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EXISTENCE THEOREMS FOR WEAK AND USUAL OPTIMAL SOLUTIONS
IN LAGRANGE PROBLEMS WITH UNILATERAL CONSTRAINTS

IT. EXISTENCE THEOREMS*
Lamberto Cesari
Department of Mathematics
The University of Michigan
Ann Arbor, Michigan

In the present paper (II) we prove existence theorems for weak and usual
optimal solutions of nonparametric Lagrange problems with (or without) unilat-
eral constraints.

We shall consider arbitrary pairs x(t), u(t) of vector functions, u(t)
measurable with values-in Eg, x(t) absolutely continuous with values in E,, and
we discuss the existence of the absolute minimum of a functional

to
Ilx,u] =;f Vfo(tyx(t); u(t))at,

: tl

with side conditions represented by a differential system

dx/at = £(t,x(t), u(t)), t1 <t <to
constraints

(tyx(t))eA: m(t)eU(t’ X(‘t)) ’ tl’ghf_ t < to,

and boundary conditions
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(t1, x(t1), t2, x(t2))eB,

where A is a given subset of the tx-space E; x E,, where B is a given subset of
the t,x,toxo-space Eonto, and where U(t,x) denotes a given closed variable subset
of the u-space Em, depending on time t and space x. Here A may coincide with the
whole space E; x E,, and U may be fixed and coincide with the whole space Ey.

In the particular situation where U(t,x) is compact for every (t,x), these
problems reduce to Pontryagin problems; in the particular situation where U is
fixed and coincides with the whole space Ey, then these problems have essentially
the same generality of usual Lagrange problems. Throughout this paper we shall
assume U(t,x) to be any closed subset of Ey.

In the present paper (II) we prove existence theorems for optimal (usual)
solutions for the problem above. These contain as particular cases the Filippov
existence theorem for problems of optimal’control (U(t,x) compact), existence
theorems for usual Iagrange problems (ﬁ = Ep), and the Nagumo-Tonelli existence
theorem for free problems (m = n, f = u). Also, we obtain as corollaries ex-

istence theorems for the case in which f is linear in u.

In IIT we will discuss weak solutions as measurable probability distribu-
tions of usual solutions (Gamkrelidze's chattering states), and we will prove
corresponding existence theorems in the present very general situation where
U(t,x) is any arbitrary closed (not necessarily compact) variable set.

A1l these existence theorems are proved by a new analysis of a minimizing
sequence and by using the extensions of Filippov's clossure theorems pfoved in

paper I, as a replacement for Tonelli's semicontinuity argument.



To simplify references we continue the numeration of sections of paper I.
~ References to paper I will be given by "I" followed by section number.

In successive papers we shall extend the present results to multidimensional
Lagrange problems involving partial differential equations in Sobolev's spaces

with unilateral constraints.

6. Notations for lLagrange Problems with Unilateral Constraints

Iet A be a closed set of the (t,x)-space E; x E,, and, for every (t,x)e4,
let U(t,x) be a given subset of E;. Let fi(t,x,u), i = 0,1,...,n, be continuous
functions in the set MC Ey x Bp x Ep of all (t,x,u) with ueU(t,x), (t,x)eA.

Let f and ? be the n-dim. and (n + 1)-dim. vector functions
= (f1,...,5), T = (fg,f1yee.,fp).

As usual we say that u(t) = (u',...u"), x(t) = (x},...,x), t1 <t < ta, is an
admissible pair provided (a) u(t) is measurable in [ti,t2]; (b) x(t) is AC in
[t1,t2], (c) [t,x(t) ]eA for every telty,t2]; (d) u(t) eU(t,x(t)) a.e. in [ti,t2];
(e) £i(t,x(t), u(t)) is L-integrable in [t;,t2], i = 0,1,...,n, and dx;/dt =
£3(t,x(t),u(t)), 1 = 1,...,n, a.e. in [ty,t2]. Thus, by introducing the auxil-
iary verisble x°, the differential equation dx°/dt = f (t,x(t),u(t)), the boun-
dary condition x°(t,) = 0, the vector ¥ = (x°,x1,...,x"), and the set & = A x

Ey C Bpyo), the pair [u(t),x(t)] is admissible if and only if the pair [u(t),x(t) ]
is admissible according to the definitions of no. 2 for the set A of the tx-

space Ey X Ep41, the sets U(t,x) € By, and the vector function ;(t,x,u).

If [u(t),x(t) ] is admissible, then u(t) is said to be an admissible control



function, x(t) a trajectory, and

t
x°(t2) = Ilx,ul =L/\ ° £.(t,x(t) ,u(t))at (1)
T
the cost functional.
A class Q of admissible pairs x(t),u(t) is said to be complete if for every
sequence xp(t), we(t), tix <t < tok, k = 1,2,..., of admissible pairs all in
Q, Qith the sequence [xk(t)] converging in the mefric o toward a vector function
x(t) which is known to be a trajectory generated by some admissible control func-
tion u(f), then [x(t), u(t)] belongs to Q.
Such a class @ is often defined in terms of boundary conditions. For instance,
if B is a given closed set of points (ti,X1,ts,xs) of the (2n +2)-dim. Euclidean

space Eppyo, Wwe may define Q as the class of all admissible pairs x(t),u(t) satis-

Tying
(tl,x<t1):t2yx(t2))€3- (2)

Then Q is a complete class in the sense mentioned above, since B is, by hypothe-
sis, a closed set.

We shall denote by Bj the projection of B on the (t,x;)-space En+l’ that is,
By is the set of all points (t1,x1)eEn+, for (ti,x1,t5,x2)€B. Analogously, we
denote by By the projection of B on the (t5,x5)-space Ep+1. Obviously,
B © B; x Bs, and By x Bo may be largervthan B.

Tt is often requestéd that each trajectory x(t) of a class Q as above pos-

sesses at least one point (t*,x(t*)) on a given compact subset P of A. Such a



condition is certainly satisfied if B is compact, or at least if B is closed and
By, or Bo, is compact.

For the analysis of problems of lLagrange with unilateral constraints certain
variable sets have to be taken into consideration, namely, the set U(t,x) above

and the sets

Qlt,x) = [z]z = £(t,x,u), wel(t,x)] = £lt,x,0(t,x)] € E,,
a(t,x) = [z]z = ;(t,x,u), uel(t,x) ] = ;[t,x,U(t,x)]
= [; = (zo,z) |zo = fo(t,x,u), z = £(t,x,u), uel(t,x)] € Epti,

1}
1

a(t,x) = [z (zo,z)lzo fo(t;x,u), z

1V

f(t,x,u), uel(t,x)] € Epys.

The sets Q and a are well known and have been considered by a number of authors
(for instance, A. F. Filippov, [2]). The set a(t,x) is being considered here

and in [lc] for the first time. By considering this set, instead of Q or 5, we
prove here theorems I and II (no. 7) which include a number of existence theorems

for both problems of optimal control and the calculus of variations.

7. An Existence Theorem for Lagrange Problems with Unilateral Constraints

Existence Theorem I, ILet A be a compact subset of the tx-space E; x E,,
and for every (t,x)eA let U(t,x) be a closed subset of the u-space Ey. Let
F(t,%x,u) = (fo,f1,...8,) = (fo,f) be a continuous vector function on the set
M of all (t,x,u) with (t,x)eh, ueU(t,x), Assume that, for every (t,x)eA the

set



At,x) = [Z = (2%2) [2° > £ (t,%,m), 2z = £(t,x,0), vel(t,x)] c By,

is convex. Assume that U(t,x) satisfies property (U) in A, and a(t,x) satisfies
property (Q) in A. Assume that there is a continuous scalar function &(¢), 0 < ¢
<+ o, with () /¢ + + & as { > + o, such that f (t,x,u) > o(|ul) for all (t,x,u)
€M, and that there are constants C,D > O such that |f(t,x,u)| <C+ D|u| for all
to

(t,x,u)€M. Then the cost functional I[x,u] =\/p fo(t,x,u)dt has an absolute mini-
mum in any nonempty complete class Q of admissgéle:pairs x(t), u(t).

If A is not compact, but closed and contained in a slab [ty <t < T, xeE,],
tg, T finite, then theorem I still holds if, in addition, we know that (a)
Xy + ... + X%, < F[|x|® + 1] for all (t,x,u)eM and some constant F > 0, and
(b) every trajectory in Q contains at least one point (t*, x(t*)) on a given com-
pact subset P of A (t* may depend on x(t)). If A is not compact, not contained
in a slab as above, but A is closed, then theorem I still holds if hypotheses (a),
(b) arve satisfied, and () £o(t,%,u) > u > 0 for all (t,x,u)eM with |t| >R, for
convenient constants u > 0, R > 0. Finally condition (a) can be replaced in
elther case by the hypotheses: (a') There are constants G > 0, H > Osuch that
£,(t,%,u) > G|£(t,x,u) | for all (t,x,u)eM with [x| > H. Furthermore, when A is
not compact but closed, both conditions fy > @ |u|), |f]| < C + D|u| can be re-
placed by the following set of conditions: (@) fo(t,x,u)z - L for all (t,x,u)eM
and some constant L > 0; (B) fo(t,x,u) > p >0 for all (t,x,u)eM with [t]| >R, .
and some conétants uw>0, R>0; (7) for every compact subset A, of A there is
a function Q5as above . and‘constants Co» Do > O such that £, > & (|u]), |f] <

Co + Dolu| for all (t,x,u)eM with (t,x)eAo (where @y, Coy, D, may depend on Ag).



Proof of Existence Theorem I. We have ¢({) > - My for some mumber M, > O,

hence ®(¢) + My >0 for all §{ >0, and f,(t,x,u) + My >0 for all (t,x,u)eM. Let

D be the diemeter of A. Then for every pair x(t), u(t), t <t < tg, of Q@ we have.

to to
I[x,ul =f fodt zf o( lul)at > - DM, > - .

let i = Inf I[ul, where Inf is taken for all u(t)eQ. Then i is finite.
Let x(t), ug(t), tik <t < tog, be a sequence of admissible pairs all in g,

such that I[xy, ul + 1 as k > w, We may assume

tak
i< Ilxy, uk]=f folt, x(t), uk(t))dt<1+k <i+1, k=1,2....
t1k

Let us prove that the AC vector functions x,(t), tix <t < tog, k ='1,2,...,

are equiabsolutely continuous. Let € > O be any given number, and let o = o=t
(DM, + |i] + 1)

Iet N > 0. be a number such that ®(z)/z > 1/0 for z > N. Let E be any measur-
sble subset of [ti),tok]) with meas E <1 = ¢/2N. Let E; be the subset of all

teE where uyp(t) is finite and |w(t)| <N, and let Ex = E - E;. Then |u(t) <

N in By, and @ |ug|)/|uk| > 1/0, or w < ool |ugl|), a.e. in Ep., Hence

fiuk(t)ldt 4 fluk t) |at

E

< N meas E; + U“é\ o |uy(t) |)dt
2



This proves that the vector functions w(t), t

< N meas E + of (& |uy(t) [) +Mglat
Eo

t
< Np + gf 2k [@(]uk(t) ) +Mgldt
tlk
tok
<Nnp+o [£o(t,x,(t) , ue(t)) +M5lat
tik

IN

Nn + o(DM, + |i] + 1)

e/2 +ef2=¢. | (2)

INA

IKStSt%,k=lﬁ”“,am

equiabsolutely integrable. From here we deduce

[ e -

flf(t,xk(t) yu(t) |at S.@/ (A + Blug(t) | ldt

E

< A meas E + Bf |, (t) ldt

E

and this proves the equiabsolute continuity of the vector functions xk(t),

t,, <t <t

1k -

by

with

=1,2,....

Now let us consider the sequence of AC scalar functions xg(t) defined



x(ty) =0, (o) = Ilue,x] » 1 as k> +w,
1<xQ(ty) <1+k T <i+1,

If up(t) = £o(t,x(t) yug(t)), t1x <t < toy, then we define the functions

- +
w(t), w(t) as follows:

ug(t) = uf(t), ug(t) =0 if uR(t) <o,

up(t) = 0,  w(t) =uXt) ir  ud(t) <o .

- +
Then w(t) <0, w(t) >0 a.e. in [t1,t2], and we define

t - t
-7 IRy + +
%“)i/ u (t)dt, ’%“)i[ u (t)dt, Ty <t <ty k=1,2,00..

t1x | t1x

Since -M, < ug(t) =0 , we have - Mo(top = tq3) < yi(t) < 0, and the func-

tions y.(t) are monotone nonincreasing and uniformly Lipschitzian with constant

k

+ .
. On the other hand, the functions yi(t) are nonnegative, monotone nonde-

Mo ) Tk g ’

creasing, and uniformly bounded since
0 < ¥ty = (el + Tlt)) = yalty) = xp(t) = ypltyy)
- Yk "2k k' 2k k' "2k k' "2k k' "2k k' "2k
<1+ 1+ My(tpg - tyx) <DM) + i + 1.
By Ascoll's theorem we first extract a sequence for which yﬁ(t) converges
in the metric p toward a continuous function Y’(t), ty <t <to, and Y7(t) is

then monotone nonincreasing Lipschitzian with constant My, and Y (ty) = 0. Then

+
we apply Helly's theorem to the sequence yk(t) and we perform a successive ex-

9



traction so that the corresponding sequence of the yﬁ(t) converges for every
tl <1t <tz toward a function Y;(t), t; <t < tz, which is nonnegative, mono-
tone nondecreasing, but not necessarily continuous. This function Y;(t) is
defined say at t; only if ~-many of these intervals tjy,top cover tiy, and
so is for ts. If Y;(t) is not defined at t, ot ts, we may define it at t; by
taking Y;(tl) = 0, and at tz by continuity at tz, because of its monotoneity.
Thus 0 < Yg(t) < DMy + 1 + 1, tlgtgﬁg.

Finally, Y;(t) admits of a unique decomposition Yg(t) = YH(t) + Z(t), b, <
t < tp, with Y¥(t,) = 0, where both Y'(t),Z(t) are nonnegative monotone nonde-
creasing, where Y'(t) is AC, and Z'(t)= 0 a.e; in [ti.t2]. Finally, if Y(t) =
Y (t) + YT(t), we see that x(t), t1 <t < to, converges for all t; <t < ta,
toward Y(t) + Z(t), where Y(t) is a (scaler) AC function, DMo < Y(t) < DMy +
|i] + 1, ¥(t1) = 0. Let us prove that Y(tz) < i. For the subsequence [k] we

© +
have extracted last, we have tgk + t3, xRp(top) + i, Xk(tor) = Me(tor) + Fie(tow) .
If Eé is any point, t; < %é < tp, Eé as close as we want to to, then %é < tok

for all k sufficiently large (of the extfacted sequence) , since tokx > to. We

can assume k so large that Eé < tok, lgé - tok| < 2!;; - t2|. Then

[y(t2) - yiltar) | < Mylta - tak| < 2Mjfta to
L ey . + L :
Since y(t) is nondecreasing, we have yy(tz) < yy(tzy), and finally
- - + - - - +
Ye(t2) + 7(t2) < wta) + yltax)

< yiltor) + vtz + |ya(ts) - yr(taw) |

10



< x%(tok) +aMylte - 2l
where Xo(tgk) +1i as k -+ +o, and x°(tox) < i + k-i. Hence
yeltz ) + yalta) <1 +2M[to - to] + K
As k » + » (along the extracted sequence), we have

- +,= , T
Y (t2) + Yo(t2) < i +2Md|t2 - to] .

or

+,= - R a7
Y (tg) + Y (ta)+ Z (t2) < i +2M4[te - t2],
where the third term in the first member is > 0. Thus

Y(ta) = ¥ (t2) + ¥ (t2) < i +2Mg[ta - ta] .

As to > to - 0, we obtain Y(tp) < i, since Y is continuous at tz.

We will apply below closure theorem II to an auxiliary problem, we shall

now define. Iet T = (u,u) = (u,u*,...,u"), let U(t,x) be the set
) ) ) J ) )

ueEp+r with U = (ul,...,u") eU(t,x), u’ > fo(t,x,u), let % = (x

%)

, let T = £(t,x,u) = (fo,f) = (fo,f1,...,fn) With fo = u® Thus

of all
_ ° .1
= (x7,xY,.00,

f depends

only on t,x,u (instead of t,X,u), and U depends only on t,x, (instead of t,X).

Finally we consider the differential system
d%/dat - £(t,x,u)

or

ax®/at = wo(t),  axli/at + £5(t,%,m), 1i=1,...,m,

11



with tHe constraints

3(t) eult,x(t)),
or

wO(t) > fo(t,x(t),ult)),  u(t) eu(t,x(t)),

a.e. in [t;,t2], besides x°(t1) = 0, and [u,x]eR. We have here the situation

~
discussed in closure theorem II where x replaces x, x replaces y, x°

replaces
z, n + 1 replaces n, n replaces s, hence (n+1) -n=1replaces n - s, For

the new auxiliary problem the cost functional is

1]
ct
\V]
H
o
Q
o
1]
ct
V]
o
@]

—~

+
~

Qs

+

|
»
O

—~

+
I\
~—

JI%,%]

Note that the set Q(t,x) = £(t,x,U(t,x)) of the new problem is the set of all
;~=(z°,z)eEn+1 such that z° = u°, since o = uo, z = £(t,x,u), u® > £,(t,x,u),
ueU(t,x). Thus, the sets ﬁ?.a for this auxiliary problem are the sets ﬁ, z
considered at the beginning of this proof.

We consider now the sequence of trajectories Xi(t) = [x°(t), x(t) ],
tik <t < tzk, for the problem J[E,%] corresponding to the control function
u(t) = [wO(t), w(t)] with wO(t) = £,(t,x(t) ,ue(t)), w(t)et(t,x(t)), and
hence ﬁk(t)eﬁ(t,xk(t)), tik <t <tok, k = 1,2,.... The sequence [X(t)] con-
verges in the metric p toward the AC vector function x(t), while x °(t) »
x°(t) as k + +» for all te(t,,ts), and xo(f) = Y(t) + Z(t), where Y(t) is AC
in [t;,t2] and 2'(t) = 0 a.e. in [tq,t2].

By closure theorem II we conclude that X(t) = [Y(t),x(t)] is a trajectory

12



for the problem, In other words, there is a control function ﬁ(t), t; <t <

t2, u(t) = (u%(8) ,u(t)), with
av/at = uo(t) > f£5(t,x(t) ult)), u(t)eu(t,x(t)) ,

dx/dt = £(t,x(t) ,u(t)), (L)

a.e. in [tq,ts], and

to
1> ¥(t2) = Jlx,ul =Jf u®(t)at . (5)

First of all [x(t),u(t)] is admissible for the original problem and hence be-
longs to @, since by”hypothesis‘Q is complete. From this remark, and rela-

tions (4) and (5) we deduce

; ta to
i< 1lx,ul =\/ﬁ £,(t,x(t) ,u(t))dt <k/q uo(t)dt < i,
t, t,
and hence all < signs can be replaced by = signs, uo(t).= £(t,x(t) ,u(t)) a.e.
in [ty,t2], and I[x,u] - i. This proves that i is attained in Q. Existence
theorem I is pro&ed in the case A is compact.

Iet us assume now that A is not compact but closed, that A is contained in
aslab [to <t <T, =»<x' <+, i=1,...,n,t,, T finite], and that the addi-
tional hyﬁdfheses (a) and (b) hold. If Z(t) denotes the scalar function Z(t) =
|x(t) |? + 1, then condition xf; + ..+$nfn < ¢(]x|® + 1) implies 2' < CZ, and

hence, by integration from t* to t, also

15



1< Z(t) < Z(t*) exp Clt - t*| .

Since [t*,x(t*) ]eP where P is a compact subset of A, then there is a constant
N, such that |x| < N, for every xeP, hence 1 < Z(t*) < NO2 + 1, and 1 < Z(t)
< (Ny2 + 1) exp C(T - t,). Thus, for ty <t < T, Z(t) remains bounded, and
hence |x(t) | < D for some constant D. We can now restrict ourselves to the
consideration of the compact part A, of all point (t,x) of A with t5 <t <

T, |x| <D, \

Thus, theorem I is proved for A closed and contained in a slab as above,
and under the additional hypotheses (a), (D).

Let us assume that A is not compact, nor contained in any slab as above,
but closed, and that hypotheses (&), (b), (c) hold. First, let us take an
arbitrary element X(t), U(t) of Q and let j = I[X,u]. Then we consider an
interval (a,b) of the t-axis containing the entire projection P, of P on the
t-axis, as well as the interval [-R,R]. Now let £ = p-l (]3] + 1+ (v-a)M,],
and let [a',b'] denote the interval [a - £, b + £]. Then for any admissible
pair (if any) x(t), u(t), t1 <t < tz, of the class Q, whose interval [t;, t»]
is not contained in [a', b'], there is at least one point t*e[t,, tz] with
(t*, x*(t))eP, a<t* < b, and a point Telt;, to] outside [a',b']. Hence [t,,
to] contains at least one subinterval, say E, outside [a,b], of measure > 4.

Then I[x,u] > 4p - (b - a)M,

|j| + 1 >4 + 1. Obviously, we may disregard
all pairs x(t), u(t), t1 <t < tp, whose interval [ti, to] is not contained in
[a',b']. 1In other words, we can limit ourselves to the closed part A' of all

(t,x)eh with a' <t < Db'. We are now in the situation above, and theorem I is

14



proved for any closed set A under the additional hypotheses (a), (b), (c).
Finally, we have to show that condition (a) can be replaced by condition: (a')
There are numbers C, D > O such that £o(t,x,u) > C|£(t,x,u)| for all (t,x,u)eM
with le > D. It is enough to prove theorem I under the hypotheses that A is
closed and contained in a slab 1, <t < T, to, T as above, and hypotheses (a')
and (b). First let us take D so large that the projection P* of P on the x-
space is completely in the interior of the solid sphere lxl < D, and also so
large that D> T - t,. Let E(t),;(t) be any arbitrary admissible pair contained
in @, and let J denote the corresponding value of the cost functional. ILet L =
o7'Io, + [J] + 1], and let us take Dy = D + L. If any admissible pair u(t),
x(t), t1 <t < t2, of Q possesses a point (t,, x(ty)) with Ix(to)[ > Dy, then
x(t) possesses also ajpoint (t*, x(t*))eP, with |x(t*) ] < D. Thus, there is

at least a subarc I': x = x(t), x(t), t' <t <t", of x(t) along which |x(t)| >
D and |x(t) | passes from the value D to the value Dy = D+ L. Such an arc I' has

a length > L. If E = [ty, to] - [t', t"], then

.t2 _tH t"
Ilx,u] =x/q fat = (\jpa3jf ) £at > - DM, +k/“ clflat
Ty A !
_tH
= =DM+ C ldx/dt|at = -DMy + CL > |§| + 1 >1 + 1,

As before we can restrict ourselves to the compact part Ay of all points (t,x)
of Awitht, <t < T, |x| < D. The case where A is closed, A is not contained

in any slab as above, but conditions (a'), (b), (c) hold can be treated as before.

Theorem I is thereby completely proved.

15



Remark 1, If the set
~ O ~ ~
Qt,x) = £lt,x,0(t,x)] = [z = (27,2) |z = £(t,x,u), uel(t,x)]
~ 0 0 .
= [z = (2 ,2) |z = fo(t,x,u), z = £(t,x,u), uecl(t,x) ] CEy+y

is convex, then certainly the set a(t,x) of theorem I is convex also. On the
other hand, trivial examples show that Eaﬁ,x) may be convex, when Q(t,x) is not.
This is actually the usual case in free problems of the calculus of variations
(see remark 2 below). Thus, the requirement in theorem I that Ekt,x) be convex
for every (t,x) is a wide generalization of the analogous hypothesis concerning
a(t,x) which is familiar in problems of optimal control. For these problems,
Filippov's existence theorem is a particular case of theorem I.

The theorem of A. F. Filippov [2], As in theorem I, if A = Ey x E,, if

F(t,x,u) = (fo,f) = (fg,f1,.0.,f,) is continuous in M, if U(t,x) is compact
for every (t,x) in A, if U(t,x) is an upper semicontinuous function of (t,x) in
A, if a(t,x) = §(t,x,U(t,x)) is a convex subset of Ep+, for every (t,x) in A,
if conditions (a) and (c) are satisfied, and the class  of all admissible
pairs for which x(t;) = x3, x(t2) = xp, t1,%1,xo fixed, to undetermined, is
not empty, then I[x,u] has absolute minimum in Q.

This statement is a corollary of theorem I. Indeed, under hypothesis (c)
we canrestrict A to the closed part A' of all (t,x)eA with a' <t < b', and
|x| < N for some large N. If M, is the part of all (t,x,u) of M with (t,x)eM,
then the hypothesis that U(t,x) is compact and an uppersemicontinuous function

of (t,x) in A, certainly implies that U(t,x) satisfies condition (U) in Aj and
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that My ¥s compact (I, no. bk, (vi) and (vii)). Also, since Q(t,x) is convex for
every (t,x) by hypothesis, we deduce that Q(t,x) is an uppersemicontinuous func-
tion of (t,x) and satisfies property (Q (I, no. 4, (xiv) and (xiii)). Then
a(t,x) certainly satisfies property (Q) by the remark 1 above. Finally, since
My is compact, the growth condition f, > ¢ and the remaining condition |£] <C
+ D|u| are trivially satisfied. Thus, all conditions of theorem I are satisfied,
and Filippov's theorem is proved to be a particular case of Theorem I.

Remark 2. The analogous existence theorems of E. Roxin (8] and of L. Markus
and E. B. Lee [9] are also essentially contained in Theorem I. For a detail
on Roxin statement see Remark 4 below.

Remark 3. For free problems of the calculus of variations (no. 11 below)

we have m = n, U = Ep, £ = u, hence

?[t,x,U(t,x)] = [z = (ZO)U-) [ZO =fo(t,x,u) , ueEn]CEnsy

d(t,x)

0

E(t,x) [z = (t,u) 2° >f(t,x,u), uebylCEpyy

the set Q is convex if and only if f is linear in u, while @ is convex if and
only if fo is convex in u. Thus condition 3 convex of theorem I reduces to the
requirement f, convex in u which is familiar for free problems in the calculus
of variations. We shall prove in no. 11 that the Nagumo-Tonelli existence theorem
for free problem is also a particﬁlar case of theorem I,

Remark L. The condition fo> ®(|u|) with ®(z)/z + +o of the theorems above is
said to be a growth condition on fy. As it is well known éuch a condition (for fq

convex in u, and U=Ey) is equivalent to the condition that, for every (t,x)eA, we have
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we have fo(t,x,u)/|u| + 4o as |u| + +o [L. Tonelli, 9a]. On the other hand, it
is known already for free problems, that if such a condition is not satisfied

at the points (t,x)eA of even only one hyperplane t = E, then the absolute mini-
mum need not exist. For free problems, othéer additional conditions haie béen
devised in such cases [9a].

Condition xfy + ... + x'fy < C(|x|® + 1) of theorem I can be replaced by
xifl + ...+ 3By < o(t)(]x|® + 1), where ¢(t) >0 is a fixed function of t
which is L-integrable in any finite interval. The remark was made by E. Roxin
[8] in analogous problems of optimal control,

Remark 5. For problems of optimal control where U(t,x) is always compact
we have given in [lbc] an existence theorem, say I¥, similar to the Filippov's
theorem above, where the condition "azconvex" is replaced by the following re-
quirement: Q(t,x) is a convex subset of E,, fo(t,x,u), uelU(t,x), is convex in
u, and "the curvature of f is always small with respect to the convexity of f "
(see [1b], or [lc] for a precise statement). Wherever this requirement implies
the convexity of the set 5, then the theorem given in [lbc] becomes a corollary
of Theorem I above. Also it should be pointed out that, whenever the relation
g = f(t,x,u) between Q(t,x) and U(t,x) can be inverted and u = fal(t,x,z) is a
continuous function of z in Q(t,x), then the set E(t,x) can be represented by
E(t,x) = [z = (2°,2) |2° > F(t,x,2), zeQ(t,x)], where F(t,x,z) = fo(t,x,f-l(t,x,z)),
and thus the requirement of the convexity of the set 5 reduces to the requirement
of the convexity of the function F(t,x,z) in z. Then the further requirement
that E(t,x) satisfies property (Q) is certainly satisfied if, besides,F is

quasi normally convex as proved in [I) no. L, (xviii)]. We discussed in [lc]
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a case where the requirement of theorem (I*) implies the convexity of F in u, and
correspondingly (I*) becomes a corollary of I, The simpler requirement: Q(t,x)
a convex subset of E, and fo(t,x,u) convex in u, does not suffice for existence,

as we prove in the following number,

8., EXAMPLE OF A PROBLEM WITH NO ABSOLUTE MINIMUM
The condition ”a(t,x) convex for every (t,x)eA" of theorem I cannot be re-
placed by the simpler condition "Q(t,x) convex for every (t,x)eA and f (t,x,u)

" not even when A and all sets U(t,x) are compact (that is, for

convex in u,'
Pontryagin problems). This is shown by the following example.

Let us consider the differential system:
x' =u(l -v) +[2-2"u-12v,

2 -2Yu-1%1(1-v) +uv,

yV

=

He

c'.

=

d.
=

I

= 0, initial point (0,0), fixed target (0,1), and fixed control space

[-l<u<1l,0<v<1l]. If

— - — =

uw(l -v) +[2-2"Yu-1)2v,

Z:’ = fl

[2 - 27w - 1)2) (1 - v) + uv,

zo = fo

We see that the segment [v =1, -1 <u < 1] is mapped by f = (f1,f2) onto the
arc of parsbola ABC = [z7 =2 - 27 %u - 1)%, 25 =u, -1 <u < 1], whose points

’

A=(0,-2), B =(3/2,0), C=(2,1) correspond to u = -1,0,1 resjpectively° The

segment [v = 0,-1 <u < 1] is mapped by f onto the arc DEF = [zy = u, zp = p.p™*
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(u-1)%, -1 <u< 1], whose points -D = (-1,0), E = (0,3/2), F = (1,2) corres-
‘pond to u = -1,0,1 respectively. Each segment [u = c, 0 < v < 1] is mapped by
f onto the segment joining the points corresponding to (c,l) and (c,0) on the two
parabolas. Thus, the image Q = f(U) of U is the convex body Q=(ABCFED) of the

21,%Zo-plane. Let us consider the cost functional

to
I =b/\ [x® + (y - t)% + v®lat .
ta1

For k = 1,2,..., let w(t), v(t), 0 <t <1, be defined by taking w(t) = -1,
ve(t) = -1, v(t) =0, or w(t) = +1, vi(t) = 0, according as t belongs to the
intervals k™ M(i - 1) <t <k 31 -1) +(2k) *, or k™51 - 1) + (2k) "* <t <
k™Y1, 1 =1,2,...,k. Then the functions xx(t), y(t), 0 <t <1, satisfy the
differential equations dxy/dt = +1, dyy/dt =2, or dxg/dt = -1, dyg/dt = 0, ac-
cording as t belongs to one or the other of the two sets of intervals above.
Then x(t) + x5(t) = 0, yR(t) » yo(t) =t uniformly in 0 <t <1 as k + w, If
Ck, CO denote these trajectories, we say that Ck * Cqe

The question as to whether C, is actually a trajectory, that is, whether
there are admissible control functions uo(t), vo(t), 0 <t < 1, whose correspond-
ing trajectory 1s Cj can be answered in the affirmative because of the convexity
of Q. Actually, the point (Qy,B,)eU, Oy = 2 - J5 = -o,é3607, Bo = (11) "H(L -
J5) = 0.16036, is mapped by f into (zy = 0, z2 = 1), and thus uy(t) = 0, vo(t) =
Bos 0 <t <1, generate C,. Now we have xi(t)+ 0, y(t) + t, uniformly in [0,1]

as k + o, and vi(t) = 0, hence I{C,] + 0 as k + «, On the other hand I[C,] =
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1
f (62 + 02 + By2)dt = B,Z > 0.
0

Let us prove that I has no absolute minimum in the class Q of all trajec-
tories satisfying the differential equations, boundary conditions, and constraints
above. Indeed, I[Cy] + O shows that the infimum of I[C] in Q is zero, but this
value cannot be attained by I in Q. Indeed, I[C] = O implies x =0, y =t, v =
0, and the first two relations alone imply u = Oy, v = B, # 0 a.e. in [0,1], a
contradiction., Thus I cannot attain the value zero in Q.

In this example Q is a convex set, fj is convex in (u,v), and even satis-
fies trivially the growth condition fo > ¢, since here U is a bounded set. Now
let us prove that 3 is not convex. It is enough to verify this for t =0, x =
0, y = 0. Then § is simply the set of all z = (2o, 21,22) Wwith (z3,22)eQ satis-
fying the relation Zo‘é fo = v2, when z,, Zo, u, v are related by z; = T3, 2o =
f2, (u,v)eU. DNow the segment T = [v =0, -1 <u < 1] is mapped by f onto the
arc I = (DEFﬁCQ, and we have fo >0 in Q-T, fo = 0 in I', and hence a convex
would imply that I' is a segment, and this is not the case. This proves that

Q is not a convex set.

9. ANOTHER EXISTENCE THEOREM FOR LAGRANGE PROBLEMS WITH UNILATERAL CONSTRAINTS

Existence theorem II. Let A be a compact subset of the tx-space E; x Ej,

and, for every (t,x)éA, let U(t,x) be a closed subset of the u-space Ey. Let
?(t,x,u) = (fo,f1,000,fn) = (fg,f) be a continuous vector function on the set M

of all (t,x,u) with (t,x)eA, ueU(t,x). Assume that, for every (t,x)echA, the

set

~ ~

EZ(%X) = [z = (Zoyz) eEn+lIZO > fo(t,X,u), z = £(t,x,u), uel(t,x)]
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is convex, and that U(t,x) satisfies property (U) and a(t,x) satisfies property
(Q in A, Iet @(t) be a given function which is L-integrable in any finite
interval such that fo(t,x,u) > o(t) for all (t,x,u)eM. Let Q be a nonempty

complete class of admissible pairs x(t), u(t) such that

ta p
J/\ lax */at| at <N, i =1,...,n, (2k)
t1
for some constants N, > 0, p > 1. Then the cost functional I[u,x] has an abso-
lute minimum in Q.
If A is not compact, but closed and contained in a slab [t, STLT, ==
< xi <+w, i =1,...,n, ty, T finitel, then theorem II still holds under the
additional hypothesis = (b) after theorem I. If A is not compact, nor con-
tained in any slab as above, but A is closed, then theorem II still holds under
the additional hypotheses (b) and (c*): fgo(t,x,u) > o(t) for all (t,x,u)eM where
+00
©(t) is a given function which is L-integrable in any finite interval and;/m o
0 0
(t)at = +m,'/p @(t)dt = +o. Finally, if for some i = 1,..,,n, and any N > 0O,
-0 't2 .
there is some Nj > O such that (x,u)ef, I[x,u] < N implies jp lax* /at [Pat <
Ty

N;, then the corresponding requirement (24) can be disregarded.

Proof of existence theorem II. We suppose A compact, hence necessarily

contained in a slab [ty <t < T, ty, T finite, -0 < x* < 4w, =i = 1,,..,n], and
to T
then I[u,x] =,/\ fodt > 1/ﬁ lp(t) |at. This proves that the infinum i of
Ty tO '
I[u,x] in Q is necessarily finite. ILet ug(t), x(t), t1x <t < tok, k = 1,2,

..., be a sequence of admissible pairs all in Q with I[uk,xk] + i. We may

assume
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tak :
i< Ilxg,ud =k/p folt,xe(t) yup(t))dt <i+1/k< 1i+1. (25)
tik

Then

jp |ax, /dt [Pat < Wy, i=1,...,n, k =1,2,... . (26)

tik
By the weak compactness of Lp we conclude that there is some AC vector function
x(t) = (x*,...,x"), t1 <t < t2, such that tig>ty, tak>ta', dx '/dt > dx /dt
weekly in L, x(t) + x(t) in the p-metric. The proof is now exactly the same
as for existence theorem I.

If A is not compact, but closed and contained in a slab as above, and condi

tion (b) holds, then for every admissible pair u(t), x(t) of Q we have

% " %
1/q . 1/P
Ix(t) - x(t¥) | =| | ax/atlat < |/ at|” " || |ax/at| at|
Il’; ‘4’\* f

¥

1/q (

< Jt - t¥ Ni + «.o+ Np),

where (t*,x(t*)) belongs to a fixed compace subset P of A. Then |x(t¥)]| <

N', |t -t¥| <T - tp, and |x(t) | < N" for some constants N', N" > 0. Thus,
we can limit ourselves to the compact part A, of all points (t,x) of A with to
<t <T, |x|] <N". If A is not compact, nor contained in any slab as above,
but A is closed and conditions (b), (c) hold, then we can use the same argu-
ment as for existence theorem I.

Finally, we see that assumption (24) has been used only in (26) for a

minimizing sequence uy,Xy. Since for a minimizing sequence we see already in
(25) that Ilug,x] <1 + 1, it is obvious that any relation (24) which is a
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wvhere x(t) = (x1,...,x%), u(t) = (ul,...,u®), m=n, fo =1+ [ul®, f; = ut

i

consequence of a relation of the form I <M need not be required among the

assumptions of theorem II. Theorem II is thereby proved.

10. EXAMPLES

1. Iet us consider the (free) Problem
to

2
I[x] = u/\ (1L + |x'| )at = minimum,
t1

b

=1,...,n, and the control space U(t,x) is fixed and coincides with the whole

space E . Here Q(t,x) = [(x,u) |z > 1 + Iu|2, ueE ] is a fixed and convex subset

of Ep41- The conditions of theorem III are satisfied with g =1, g, = 1,

o(u) = o(|u|) = |u]2, or ®(z) = 22, 0 <z < 4w, A is the half space A =

[(t,x)| t >0, x€Ep J]<Ep41. Thus the problem above has an optimal solution.
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2. The free problem

1
I[x] =_/W tx'%dt = minimum, x(0) = 1, x(1) =0 ,
o

is known to have no optimel solution [6b]. The same problem can be written as

a Lagrange problem withm =n = 1 in the form

1
Jy[x,ul =_/h tu®dt = minimum, x(0) = 1, x(1) = 0
o

dx/dt = u, uek,,

as well as in the form

1
Jolx,u] =_/\ t%2dt = minimm,  x(0) =1, x(1) =0 ,
(o]

dx/dt = tu , ueE; .

The relative sets a(t,x) are here subsets of the zoz-plane Es. For the problem J;
the sets a satisfy condition (Q), but fo = tu2 does not satisfy the growth condi-
tion of Theorem I. For the problem J, the sets Q do not satisfy condition (Q).
(We shall take into consideration the same sets under nos. 4 and 5 of Section 1k
below).

The same free problem with an additional constraint

1
2
JF x'fat < N,

o
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where Ny > 1 is any constant, has an optimal solution by force of theorem IT
.and subsequent remark. The optimal solution will depend on Ny. Note that

No > 1 assures that the class Q relative to the problem is not empty. Indeed

I}

1
for x(t) = 1 - t, we have Jf x'%t = 1.

0

11. THE FREE PROBLEMS
If we assume m = n, f5 = u;, 1 = 1,...,n, U(t,x) = E, then the differen-

tial system reduces to dx/dt = u, and the cost functional to

to to
I[u,x] =f fo(t,x(t) ,u(t))dt =f £.(t,s(t),x'(t))dt .
tl tl
Then the problem under consideration in no. 6 reduces to a free problem (no dif-
ferential system) where the integral is written in the form
ta
1(x] =f £olt,x(t) ,x'(t))dt , (1)
ta
and the only constraint is now (t,x(t)eA for all t, <t <tzo. Again, complete
classes Q of vector functions x(t) can be defined by means of boundary conditions
of the type (t1,x t1), ta, x(t2))eB,where B is a closed subset of Eop+o as in no.

6.

The Nagumo-Tonelli Theorem. If A is a compact subset of the tx-space E; x

if £.(t,x,u) is a continuous function on the set M = A x if for every
’ o\ Y1ty ’

(t,x)eh, £ (t,x,u) is convex as a function of u in Ey, if there is a continuous
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scalar function @({), 0 < § < 4o, with ¢(¢)/{ » +o as ¢ + 4=, such that o
(t,x,u) > o(|ul) for all (t,x,u)eM, then the cost functional (1) has an absolute
minimum in any nonempty complete class Q of absolutely continuous vector func-
tions x(t), t1 <t < tz, for which fy(t,z(t),x'(t)) is L-integrable in [t;,ts].
If A is not compact, but closed and contained in a slab [to <t <7, xE,],
ty, T finite, then the statement still holds under the additional hypotheses
(t1) fo > Clu| for all (t,x,u)eM with |x| > D and convenient constants C > 0,
D > 0; (7o) every trajectory x(t) of Q possesses at least one point (t*, x(t*))
on a given compact subset P of A, If A is not compact, nor contained in a slab
as above, but A is closed, then the statement still holds under the additional
hypotheses (T1), (T2), and (T3) fo(t,x,u) >p >0 for all (t,x,u)eM with [t]| >

R, and convenient constants u > 0 and R > O,

=~

Proof. First assume A to be compact. Then the set Q(t,x) reduces here to
the set of all z = (2z°,z)eEp+; with z° > fo(t,x,2z), zeBy, where f, is convex in
z, and satisfies the growth condition fg > o |ul) with @(¢) /¢ + +o as ¢ + +eo,
By the remark after lemma (xvi) of I, no. L, fo is normally convex in u, hence quasi
normally convex, and, by lemma (xvii), part (B), of I, no. L, ao satisfies condi-

tion (Q) in A. Thus, all hypotheses of theorem I of no. 7 are satisfied. If

A is closed but contained in a slab as above then the condition (a) of theorem
I reduces to u*x = C(]xl2 + 1) which cannot be satisfied since we have no bound
on u, On the other hand, the condition (a') fo 2 C|f| for some C > 0 reduces
here to requirement (T;) and condition (b) to requirement (75). Finally, if
A is not compact, nor contained in a slab as above, but A is closed, then re-

quirement (c) of theorem I reduces to requirement (Ts). All conditions of
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theorem I are satisfied, and the cost functional (1) has an absolute minimumVQ.

12. TLAGRANGE PROBLEMS WITH f LINEAR IN u.

We shall consider now the case where all functions fi(t,x,u) i = 1,...,n,
are linear in u, and the control space U(t,x) is fixed and coincides with the

total space E,. Precisely, we shall consider the Lagrange problem.

to
I[x,u] =I‘/h [g(t,x) o(u) + g4 (t,x)]dt = minimum, (1)
t1
. o s
axt/at =Z g15(t,00 + g (6,0, 1=1,...,0, (2)
J=1

where x = (xl,...,xn)%Em, and ®(u), ueE;, is a convex function of u satisfying
a growth condition as in Nagumo-Tonelli theorem. If H(t,x) denotes the n x m

matrix (g:s:(t,x)), and h(t,x) the n-vector (gi(t,x)), then the differential

&1
system (2) takes the form
dx/dt = H(t,x)u + h(t,x) .

=~

The sets Q(t,x), Q(t,x) relative to the problem above are
Q(t,x) = [z]z = Ht,x)u + h(t,x), uek ] c B,
(3)

E(t’x) ® [; = (ZO)Z) 'Zo > g(t,x) &(u) + go(t’x); z = H(t,x)u + h(t,x), ueEn] C En+:1 .

Obviously, Q(t,x) is a r-dimensional linear manifold in E, where r is the rank

of H(t,x). We shall need a few lemmas concerning the sets Q(t,x).
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(1) If g is nonnegative, and @ is nonnegative and convex, then both sets Q(t,x),

~

Q(t,x) defined in (3) are convex for every (t,x)eA.

~

Proof. We give the proof for E(t,x)° Iet t = (go,g), ﬁ = (1°,n) be any two

~ ~

points of Q(t,x), let O <a<1l, and Z=(2%2) =t + (1 - Q)n. Then for some

n

vectors u,veE, we have

£ > go(u) + €0 E =H+h,

n° 2g¥v) +g, n=H+h,

Z=0f+(1-a)7n, 22=0°+(1-a0)n° z=o0t+(l-an.

If weE denote the vector w = au + (1 - @)v, we have

z=0t +(1L-0)n=0oH+h) +(1-0)(H +h =
= Hou + (1 -a)v) +h=Hr+h,
20 = 0t® + (1 - 0)n° > oe®(w) +g,) + (1 - )(gdv) + go)

glad(u) + (1 - )a(v)) + g5 >
> go(on + (L - a)v) + gy = gd(w) + gg .

Thus, z = (2°,2)eq(t,x) and Q(t,x) is convex.

(ii) If all functions ©, g, g, g1 3, 8 8re contimious, if ®(u) is nonnegative
and convex, and there is a function (), 0 < < +, such that ®({) + +x as ¢
+ 4o, and ®(w) > o(|u]) for all uckE , if there is a neighborhood Ng(f,g) of

(t,x) where g > for some constant yu > O, then the set §(t,x) defined in (3)
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— —

satisfies property (Q) at (t,x).

Proof. We have to prove that a(f,i) = Ngel co a(f x,5). It is enough to

prove that ﬂécl co §(t, ; 5) = Q(t,x) since the opposite inclusion is trivial.

~

Iet us assume that a given point z = (z°,Z)e Ngcl co Q(%,X%,5) and let us prove

that 7 = (2°,2)€d(%,X). For every & > 0 we have 7 = (z°,%)ecl co 5(?,?,6), and

~

thus, for every & > 0, there are points z = (z°,2)e co Q(t,x,5) at a distance

~

as small as we want from z = (zo,z). Thus, there is a sequence of points ;k =

(74,7 )e co Q(T,X,0) and a sequence of numbers & > O such that 8 + O, ;k >

~

z. In other words, for every integer k, there are some pair (tﬁ,xﬁ), (ti,%),

~
~

o} "noon
corresponding points z, = (Zk',zﬁ)er(tﬁ,xi), 2 = (zok,zk)er(tﬁ,xﬁ), points

wh,up€Ey, and numbers oy, O < ¢4 < 1, such that

7 = gz + (1 - )7

o " 1"

7 = g7y’ + (1 - o)z, e = Oz + (1 - o)z,

] 1 1 1 1 1 | I 1

2y > g(tk:xk) (D(uk) + go(tk’xk) ’ 2y = H(tki k) uk + h(tf{) Do
On £ g 1" u" non
g 2 g(t T )(D(uk + go(tu,Xk ’ Zx = H(tkyxk) x T h(tk:Xk) ’

s zg > 29, Z >z as k > o,

and such that tf ~t, xk > X, tf +t, X! > x, 2, * %
Obviously g,(t,x) is bounded in Ng(t,x), say go(t,x) > - G for G > 0.

The second relation (4) shows that of the two numbers zg',zg” one must be
< zﬁ. It is not restrictive to assume that zg' < z; for all k. Then the fourth

relation (L) yields
o) 0
2 > 7' > gt xp) Oug) + gol by, L)

30
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2 P-@(uk) -G,

ﬁhere zﬁ > zo, and hence [zg] is a bounded sequence. This shows that ®(u£) <
TG+ zg), hence [®(uy) ] is a bounded sequence, and finally [u}] is a bounded
sequence because of the property of growth of ®. We can select a subsequence,
say still [uk], which 1s convergent, say up > E'eEm as k > w, The sequence [0x]
is also bounded, hence we can further select a subsequence, say still [ak], for
which [0y ]is also convergent. Thus uj +u', O = O as k +w, lLet ugeB, be the

point uy = Qguf + (1 - O )uy. Then

zp = Ohezy + (1 - ak ﬁ
= op [H(E, xp)ul + (g, xp) ]+ (1 - o) [H(tY, xp)up + h(ty,xp) ] =
= H(ty,xp) (ogug + (1 - og)ug] + hty,xy) +
+ o { [ty xg) - H(ty, %) Jul + [h(tL,x0) - h(ty,xp) 1)

H(t Xk)b.k + h(tk,xk) + Ak,
2 2 Ozpt + (1 - o) zg" =

= oy [a(th, x) Oug) + g (b, xp) 1 + (1 - o) ety xplo(ug) + g (ty,xg) ]

= gty %) o 0(w) + (1 - ao(up) ] + g (ty,xp) +

+

o (et %)) - a(ty,xp) 10(up) + [g (tL,x)) - go(ty,xp) 1)

> gty %) O(uw) + g (ty,x) + A9,
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o — —
Obviously Ay + 0, Ay + O, h(tg,xp) + h(t,x), go(ty,xk) + g5(t,x) . Since g(ty,x})
>y, we conclude as before that [®(w,) ] is a bounded sequence, and so is [ ],
hence we can further select a convergent subsequence, say still [uyx], with uy +

u. Relations (5) yield now as k + «,

H(th)u + h(t;X) ’

N
1}

20 > g(t,x) 0(u) + go(t,x).

Thus, z = (z ,2)eQ(t,x), and statement (ii) is proved.

Remark. Here are a few examples of linear problems and corresponding sets

Q(t,x) and Q(t,x).

l. Tekem =1, nn=2, U =E;, let ueE; be the control variable, and

n

teke ®(u) =1, g =1, g5 = 0, 811 = 1, 812 = 821 = O, 822 = t. Then the sets

Q and Q depend on t, -1 <t < +1, and

Qt) = [z = (24,29 |22 = u, 22 =tu, - <u < +o] =
= [Z = (21,22) 122 = tZl, -0 < 7zl < +oo] C Eo s
Qt) = [z = (zo,zl,zz)!zO >1, 2% = tzl, ~0 <zl <+ o] CEy,

Each set Q(t) is a straight line in E, of slope t, and for each ¢ > 0, the
set Q(0,8) contains both lines 22 = +52z°, and the convex hul of Q(0,8) coin-
cides with the whole plane E,. Thus Q(0) is the zl-axis and Ndclca Q(0,8) is
the whole zlz®-plane. The set Q(t) does not satisfy property (Q) at t = 0,

and the same holds for a(t). Here ® = 1 does not satisfy the growth condition

requested in (ii).
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2. Tekem =1, n=2, U=E;, let uek, be the control variable, and take
ou) = [ul, g = [t], g =0, @11 =1, g12 = @21 = 0, gz2 = t. Then again the

sets Q and Q depend on t only, gd = |tu] = 22,

[z

1]
—~
N

-
N
\V]
~—
N
1}

Q(t) -

tzl, - o <zl < +0] © By,

=~ ~ [o)
Qt) = [z = (2 ,24,22) |2° > |z, t2 = t2, -» <t < +o] C Eg-

As before, the set Q(t) does not satisfy property (Q) at t = 0. Analogously,

for any §{ > 0, and -{ <t < {, we see that

(ZO',zl"Z2') = (1;5-111)63(6) ’

N
]

1

~y ' ' 2, - =
z" = (ZO':Zl'JZ ) = (1,-3 ,1)eQ(-3) ,

and, for o = 1/2, also

Z=0z'+ (1-0)2" = (2°,21,22) = (1,0,1)eco &(0,8)

Hence,

~ =~

z = (1,0,1)eNdcleo Q(0,c0), z = (1,0,1)£Q(0),

~

and a(t) does not satisfy property (Q) at t = 0. Here g does not satisfy the
condition g >p > 0 requested in (ii).

3. Takem =1, n=2, U=E;, let ueE; be the control variable, and
take ®(u) = |ul, g =1, g, =0, g11 = 1, g12 = g21 = 0, g2 = t. Then again

the sets Q and 5 depend on t only, and
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qt) = [Z = (zo,zl,zz)[zo > |zt], 2% = t2', v <z} < +w] CEy .

As before, Q(t) does not satisfy property (Q), while E(t) does satisfy property
(Q) at every t because of statement (ii).

L, Take m

n =1, U= E;, let uek; be the control variable, and take ®(u)

=u2)g=t9 8, =0, 811 =t, Gy = 0. Then

[z]z = tu, o <u<+o] ©E ',

Q(t)

[Z = (2°,2)|2° >tuB, 2 = tu, w<u<+o] CEp,

alt)

How Q(0) is reduced to the single point z = 0, while Q(t) for every t * O coin-
cides with E;. Thus Q(t) does not satisfy roperty (Q) at t = 0. On the other
53 . . . e} 1 . ~ ‘ .
hand Q(0) is the half straight line [z° >0, z' = 0], while Q(t) for t# O is the
set (t) = [z° > 7127, 0 <z < 0], Obviously,a satisfies property (Q) at t =

O (and at every t as well).

5. Tekem=n =1, U= E;, let ucE; be the control variable, and take

®(u') = u2} g = tS} go O, gll = tn Then

[Z‘Z tu, -0 <u<+w] CEy

Q(t)

1

Qt) = [z = (2°,2) [2° > t2uB, 2 = tu, -» <u<+e0] CEp ,

Here Q(t) as in no. 4 does not satisfy property (Q) at t = 0. Also §(0) = [2°
>0, z* = 0] while G(t) for t # 0 is the set Qt) = [2° > £22, -» < 2 < 4], and

c¢lco 3(0,8) is the entire half plane [2° > 0, -» < 21 < +w], Thus, neither Q nor

G satisfy property (Q) at t = O.
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We shall denote by r(t,x) the rank of the n x m matrix (gii(t,x)). Then

0 < r(t,x) <min [m,n].

(iii) If all functions gij(t,x) are continuous, then r(t,x) < lim r(t,x)
as (t,x) + (E,Z),

The proof is a straightforward" consequence of the continuity hypotheses.

The statement below shows that a necessary condition for Q(t,x) to satisfy (Q)

at (t,x) is that r(t,x) is constant in a neighborhood of (t,x), and this ex-
plains why the set Q of the examples 4 and 5 does not satisfy property (). On
the other hand, the condition is not sufficient, as the sets Q of the é#amples
1, 2, 3 show since in these examples r = 1 is constant,

(iv) If all functions 8ij) &1 are continuous in A, then a necessary condi-

tion in order that the set Q(t,x) satisfies condition (@) at (t,x) is that

r(t,%) = lim r(t,x) as (t,x) > (t,x) (thus, there is a neighborhood Ng(%,x)
of (E,;) with r(t,x) = r(g,;> for every (t,x)eN§(E;;). If Q(t,x) satisfies
condition (Q) in A, then r(t,x) is a constant.

Proof. Suppose that r(%,;) = r is not the limit of the (integral-valued)
function r(t,x) as (t,x) - (E;_)a Since r(t,x) = r < lim r(t,x) we must have
r(t,x) =r <r + 1< lim r(t,x). There is, therefore, a sequence (ty,x),

k = 1,2,..., with t, 41%; Xg > %, and v + 1 é ry = r(ty,%) <min [m,n]. The
image of U = By under the mappings H(ty,x)u + h(ty,%,) and H(t,x)u + h(t,x)
are, therefore, linear manifolds of Ey, say Q(tk;xk) of dimensions ryx > r + 1,
and Q(Ey;) of dimension r. The images of u = 0 in Qk(tk,xk) and Q(E,;) are

the points zy = h(ty,x), z = h(t,x). Let ni,.,;,nr be r orthonormal vectors

in Ey such that
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Q(t,X) = [ZGEn'Z =7+ §1ﬂ1+-~~+§rnr, gln-)ér real] )

and let us complete ni,...,Nr into a system of n orthonormal vectors n3,...,
Nps Nr+lsesesfn. For every k, there are systems of r, orthonormal vectors nik,...,

0 K of En such that
"k

t
Qty,%) = [26E ]z = 23 + £k +...4 §rkn£kk, gl,...,grk reall.

Since h(ty,xy) + h(E,E), H(ty,x,) H(E,;b, we can select nik,...,nfkk so that,

together with z, - ;, we have also

M Ny > L i=1,...,r,
Mo > 05 3 #1, J = 1,...,rp 85 k > o .
If we take €3 = ... =8, =0, Er+1 =1, Er+a = ... = €y = O, then the point

Zp = Zp t Mg,k eQ(tk;xk). It is not restrictive to assume that for all k we

have
|z - z| < 1/k, }njk-ni| <1/hm, §#Fi, 0= 1.0..,n .
Then
— 1 r n
Nr+1,k =>. - (ps1 xrngdng = E . +>:. ) (ierrxeng) ngo= 0t o+t
11=1 =1 i=r+1
! r r
-1 ,
] = |Zi=l (per,k ne)nsl < Ei=llﬂﬁ$i5k‘ni, < r(1/km) < 1/4
"] = Ingey e = 'L 2 gy gel=Intl > 2 1/8 = 3/0
Finally,
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l2g - 2| = (2 *mpas i) - 21 < Inpea il + 2 - 2l <1+ 1/2 = 372,

and, for every zeQ(t,x), also

1}

lzg - 2| = [(zx + nr+1,k) - (Z + Eny +o.ot Egny) |

n : n
|Zi=l (nr+l,k'ni)ni +Zi 1 §ini + (2 - )I

r n
| Eji:l (nr+1,k'ﬂi - E)ng +§{ji=r+1 (nr+1,k'ni)nil - o - 2

n
g - Lo - T = gy -3

v

3/h B /b +1/2 .

v

Thus,

|z£ - El <3/2, dist (zy, QGE,;)) >1/2.

The sequence [zﬁ] is bounded, hence, it contains a convergent sequence, say

still [z{] with z} + z'eE,, and
|zt - z| <3/L4, dist (z', Q(t,x)) >1/2 .

Finally, for every k there is a weU = E such that z{ = H(ty,xp)u, + h(ty,x,),
or zﬁeQ(tk,xk), with zx + z'. Then z'ecl co Q(E,;,S) for every & > 0, and

hence

2tengel co Q(E,%,8),  z'fQ(t,x).
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We have proved that Q(t,x) does not satisfy property (Q) at (E,;), a contradic-

_ tion. This proves that, if Q(t,x) satisfies property (@) at (t,x), then r(t,x)=

lim r(t,x) as (t,x) + (t,x). The necessity of the condition is thereby proved.

13. EXISTENCE THEOREMSFOR LAGRANGE PROBLEMS WITH f LINEAR IN u.

Existence Theorem ITI, ILet us consider the Lagrange problem

to
Ihm]i[ [g(t,x)®(u) + gy(t,x)]dt = minimum, (1)
t1
. n J'
dx*/at =zj=l gij(t;x)u + gi(tyx); i=1...,n (2)

n
where x = (x%,...,x )eBy, u = (ul,...,um)eEm, and ®(u) is a continuous nonnega-

tive convex function of u. Assume that there is some continuous function ¢(¢),
0 < <+, with @(£) /¢ + +o0 as § » +o and ®(u) > o( |u]) for every ucE; . Assume
that all functions g(t,x), go(t,x), gij(t,x), gi(t,x) are continuous in A = Ey

x E,, and that

g21>0, g 2u >O;Z- Igijl SC%’Zij ]gij +zi|gil < Cg,;

1
for some constants u > 0, C > 0, and all (t,x)eA. ILet Q be the class of all
pairs x(t), u(t), t1 <t < ta, x(t) absolutely continuous, u(t) measurable,
satisfying (2) a.e., and such that the graph (t,x(t)) Jjoins the fixed point
(ty = 0, x(t1) = (0,...,0)) €A to a given closed subset B of the half-space
t >0, x€E, in A, Then the Lagrange problem (1), (2) has an optimal solution

in Q.
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The functions ®(u) = o( |ul) = |u|®, wek , p > 1, as well as 0 (u) = o |ul)
=0 for |u] < ¢, ®.(uw) =o(|u]) = |u? - P for |u] > C, certainly satisfy the
requirement for &,

Proof. By lemmas (i) and (ii) of no. 14 the set a(t,x) is convex for every

(t,x) and satisfies condition (Q) in A. The set U = E, is fixed, closed, and

obviously satisfies condition (U). Also fy(t,x,u) = g(t,X)Q(u) + go(t,x) and
hence fo > p®(u) > uo( [ul), fy > 8o >4, where u > 0, and hence both the growth
condition for f, and the conditions (c) and (d) of Theorem I are satisfied, Now

if Ay 1s any compact subset of A = E; x En’ then the continuous functions 813s

g; &are bounded in A,, say ]gij] < CO, !gi| < CO,(where Co depends on Ao), and

el = Jm + ] < [E|Ju] + 5] < 2% Ju] + ne,

fof ail (tyx)eA,, Thus condition (B) of Theorem I is also satisfied. Condition
(b) is satisfied since the initial point (ti,x(t;)) is fixed. Let us prove that
condition (a') is satisfied. Indeed ©({)/f + +o as { + +o, hence ¢({)/{ > 1 for
all |t] > D and some constant D > 0. Then for lu| > D we have |u| < o |u]), and

hence [u| <D + ¢ |u]) for all ueE . Now for all (t,x)eA = Ey x E, ard ueky

we have

B Ju] + [n] < [E](D + ¢([u])) + |n]

If] = |H + 1| <
- 18] o)) + (0]5] + Ja]) <
<

cgd(u) + (D + 1)Cgy =

In

oD+ 1) (gd(u) + go) =¢(D+ 1)f, .
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Thus £, > ¢™Y(p + 1) ™t |f] for all (t,x,u)eE; x By x Ey. All conditions of
theorem I are satisfied, and the Lagrange problem I has an optimal solution,

"Existence Theorem IV. Let us consider the functional

ta
ol = [ L9800 + goft,0 (1
t1

with differential equations

i .
}:;gij(t,x)u +gi(t,x), i =1,...,n, (2)
; :

axt/at

or

dx/dt = H(t,x)u + h(t,x),

where x = (x%,...,x%)eEy, u = (ul,...,u")eU = E,, where H is the n x m matrix
(gij), where h is the n-vector (g;), and where ®u) is a continuous nonnega-
tive convex function of u. Assume that all functions g(t,x), go(t,x), gij(t,x),

g;(t,x) are continuous in A = E; x Ey, and that
g(t,x) >0, go(t,x) > -G, for all (t,x)eA = E; x E ,
go(t,x) > u > 0 for all (t,x)eAsE; x Ey with |t]| > D,

for some constants p > 0, Gy > 0, Dy > 0, Assume that the (convex) set

o
=~

Qt,%) = [Z = (2°,2) [2° > gd(u) + gy, z = Hu + h, ueU = E ] € Epyy

satisfies condition (Q) in A. Let Q be the class of all pairs x(t), u(t),
ty <t < tp, x(t) absolutely continuous, u(t) measurable, satisfying .(2) a.e.,

and such that the graph (t,x(t)) Jjoins the fixed point (t, = 0, x(t,) =
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(0y.e.,0))eEy x Ey to a given closed subset B of the half-space t > 0, xeE in
E;y x E, and such that
to .
f laxt/at|Pat <y, i=1,...,m, (6)
t1
for some constants p > 1, Ny > 0. If Q is not empty then the Lagrange problem
above has an optimal solution in Q.

The functions @ (u) = O for lul, o(u) = |ulp, p > 1, as well as @.(u) =
0 for |u] <c, ®u) = lul® - ® for |ul >c, p2>1, all satisfy the requirements
above for @, The requirement g, > u > O can be disregarded if B is contained in
a slab [0 <t < T, xeE,], T finite. Any requirement (6) which is consequence of

to .
a relation‘/n (g0 + g,)dt < N, can be disregarded.
t, -

Proof. By (i) of no. 14 the set Q(t,x) is convex for every (t,x) in A, All
conditions of Theorem II of no. 7 are satisfied, and thus IV is a corollary of
IT.

Remark. The requirement concerning &(t,x) of Theorem IV is certainly sat-

isfied if we assume that
() g(t,x) >p >0 for all (t,x)eA = By x By ,

(B) there exists a nonnegative convex function ®({), 0 < § < 4w,
with @({) + +o as { + +o and ®(u) > ¢( |u]) for all ueU < E.
Indeed, by statements (i) (ii) of no. 1k the convex set Zﬂt,x) satisfies property

(Q in A.

Content, 1. The problem. I, p.3. - 2. The space of continuous vector
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functions. I, p. 4.—3. Admissible pairs x(t), u(t). I, p. 5.—L. Upper-
semicontinuity of wvariable sets. I, p. 6.-—5. Cl§sure theorems. I. p. 23.—6.
Notations for Iagrange problems with unilateral constraints. II, p. 3.~—T7.

An existence theorem for Iagrange problems with unilateral constraints. II, p.
5,—8. Example of a problem with no absolute minimum. II, p. 20.-=9. Another
existence theorem for Iagrange problems with unilateral constraints. II, p.
22,~—10. Examples. II, p. &.—-11. The free problems. II, p. 27.—12. Iagrange
problems with f linear in u. II, p. 29.—13. Existence theorems for lagrange

problems with f linear in u. II, p. 39.
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