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EXISTENCE THEOREMS FOR WEAK AND USUAL OPTIMAL SOLUTIONS
IN LAGRANGE PROBLEMS WITH UNILATERAL CONSTRAINTS

I. CLOSURE THEOREMS*
Lamberto Cesari
Department of Mathematics

The University of Michigan
Ann Arbor, Michigan

In the present papers (I, II, and III) we prove existence theorems for
weak and usual optimal solutions of nonparametric Lagrange problems with
(or without) unilateral constraints.

We shall consider arbitrary pairs x(t),u(t) of vector functions, u(t)
measurable with values in Ep, x(t) absolutely continuous with values in

E,, and we discuss the existence of the absolute minimum of a functional
ta

I[x,u] = f £o(t,x(t),u(t))at,

t1

with side conditions represented by a differential system
dx/at = £(t,x(t),u(t)), t1 <t <ty
constraints
(t>x(t))er, u(t)eu(t,x(t)), t1 <t < to
and boundary conditions

(t1,x(t1),t2,x(t2))eB,

*Research partially supported by NSF-grant GP-3920 at The University of -
Michigan. :



where A is a given closed subset of the tx-space E; x E,, where B is a given

closed subset of the tx1tsxo-space E 5» and where U(t,x) denotes a given

2n+
closed variable subset of the u-space E, depending on time t and space x.
Here A may coincide with the whole space EixE,, and U may be fixed and coin-
cide with the whole space E,.

In the particular situation, where the space U is compact for every
(t,x) these problems reduce to Pontryagin problems; in the particular situa-
tion where the space U is fixed and coincides with the whole space Ep, then
théSe‘pfdblems have essentially the same generality of usuél lagrange prob-
lenms. Thfoﬁghbut theée papers we shall aésume U(t,x) ﬁo be any closed sub-
set of Ej. |

In pajer I we ﬁrove closure theorems for usual solutions. In II we
shail prove eiistehée theorems. These will contain as particular cases the
Filipbbv eiiéteﬁce theorem for-problems of optimal control (U(t,x) compact),

existence theorems for usual Iagrange problems (U = Ep), and the Nagumo-

i}

Tonelli existence theorem for free problems (m = n, £ = u). In III we
shall prove existence theorems for weak (or generalized) solutions introduced

as measurable probability distfibutions of usual solutions (Gamkrelidze

chattering states).

In successive papers we shall extend the present results to multi-
dimensional Iagrange problems involving partial differential equations in

Sobolev's spaces with unilateral constraints.



We begin with an analysis of the concept of upper semicontinuity of vari-
able subsets in Ey. The usualvconcept of upper semicontinuity is replaced
| by two others (properties (U) and (Q), 83), which are essentially more general
than the uppersemicontinuity, in the‘sense that closed sets U(t,x), for‘which
uppersemicontinuity property hold, certainly satisfy < properfy (U), and
closed and convex sets Q(t,x), for which upper semicontinuity prépertyxhgyd,
certainly satisfy property (Q). We then extend (gh) the closure theorem of
A. F. Filippov in various ways, so as to include, among other things, the
use of pointwise and not necessarily uniform convergence of some components‘
of a sequence of trajectories. In part II we shall prove existence theorem
of optimal smooth solutions (§7) by a new analysis of a minimizing sequence,
and by using the above extensiorsof Filippov's closure theorem as a replace-
ment for ‘Tonelli's semicontinuity argument. We shall then deduce (§8) ex-
istence theorems for the case where f is linear in u, and for free problems
of the calculus of variations (m = n, f = u). Finally, we shall prove (89)
existence theorems for weak solutions in the general case above, for the

case in which f is linear, and for free problems.

1. THE PROBLEM

We denote by x a variable n-vector x = (x%,...,x )¢ E,; by u a variable
m-vector u = (u*,...,u")e Ey, and by teE; the independent variable. We de-
note by A an arbitrary subset éf the (t,x)-space, ACE,xE,, and, for any
(t,x)e A, we denote by U = U(t,x) a variable suspace of the u-space, U(t,x)

C Ey. In the terminology of control problems, u is the control variable



and U(t,x) the control space. We denote by f;(t,x,u), 1 = 0,1,...,n, given
real functions defined for all (t,x)eA, and'ali uel(t,x), and by f the n-
vector function f = (f1,...,fn). We denote by B a éiven subset of thé
(2n + 2)-space (ti1,X1,t0,Xs). We are interested in the determination of a
@easurable vectér function u(t), t1 <t <tp, (control function, or steering
function, or strafegy), and a corresponding absolute continuous vector func-
tiQn»iffj, t1 <t < tg, satisfying almost everywhere thé differential system

dx/at = f£(t,x(t),u(t)), tq 5 t <tg,
satisfying the boundary conditions

(t1,x(t1),t2,%(t2))eB,

satisfying the constraints

(t,x(t))er,  t1 <t < to,

u(t)eu(t,x(t)), a.e. in [t1,t2],

and for which the integral (cost functional)
to '
Ilx,u]l = Jf £,(t,%(t),u(t))at

ta
has its minimum value (see B2 for details). We shall assume that U(t,x) is

closed for every (t,x)eA.

2. THE SPACE OF CONTINUOUS VECTOR FUNCTIONS
Iet X be the collection of all continuous n-dim. vector functions x(t)
def: =i on arbitrary finite intervals of the t-axis:

x(t) = (%Y ee,xR), a<t < b, x(t)eEn,



If x(t), a <t <b,and y(t), c <t <d, are any two elements of X, we -shall
defiﬁe a distance p(x,y).. First, let us extend x(t) and y(t) outside their

intervals of definition by constancy and continuify in (- é, + ®), and then

let

Blx,y) = la-c| + [b-d| + max |x(t)=y(t)],

where méi is taken in (- @, + ®). It is known that X is a complete metric
space When equipped with the metric p. Ascoli's theorem can now be ex-

pressed by éaying that any sequence of equicontinuous vector functions x,
of X, wﬁose graphs in the tx-gpace are equibounded, possesses at least one

subsequence which is convergent in the p-metric toward an element x of X.

3., ADMISSIBLE PAIRS u(t), x(t)

Let A be a closed subset of the (t,x)-space EixE,. For every (t,x)eA
let U(t,x), or control space, be a subset of the u-space Ep. Iet M be the
set of all (%,x,u) with (t,x)eh,ueU(t,x). Iet “f£(t,x,u) = (f1,...,fn) be
a continuous vector function defined on M. We shall denote.by Q(t,x) the
set of all values in E, taken by f(t,x,u) when u describes U(t,xj, or Q(t,x) =
f(t,x,U(t,x)). A vector function u(t) = (ul,...,um), ty < t.S to (cont?ol
function) and a vector funcfion (#,t) = (xl,...,xn), t1 <t <t: (£rajectory)
are saia fo be an admissible pair provided (a) u(t> is measurgble.in‘[tl,tg};
(v) x(t) is absolutély confinuous (AC) in [t1,to], (c) (t,x(t))eA for eve?y
t e[tl,tgj; (d) ﬁ(t)eU(t,x(t)) a.e‘. in [t1,t5]; (e) dx/dt =‘f(t,x(t), u(t))

a.e. in [t1,t2]. By the expression the vector function x(t), t1 St<Sto,

is a trajectory, we shall mean below that there exists a vector function



u(t), t1 <t < tp, such that the pair u(t), x(t) satisfies (abcde). We say

also that x(t) is generates by u(t).

4. UPPER SEMICONTINUITY OF VARIABLE SETS

In view of using sets U(t,x),Q(t,x) which are closed but not neces-
sarily compact, we need a concept éf upper semicontinuity which is essentially
more general than the usual one: ‘We shall introduce two modifications of the
usual définiti&n of upper semicontinuity, and we shall‘denote them as "property
(U)" and "property (Q)" since we shall usually use them for the sets U(t,x)
énd Q(t,x) above, respectively. |

Wé shall discuss properties (ﬁ) and (Q) first in relation to arbitrary
variable‘sets‘U(t,x), Q(t,x) which are functions of (t,x) in A. Then we
shall discuss their relations when Q(t,x) is assumed to be the image of
U(t,x) as mentioned in no. 2. Properties proved for U(t,x) under conditions

(U) or (Q), will be used for Q(t,x) when this set satisfies conditions (U)
ér (&),

(a) jTﬁe Propéfty (u)

| Given any set F in a linear space E we shall denote by cl F, coF, bdF,
int F respectively the closure of F, the convex hull of F, the boundary of
F, the set of all interior points of F. Thus, cl co F denotes the closure
of the convex hull of F. We know that F, c1L F, co F, co cl F are all con-
téined in el co F.

For every (t,x)eA and & > O let Ng(t,x) denote the closed §-neighborhood

of (t,x) in A, that is, the set of all (t',x')eA at a distance<® from (t,x).



A variable subset U(t,x), (t,x)eA, is said to be an upper semicontinuous
function of (t,x) at thé point (%,X)eA provided, given € > 0, there is a
number & = 8(,X,e) > 0 such that (t,x) e Ny(¥,%) implies U(t,x) < [u(%,x) ],
where [U]e denotes the closed e—neighborhood'of U in Ep. | |

Again let U(t,x), (t,x)eA, U(t,x)Eyp, be a variable subset of Ep, which
is a function of (t,x) in A. TFor every & > O let U(t,x,5) = UU(t',x'), where
the union is taken for all (t',x') < Ng(t,x). We shall say tha£ U(t,x) has.

the property (U) at (t,x) in A, if

U(t,x) = N clU(t,x,8).
(t,x) A (t,x,8)

We shall say that U(t,x) has property (U) in A, if U(t,x) has property (U)
at every (t,x) of A. |

(i) If U(t,x) has property (U) at (t,x), then U(t,x) is closed.
Indeed,

— — ——

U(t,x) € el U(t,x)c 0, U(t,x,8) = U(t,x),

and hence the C‘signs can be replaced by = signs.

(i) If‘A.is closed, and U(t,x) is any variable set which is a function
of (t,x) in A énd has property (U) in A, then the set of all (t,x,u)eAxE,
with ueU(t,x), (ﬁ,x)eA, is closed.

Proof. If (t,x,u)ecl M and € > O, then there are w-many points

(t,x,u)eM with |t-t| < e, |x-x| < ¢, |u-u| < e. Thus, (t,x)eA since A is

closed, (t,x)eNze(t,x), u eU(t,x),ucl(t,x,2¢), and Eenecl u(%,x,2¢) = U(%,x),

TeU(T,X), since U has property (U) at (T,X). This proves that (T,X,u)eM,

that is, M 1s closed.



Note that the sets U(T,X,5) are not necessarily closed even if A is

closed all sets U(t,x) are closed, and we take for Ng(f,;c') the closed 5-

neighborhood if (,:E,'}?) in A as stated. This can be seen by the following ex-

ample. Iet A = [0<t <1, 0<x<1] a subset of Es, and U(t,x) = [z =

Z1,25) |25 > t21,~0< z;< + o] for 0 <t <1, and U(0,x) = [z5> 0, z1 = 0]
= ¥ l — — 2

for t = 0. Then U(0,%,8) = [z = (21,22)|22 > 821 for -»<z; <0, and 22 >0

for 0 < zy<« ] for any & > 0. The sets U(0,x,5) are not closed. Here
4 "
U(t,x)  does not-satisfy property (U) at the points (0,x). Nevertheless,

the statement holds

(iii) If A is closed, and U(t,x) satisfies property (U) in A, then the

sets U(t,x,8), (t,x)eA, 8 > 0, are all closed, and hence U(t,x) = [l

U(t,x,8) for every (t,x)eA.

Proof. Let My denote the set of all points (t,x,u) with (t,x)e

— —

Ny (%,%), ueU(t,x). Obviously Ng(T,X)C A © Epys MsCEn 1 %Ey , and Ns(t,x)? is
compact and My is closed by force of (ii) above. Let U be a point of accumu-

(1) denote the n-neighborhood of

lation of U(t,x,5), and for any n > O let Vy

U in E.. Then M n(vn(E)xEml) GNS(E,E)? xvn(ﬁ), hence M N(Vy(W)xEp+1) is

bounded. Since both My and Vn(T'I-)xEml ‘are closed sets, the set Mﬂ(Vn(E)

xEn+]_) is closed and bounded, and therefore a compact subset of E, 47 x Ey.
Now the set U(%t,x,8) N Vn(ﬁ) is the projection of M n(vn(a')xEnﬂ) on the u-
space Ky, and therefore U(jc-,;c-,ﬁ)ﬂvn(a) is compact. Thus EeU(-t-,;c-,g)HVn(E),

and finally ue U(t,x,5). Thus, U(t,x,5) is closed, orcl U(T,%,8) =

U(%,%,5), and U(E,X) = Ny ol U(T,%,8) = NgU(T,%,8).



(iv) If A is closed and Uj(t,x), (t,x)eh, § = 1,.00,v, v finiﬁé,'are'g,
variable subsets of Ey all satisfying property (U) in-A, then their union - - -
and their intersections V(t,x) = Ule(t,x), W(t,x) = ﬂle(t,x),‘(t,x)eA, }

are subsets of E satisfying property (U) in A. The same holds for their

product V(t,x) = U X...x Uy,

The proof is straightforward.

Under the hypbtheses of (ii) the set M is closed but not necessarily com-
pact as the trivial example U(t,x) = Ep, M =‘ AxE , shows. The set M is closed
but not necessarily.compéét even if we assume that.A is compact, and that
every U(t,x) is cémpact.uvThis is proved by the following example. Iet m =
n = i, A,-’—- [(t;,x)eEg; O_<_‘t <1, 0<x<1], U(0,x) = [ueE1|0 <u < 1], and,
if t # 0, U ,x) = ueEllo <u<1, and u =‘£-1]. Then M is the set of all
(t,xu) w1th0<t<l, 0<x<l,and 0<u<1l,oru=t1if t # 0. Ob-
viously, M is closéd but not compact. Nevertheless, the statement holds:

(v) 1If A is compact, if the variable set’U(t,x) is compact and convex
for every (t,x)eA aﬁd possesses property (U) in A, if for every (t,x)eA
there is some.é ; 8(t,x) > 0 such that U(t,x)IU(t"',x') # ¢ for every (t',x')
eNg (t,x), then M is compact.

Proof. If M is ﬁot compact, then there is some sequence of elements
(tk,xk,uK)eM, kK = 1,2,..., with (ty,xc)ed , [ti| + x| + |ug| + + =, Since
A is compact and hence bounded, we have |ux| + + . On the other hand, there
is some subsequence, say still (tk,Xx), with tx > £, x + X, (T,X)eA. Given
€ > 0, we have w.eU(T,X,e) for all k sufficiently large, as well as
U(E,E)ﬁU(tk,xk) # ¢; Since U(t,x) is compact, there is & solid sphere S

containing all of U(t,x) in its interior, say U(%,X)c int S CE,. On the
9



other hand, if EgeU(E,z)HU(tk,xk), we have G£ € int 8, and ukeEm;S, again
for k large. Since.both GL and uy belong to tﬁe convex set U(tk,xk), the
segment Ww, is contained in U(tyx,xx). In particular, if qﬁ is the point
where the segment Tu, intersects bd §, we have uﬁeU(tk,xk), uieU(E;;,e),-and
gﬁebd S. If u' is any point of accumulation of [uﬁ], then u'ebd é, and u'€
cl U(%,x,g) for ever € > 0. Hence, u'eNecl U(%,x,e) = U(%,x), a contradic-
tion, since U(?,z)CIint S. We have proved that M is compact.

(vi) 1If the set U(t,x) is closed for every (t,x)eA and is an uppersemi-
confinubus function of (t,x) in A, then U(t,x) has property (U) in A.

Proof. By hypothesis U(t,x,5)< LU(t,x)]e, where Ug is é.losed. Hence
ci U(t,x,8)c [U(t,x)], for & = 5(t,x,e) and any € > 0. Since U(t,x) is
closed, then [U(t,x)]g + U(t,x) as € > O+, Thus Ngel U(t,x,&)é U(t,x).
Since the opposite inclusion 1is trivial,‘we have fgel U(t,x,é) = ﬁ(t,x);
Statement (vi) is thereby proved. | |

The uppersemicontinuity property implies property CU), but the con-
verse is not true, that is, the uppersemicontinuity proéerty for closed
sets is moré restrictive than the property (U). This is shown by the follow=-
ing example in which ali sets are closed. Take n = 2 and

U(t,x) = [(u',u®)eBal0 <ub < +w, 0<u®< tul]
for every (t,x)eA = [(t,x)eE2|0 <t <1, 0<x <1]. Then, for 3 >0, we
have
U(t,x,8) = [(u*,u®)eBa|0 < ul < +w, 0 <u® < (t48)u’],

hence U(t,x) = Nscl U(t,x,5) and U(t,x) has property (U) in A. On the

other hand,

10



1 2 1
[U(t,x)]e = [(u,u%)eEs|0 Su <+w, -g< u < tul+e(1+t2)l/2]uNl,
where Ny = Ne (0,0) if t = 0, and, if t # O,

Ny = NG(O;O)U[(ul,u2)€E2|u1 <o, u2 > _t‘lul, P < €(l+t2)l/2],

Obviously U(t',x') - [U(t,x)]. # @ for t' > t, hence U(t,x) is not an
uppersemicontinuous function of (t,x).
(vii) If A is compact, if U(t,x) is compact for every (t,x)eA and is an
upper semicontinuous. function of (t,x) in A, then M is compact.
(viii) If A is closed and Uj(t,x), (t,x)eA, J = 1,...,v, v finite, are
variable subsets of Ep all uppersemicontinuous functions of (t,x) in A,
then their union V(t,x) and their intersections W(t,x) are semicontinuous

functions of (t,x) in A. The same holds for their product V(t,x) =
Uy X...x Uy, as well as for their convex hull Z(t,x), that is, for the set
Z(t,x) of all u = pjuj +...+ Pyuy with uy € Us(t,x), oy 20, J = 1,000y,

pl Feoot pv = ],
The proof is straightforward.
(B) The Property (Q)

Let U(t,x), (t,x)eA, U(t,x)eE,, be any variable subset of Ej, which is
a function of (t,x) in A. By using the same notations as in (A), we shall
say that U(t,x) has property (Q) at (t,x) in A, if

U(t,x) = 590 cl co U(t,x,5).

We shall say that U(t,x) has property (Q) in A if U(t,x) has property
(Q) at every (t,x) of A.
(ix) Property (Q) at some (t,x) implies property (U) at the same (t,x),
and
U(t,x) = N, cleoU(E,X,8) = Ny clUE,x8) = f'ISU("E,')E,S).

11



Indeed

U(t,x)= N clu(t,x)c N clU(%,x,8)c N cl co U(Y,X,5),
5>0 5>0 >0

vhere first and last sets coincide by property (Q) at (t,x), and hence the

inclusion signs < can be replaced by = signs.

(x1) If A is closed, and U(t,x) is any variable set which is a function
of (t,x) in A and has property (Q) in A, then the set M of all (t,x,u)eAxE,

with ueU(t,x), (t,x)eA, is closed.

Under the hypothesis of (i) the set M is closed but not necessarily com-

pact as the trivial example U(t,x) = Ens M = AXE, shows. Nevertheless, the

statement holds:

(xii) If A is compact, if the set U(t,x) is compact for every (t,x)eA and

possesses property (Q) in A, then the set M is compact.

Proof. If M is not compact, then there is some sequence, (tk,xk,uk)eM,
k = 1,2,..., with (ty,% )eA, [ty | + [x| + |ug| >+ as k . Since A
is compact and hence bounded, we have lgkl + + o, On the other hand, there
is some subsequence, say still (ty,%.), with ty - t, Ek +x, (t,x)eA. Given
ev> 0, we have then ukeU(E;E,e) for all k sufficiently large. Since U(%,x)
is compact, there is a solid sphere S containing all of U(E;E) in its in-
terior, say U(E;E)C int S C Em. On the other hand, if ueU(E;;), we have ue

int S, and uy€E,-S, again for k large. Since both u and uy belong to the

12



convex set cl co U(t,x,e), we have u'ye cl co U(t,x,e) where ul'is the

point of intersection of the segment uuy with the boundary bd S of S. If

u' is any point of accumulation of [uﬁ], then u'ebd S, and u'e cl co U(E;;,e)
for every € > 0. Hence u'e Ny cl co u(t,x,e) = U(t,x), a contradiction,
since U(%}E)C int S. We have proved that M is compact.

(xiii) If for every (t,x)eA the set U(t,x) is closed and convex, and
U(t,x) is an uppersemicontinuous function of (t,x) in A, then U(t,x) has
property (Q) in A.

Proof. By hypothesis U(t,x,5)c [U(t,x)]e, where Ug is closed and convex
as the closed e-neighborhood of a closed convex set. Hgnce, Ny cl co U(t,x,8)c
[U(t,x)]¢ for every € > 0. Since U(t,x) is closed, then [U(t,x)]¢ + U(t,x)
as € » O+, Thus My cl co U(t,x,5)c U(t,x). Since the opposite inclusion re-

lation D is trivial, we have Ny cl co U(t,x,5) = U(t,x).

(C) Relations Between Properties of U(t,x) and of Q(t,x)

Iet us now consider sets Q(t,x) = £(t,x,U(t,x)), (t,x)eA, Q(t,x)= Ep,
which are the images of sets U(t,x)cE, for every (t,x)eA.

The hypothesis that A is compact, that f is continuous on M, that U(t,x)
has property (Q) [or (U)] in A,'énd that Q(t,x) is convex for every (t,x)eA,
does not imply that Q(t,x) has property (Q) [or U] in A. This can be proved

by a simple example. Ietm=n=1, A=[-1<t<1, 0<x<1], let

-1
U(t,x) be the fixed interval U = [ueE;|0 < u < +w], and £ = (u + 1) - t. Then
Q(t,x) = [zeB1|-t'<z<1-t],and, if -145 < t < 1-, then
el co Q(t,x,8) = [-t-5 <z < 1-t45].

15



The intersection of all these sets for § > Q is the closed set [zeEl]

-t <z < 1-t] which is larger than Q(t,x), and thus Q has not property Q)

in A. Actually, Q(t,x) is not closed, and hence Q(t,x) has neither
property (Q), nor property (U).

Even fhe stronger hypothesis that A is compact, that f is continuous on
M, that U(t,x) has property (Q) in A, and that Q(t,x) is compact and convex
for every (t,x)eA, does not imply that Q(t,x) haé property (Q) in A. This
can be pro&ed by the following example. Ietm =1, n = 1, ’A = [(t,x)eEy,
0<t<1,0<x<1], U=70U(t,x) = lueE;1|0 <u < + =], and f(t,x;u) ='

0 we have £ = 0, hence Q(0,x) = [z=0].

1}

tu exp (1-tu), (t,x,u)eAxU. For t
For O <Vt <1, we have Q(t,x) = [0< 2z < lli All sets Q(t,x);are‘compact
and convex, but Q(%,x) does not satisfy property (Q) norvproperty (U) in
A. |

(xiv) If A is closed and T continuous on M, if U(t,x) is an upper semi-
continuous function of (t,x), then Q(t,x) possesses the same prqperty,
and also has property (U). If we know that Q(t,x) is convex, then Q(t,x)
has also property (Q). |

Proof. Each set Q(t,x) is a compact subset of E, as the continuous

imege of the compact set U(t,x). ILet us prove that M is closed. Iet
(¥,x,u) be a point of accumulation of M. Then there is a sequence
(ty ,%e ;) of points of M with ty + t, Xx + X, ug + u, and (ty »%y €A,
ﬁkeU(t ,x )« Then (t,x)eA since A is closed, (tk,xk)eNg(t,x) for all k
sufficiently large, and ugeU(ty,xc)c [U(%,x)],. Thus, ue[U(E;;)]e for

every € > 0, and hence ﬁéU(E}i) since this set is compact. We have proved
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that (T,X,T)eM, and that M is closed. ILet us prove that Q(t,x) is an
upperéemicontinuous function of (t,x). Given (t,x)eA and é >0, let

5 = 5(t,x,€) > 0 be the number rélative to the.definition of uppersemi-
contiﬁuity of U(t,x), and let M' be the set of all (t',x',u') with (t',x")
el (t,%), u'gU(t',x'), and M" be the set of all (t‘;x‘,u') with (t';x')eNS

(t,x), u'elU(t,x)]e. Since U(t,x) is compact, also [U(t,x)]¢ is compact.
IR P € € g

Hence M" = Ng(t,x)x[U(t,x)]e, and M' = MM". The set M' is éompact as the
intersection éf the closed set M with the compact cylinder M". The func-
tion f is continuous on M! and hence bounded and uniformly continuous.

Hénce, there is some n, 0 <n < min [5,e], such that (t”,x")eNn(t',x'),
lut-u"| <n, (tf,x‘,u'), (t",x",u")eM' implies |f(t',#’,u')-f(ta,x"{u")l <e.
Also, let ¢ =.min [q, 8(t,x,n)]. Then, for everyv(t’,x‘)eNc(f,x), we h;ve
Uu(tt,x') e[U(t,x)]n, hence, if u'eU(t',x'), there is some u"éU(t,x) with
lu'-u"| <1, and finally |£(t',x',u')-f(t,x,u")| <e. Thus,”Q<t',x’)c
[(a(t,x)]g for every (t',x")eNy(t,x). This pro&es fhat Q(t,x).has the
eé-property above. The last part of statement (xiv) is n@w a consequence

of statements (vi) and (xiii).

Remark. The statements and examples above show that properties (v)
and (Q) are generalizations of the concept of upper semicontinuity fér
closed, or closed and convex sets, respectively.

(xv) If A is a closed subset of the tx-space EqnxE, if U(t,x), (t,x)eA,

U(t,x)c E,, is a variable subset of Ej satisfying property {U) in A, if M

denotes the set of all (t,x,u) with (t,x)eA, ueU(t,x), if f, is a continuous

scalar -~ function from M into the reals, if ﬁ(t,x) denotes the variable sub-
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set of Ey 4 defined by U(t,x) = [u = (uo,u)eEm+l|uo > £ (t,x,u), uel(t,x)],

N i
then U(t,x) satisfies property (U).

Proof. First, let us prove that each set E(to,xo,6) is closed. TIndeed,
iy = («,u) is a point of accumulation of ﬁ(tg,xo,ﬁ), then there is a
sequencé G% = (uﬁ)uk) with u; +u, we o, ﬁkeﬁ(to,xo,s). Hence, there is
a corresponding sequence of points (ty,xx)ely(to,%o) with uﬁ > oty %, )
uy €U(ty, %) Thus wkeU(to,%o,8). Since Ny(to,Xo) is a compact part of the
closéd set A, there is a subéequence, say still (tk,xk), with tp + %,

x * %, (t,x)eNg(to,%,)A. Thus (tk;xk,uk)eM, (t, %, ) + (£,%,u), and M
is a cloéed set by force of (ii). By the continuity of f, wé have then

(t,%x,u)eM, ueu(t,x), u° zhfo(t,z,u)‘ Thus u = (u”,u)eU(E,%), and zeﬁ(to,
Xg,5)e |

Now let 1 = (u?,u) be a point ue Ny cl U(ty,%,,5). Thus, there is a
sequence of numbers &, > 0, & + 0, with e cl ﬁ(to,xo,ak), and hence
aeﬁ(to,xo,ﬁk) because these last sets are closed. Thus, there is also a
séqﬁenee of points (tk,xk)€N§k(to,Xo) with UeU(ty,xy), or u° > £ty » % ,u),
ueU(ty ,xc )+ Hence, for every n > 0, we have ueU(t,,x,,n) for every k suf-
ficiently large (so that &, < 7n), and, by property (U) of U(t,x) at (to,%o),
also ue Q cl U(tg,%o,m) = U(tg,%o)s Thus, uelU(tqy,%5), (to,Xo,u)eM, énd by
uolz £, (ty,%,u) and the continuity of £, also up‘i fo(tys%o,u). We have
proved that E = (uo,u)eﬁ(to,xo), hence |

Ny cl U(ty,%g,5)S Ulty,%y)-

Since the opposite inclusion relation is trivial, equality sign holds,

and ﬁ(t,x) has property (U) at (tg,x,), and, thus, everywhere in A. Statement
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(xv) is thereby proved.
~
The set U(t,x} of statement (xv) has not necessarily property (Q) even
if we assume that U(t,x) has property Q and f5(t,x,u) is convex in u for
every (t,x)eA. This can be seen by a simple example. Iet A = [-1<

—

t<1,0 <xZ< 1] and let U = U(t,x) be the fixed set U(t,x) = E;, that
ig U= [~ o <u' < +]. Then, each set U(t,x) is closea and convex, and
obviously U(t,x) possesses property (@), and M is the cylinder of all
(t,x,u) with (t,x)eA, ueE;. Finally, let f,(t,x,u) = tu', so that f, is
é.ontinuous in M and, for every (t,x)eA, fo = tul is linear in ul, hence

B . . l
certainly convex in u”. Now we have

U(t,x) = [(uo,ul)eEgl- o < ut < + o, tut S'u2 < + o]

~ «

U(0,%,8) = [(u°,u1)eEp|= 0 <u* < 4w, - plul[<u®< +o .
Conseduénfly, co ﬁ(O,x,&) = Eo, and hence
Ng cl co ?I(O,x,&) = Ep,
while ‘
T(0,x) = [(ul,u2)eBs|~ » <ul < +w, u¥ > 0.

This shows that U(t,x) does not have property (Q) at the points (0,x) of A.

A scalar function fy(t,x,u), (t,x,u)eM, is said to be convex in u at

(to:xo)eA if
. N

fo(to,xo,uo) < Z ?‘-ifo(to’xo’ui)’

' i=1
h
wnenever | N

Uy, = z Niui,
i=1

N



where ui € U(tg,Xo), Ay >0, &= 1,uee, Ny Ag + ovw +2y = L.

A scalar function f,(t,x,u), (t,x,u) + M, is said to be quasi normally
convex in u at (to,xo,uo)eM provided, given € > 0, there are a number

o)

]

5(to,Xo,u0,€) > 0, and a linear scalar function z(u) = z + beu,

b = (by,eee,bp), T, b1,e.s,by real, such that

(a) fo(t,x,u) > z(u) for all (t,x)eNy(ty,%y),uel(t,x),

(b) f,(t,x,u) < z(u)+e for all (t,x)elNs(tq,%o),uel(t,x), [u-us| <6.

The scalar function fo(t,x,u) is said to be normally convex in u at (to,Xo,Uo)

if, given € > 0, there are numbers § = S(to,xo,uo,e) >0, v= v(to,xo,uo,e) > 0,

and a linear scalar function z(u) = £ + b+u as above such that (b) holds and
(a') fo(t,k,u) > z(u) + v|u-ug| for all (t,x)eNs (tg,%,) ,uel(t,x).

The scalar function fo(t,x,u) is said to be quasi normally convex in u, or

normally convex in u, if it has these properties at every (to,xo,uo)eM.

For the case where U = U(t,x) is the fixed set U = Ey, the following

statement gives a useful characterization of the functions fO which are
normally convex in u.

(xvi) If A is closed, and fo(t,x,u) is continuous on M = AxE , then fo
is normally convex in u if and only if £ 1s convex in u at every (torxo)€h,
and for no points (t,,%x,)eA, uy,up€E,, u1 # O, the relation holds fy(tg,%q,u5) =
2 M £, (B %o yug ) + £ (t0,%0,uy-Nuy) for all A > O.
This statement was proved in [9a] and [10]. In particular, if for every

(t,x)ed, £ (t,x,u) is convex in u and £,(t,x,u)/|u] > +® as [u|l + + ©, then

certainly f,(t,x,u) is normally convex in u.
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(xvii) If A is closed subset of the tx-space E; x E,, if U(t,x), (t,x)eA_,
U(t,x)CEy, is a variable subset of Ey satisfying property (Q) in A, if M
denotes the set of all (t,x,u) with (t,x)eA, ueU(t,x), if f, is a con-
tinuous function from M into the reals, which is convex in u for every
(t,x)eA, if either (&) the sets U(t,x) are all contained in a fixed soiid
sphere S of E;, or (B) the function fy(t,x,u) is quasi normally convex in u
at every (t,,x,,u,) of M, then the set E(t,x) of statement (xv) has property
(@) in A. | |

Proof. Iet u = (u’,u) be é point % = Ny cl co ﬁ(to,xo,ﬁ). Then there
is a sequence [5k] of numbers &, > 0, & > O, with Yecl co E(to,xo,bk). Hence,
there is a sequence of pairs of points G%l, EkgeEm+l and of points ?& of the
segment (ﬁk£ﬁke)eEm+l, such that

~ ~ ~

Vi > U, W, €U(E %8y ),

Ve = o, * (g%, 0<a <1, k=1,2... .

~t

We shall use the notation ¥y = (vﬁ,vk), T = (u°,u), ﬁkj = (uﬁj,ukj),

J = 1,2. Then we have

o
v+, W oy, U %, €U(tg,%0,0k )

o 0
Ve = Oy + (Lo, v o= Oty + (1-0kuyg
Consequently, there are points such that

(ty 25 ) (biepomic ety (£0,x ) A,

qkleU(tkl,xkl),ukzeU(tkg,xke).
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The sequence [Ok] is bounded, hence there is a convergent subsequence, say
still ., so that o > O for some 0 <& < 1.

For every n > 0 and k sufficiently large (so that ak f n), we have‘
ukl,ukan(to,xO,n), hence

Uy, Uk €1 o U(tg,%g,M)-
As a consequence
Ve = Oy +(l-0k)uk2€Cl co U(ty,%Xg,m)

for all k sufficiently large. As k + ®, we obtain uecl co U(tqy,x%q,n).
By the property (U), finally

ueNpcl co U(tg,%g,Mm) = U(tg,xg)- (1)

Assume first that condition (&) holds. Then both sequences (g, 1,
[ukg] are bounded, and hence there is a subsequence, say still [ukl], [ukg],
for which both uk, and ukz are convergent in Ep, say Ug, > U1, uk2 > Up,
u1,us€E,. For such a subsequence, we have

0

0 -
Vi Okukl + (L‘Ok)uﬁz > Okfo(tkl;xkl:ukl) + (quk)fo(tkgyxkg)ukg))

[}

Ve = Oy * (1-ozk)uk2,
(b q 0%y oW q ) s (b 0¥k oo Uk o) €M,
where M is closed. By taking limits as k + o, we have
u® > of (b0, %0,u1) + (L-0)fo(to,%0,uz)

u = ou; + (L-a)up,

(to,X )ul) P (t

5 O,xo,ug)eM.

By the convexity of fy in u at (to,xo) we have now
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u° > fo(to:Xoyoml + (l-a)uz) = fo(tOJXO)U-)'

0 ~

This proves that U = (u ;u)eU(t ,x,), hence

~ i L~

Ng cl co U(to,xd)c U(to,%0)e T (9)

Since the opposite incluéion is trivial, = sign héids in this relation, and
E(t,x) has property (Q) ét (to,xé). Since (t,,x,)eA is arbitrary, G(t,k);
has property (Q) in A. | |
Assume now that conditioh/{'(s) hoids. As stated by relation (1) abéve,
ueU(tg,%y), hence (to,%o,u)eM, By the quasi normal convexity of f, in u
atx(to)xo,u) we deduce the exisﬁence of a.npmber 5 >0 and Qf a linegr
scal§r<anction g(u) = r +b. v'such! that (a) fo(t,x,v) = z(v) fo;»all
(;t‘,x)e;l‘\I-B(to,xo),‘ veU(t,x) and (b) fo(t,xm) < 2(v) + e for all (t,x)eNs (t0,%0) 5

veU(t,x), lu-v| < 5. By combining (a) and (b) we have then (c) z(u) <

fo(to)xo)u,) =Z(u) + €
Now we have v = Oy, +(1-0y Juy, for some 0 <oy <1, and vy * u,
(tkj’xkj) + (tg,%5), 3 = 1,2, Thus, for k sufficiently large, (tkj?xkj>eN8

(to,xo)?;j’= 1,2, and, by property (a),

0] » |
Vi 2 %{fo(tkl’xkl’ukl) + (l_al{>f0(tk2)xk2)uk2)

> ogn(ug,) + (10 )s(u ) =

I Z(o/kukl'*" (l"o‘k)uKE)‘r;-= Z(,Vk)e'
As-k+tw, we have thén UG“Z~Z(u), ard finally by (c) above, dbfz ToltgsXg,u)
-¢, where e >0 isréfﬁi%réryf‘ We conclude that u° > fo(to,xo,u);fwifﬁ

N SR 20 ' : , s S
uel(to,%5). "Thus ¥ = (u ,v)eU(ty,%y), and again we have proved inclusion

(2). The same reasoning above yields that U(t,x) has property (Q) in A.
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(xviii) If A is a closed subset of the tx-space Ej x E,, if U(t,x),
(t,x)eA, is a variable subset of E, satisfying property (U) in A, if M de-
notes the set of all (t,x,u) with (t,x)eA, ueU(t,x), if ? = (fo,f) is a con-
tinuous function from M into the E—épace Ep4ls 2 = (zo,z), if Q(t;x)CZEn,,

~

Q(t,x)c E 4 are the sets

n

Q(t,X) f(t;x:U(t;X)) = [ZGEnIZ = f(tJX)u))ueU(t;x>}j

a(t)x)

1}

[z = (ZO:Z)SEn+l|ZO > fo(t)x)u): z = £(t,x,u), ueU<t)X)])

and (a)vfor every (t,x)eA, Q(t,x) is a convex subset of E,; (b) Q(t,x) has
prcpfiety Q) in 4; (c) for every (t,x)ed, z = f(t;x,u) is a 1-1 map from
' U(f,%)ibﬁto Q(t,x) with a continuous inverse u = £ 1(t,x,z), zeQ(f,x); (a)
the régi‘Valued,functioh Fo(t,x,z) = fé(t,x,f'l(t,x;z)), (t,x)eA, zeQ(t,x),
is continuous in the set M' of all (t,x,z) with (t,x)eA, zeQ(t,x), and
Fb(t,x,é) is convex in z and also quasi normally conyex, then the éet
g(f,x) is convex and has property (Q) in A.

Proof. Indeed, under the specific hypotheses above, the set g(t;x) can
be represented as

Qtx) = (7 = (2°,2)eB, |20 > Bo(t,%,2), 26Q(t,x)],

~

and thus Q is generated from Q(t,x) exactly as U is generated from U(t,x).

By statement (xvii) above we conclude that g(t,x) has property (Q) in A.
Remark., The condition that f is a homeomorphism between U and Q is .

certainly verified in all ffeé problems, where m = n, f = U, that 1is,

fy = ui, i=1,2,0v.,n (see no. 9 below). In this situation then we havevv

Fo(t,x,u) = £,(t,x,u), and the convexity of f, in u implies the convexity of
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Fo in u. We shall need this remark, and the more general statement (xviii)

in part II.

5. CLOSURE THEOREMS
We shall use here the notations of no. 2 and 3. In partiéular, a tra-
jectory x(t) is defined as in no. 2.

' Closure Theorem I. (A first generalization of Filippov's theorem).

- Iet A be a closed subset of E; x E,, let U(t,x) be a closed subset of Ep

for every (t,x)eA, let f(t,x,u) = (fl,...,fn) be a continuous vector function
on M into Ep, and let Q(t,x) = £(t,x,U(t,x)) be a closed convex subset of E,
for every (t,x)eA. Assume that U(t,x) has property (U) in A, and that Q(t,x)
has property (Q) in A. ILet x(t), tx <t < t g, k = 1,2,..., be a sequence
" of trajectories, which is convergent in the metrix p toward an absolutely
continuous function x(t), t1 <t <tp. Then x(t) is a trajectory.

Remark. If we assume that U(t,x) is compact for every (t,x)eA, and that
U(t,x) is an uppersemicontinuous function of (t,x) in A, then by sfatement (x),
the set Q(t,x) has the same property, U(t,x) has property (U), Q(t,x) has
property (Q), and closure theorem I reduces to one of A. F. Filippov [2]

(not explicitely stated in [2] but contained in the proof of his existence

theorem for the Pontryagin problem with U(t,x) always compact).

Proof of Closure Theorem I. The vector functions

p(t) = x'(t), t1<t<ta

(1)

o (t) = x(t) = £(t,x(t),um(t)), ¢t <t <ty, ko= 1,200,

are defined almost everywhere and are L-integrable. We have to prove that
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(t,x(t))eA for every t1 <t < tp, and that there is an admissible control

function u(t), t1 <t < tp, such that

o(t) = x'(t) = £(t,x(t),u'(t)),  ul(t)eu(t,x(t)), (2)
for almost all te[tits].

First, p(x ,%) > O as k + 0; hence, tx* t1, tak + tae If te(ty,tz), or

ltl <t <tgp then tyx <t < tgg for all k sufficiently large and (t,xx(t))eA.

since x(t) + x(t) as k + « and A is closed, we conclude that (t,x(ﬁ))eA for
every t; <t <tz Since x(t) is contiquous, and hence‘coﬁtinuous at ty and
to, we conclude fhat (t,x(t))eA for every t1 <t < to.

For almost all te[ti,ts) the derivative x'(t) exis£s and is finite. Iet
ty be such a point with t; <ty <to. Then there is a ¢ > 0 with t3 <ty - ¢
<tg +o0 <ty ;nd, for some ko and all k > kg, also t1k <ty - o <tg +o <
tae Let xg = x(t0).

We have xk(t)_é x(t) uniformly in [ty - g, to + o) and all functions
x(t), xk(t> are continuous in the same interval. Thus, they are equicon-
tinuous in [ty = o,,ty * o). Given ¢ >YO, there is a & > 0 such that

t,t7elt - o, to + o), |t-t'| <&, k > ko, implies

[x(t) - x(t7)] <e/2 |x(t) - =e(t?)] < e/2.

We can assume 0 <3 < g, & <e€. Foranyh, O <h <5, let us consider the

averages N
my, = h‘i'fcp(to+s)ds = b x(ty*th)-x(t0)],
o}
. (3)
g = h"lfcpk(to+s)ds = b x (toth)-xe (o)1

0
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Given m > O arbitrary, we can fix h, 0 <h <8 <, so small that
lmn = 9(to)] <1 (4)
Having so fixed h, let us teke k3 >k, so large that
- mnl <ny o Im(eg)x(to)| <ef2 (5)

for all k >ki. This is possible since xk('t)'+ x(t) as k + « both at t =tq

and t = t5 + h. Finally, for 0 < s < h,

|xk(to+s)-x(t¢)| < |Xk(to+s)-k£(to)l*lxk(to)-x(to)ll

<e/2+ef2 = ¢

|(tots)-to| <h <& <e
f(to+s,xk(to+s);uk(to+s))eQ(to+s,xk(to+s)).
Hence, by fhe definiéion of Q(to,xo,26)2 also
Qk(to+s) = f(to+s,xc(to*s), uk(to+s))eQ(to,xo,2€),

The.second integral relation (3) shows that we have also
my € cl-co Q(ty,x,,2€),
since the latter is a closed convex set. Finally, by relations (4) and (5),
we deduce
[9(t0)-mc| < lo(to)-my | +lmy-muc| < 2n,
and hence

@(to)e [el co Q(to’xo’Ee)]Qn'
Here n > O is an arbitrary number, and the set in brackets is closed.

Hence,

(P(to)e cl co Q(to,x%o,2€),
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and this relation holds for every € > 0. By property (Q) we have. .
(P(to) € r]€ cl CO E‘Q'(tO;xO)ge) = Q(tO)XO))

where xq = x(to), and Q(tg,Xo) = T(to,%0,U(to,%o)). This relation impliés
that there are points U = U(tg)eU(tg,X%y) such that

o(tg) " £(t0,%(t0),u(te)) (6)

This holds for almost all toe[ti,ts], that is, for all t of a»measurable
set I C [tl,te];with meas I = tgftl._ If we take I, = [t1,tp]-I, then
means I, = 0. Hence, there is at least one function u(t), defined almost
everywhere in [ti,t5), for which relation (6) holds a.e. in [ty,tn]. We
have to prove that there is at least one suéh function which is measurable.

For every tel, let P(t) denote the set

P(t) = [ufuel(t,x(t)),0(t) = £(t,x(t),ulc U(t,x(t))c By
We have proved that P(t) is not empty.

For every integer N = 1,2,..., there is a closed subset C, of I, Ck cIc

A
[t1,t2], with meas Cy > max [0,tz-t1-1/A], such that ¢(t) is continuous

on \. Iet;wx be the set

W, = [(t,u)]teC,, ueP(t)lc Ey x Ey.

Iet us prove that the set W, ié closed. Indeed;v;f (t,u) is a point of
accumulation of W, then there is a sequence (ts,us),s = 1,2,404, Qith
(ts,us)ewx, tg > E, ug » U.. Then tgeCy and’EéCk since Cy is closed. Also
x(%s) - x(?);\@(ts) + ¢(F), and since (ts;vx<ts))eA, @(ts) = £(tg,x(tg),

u(ty)), (ts,x(tg), u(ts))eM, we have also (T,x(%))es, (t,x(E),T)eM, because
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A and M are closed, and ¢(t) = £(%,x(%),u) because f is continuous. ' Thus,
ueP(t), and (%,x)eM, -

For every integer L let W g, P,(t), be the sets
Wy = [(t,u)l(t,u)ewx,lul <1t]c chgEi x Ey,
Py(t) = [ulueb(t),|u| < £1<P(t) <U(t,x(t)) S Ey,
Chng =' [t|(t,u)eWkg for some u] € Cy CIc[ty,t5].

Obviously, Wy is compact, and 50 is Cy g as its projection on the t-axis.
Also, UyCy 4 = C,, and Wy is the set of‘all (t,u) with teCy 4, uePy(t). Thus,
for teC, 4, P(t) is a compact subset of U(t,x(t).

For teCy 4, the sét Pg(t) is the nonempty coméact subget of all u = (ul,...,
um)eU(t,x(t)) with £(t,x(t),u) = o(t). As in Filippov’é argument let P, be
the‘subset of P with ul minimum, let P5 be the subset of P; with u2 minimum,...,
let P be the subset of Py _; with u® minimum. Then Pn ié a single point
u = u(t)eU(t,x(t))‘with u(t) = (ub,...,um), teCyg, |u(t)] < £, and
£(t,x(t),u(t)) = o(t). Let us prove that u(t), teCrg is measurable. We
shall prove this by inducmion on‘the coordinates. Iet us assume that
ul(t),...,us"l(t) have been proved to be measurable on C, , and let us prove
that us(t) is measurable. For s = 1 nothing is assumed, and the argument be-
low proves that ul(t) ig measurable. TFor every integer j there are closed
subsets Ck%j of Cyp with Cy g3 < Cyy» Ckﬂj < Cyp,j+1s meas: Ougg >
[0, meas Cyp-1/j], such that ul(t),...,us_l(t) are continuous on Cy gy

The function (%) is already continuous on C) and hence ¢(t) is continuous

s
on every set Cy g and Cygj. Let us prove that u (t) is measurable on OVAE
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We have only to prove that, for every real a, the set of all tecxgj'
with ¢°(t) <a is closed. Suppose that this is not the case. Then fhere
is & sequence of points tkeC) g3 With us(tk) <a, tp > Eécxﬂj, s (%) > a.
Then o(ty) + ¢(%), ua(tk) - ua(¥7 as k + o, @ =1,,s.,8-1. Since
IuB(tk)l < % for all k and B = g,s+l,...,m, we can select a subsequence, say
still [tk] such that uﬁ(tk).+ ﬁﬁ as k + », B = s,s+l,..4,m, for some real
numbers U . Then % + %, x(tx) + (%), ﬁ(tk) - E, where
R () @ R

Then,: given any number n > O,we have

u(ty )€Uty ,x(t) )< el U(t,x(t),n)
for all k sufficiently large; éﬁd, as k + o, also

Y e el U(E,x(T),n)-

By the property (U) we have

e ﬂn cl U(t,x(%),n) = U(%,x(T))

S
On the other hand @(tk) = f(t,x(tK),u(ty)), u () <a, yield as k + «,

CP(E) = f(E:X(E):E)J assa) (6)
while Eész implies
o) = fExXDuE), w(® > (7)

Relations (6) and (7) are contradictory because of the property of
minimun with which u®(%) has been chosen. Thus u°(t) is measurable on

Cy gy for every J, and then u®(t) is also measurable on Cy 4. By induction

argument, all components ul(t),...,u™(t) of u(t) are measurable on Crds
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hence u(t) is measurable on Ckﬁ' Since Uﬂckﬂ = Qk,,mea31 Cy, >-meas§ I -
1/n, we conclude that u(t)”is measurable on every set Cj and henqe on I,
with meas= I = ts-t1. Thus, u(t) is defined a.e. on (t1,t2), u(t)eu(t,x(t) i
and f(t,x(t),u(t)) = o(t) a.e. on [t1,t5]. Closure Theorem I is thereby,
proved.

Iet us denote by y = (x%,...,x°) the s-vector made up of certain com-
ponents, say x,...,x°, 0 <s <n, of x = (x%,...,%"), and by z the com-
, stk |

(x

us assume that f(t,y,u) depends only on the coordinates xl,...,xs of x.

|1}

plementary (n-s)-vector z yees,X0) of X, 80 that x = (y,z). Let
If x(t), t1 <t <tp, is any vector function, we shall denote by x(t) =
[y(t),2(t)] the corresponding decomposition of x(t) in its coordinatéé
y(t) = (x%,.00,x%) and z(t) = (x*7%,...,%0).

We shall denote by AO:aAclOsed'subset of points (t,il,;..gxs); that‘is,
a closed subset of the ty-space E;xEg, and let A = Aj x Ep_g. Thus, A

is a closed subset of the tx-space E1xEpe.

Closure Thedrem IT. (A further generalization of Filippov's Theorem).

Iet Agbe a closed subset of the ty-space EixEg, and then A = Ay x By o is a
closed subset of the tx-space EixEp. Iet U(t,y) denote a closed subset of
Ep for every (t,y)eA,, let M, be the set of all (t,y,u)eEl+sﬁm with (t,y)ehy,
ueU(t,y), and let £(t,y,u) = (f1,...,f,) be continuous vector. function from
M into Eh.;klet Q(t,y) = £(t,y,U(t,y)) be a closed convex subset of E, for
every (t,y)eAy. Assume that U(t,y) has property (U) in Ao and that Q(t,y)

has property (Q) in Ag.
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Iet % (t), tx <t S tgc, k = 1,2,..., be a sequence of trajectories,
xk(t) = (yk(t), zx(t)), for which we assume that the s-vector y.(t) converges
in the p;metric toward an AC vector function y(t), ti < t‘f té, and that the
(n-k)-vector zx(t) converges (pointwise) for almost all t; < t < t5, toward
a vector z(t) which admits of a decomposition z(t) = Z(t) + S(t) where Z(t)
is an AC vector function in [t;,t5], and S'(t) = 0 a.e. in [t1,t5] (that
is, S(t) is a singular function). Then, the AC vector X(t) = [y(t),2(t)],

t; <t <ty is a trajectory.
YE@QEEE. For s = n, this theorem reduces to closure theorem I.

Proof of Closure Theorem IT. The vector functions

o(t) = X'(t) = (y'(t),2'(¢)), t1<t <ty

S
—
ct
~
1}
]
—~
ct
~
il

(nt(t),2k(6)) = £(t,0m(t),m(t)), tx <t <tx
(8)
kK = 1,2,..., :
are defined almost everywhere and are L-integrable. We have to prove that
[t,y(t),2(t)]eA for every t1 <t < t,, and that there is an admissible con-
trol function u(t), ty <t < tp, such that
o(t) = X'(t) = (y'(£),2'(¢)) = £(t,y(t),ult)),
u(t)eu(t,y(t)),

for almost ali t e[tl,tg]f |

First, p(yk,¥) > Oask » 0; hence ty » t1,t5% > toe If te(ti,ts),
or‘tl <t <ty then t1k <t <tg for all k sufficiently large, and

(t,yk(t)edy. Since y (t) > y(t) as k > » and Ay is closed, we conclude

that (t,y(t))eA, for every t; <t <tp, and finally (t,y(t),2(t))ers x Ey_g,
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or (t,x(t))eh, t1 <t < ton

For almost all te[ti,to) the derivative X'(t) = [y'(t),z'(ﬁ)] exists
and is finite, S'(t) exists and §'(t) = O, and zk(t) » z(t). ILet ty be sgch
a point with t; <ty <tz Then there is a ¢ > 0 with t; <ty - o< t\o +
o < ty, and, for some ko and all k > kg, also t1x <ty - o< 14 + o< tg-
Iet x5 = x(ty) = (yo,ZO)., or yo = y(fo), Zo = Z(t,). Iet zo = z(ty),
So = S(‘to)° We have S'(tg) = 0, hence z‘(vilao) exists and z'(tg) = Z'(to).
Also, we have 7 (t,) ;Z(to),.

We have yy (t) + y(t) uniformly in [t5 - o, t, + o], and all func£ions
y(t), % (t) are continuous in the same interval. Thus, they are equicon-
tinuous in [‘to -0, J.c,_o + o] Given ¢ > 0, there is a & > O such that

t,t" elt, = 0, to + o], |t - t'] <&, k >k, implies

O.
ly(8) = y(e)] e/, () - we(t1)] < e/
We can assume 0 <% < g, 8 < €. For any h,0 <h <3, let us consider the

averages 0

m, = h’lfcp(to + 8)ds

0

1]

h Xty +h) - x(t))],

(10)

]

h
My = hnlfcp}{(to + g)ds hnl[:xk(to +h) - x)],
0

where X = (y;Z)) X = (YK:ZK)“

Given 7 > O arbitrary, we can fix h, 0 <h <8 < ¢, so small that

Imh - q)(to)l S i

|s(te + h) - 8(t5)] < mb/k,
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This is possible since h‘lu/§$(to +8)ds > o(t,) and [S(t, +h) - S(to)]h-l

. 0 .
~0ash >0+ . Also, we can choose h, in such a way that zp(to + h)

> z{to) as k .t ©, This is possible since‘zk(t) + z(t) for almost all
t, <t < o
Having so fixed h, let us.take ky >k, so large that
1x(t0) - ¥(8,)], Iyk(to + 1) = y(tg#h) | <min [nn/b, e/2l,
2 (t0) = 2(to) ], lz(to +h) - z(tot+h)| < nn/8.
This is possible since yi(t) » y(t), zk(t) > z(t) both at t = t, and

t =ty + h. Then we have

!h‘-l«[yk(to + h) - yk(tp)] - h-l[Y(to + h) - Y(to)”
< u (b *+ 0) =yt +0)I] + 07 (b)) = ¥(t6)]]

<n7H(qn/h) + 0 (nn/8) < n/2.
Analogously, since z = Z + S, we have

7z (6 + h) - z(t)] - BT 2(tg + ) - 2(t)]]

= |0 la(ty +0) = 7 (0)] - n7Mz(ty +B) - 2(t,)] + b7 [s(t, +h) -
S(to)]|
< [0 Mz (tg + 1) = a(ty + 1)1 [+[n"2 g (t6) - 2(8,)1[+[b72[8(t, + ) - 8(to)]]

SB7H(nn/8) +n7h (qn/8) + nH(nn/k) = n/2.
Finally, we have

mpge = mp| = [0 (b0 + h) = xe(to)] = BTHX(tg + h) = K(t,)]]

= |0 Mgl # h) = ye(t,)] - b7y (b + b) - y(to)]] +
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+ lh'l[zk(to +h) - zk(to)] - h'l[Z(tO‘f h) - 2(t,)]]
<nf2+n/2 = n.
We conclude that for the chosen value of h, 0 <h <& < 0, and every k > k;

we have

|my - o(t I <, lmhk - mh| <1, lyx(to) - y(t o) <e/e.
(11)

For O S s S h we have now

(b + 8) = y(to)| < lyk(to + 8) - yk(t |+|yk to) - y(t,)| <e/2 + /2 =¢,
[(to +8) -t <h <B<e,,

f(to + &,y (to + 8),u (bg + 8))eQ(ty + a,yk(to + 8)).

Hence, by definition of Q(to,yox2e), also

cog by ) = £ty + s,k +o8), w(ty +8))eQ(ty,y,,2€).
The second integral relation (10) shows that we have also
m . € cl co Q(ty,y,,2€)
since the latter is a closed convex set. Finally, by relations (11), we
deduce
lo(ty) - mp | < lo(ty) - myl+lmy - my | < 2n,

and hence

o(ty) elel co Q(to,yo,Qe)]gn.

Here n > O is an arbitrary number, and the set in brackets is closed.
Hence

p(to)e el co Qto,yy,2€),

and this relation holds for every ¢ > O. By property (Q) we have
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0(ty)e Ne el co Q(tg,¥g,2¢) = Q(t,,¥0),

vhere yo = y(to), and Q(tg,¥o) = £(t0,¥0,U(t,,¥,)). This relation implies
that there are points U = Ti(to)eU(to,yo) such that

0(to) = £(to,y(ts),ult5))e
This holds for almost all tg e[t1,t-]. Hence, tﬁére is at least one function
T(t), defined a.e. in [t1,t5] for which relation (9) holds a.e. in [t3,t2].
We have to prove that there is at least one such function which is measurable.
The proof is exactly as the one for closﬁre theorem I, where we write y,ye
instead of x,xx, and will not be repeated here. Closure theorem II 1s thereby

proved.

Content. 1. The problem. p. 5.—2. The space of continuous vector functions.
pe bi—3. Admissible pairs x(t), u(t). p. 5.—L. Uppersemicontinuity of

variable sets. p. 6.—5. Closure theorems. p. 23.
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