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1. THE SOLUTIONS OF AN EQUATION AS FIXED POINTS OF A SUITABLE MAP

We are concerning ourselves with an equation

Kz = 0 (1)

whose solutions are to be found in a Banach space S (or in a subset G of §),
and we consider a projection operator P in S. If S, is the range of P, and S;
the nullspace of P, then § = S,+S;, and every element zeS has the representa-
tion z = (x,y), or z = x+y, with x = Pz, y = (I-P)z, I the identity operator in
S. Obviously, equation (1) decomposes into the system of the two equations

PKz = 0 , (I-P)kz = O. (2)

If D, denotes the projection of G on Sp, Do = PG C Sp, then we are seeking pairs
z = (x,y) with xeDy and z eP 'x, such that z = (x,y)eG, and z satisfies (2).
We shall denote by Hz” the norm of z in S.

As in [1d] we shall assume K = E-N, where E: Sp -~ S is a linear operator
nonnecessarily bounded with domain Sg < S, N: Sy ~ S an operator nonnecessarily
linear with domain Sy < S, so that K: Sg N Sy + S. Then, the given equation
(1) takes the form

Ez Nz ,

and the equivalent system (2) the form

PEz = PNz , (I-P)Ez = (I-P)Nz .

We may think of E as a linear differential operator and of Sg as the set

of those elements zeS sufficiently smooth so that E can be applied.

We shall assume that a linear operator H = S; »+ S; is known to exist, for
which we require for a moment that



H(I-P)Ez = (I-Pl for all zeSg .

In other words, we require here that H: S; - S; is a partial left inverse of E.
Then, for any solution z of Kz =0, or Ez = Nz, we .have

H(I-P)Ez = H(I-P)Nz ,
(1-P)z = H(I-P)Nz ,
or, finally,
z = Pz + H(I-P)Nz . (3)

In other words, any solution z of (1) is a fixed point z = Tz of the map T: Sy
+ S defined by T = P+H(I-P)N, or T = P+F with F = H(I-P)N.

Here the operator T has a relevant property, indeed T maps each fiber of

P into itself, precisely

PTz = Pz for every zeSy, or

T: (P™x) NSy > P7x .

Indeed, for zeSy, we have

PTz = PPz + PH(I-P)Nz = Pz,

since P 1s idenpotent, and H(I-P)NzeS,, the nullspace of P.



2. THE RELAXED EQUATION AND THE DETERMINING EQUATION

To simplify the exposition, let us assume that G = Dy x D1, where both
Do © Sp and-D; < S; are spheres, and that G < Sy.

If it happens that T maps each set P™'x N G intoitself, and we know that
P™'x N G is compact (or that P™'x N G is complete, and T(P™'x N G) is compact),
then by Schauder's theorem there is at least one fixed point z = Tze Plxng
for every xeDg.

Actually, by a suitable choice of P it is possible to make T a contraction
in the sense that HTz~Tz'H < kHz—z'H for any two points z, z'eP"'x N G of the
same fiber of P, with k < 1 and x € Dy (see [1d], or no. 4 below). It should
be noted that T: P 'x N G > S is a contraction if and only if F is contraction.
Indeed, if z, z'e P 2k n G, then Tz = Pz+Fz, Tz' = Pz'+Fz', Pz = Pz' = x, and
hence

”Tz-Tz'H = HFZ-FzW|.

Whenever T: P"'x N G » P™*x N G is a contraction and into for every X € Dy,
then there 1s one and only one fixed point z = Tze P™'x N G for each x e Dy s
and we may well consider the map C: Do » G which maps every x e Dy into the
unique fixed element z = Tz of T in P™'x N G. The graph of T is a cross sec-
tion of the fibers of P, and T itself can be thought of as a "lifting" op-
eration from Seo tc S, namely, from Do to Go.

The map C: Do > G defined above is continuous. Indeed, for every two
peints x, x' € Dy and corresponding points z = Tz = x, z' = Tz' = x', we have
z ¢ P'lx, z' € P"'x', and

IFz-Fz'l| = [|Tz-T2'|| <®lz-z'] , k<1,
with T = P+F, and hence
HZ-Z'H = HTZmTz'H < HPZ~Pz'H + HFZ-FZ'H S'H X—X'H + kHz—z'H

and



ITx-Cx'| = llz-z' < (1-%)"Hlx-x"] . (5)

Let us assume for a moment that every fixed element z = Tz of T satisfies

ze¢eSg , PEz = EPz , EH(I-P)Nz = (I-P)Nz , (6)

in other words, any such element is reasonably smooth, and H has also the
property to be a right partial inverse of E as stated by (7). Then every fixed
point z = Tz of T satisfies the equation (I-P)Kz = O, that is, the second of the
two equations (2). Indeed

(I-P)Kz (I-P)(E-N)z =

!

Ez - PEz - (I-P)Nz

1]
1

Ez - EPz - EH(I-P)Nz

3
[t}

E[z=-Tz] 0.

Thus, in case T: Plxneg>P'xNGisa contraction, then for every x € Dy
the element z = Tx of G satisfies the relaxed equation

Kz = PKz , or Kz = PKECx. (8)

Indeed

Kz = PKz + (I-P)kz = PKz = PKTx .

In other words, for every x e Dy there is an element z = Tx of G, namely
z =Tz = Tx ¢ P"'x N G, satisfying Kz = PKz. Then, z = 7°x satisfies Kz = 0
if and only if the determining equation

PK®z = O (9)

is satisfied. This shows that the search for solutions z € G of Kz = 0 is re-
duced to the search for elements x € Dy € Sy such that (9) is satisfied. Equa-



tion (9) was first encountered in perturbation problems for periodic solutions,
or cycles, of ordinary differential equations, where it gave a new interpreta-
tion of Poincar€'s bifurcation equation. Equation (9) is thus a functional
analysis extension of Poincard's bifurcation equation.

Often Sp is one dimensional and Do is an interval, and then the equation
PKTx = 0 has certainly a solution in Do as soon as we know that, say PKTCx has
opposite signs at the end points of Dg.

Often So is a finite dimensional space, and D, is a cell. Then the equa-
tion PKTx = O has certainly a solution in D, as soon as we know that the topo-
logical degree d(PKZ,Dg, O ) is nonzero.

Even if Sy 1s infinite dimensional, as it does occur, the study of the
determining equation has led to simple criteria for the existence of solutions
to the original equation.

The method briefly summarized above first appeared in [1ld,e] with details
and applications, and was then reported in [3] and [5b].



3. A CONNECTION WITH GALERKIN'S APPROXIMATIONS
If So is finite dimensional, and [g1,...,fn] is a base for Sy, then

PKtX = Cl(X)¢l tooot Cm(X)fém )

where the coefficients ci,...,cy depend on x € Dy, and the determining equation
PK€x = O can be written in the form of the m equations

ci(x) = 0 ,ce., cp(x) = 0 , xeDy. (10)

These are similar to the equations for an mth Galerkin approximate solution,
with the difference that equations (10) yield an exact solution z = “Tx to the
given equation Kz = 0.

Actually we may well expect that the exact ?o%ution z = €x is "close"
m =

to an m"? Galerkin approximation x'\™ ¢ o, or x yi(x)bite e typ(x) by I

we write
prx(m) = F1(x)g1 +ooot Tn(X)dm
+then x(m) is determined by the m Galerkin equations
I(x) = 0 ,0ue, Ip(x) = 0 , xe€Dgy.

A closer inspection [1d,e] shows that indeed this is the case, and error bounds
for Hz-x(m>H (z = €x, x € Dy, PKTCx = 0), are obtained by the analysis of the
determining equation.



L. THE MAP T AS A CONTRACTION

It is typical of the method described in nos. 1 and 2 that the operator T
can be made to be a contraction on each fiber of P as a consequence of spectral
properties of the linear operator E, even if the nonlinear operator N is only
Lipschitzian and nonnecessarily smooth. To see this let us assume here that S
is a Hilbert space with inmer product (z,z') and norm ||z]| = (z,2z)}/2. We shall
also assume that the linear operator E possesses eigenvalues Ai{ and eigenfunc-
tions ¢i, say Eithigi = 0, 1 = 1,2,..., such that |Ay| < |Ag] <.vvy |Ni] >
as 1 > o, and [¢1,¢2,...] is a complete orthonormal system in S. 'Then, every'
element z € S hag a Fourier series

. . 2y1/2 . .
with ¢i = (z,61i), 1 = 1,2,..., |2l = (25¢c§)", and we define P by taking

Pz = cif1 *...tcpdm .

G

Then [@1,...,¢m] is a basis in Sg and [@gm+1,@m+ss...] is a complete orthonormal
system in S;. If we take m sufficiently large, then Aj % 0 for all i > mtl.
For every z € S; we have z = 3 ? = m+1 Ci¢i) and we may define H: S; +3; by
taking

We showed in [1d] that this operator H possesses the properties required in nos.
1 and 2. In addition

_ 00 -2 21/2 -1
|Hal| = (z s M CD SN N B

and thus H is a Lipschitzian operator in S,;, or

1

|Hz-Hz'| < kollz-z'] , z,2' € 81,



with constant kg = |Am+1| 7 which can be made as small as we wish by taking m
sufficiently large.

Finally, if we assume that the restriction offNonG, say N: G-+S, is
Lipschitzian of constant L, say

Ivz-Nz'|| < Lz-z'l] , z,2" G,

then we have, for z,z' € P""x N G, x € Do,

|t2-12'| = [|F2-F2'] = [8(1-2)(Ne-dz')l| < A, [7"Dz-2]

Thus, T is a Lipschitzian operator on P“lx N G for every x € Do of constant

k = |xm+1|'lL, and we can always take m sufficiently large so as to have k < 1.
Actually it turns out that k is already < 1 for rather small values of m, in a
number of applications.



5. A CONNECTION WITH THE LERAY-SCHAUDER FORMALISM

Once the structure mentioned above is well defined, that is, K, E, N, are
given, G = Dy x D1, and T: P 'x NG > P 'xNGis a contraction for every x € Do,
so that C: Do » G is defined by =z = Tz = Cx, then S. A, Williams has shown
[1L] that it is possible to establish a theoretical connection with the Leray-
Schauder theory. To do this he has introduced the maps W: G + S and W' = G » S
defined by

Wz = Pz - PK€Pz + H(I-P)Nz , 1z € G,

W'z = WE€Pz , =ze€eG.

As a consequence of the properties of the maps E, N, T, ?€, Williams has shown
that W' is completely continuous, that the fixed points of W' are the solutions
of the original problem, and that the topological degree of (PKT, Dy, O) coin-
cides with the Leray-Schauder degree in Banach spaces drg(I-W',G,0). Thus, the
present approach gives rise to a situation where the Leray-Schauder theory
theoretically applies through the map W' which in turn is defined in terms of the
maps K, P, T, ¥. This result parallels in the present situation, and hence

even in the absence of smoothness properties for the operators (cf. no. k4) an
analogous result established by J. Cronin in connection with her approach.

Williams has further discussed the question as to whether the fopological
degree of (PK(C, Dy 0) is invariant for suitable changes of P, say; if we re-
place P: § » S, by another projector operator P': § + SJ whose range S) is a
linear subspace of § containing S,, say So < S{ < 8. The answer is affirmative,
at least when S, is already sufficiently large. This answer is in harmony with
Leray-Schauder theory where the topological index d;g is actually defined by
considering suitably finitely dimensional subspaces S, of 8, and showing that
the corresponding Brouwer topological degree defined in Sy does not change Dby
enlarging So, once Sy is already sufficiently large.



6. A FEW EXAMPLES

In [1d] we considered the boundary value problem
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and we took m = dim Sy = 1. Then for h we found ky = 0,04k, For o =B =

1/2 a first Galerkin approximation is x''/(t) = - 0.11721 sin (2.0288%), 0 <t

< 1l. By applying the considerations of the previous numbers we groved that the
(1

' <

problem above has an exact solubion X(t), 0 <t <1, with ||X-x**/|| < 0.0038.
In [le] we considered the boundary value problem
¥+x2 = sint , x(o) = x(ex) , x(o) = x(2x) ,

and we took m = dim Sy = 2. We found ky = 0.04, and a second Galerkin approxima-

tion x<2>(t) = 1.4%4 sin t - 0.124 sin 3%, 0 <t < 2x. By applying the considera-
tions of the previous numbers we proved that the problem above has an exact solu-

tion X(t), 0 <t < 2x, with [[X-x(®)] < 012k,

In [1j] we considered the boundary value problem (of nonlinear potential)

=
+

]
I

g(x,y,u) for (x,y) e A = [xFH®<1],
(11)

0 for (x,y) € oA = [x®+% =17,

e
i

where g is a given function continuous in u, measurable in x, y, and bounded
for u bounded. We took m = dim S, = 1, and we found ko = 0.069. By applying
the considerations of the previous numbers we proved the existence of solutions
u(x,y) to problem (11) which are continuous in A U 0A, with first order partial
derivatives conbtinuous in A and whose Laplacian Au = Uxx Hoyy (in the sense of
the theory of distribution) is a measurable function in A. Essentially, we
proved in [1j]ithe existence of at least one such solution provided g is not
too large for u = O and does nob grow too rapidly with |u| as |u| + . For in-
stance, for the case uxxtuyy = £(x,y)|u| +h(x,y), £, g measurable |f(x,y)| < a,
In(x,y)| < B, a, B finite, we proved that a solution exists for every f, g as
above with <3.02 and any B. In these problems a first approximation solution
of the form uo(x,y) = yJo(ho1p), O < p® = x®+y® < 1, is singled out, where Aoy
is the first positive zero of J, and y is a suitable constant. Error bounds

for such a solution, that is, upper bounds for the norm Hu—uo“ of the difference
between exact and approximate solubtions have been given by C. D. Stocking in [13],

10



7. PERTURBATION PROBLEMS FOR PERIODIC SOLUTIONS
OF ORDINARY DIFFERENTIAL EQUATIONS

The ideas of the previous numbers can be already traced in the papers by
Cesari, J. K. Hale, R. A. Gambill, W. R. Fuller, H. R. Bailey in the years
1952-60 (see reports and summaries in [la,b,c] and [5b]) on periodic solutions
of perturbation problems for ordinary differential equations and systems (pe-
riodic or autonomous)

dz/dt = Az + eq(t,z) , (12)

¢ a small parameter, A an n x n constant matrix, z = (z1,...,2"), q(t,z) peri-
odic in t (or independent of t), measurable in t, and continuous, or Lipschitzian
in z. It was shown in [le] that the method used in those early papers is a
particular case of the process described in nos. 1 and 2 above, and we can choose
m = 1 since the numbers k, k, are now replaced by numbers E|€|, Eolel which can
be made less than one by teking |e| sufficiently small.

For problems (12), periodic or autonomous, extensive existence theorems
of periodic solutions, or cycles, have been proved, together with conditions
for asymptotic, or asymptotic orbital stability. In particular J. K. Hale dis-
covered by the method above simple criteria for the existence of families of
given dimension k, 0 < k < n, of periodic solutions [5a, la,b,c].

Under conditions of continuity only, the existence of solutions to the de-
termining equations, and hence to the original problem, can be assured [la] by
the use of a C. Miranda's statement which gives an equivalent form of Brouwer's
fixed point theorem. This statement concerns vector-valued continuous functions
F(z) = (Fi,...,Fy) from a cube C = [z = (zl,.n,zngl |zi] <14, 1 =1,...,n]

If F3 has constants opposite signs on the sides zt = t Ijof C, then there is at
least one point z € C where F(z) = 0. (C. Miranda, Boll. Un. Mat. Ital. 3, 1941,

5-7 )

Under Lipschitz conditions the method for these problems of periodic solu-
tions as described in [la,c] gives rise to a process of successive approxima-
tions which is reported in [L4, pp. %08-3171.

11



8. SQUARE NORM AND UNIFORM NORM

In problems as those of no. 6 it is advantageous to use the square norm

because it affords the smallest value of the constants k, or ko (for instance,

kg = |xm+lrlunder the hypotheses of no. L) and thus very small values of m

could be used (m =1 or m = 2 in no. 6). Actually, in these problems both norms,
the square norm and the uniform norm, have been used, since N (often a poly-
‘momial expression) may be Lipschitzian of a certain constant, say L, only if

sup |z| is not larger than some other constant R. On the other hand, the best
values of k or ky may not be essential as, say, in perturbation problems (no. 7)
as mentioned, or in association with Knobloch-type arguments as in no. 11 below.

H. W. Knobloch [6a] has given the necessary estimates for the use of the
uniform norm only in questions involving periodic solutions of ordinary differ-
ential equations and the use of the method of nos. 1 and 2 above.

Recently J. Mawhin [8] has applied directly the formalism of nos. 1

and 2, with the use of a uniform norm only and Knobloch estimates, to the same
perturbation problems of no. 7.

12



9. APPLICATIONS

P.A.T. Christopher [2a,b] has applied the method of the present paper to
determine regions in the parameter space corresponding to stable harmonics and
subharmonics for the nonhomogeneous Duffing equation:

X +Dbx + c1x + cax® = Q sin wt .

A. M. Rodionov [12] has shown that the method of the present paper applies
to nonlinear differential equations and systems with a fixed lag \:

X = g(t,x(t),x(t—)\)) .

C. Perello [10] has initiated the same type of analysis for functional
differential equations

}.( = g(t,X-t) p)

where g depends on t and on all values of x(7) in an interval t - A <Tt<t.

13



10. EXTENSIONS OF THE PREVIOUS CONSIDERATICNS

The formalism of nos. 1 and 2 is based on certain properties of the op-
erators, or axioms, and J. Locker [7] has proved that these properties are
satisfied, for instance, for usual boundary value problems of nonlinear or-
dinary differential equations, when the underlying linear problem is self-
adjoint. For the corresponding nonselfadjoint problems J. Locker has developed
a theory which extends the one of the present paper, and whose axioms are sat-
isfied for boundary value problems of ordinary differential equations. As an
example, he gives numerical bounds for ¢ and B in the nonlinear initial value
problem

x+x+m® = , Oo<t<er , x(0) = 0,
under which the solution exists in [o0,2n]. He also obtained estimates of the
growth of the solution and error bounds.
J. K. Hale, S. Bancroft, and D. Sweet [5d] also have presented a formalism
which extends the present one in a different direction, and established a con-

necting link with the previous work by D. C. Lewis, H. A. Antosiewicz, Jane
Cronin, R. G. Bartle, and L. Nirenberg.

14



11. [KNOBLOCH'S EXISTENCE -THEOREMS FOR PERIODIC SOLUTIONS

For problems of pericdic solutions of ordinary differential equations and
systems (not of the perturbation type), say

zi = f.(t,z) , 1 = 1,...,n , 2z = (z25,..,,2 , fi(o,z) = f£5(T,2) ,

1

let us consider the space S of all continuous periodic vector functions with
uniform norm. Every element z ¢ S has a Fourler series

z(t) ~27ta, + L ? _ l(ai cos iawt + by sin iawt) ,

w = Eﬂ/T, T the period, where agy, aj, bi are n-vectors. Let us define P by
taking

Pz = 27tag + 2 ? _ l(ai cos iwt + b sin iat) , (13)

so that dim S, = n(2m+l). By taking m sufficiently large, the corresponding
map T is a contraction and € is defined (H. W. Knobloch [6b]). Then, for every
element x ¢ Sy (a trigonometrical polynomial as in (13), we have

PKTx

i
no

- m o
RONED) i = l(ai cos iwt + B3 sin iwt) ,

where op, 3, Bi, 1 = 1,...,m, are functions of x, that 1s, of the coefficients
8ps 81, by, 1 = 1,...,m, of the trigometric polynomial x. Then the determining
equation PKTx = 0 takes the form

% =0 , o =0 , g =0 , i = 1...,m, (1h)

namely & system of n(2m+l) equations in n(2m+l) unknowns. H. W. Knobloch has
shown that, under hypotheses, a sultable distribution of signs of the n func-
tions f3, or associated functions, imply a typical distribution of signs for
each of the n(2m+l) left hand members (components) of the determining equations
(14) so that the existence of a solubion x e So to the same equations, and hence

15



the existence of a solution z to the original problem, can be deduced by the
same C. Miranda's form of Brouwer's fixed point theorem mentioned in no. 7, and
this no matter how large n and m are. H. W. Knobloch has used this analysis
of the determining equation as a basis toward a qualitative discussion of the
second order nonlinear differential equation

X = g(t;X;X) ) g(th}k) = g(t"‘l,X,i() P) (15)

where g is a real-valued function of t, x, X, which is Lipschitzian in x, %,
periodic of pericd 1, and sectionally continuous in t. Two functions alt),
B(t), 0 <t <1, (continuous with continuous first derivatives and sectionally -
corbinuous second derivatives) are said to be lower and upper solutions respec-
tively provided

LX3

a<pB ) “05'*‘%({5:05:&)50 ’ 'é""g(t)B:B)ZO;

for t in [0,1]. If o, B is such a pair, if ( denotes the region [0 <t <1,
a(t) < x < B(t)], and there are two functions @(t,x), ¥(t,x) continuous and con-
tinuously differentiable in (O, such that

@(’0,0{) < Q < ‘I’(T},O{) ®(t)5) < B < \l/(t,ﬁ) )

o(x,0) = o(x,T) ’ ¥(x,0) = ¥(x,T),

and such that both expressions

0y0 + 04 - g(t,x,0), and YWY + ¥ - g(t,x,¥)

have constant signs in 0, then (15) possesses a periodic solution x(t) satisfy-
ing

a(t) < x(t) <g(t) , o(t,alt)) < x(t) < ¥(t,p(t))

for all t in [0,1] (H. W. Knobloch [6b]).
A corollary of this statement states that if o, B is a pair of periodic

lower and upper solutions, and g(t,x,%) < C|k|® for some constant C and all
t, x, x with (t,x) e and |%| sufficiently large, then again (15) possesses a

16



periodic solution of period 1. H. W. Knobloch has proved other statements of
the same type, based on the process mentioned in the previous numbers and
topological considerations [5b].

In successive papers H. W. Knobloch [6c] has also proved, by the same
process, comparison and oscillation theorems for second order nonlinear equa-
tions (15), which extend Sturm theory for linear equations. Some of the re-
sults give general form to statements proved earlier by M. Carthright for the
van der Pol equation only.

17



12. PERIODIC SOLUTIONS OF NONLINEAR HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATTONS

The question of the periodic solutions of the hyperbolic partial differ-
ential equation

uxy, = g(x,y,u,ux,uy) , (16)

can be posed in two ways, either we assume g periodic in x only and we ask for
solutions u periodic in x of the same period and existing in a strip, say -a <
y <&, - < x < +o (problem in a "cylinder"), or we assume g periodic in both

x and y of a given period T and we ask for solutions u periodic in both x and y
of the same period, hence existing in the whole xy-plane (problem on a "torus™).
To simplify the exposition we limit ourselves to the second case.

The process described in the nos. 1-5 above has been applied by Cesari
[1f,g,h,i] to this problem, taking for S the space of all continuous functions
u(x,y) periodic of period T in x and y, and continuous with their first order
partial derivatives, and uniform norm, and taking for S, the subspace of the
functions u of the form u(x,y) = h(x)+k(y). Then, the projection operator P
is defined by taeking Pu(x,y) = u(x,0)*u(0,y)-u(0,0), &and Sy is now infinite
dimensional. This choice leads to the following existence statement and a very
simple interpretation of the relaxed problem: If g is continuous in its argu-
ments, periodic in x and y of period T, and Lipschitzian in uy, Uy of constants
b1, b satisfying

2Ty <1 , 2Tho <1, (17)

then for every two functions ug(x), vo(y) continuous with ub, vg, periodic of
period T, and uy(0) = v(0), there exists at least one solution u(x,y) periodic
in x and y of period T continuous with ux, uy, uxy, satisfying the relaxed
(Darboux type) boundary value problem

u = g(x;Y)u;uX;uy) - m(Y) - n(x) - Mo

u(60) = u () = akD) L v(oy) = v.@) = v(Ly) .

(See [1h] for details.) Here m, n are suitable continuous functions and u a
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constant, m, n, u depending on ug, Vg, and of course

_y T . T _p T.T
m(y) = T [gax , nlx) =T . [gdy , w =T 2 [J g axay .

In other words, for every Darboux type boundary condition there is a periodic
solution to the relaxed problem. This relaxed problem is "well posed". Indeed,
if g is Lipschitzian in u, ux, uy of constants bo, by, by satisfying relations
analogous to (17), then the solution u(x,y) is unique and depends continuously
on ug, Vo in the proper uniform topology. The determining equation is now a
functional equation (since S, is w-dimensional). Indéed, the solution u(x,y)
above of the relaxed problem is actually a solution to the original problem (16)
provided the functions uy,, Vv, are so chosen that

(determining equation). Very simple criteria can be given (see [1h]) for the
existence of a solution to the determining equation (and hence for the original
problem (16)) for perturbation equations of the form

Ugy = Y(x,y) + Cu + Ya(y)ug + ‘1’2(x>uy + €g(X:Y)u:ux:uy) s (18)

or of the form
uo o= e [v(x,y)Hourin (y)u, Hz(ou 1+ eeg(x,y,u,uxyuy) ; (19)

¢ a small parameter. These results, for the relaxed problem, as well as for
the original problem, can be completed with smoothness theorems [1i], and trans-
ferred to the nonlinear wave equation

uXX - uyy = g(x,y,u,ux,uy) ) (20)

by usual transformations [lh,i].

J. K. Hale [5c] has studied the same problems for the nonlinear wave equa-
tions choosing as operator P the projection of S into the space of the periodic
solutions of the homogeneous problem Uyy-Uyy = 0, and has obtained corresponding
results for the relaxed problem, and ensuing perspicuous criteria for the exact
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problem for equations (18) and (19), some of which extend or parallel previous
results of Rebinovitch and 0. Vejvoda. In a sense, analogous results have been
proved for periodic solutions in a strip, and Cesari [1lg] has shown that crite-
ria for the solutions of the original problem can be obtained by a novel implicit
function theorem of the hereditary type based on functional analysis. Well
within the frame of the present method A. XK. Aziz (Proc. Amer. Math. Soc. 17,
1966), by more stringent estimates, slightly reduced requirement (17) in the ex-
istence theorems for the relaxed problem.

Again by the method of the present paper D. Petrovanu [10a] has recently
shown that the analysis mentioned above for the periodic solutions of the
hyperbolic equation in the plane can be extended to the periodic solution of the
equation

u = g(x,y,z,u,u ,u ,u
Xyz »YsZ,U, <’ y: Z’) ’

with g also periodic in x, y, z. D. Petrovanu [10b] has proved also existence
theorems for the relaxed problems, both in a strip and on a torus, for the
periodic solutions of the Tricomi system of equations

u an m-vector and v an n-vector.

Very recently A. Naparstek [9] has discussed the nonlinear wave equation

- = l
W T Oy eg(x,y,u) (21)

on a torus by the same method of the present paper. Here ¢ is a small parameter,
g is periodic in x and y of period, say, T = 2n, the solutions u, also periodic
in x and y of period 2n, are sougnt in suitably Sobolev spaces on the torus,

‘and the hypotheses on g are also expressed in terms of measureability and be-
longing to suitable Sobolev spaces.

Above, o > 0 is a fixed number, and two cases must be distinguished: o ra-
tional, and o irrational. In the first case the homogeneous equation uxx—ozuyy
= 0 has - many well known and independent (periodic) solutions on the torus,
while for o irrational the same equation has only constant solutions. For o ir-
rational also questions of small divisors occur. If C denotes the class of all
positive irrational numbers o such that m®-o°n® is bounded away from zero when m,
n describe all possible pairs of not both zero integers, then C is known to be

countable and everywhere dense in [0,o)., For the two cases l. o rational, 2. ¢
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irrational, ¢ € C, the projection operator P is chosen as the projection of

the doubly periodic functions into the subspace Sy of the periodic solutions of
the homogeneous equation uxx-cguyy = 0, Thus, Sp is »- many dimensional for o
rational, and one-dimensional for o irrational, o € C. For both cases A.
Naparstek has given existence theorems for the relaxed problems, together with
uniqueness and conbinuous dependence statements, and has given criteria for

the existence of solufions to the original problem.

For ¢ rational the determining equation is a functional equation. Two
sets of different considerations are used for its discussion. One is based on
the existence of a Gateaux nonzero differential at e = 0, and the use of implicit
function theorems of functional analysis. Another set of considerations con-
cerns the interpretation of the first member of the determining equation as an
operator, for which conditions are given for it to be monotone in the sense of
G. J. Minty and F. E. Browder. From both A. Naparstek deduces criteria for the
existence of doubly periodic solutions to the original problem (21). A,
Neparstek also has extended these results to equations similar to (21) contain-
ing the first order partial derivatives uy, Usyre
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