),t2,x(t2)), which are ter-

|

minal points of trajectories, is closed.

Let (t1,x1,ts,x2) eclABO. Then there is a sequence of admissible pairs

[x (t), w(t), t.. <t<+%

= i *
K . e SE2 2k]’ 3 1,2,..., and points tk such that t

1k Tt

* * *
xk(tlk) > X1, t2k > to, xk(t ) > %o, b, < tlk < tk < tzk <T, (tk, xk(tk)>

2k

(t), t.. <t<t

]. Since the trajectories x 1k S St

P t U a.e. in [t t
e P, u (t) e e. in [ L’

k 2k k

are equibounded, equicontinuous, and actually equilipschizian (of constant N
and exponent 1), there is.a subsequence, say still [xk]’ which converges in

the metric p toward a continuous vector function x(t), t1 <t < ty, which is
necessarily Lipschitzian (of constant N) and hence AC in [ti,t2]. Also, P is

compact, hence, we can extract the subsequence so that we have also (té,x t*))

k( k
+ (t*,x(t*)) for some t*, t; < t*< tp. It remains to prove that there is a
measurable function u(t), ty < t < tp, with values u(t) e U, such that dx/dt
= A(t) x(t) + c(t,u(t)) a.e. in [t1,t2], and thus x(t), u(t) is an admissible
pair (with (ti,x1,ts,x2) € BO instead of (t1,x1,ts,%2) € B)).

We shall denote by [ti,to] the interval of definition of x(t), which is
from now on a fixed interval. Let QO be the class of all B-measurable func-
tions u(t), t1 <t < tp, with [ty,to] fixed as above, and values u(t) e U.

For each u ¢ Qo’ let y(t), t1 <t < tg, be the AC n-vector function defined by

the initial value differential problem



ay/at = A(t) y(t) + C(t,u(t)) a.e. in [t1,52], y(t1) = x(t1) .

-Then

y(te) = X(ta,b0)[y(ta) + [ X3 (8,82) € (,u(e))at]

where as usual X(t,tl) denotes the fundamental solution of the homogeneous sys-
tem dy/at = A(t) y(t) with X(t1,t1) = I, the unit matrix. Let , denote the
class of all n-vector functions v(t) = C(t,u(t)) with u e Q. Let 02 denote

the subset of E, of all n-vectors z of the form

t
2 =[5 x(t,ta) ¢ (tyu(t)) 6ty wea .

Finally, let Qs be the set of all n-vectors y(ts) defined as above for
all u e QO. Obviously; we have a mapping u + v >z - y(tg), or QO > Q1 » Qo
+ Qg. The class QO has the property that, if ui,us € QO and H is any B-
measurable subset of [t1,ts], then the function u(t) = ui(t) if t e H, u(t)
= us(t) if t € [t1,t2]-H, is also an element of QO. Obviously, Q; possesses
the same property. By a version of a Lyapunsv's theorem [see App. E], the
set Qo is convex and closed. (Then Qs is compact since Qo is certainly
bounded). Finally, Qs is the image of Qo by means of the linear transforma-
tion y(ts) = X(t2,t1) [x(t1) + 2], and hence Q3 is also convex and closed (com-
pact).

Let us extend each vector uk(t), tlk <t< t2k’ in the whole interval
[tO,T] by taking uk(t) = w, a fixed arbitrary point of U. Then let us restrict

uk(t) to the fixed interval [t;,ts]. Now uk(t) is an element of Q_, and its

image in Q5 is given by



v (t2) = X(2,82)[3(82) + [;2 X7 (,82) (b ,u (6))ae]

while

t
2k .1
t = t + Xt C(t .
by = Mgty ey ) + L2 Xty e (o0t
Here t,, ~ t1, t2k > to, X(tlk> > x(t1) = y(t1) as k »w, as well as X(t2k’t1k>

(t,,)

> X(ta,b1), and X" H(t,t. ) » X~*(t,t1) uniformly in [t_,T). Since x

? 1k k' 2k

1l

+> x(tp) = x2, we conclude that yk(tg) has the same limit as k + o, or yk(tg)

> x(tp) = x5. Thus, x(t2) belongs to the closure of Qg, and hence x(tp) be-
longs to Qg since Qs is closed. In other words, there is some u € QO which gen-
erates x. Since g(ti,x1,t2,x2) is cortinuous on B, and hence on B(WBO, and this
set is not empty and compact, we conclude that the functional I[x,ul=g(t1,x(t1),
to,x(ts)) takes on both minimum and maximum in Q. Thereby (5.3.i) is proved.

We can prove now, as a corollary of (5.3.1), an analogous statement for

Lagrange problems.

(5.3.11i) Existence Theorem (For Lagrange Problems and f and fo Linear in
x). Let A = [tO,TJJcEn, to’ T finite, U a fixed compact set of the u-space
E,f= A(t) x + C(t,u), £ = Ao(t) X + co(t,u), A,A_,C,C_ matrices with en-
tries continuous in [tO,T} and [tO,T] x U respectively. Let B be a closed
subset of the tixitoxso-space. Let P be a compact subset of A and let Q be
the class, which we suppose not empty, of all admissible pairs x,u whose tra-
jectory x possesses at least one point (t*,x(t*)) € P. Then the functional
(5.1.5) has an absolute minimum in Q.

If A=E; x Erl then (5.3.1) still holds under the additional condition

(¢') of (3.4) (or alternate) (which here imply Ao(t) = 0). As before, con-



ditions (c) and (c') hold here as a consequence of the hypotheses.

Proof. If we introduce an auxiliary variable xo satisfying the differential

equation and initial condition

ax°/dt = A_(£)x(t) + C_(,u(t)), x(t1) = 0,

then we can write the canonic system together with this equation in the form

dx/at = A(t)x(t) + C(t,u(t))

)

~ n o ~ ~
where x = (xo,xl,...,x ) = (x ,x), A= (AO,A), ¢ = (CO,C), and then I[x,u]

% (ts). We can now apply theorem (5.3.i), where A is replaced by A; =

[t.,7] x E ., Bby By =Bx [x = 0] x By C E

ol Pby Py = Px [x' = 0], gby
E(tl,;<tl),t2’;(t2)) = x (ts). This proves theorem (5.3.ii).
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