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THE IMPLICIT FUNCTION THEOREM IN FUNCTIONAL ANALYSIS*

by

Lamberto Cesari

We consider a functional f(y,z), or f: yoxZo> F, where F is a linear
space, Yy, Zo are subsets of linear spaces Y and Z of functions from an
arbitrary space X into some Banach space E, and YCZ, Y,CZ,, (Y, Z Banach
spaces, E finitely dimensional). The process usually associated with f
may, or may not, involve a "loss of derivatives" in the terminology of J.
Moser (Ref. 6). Under various sets of hypotheses we prove that there ex-
ists at least one function VeYy Zy such that

£(v,¥) = 0. (1.1)

Under one of the sets of hypotheses taken into consideration, and for
which the process usually associated with f involves no loss of derivatives,
we prove a Theorem A (Section 2) one of whose corollaries (Section 5) in-
cludes a statement which we shall apply in a coming paper (Ref. 1) on hy-
perbolic partial differential equations. A slight restriction of the hy-
potheses guarantees (Theorem B) a local uniqueness of the function ¥ above.
A number of applications are made. The proof of Theorem A is based on the
remark that, by the usual argument of the implicit function theorem in
functional analysis (see, for instance Ref. 5, pp. 174-195), an element
v5€Y, can be proved to exist, for every ze€Z,, such that f(yz,z) = 0, and
that the ensuing mapC: Zy + Y5 restricted to Y, can be proved to satisfy
Schauder's fixed point theorem. The usual argument is here given for lo-
cally convex topological vector spaces.

In the case in which the process usually associated with f involves
an actual loss of derivatives, the previous remark still applies and an
analogous theorem can be proved (Theorem C) provided full use is made of the
implicit function theorem that J. Moser (Ref. 6) has recently proved—and
applied to a number of problems. Also, use is made of other considerations
of the papers of J. Nash and J. Schwartz (Ref. 7 and 10) which were point
of departure for the results of J. Moser (Ref. 6). Applications, other
than those mentioned above, will follow. Considerations in the line of
J. Leray's are also included (Section 1, No. 8).

*Research partially supported by NSF Grant GP-57 at The University of Michigan.



SECTION 1. THE IMPLICIT FUNCTION THEOREM OF FUNCTIONAL ANALYSIS

1. THE EQUATION f(y) = O.

Let Y be a Hausdorff, complete, locally convex topological vector space,
and f(y) a (not necessarily linear) functional f: Y, + F on a subset Y, of
Y to a linear space F. We shall assume that an "approximate" solution y, to
equation f(y) = O is known. Let {V} be a base for the neighborhood systems
of O in Y, each element V of which is balanced, absorbant, and convex, and
assume that Ve{V}, N > O implies AVe{V]}. Let S be a balanced convex closed

subset of Y with y,*SC Y,. We shall denote by#(B) the null space of an op-
erator B. We shall need the hypothesis:

(G1) There are numbers %, &, O <H# < 1, 0 <H < 1-%, and linear op-
erators B: F > Y, A: Y > F, withop(B) = 0, such that yi1, yoeyotS, yi-y=eVe
{(V}, implies
B[£(y1)-£(y2)-A(y1-y2) le#p(SNV), (1.2)

Bf(y,)e#S, BA = I. (1.3)

Let T: S + Y be the map defined by

Ty = y - Bf(y), yeS. (1.4)

(i) Under hypothesis Gl, there is one and only one element ¥ in S with
f(¥) = 0, and ¥ is a fixed point of T in S.

Proof of (i). By (1.3) and (1.L) we have

Ty, = ¥o - Bf(yo), Bf(yo)e%b. (1.5)

For any two elements yi, y=€S, by (1.2) and (1.4), and by taking V = Y, we
have also

Ty: - Tyz2 = Bl£(y1)-f(y2)-A(y1-y2)lekS. (1.6)

Finally, for every yeS, by (1.5) and (1.6),

Ty - ¥, = [Ty-Ty,] + [Ty-y,] € @+#,)sCs. (1.7)



Thus T: S - S. The remaining part of the proof is now rather standard.

Let y,41 = Tyys 0= 0,1,... . Then y,€S for all n. let Ve(V}. Since V

is absorbant, there is some A > O such that yi1-y2eAV, and AVe(V}. Let us
prove that

n
Yo+l = YpeH AV, no= 0,1,... . (1.8)

This relation is true for n = O. Assume (1.8) is true for 0,1,..., n-1,
and let us prove it for n. Indeed

-1
Vory - ¥ = BLE(y) -2y, )-A(y v 1@, AV) = .

Thus (1.8) is proved for every n. We have

yn+p -~ Jn T (yn+l-yn) oot (yn+p—yn+p—l)

- - (1.9)
eaang +oot %mp lwe(l—.?%) lﬂ)ﬁw,

where < 1. Thus, given any Ve(V}, there is some 1 such that n > n,
p > 1 implies (1+%,) 2@M < 1/2, and yyip-yne(1/2)V(1/2)VC V. Thus [yn] is
a Cauchy sequence in the topology of Y.

Since Y is complete, ¥ = lim y, as n > » exists, VeY, veS. Finally,
(1.9) implies that Y-y, belongs to the closure of ((1-¥,) HoM)V, and since
the numerical factor is < 1/2 for n > u, we conclude that ¥-y, e(1/2)V for
n > n. Thus, for n > n, we have

V- T = (V-yn) + (yp-T p-1) + (Typ-TV)

(1.10)
e (1/2)V + B (1 T vt 1/2)v + (1/2)V = v,

where V is an arbitrary element of {V}. Since Y is Hausdorff, we conclude
that V-T¥ = O, or ¥ is a fixed element of T. The uniqueness of ¥ in S
follows by standard argument. Indeed, if y, z are fixed points of T, then
y = T& z =Tz for every n, and, if Ve(V}, and N is so chosen that y-ze\V,
then y-z = T(y-z)efB\V, for every n. We can take n so large thatabgh < 1,
hence y-zeV for every Ve{V}. Since Y is Hausdorff, we have y-z = 0. Note
that, from yi1-yoe\V, we have deduced (1.9), hence, yn+P—yo€(lfq%)_l(xV)h
This can be reworded by saying that, if Ty,-yoeVe(V}, then W-yoe(lé%é)‘lV.

Now ¥ = T¥ implies, by (1.L), Bf(¥) = O, and since the null space g(B)
of B is zero, we conclude f(¥) = O. Conversely, if f(y) = 0, yeS, then
v = Ty, and, by uniqueness, y = V.



2. CONTINUOUS DEPENDENCE OF ¥ ON PARAMETERS

Iet us assume that f(y,z) depends on y as in No. 1 and on a parameter
z varying in a subset Z, of a locally convex topological vector space Z,
hence f: YoxZo - F. Let {W} be a base for the neighborhood system of O
in Z. Iet L denote some closed subset of Z with LCZoC Z.

We shall assume that for a fixed subset S of Y as in No. 1, and for
fixed numbers ¥#,, ¥ as in No. 1, hypothesis (G1) holds for every zeZ, and
thus uniformly with respect to 2. In particular, both operators Az, B,
may depend on z. By (i), for every ze), there is a unique element V¥, €S
such that f£(¥,,z) = 0, which is the fixed point of the map Tp: S > S, de-
fined by Tzy = y-Bf(y,z), or Vg = Tglyz, VzeS, zeW. Iet T: 2 + S be the
map defined by Vg =<y, zez, V,eS. We shall need the hypothesis:

(G2) Given Ve{V) there is some We(W} such that z1, zpel, z1-z2€W,
yeS imply

lef(Yle)'BZ2f(Y:Z2)€V° (lvll)
The analogous hypothesis that, given Ve{V} and any compact subset C' of Z,
there is some We{W} such that zi, 22€ZfWC', z1-z2€W, yeS imply (1.11), will
be denoted by (G2). .

(i1) Under hypotheses (Gl) (uniformly in ze)), and (G2),~C: 2L - S
is uniformly continuous on 2. Under (GZ)C, T is uniformly continuous on

every subset C'C 2, C' any compact subset of Z.

Proof of (ii). Let Ve{V}, and Vg = 2_1(1-16)V. By (G2) there is an
element We({W} such that zi, zo€), z1-zpeW, yeS, imply

lef(YJZl) - BZ2f<Y)Z2)€V .

Let yi n+1 = Tz;¥in, 0 = 0,1,..., 1 = 1,2, with y10 = y20 = Yo. Then

vit = Tg¥o = - By flyeszi), 1= 1,2
and hence
yi1 = y21 = By f(yo,z1) = B, T(y0,22)eV0.

Let us prove that
n n N
Vin = Yon = Tz - Too¥o e(ltigto tig )WVo, n = 1,2,... . (1.12)
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This is true for n = 0. Let us assume that (1.12) is true for 0,1,...,n,
and let us prove it for n+l. Indeed

yl;n+l - y2)n+l = = lef(yln7zl) + B22f(YQn)ZE) + yln - y2n
= - le[f( Y1n> Zl)"f(YQn: Zl)'Azl(Yln'ygn) ]

= lef(an; Zl) + BZZf(an)Z2))

and then

n-1. n
o)

Yiyntl = Ya2yntl € 0(l+ O+a..+ )VO +VO = (l+ O+oaa+ O)VO'

Thus (1.12) is proved for every n. As n - o, we obtain that V¥ -WZZ be-
longs to the closure of (1- o)_lVo, hence to the closure of (l?é)Vo, and
hence to V. We have proved that, given Ve{V} there is We(W} such that zi,
zzez, z1-Z2€W, imply wzl-wzzev, The first part of statement (ii) is there-
by proved. The second part can be proved with obvious changes.

3. CONTINUITY OF V

Under the hypotheses cof No. 1, let us assume that Y is a space of
functions y: X =+ E, where X is any metric space with distance function
o(x1,%x2), that E is a locally compact Banach space (hence, finitely dimen-
sional). If (@1,...,¢y) is any base for E, then ¥ = yidi+. . +¥ubm, Y1, -»¥m
real. Thus Y can be thought of as a space of vector valued functions. Let
(C} be a given collection of compact subsets C of X, with the property that
any compact subset Cy of X is contained in at least one element Ce{C}., We
shall assume that Y is precisely a space of functions y: X = E, with the
topology of the uniform convergence on the compact subsets of X. Hence we
can define the topology of Y by means of the seminorms

HYHCY = SUPHY(X)”E; Ce (C}. (1.13)
xeC

It is equivalent to use the seminorms
”y“iCY = suplyi(x)l, Ce(C), 1 = 1,...,m,
where l l denotes absolute value. It is possible that X be an open subset

of a Euclidean space Ey, that each yeY is of class ¢V in X, that is, each
y; 1s continuous in Y together with all its partial derivatives, say D%y, of



all orders s = 0,1,...,N, D°y = y. Then we shall take the topology of the
uniform convergence of y and all DSy, 0 < s < N, on each compact subset C
of X. This topology is defined by the seminorms

Hyi!muY = sug|Dsyi(x)l, ce{C}, i = 1,...,m, s = 0,1,...,N.
X€

or equivalently the seminorms

Iylley = max sup||DSy (x) g, CelC}. (1.1L)
s =0,1,...,N xeC

(G3) For every Ce{C} and &€ > 0, there is ¢ > O such that xi,x2€C,
p(x1,%x2)< 0, yeS imply

| (Bf(y)) (x1)-(BE(y) ) (x2) -y (x1)+y (x2)|lg < E. (1.15)

In the case yeéN in X as above, we must replace (1.15) vy

HDS(Bf(Y))(Xl)"Ds(Bf(Y))(XZ)‘DSY(X1)+DSY(X2)“E <& s = 0,1,...,N (1-16)

(iii) Under hypothesis (Gl) and (G3), the element ¥ of (i) is (uni-
formly) continuous on each compact subset of X and continuous on X. If yeC
in X as above, all DSy, 0 < s < N, are (uniformly) continuous on each com-
pact subset of X, and continuous on X.

Proof of (iii). Iet Ce(C} and & > O arbitrary. ILet o > O be the num-
ber defined in (GB) in correspondence of C and the number £. ILet x;, x2¢C,
and vi = ¥(x4), 1 = 1,2. Then ¥ = TV, and

[vi-vallg = I(T¥)(x2)-(T¥)(x2)llg = IW(x2)-(BE(Y))(x1)-¥(x2)+(b£(¥))(x2)llg < &.

This proves the uniform continuity of ¥ on each Ce{C}. Since each compact
subset of X in contained in some Ce{C), the first part of (iii) is proved.
The same if all yeY are of class cN as above. We shall only take Vgi

= DSY(x;), i = 1,2, s = 0,1,...,N. Since X is metric, hence Hausdorff, X
satisfies the first axiom of countability and X is a k-space. Thus ¥, being
continuous on each compact subset of X, is continuous on X. We now could
assume that f(y,z), or f: Y xZ, ~ F depends on yeY, and on zeZ, Z, Z
parameter space, as in No. 2.



(iv) Under hypothesis (Gl) (uniformly for zeW), (G2)c and (G3), the
function ®(x,z), xeX, zel, is uniformly continuous in any set CxC', C, C'
compact subsets of X and Z, C'CCW.

Proof of (iv). In No. 2 we have proved that given £ > O and C', there
is a We{W} such that zl,ZZEC’r]Z, z1-zp€W, imply HWzl-WZZH < &, and hence

Iz () -Vz2 ()5 < &
On the other hand, we have proved above that there is o' > O such that
X1, x2€C, D(Xl;Xa) < o' imply

[Vz2(x1)-Vza(x2)lp < &.

Thus x31, x2€C, z1, z2€C'f]Z, o(x1,x2) < 0, z1-z2€W, imply
[0(x1,21)-0(x2,22) g
<o(x1,21)-0(x1,22) g + H@(Xl;zz)-Q(Xz;Zz)HE

=lvza(xa)-vza(xa)llg + Vea(xa)-vzalxa)|p < & + & = 26,

This proves the uniform continuity of ¢ on cx(cn Z), and hence the equi-
continuity of the functions V¥,: C +E (for each Ce{C}). The same reasoning
holds when all yeY are of Class ¢, and o(x,z), ¥,(x) are replaced by D¢(x,z),
D% (x), s = 0,1,...N.



SECTION 2. THE EQUATION f£(y,y) = O

1. HYPOTHESES

Let X be any metric space with distance function p(xl,X2), let E be a
locally compact Banach space (hence finite dimensional) with norm HeHo Let
F be any linear space, let Y, Z be locally compact topological vector spaces
of functions y: X +E and z: X » E, with YCZ, Y Hausdorff and complete.
If (1,...,0n) is a base for Y, then y = yig1+...+*ypdp for every yeY, and
hence yeY has a representation y = (yl,.,.,ym) as a real vector-valued func-
tion on X. The same holds for zeZ.

We shall take in Y the topology of uniform convergence on compacta.

We shall denote by {C} a given collection of compact subsets of X
covering X, such that every compact subset Cy of X is contained in at least
one element ce{C}. To simplify our considerations we shall consider two
alternate situations. Either X is any metric space, Y is a space of func-
tions X > E which are bounded on each compact subset of X, and we then define
the topology of Y by means of the seminorms

lylley = iggﬂy(X)HE, Xe{C}. (2.1)

Alternatively, X is an open subset of an Euclidean space Eg, and Y is a
space of functions y: X - E possessing partial derivatives, say DSy, of all
orders 0 < s < N, for a given N, which are bounded in every compact subset
of X. Then we define the topology of Y by means of the seminorms

Iylley = max  supDSy(x)llg, Cce(c]. (2.2)
0<s<N  xeC
Other analogous situations can be taken into consideration.

Let y, be a particular element of Y. For each Ce{C} let bg > 0 be a
given number, and let S denote the subset of Y defined by

8 = 8 = [ye¥llyllgy <vg, celcllcy. (2.3)

Thus, S is a balanced, convex, closed subset of Y. Let . denote a fixed
subset of Z with SC2.



Iet f: Sx. + F be a (not necessarily linear) functional, or f = f(y,z)
with yeS, zeZ, f(y,z)eF. In Theorem A we shall prove under the set of
hypotheses of this number that there is an element V¥eSC2. such that f(y,¥) = 0.

Concerning Z we need only to know that YCZ, and the topology of Z is
defined by means of seminorms HZ“CZ with the following property: For every
finite system Cg, s = 1,..., M, of elements Cge{C} and corresponding arbitrary
numbers og > 0, there are numbers &g > 0, s = 1,..., M, such that

Yy1,y2€S, HY1‘Y2HCSY S 63) s = 1,..., M,implies HYI'YZHCSZ 5 g, s =1,..., M.
(2.4)

Let {V}, {W} be bases for the system of neighborhoods of O in Y and of
0 in Z. We assume that each set V is of the form

Vv = [erIHyHCSY SV, v >0, CelCl, s = 1,...,M<+ o] (2.5)

and that the sets W have an analogous form with the seminorms of Z. We
shall need the following hypotheses:

Hl. There are numbers &g,,8, O <H, < 1,72, +£< 1, and for zel.,
linear operators By: F > Y, A,: Y > F, with¥(B) = O, such that yi,
V2€¥otS, yi1-y2eVe(V}, implies
Byl £(y1,2)-(y2,2)-Az(y1-y2) 1 (SOV), (2.6)
Bzf(yo,z)e%s, B,A, = I. (2.7)

H2. For every Ve{V} there is a We(W} such that zi, zo€., yeS, z1-zo€W
imply

By, T(y,21) - By f(y,z2)eV. (2.8)

H3. Given & > 0 and Ce{C}, there is o = o(&,C) > O such that xj,x2€C,
p(x1,x2) < 0, yeS, zel imply

| (Bo£(y,2)) (x1)- (B (y,2) (x2) -y (x1)+y(x2)llg < E. (2.9)

In the second alternative considered above we must replace (2.9 by

“DS(BZf(Y)Z))(Xl)'DS(BZf(Y)Z))<X2)'DSY(X1)+DSY<X2)“E S §, s = 0,L,...,N.

(2.10)



We shall use below the following forms of Ascoli's and Thychonoff's
theorems.

Ascoli's Theorem  Let Y be the family of all continuous functions on ¢
Hausdorff k-space X into a Hausdorff uniform space E and let Y have the to-
pology of uniform convergence on compacta Then a subset F of Y is compact
if and only if (i) F is closed in Y; (ii) the closure of F[x] is compact for
every xeX, and (iii) F is equicontinuous on each compact subset of X. (J. L.
Kelley and A. P. Morse, see Ref. 2, pp. 234, No. 18).

Tychonoff's fixed point theorem. If Y is a locally convex topological
vector space, M is a convex closed subset of Y, and t: M + M a continuous
map of M into itself, then t admits of at least one fixed point in M (Ref.
11, and also 8c, p. 848).

2. THE EXISTENCE OF V¥

THEOREM A

Under hypotheses (H123) there is a continuous function y: X + E
VeY, VeS, such that £(¥,y) = 0.

)

Proof of theorem A. Since X is metric, X is Hausdorff, satisfies the
first axiom of countability, and is a k-space (Ref. 2, pp. 49-50, p. 120,
No. 11, and p. 231, No. 13). The linear space E is Banach, hence Hausdorff,
and uniform.

Since YCZ, we denote by j: Y + Z the inclusion map, and by ¥, X the
images of an element yeY, or set ACZ under j, that is ¥ = j(y), X = j(4).
Hypothesis SC?2. can now be written more precisely in the form j(8) = gC:Z,
and (2.l4) becomes: given C and o > O there is ® > O such that yeY, [yllocy < ®
implies H?HCZ < o.

By Section 1 we know that, for every z€), there is exactly one element
¥y = "C z€S such that f(wz,z) =0, and ‘C: 2.+ S is a continuous map
(in the topologies of Z and Y).

By Section 1 we know that, for every C, Cé{C}, and zeC', the functions
Vz: X »+ E are equicontinuous on C. First note that ¥z is continuous on X,
since Yygz: X + E is continuous on each compact subset of X and X is Hausdorff
and satisfies the first axiom of countability (Ref. 2, p. 225, No. 7). Sec-
ondly, if C = C' and zeC, the functions ¥z: C =+ E admit of a "modulus of
continuity,"” that is, there is some real-valued continuous monotone function
nc(p), 0 < p <+ o, with uC(o) = 0, such that x1,x2¢C, zeC, implies

Wz (x1) =¥z (x2)llg < nelp(xi,x2)]. - (2.11)



In the second alternative above we have to replace this by an analogous re-
lation for each Dy, 0 < s < N.

Let us consider the family ((Jof all elements yeY, yeS, satisfying the
same relations (2.11), that is, such that x;, xpeC implies

ly(x1)-y(x2)llg < walolxa,x2)]. (2.12)

Obviously
wosy, () = ®CICZ

~C: > 'l(/,‘{",j;(l(/-»Z(/,

Now “C: ©&»U/is continuous in the topologies of Z and Y, precisely,
we know, by Section 1, that given Ve(V}, there is some We{W} such that z,,
22€W, z1-22€W implies ¥y, ¥, €V. Actually, z1-zz€W means

|z1-z2| 7 < vg', vg' >0, Cie(C}, s =1,...,M
Cs S S

for certain elements CSG{C} finite in number. By (2.4) there are new numbers
vg >0, s =1, »M, such that Hyl—ygﬂc v< Vg, 5 =1,...,M, implies

|72~ §2”CSZ vg', s =1, ,M, and finally W”l'W~2€V We shall denote by Vg,
the neighborhood of O in Y deflned by HyHCsY < vg. We conclude that, given
Ve{V}, we have determined Voe{V} such that yi-y2eVy implies (‘C 3)(y )

-(¢ 3)(y2)eV. Thus,j: W +% is a continuous map in the topology of Y.

Obviously, 2/ is a closed subset of Y because of the topology we have
chosen in Y. For every xeX, the set %/ [x] is a subset of E contained in the
sphere He-yo(x)HE < b., where C is any of the elements Ce{C} with xeC. Since
E is locally compact we conclude that %/[x] has a compact closure. Finally,
wis equicontinuous on each compact subset C of X. By Ascoli's Theorem,
is compact. Finally, %/ is convex, and hence, by Tychonoff's fixed point
theorem,'C has at least one fixed element in %/, say V¥ =%V, and £(V¥,¥) = O
Theorem A is thereby proved.

3, THE UNIQUENESS OF V¥
We need the further hypothesis

(H4) There is a number &, O <¥' < 1, such that yeS, z1, z2€S, z1-z2eVe(V)
imply

10



B, f(y,21) - Byof(y,z2) € (1-R 0V (2.13)

THEOREM B

Under hypotheses (H1234) there is one and only one function ¥: X - E,
VeS, such that f(vy,¥) = 0.

Proof of Theorem B. For every zeZ, the element ¥, = U z is the fixed
element of the mapping T, corresponding to (1.4) of Section 1, or

T,y = vy - Bzf(y,z). (2.14)
Since SC:Z, we take elements z belonging to S (properL% to the image of S

in 2, under the inclusion map j: S -+ 2). For 21,2265, Vi = Ygy = ( zfj)zi,
yi = T?iyi = WZi’ i=1,2, z1-22€Ve(V}, we have

Vi-v2 = (Coza - (Thza = T4 - T, 00
= - lef(wl,?l) + Bizf(W2;22) ¥ - VYo
= = le[f(wl,E1>-f<w2)zl)'A§l(¢l‘W2)]

- lef(WQ,El) - Bzgf(WZ}ZZ)‘

By (H1k)-we have

V1 - Voef U+ (L-B P = v, (2.15)

where N\ = &%+(l€%g ' <1. Now, for every Ce(C}, let vg = lWi-vollcy. Note
that V is a set of the form

Vo= [yeY|llyllcg < v, vs >0, CgelC), s =1,...,M< +]CY.

Hence, z31-zpeV implies also zi-zgo€eV' where V' is the same set V above where
the numbers vg are replaced by numbers vsteg = vCgtes, €5>0 arbitrary,
s =1,...,M. Then (2.15) implies

”Wl-wzHCSY < k(”z;-ze“CSY+€S), s =1,...,M

The numbers €g being arbitrary, we conclude that
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“¢1-W2“csy < tzl—Z2Hcsy, s =1,...,M.

This relation essentially says that NZ:j: S » S has a contraction type
property, and this definitely excludes that ~ Z_ can have more than one fixed
point.

Now assume, if possible, that f(y,y) = O has two solutions z3,z€S.
Then, from (2.14), we would deduce z; = Tyy2i, 1 = 1,2. Since, for every
z€S the equation y = Tzy has only one solution y = ¥, in S, we conclude that
z; = (Uj)zy, 2z4€8, 1 = 1,2, hence zy = zp by (2.15). Theorem B is thereby
proved.

L. A IERAY'S TYPE THEOREM

Let us assume that G(y,z,\) depends on y and z as in No. 1 and on a
real parameter N\ varying in a finite interval J = [Kof%f%l]- We shall assume
that it satisfies the properties H123 for every Aed and uniformly with re-
spect to N. Thus, for every AeJ there are sets Wy and Sp), and a map
C: WxI + 8\, ory =" (z,\) with NeJ, zeW,, yeSpn, and G("Z (z,\),z,A) = O
for every Ned, zeW,. Thus the equation G(y,y,N) = O was actually reduced
in No. T to the equation y-Z(y,\) = 0 as in Leray's Theory, and T is
actually a compact map on Wy, since it transforms (bounded) sequences in
W\ into compact sequences of elements of S . In addition YCZ, and SpnC Wy
as in Leray's Theory. Nevertheless we do not assume that Y, Z are Banach
spaces, we do not assume that bounded subsets of Y are compact subsets of Z,
and weJdo not assume that G has a Frechet differential as a function of
(v,z,\), but as a function of y only.

Whenever Y and Z are Banach spaces (as in the sections below), then for
every A\ the topological degree of the map y&(y,N): Spy = Y can be defined at
every point ye¥ which is not the image of points of the boundary BSbK of Spy -

Let us now assume with Leray that
Ll. y - fZ:(y,x) = 0 for every ANed and yeSp).

L2. For N = Ay the topological degree of the map y - (y,xo) is known.
and is a number m % 0.

Then we have

THEOREM C

Under the hypotheses above, then (i) the topological degree of
v-"C(y,\): Spy ~ Sp\ is the same for every AeJ; (ii) there is a continuum
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subset C of Uy Sy, containing at least one element (y,\) with y- C (y,A) = 0
for every Aed.
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SECTION 3. MOSER'S THEOREM FOR THE EQUATION f(y) = O

1. HYPOTHESES

Let X be an open subset of a Euclidean space Eg, let Y be a Banach
space of functions y: X - E with partial derivatives Dsy of all orders
0<s<m. Let f(y) be a (nonlinear) functional defined in a subset Y,
of ¥, or f: Y, »E. The existence of an exact solution y of the equa-
tion f(y) = O in a neighborhood of an approximate solution Yo was proved
by J. Moser (Ref. 6) when the usual process involves a "loss of deriva-
tives." We restate below, with few changes, hypotheses, statement, and
proof of Moser's Theorem (i), both for the convenience of the reader and
in order to emphasize the "uniform" character of the statement. This
will enable us to complete (i) with statements (ii) and (iii) of contin-
uous dependence of solutions upon parameter and uniform continuity on X,
which are analogous to those of Section 1, and then to obtain (Section k)
existence theorems for solutions of equations of the form f(y,y) = 0 anal-
ogous to those of Section 2.

Let Y, u = 0,1,...,Y, be linear spaces of functions y: X > E bounded
in X and possessing bounded partial derivatives, say for the sake of sim-
plicity DSy: X + E, of all orders 0 < s <u, and O < x < + o respectively,
and YoCYy41C ¥+ In each Yy, u = 0,1,..., we take the norm

Iy = max sup||DSy(x €Y. . (%.1)
Iy S Xe}r()H y(x)llg, veY,

Let Ty be a smoothing operator Ty: Y > Yo depending on the real pa-
rameter N > 1 such that, if Ry = I-Ty (I identity operator, Ry error), we
have

v+d
(Koa) ”TNYHu+V < hN Hyuu; u,v > 0, ye¥y, TNerooCYu—Fv

-v+d

(Kob) HRNyHu < hN ;u>0, v>3,y, Rye¥

Iyl

for given constants h > 0, & > 0, & integer which are independent of y,u,v.

Below, r, O, B, 7 > O denote fixed integers, a+p<r, 7<r, and we assume
that Yy i1s a Banach space.

Let f(y) be a (not necessarily linear) functional defined in a subset
Y.' of Y. with values in Y, o, or f: Y.' > Y. . We shall als? assume that
f: Yp'NYg > Yg-@ for every s > r. Thus, f involves the "loss" of &
derivatives.
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As before, we shall denote by ypeYy' an approximate solution of the
equation f(y) = 0. In (Klb) we shall suppose y, sufficiently smooth, that
is, yo€Ys for some s > r sufficiently large, and in (Klc) we shall suppose
the error f(yo) sufficiently small. Also, we shall introduce in (Kla) op-
erators L and A (L a right inverse of A as stated in (Kla)), each L and A
involving the loss of B and & derivatives respectively.

We shall denote by Sp the subset of Y, defined by “Y-YoHr < b for some
b > 0. Iet K be a given constant 1<k<2, and take

2s = k(o#p+d), t = k(2s+By+d), (3.2)
and let us choose first u > O, and then an integer N > O, such that
2s+(k-2)p < 0, (t+Fu)+(1-k)A < - A

(3.3)

2s+(l-k)N <0, N >a + B +y + 8,

(Kla) The integers Q, B, 7, &, r > 0 and the constant b > O are so chosen
that SyCXY,.', and, for every yeSy() Yy4), there are linear operators

L(y): Yepoq Yrin-a-p »

Aly): Yg > Yg.y, s =1M-0-B, s =1¥-0Q, s =T,

such that

A)L(y)z = =z, yeSpNYran, ze¥rin-a, (3.1)
£ Cr)-2(y) - (vl pq < BollWllZ 5 v,y + weSpN Ypan, (3.5)
L)zl rap < Bollzllroq, yeSpNYran, ze¥raq, : (3.6)
()2l o < Bollzll iy g veSON Yoty 2€¥0y o (3.7)
Ia(y)2ll oy < hollzlly, yeSpMYrm, ze¥y - (3.8)

(K1b) yoeKysn, and yeSp()Yran, ly-yvollren <M, M > 1 imply

1L £ () | pin-aep < Do M. (3.9)
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Iet us take

¢ = max [h®hs3 hho®, h®0%, h, ho, bJ. (3.10)

We choose an arbitrary number N, > 1 such that

> -u M1-k) 2s+(1-k )\ -1 -2s
No > ke™, aN, <1, 2N, < 1, 2hhgN, <1, (éhhy) N, < 12
3.11)

A
12(y0) (yo) lpin-cp < holo -

. -1 -2s -1 -2s_-pn
(Kie) |If(yo)llp-q < min [(2hhy) Ny b, (2chhy) N, N ]

2. MOSER'S THEOREM (Ref. 6)
(i) Under hypotheses (KOab), (Klabec) there is at least one function VeSy,

VeYy, such that £f(¥) = O. There is a method of successive approximations y,,
Yi,..., starting at y, which converges in Y, toward a function ¥ as above.

Proof of Moser's Theorem.
Teke Np4p = Nﬁ, n=0,l,..., and

Yntl = ¥n - Tp+1 Lyn)f(yn), n = 0,1,... . (3.12)

By induction we prove that for every n we have

YneYr+k: HYn‘Yo“r <b, HYn‘yOHr+X < Nﬁ; ”L(Yn)f(yn)“r+k_a-5 S hoNg . (3-13)

We use the notations L, = f(yn), An = Alyn), fn = £(yn), Vo = -Infn.

The first three relations (3.15) are obvious for n = 0, and the fourth
one is true because of (3.9). Assume NAYCH ST ”Yv‘Yo”r <b forr=0,1,...,n.
Then

Yo+l = Y Yn418Yrmns Fnprmn-qr Vn€¥ran-a-p>

RN n€Yrin-a-ps AnVn = - Aplnfy - fn€¥rin-a

Then, by (Koa) with v = Q@+, and u = r-0-f,
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, a+p+o 28
Iyota-yallr = [Tpiivalle < b+ [vallr-0-8 = hNn |Infnllr-0-g, (3.14)
| Q+p+0, 2s
lyner-yollean = ”TNn+anHr+x < hNp+a Ivallrin-0-p = BNy [|Infnllren-o-g,
(3.15)

where 2s is defined by (3.2). By (3.13) we have now

| 2s
Hyn+l-Ynnr < hholp I£nllr-a- (3.16)

On the other hand,

YaYn-1 = Tp'n T Vne1 C BynVn-12 (3.17)

fooy FAngvnoy = fnoy -y =00, (3.18)

fpor * Ano1(yp-yn-1) = fnoa * Anoavner - AnaByvn-a = An-aRNpvoos.
(3.19)

By (3.5), (3.17), (3.7),

Itnllr-a = £(yn-1+(yn-yn-1))lr-a
< fnmany Gadnen) e + Rollrnvnea iz
< an-sRupvn-sllr-a + hollyn-yn-1lz
< hollRyy V- 1lr-aty * Bollyn-yn-1l3 -

By (Kob) with u = r-a+y, v = A-B-7,

“ANHB+Y+D \
120l < BN 7 v lleineaep * Bollyn-vaoilz- (3.20)

By (Klo), (3.6), (3.11),

lys-yolly < hhoWo®|lfollp-o < minlb,(2¢) N1, (3.21)
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2s N+2s os+(1-k )N A A
Iy1-vollyn < BNy 1£ollrn-0-p < BhoNg = (hn2Ng )Ny < Ny, (3.22)

Ivall o aep < B (3.23)

Thus, relations (5.15) are proved for n = O and n = 1. Assume that they
are proved for O,1,...,n. Then y, 4 €Y1y as proved above, and by (3.15),
(3.13)

2s 2 2s+(1-k)N A A
lyn+1-yallrn < hlNp [ vallrv-a-p < hholin = (hholo Wn+1 < Np+iy
n
“yn"‘l'yO“r-l-)\, E ZHYV+]_"Y1;” < Z 'V
= (3.24)
< N§+1N§l’m[1-N§l'm1< Mai s

HVn+1mw%.a-5 = | Lptafn+allrin-a-p < hoNﬁ+1°

Finally, (3.14), (3.6), (3.20) yield

AR+
1y gy -yl < hh N25[nn N7 PH7+0y W [y vy 12

(3.25)
AN
S Hyl’l-yl’l lH2+N N}\“

where ¢ and t are given by (3.2) and (3.12). If dp denotes &n = Nﬁ“yn-yn-lnr
then (3.25) becomes

og+(k-2 t+k2 +(1-k )\
Bpe1 < c[NG (k-2)u o2, ( SN

where the exponents are < O because of (3.3). Hence
Bpey < c[85HL], n = 1,2,... ,

-1 2
where &1 = N Hyl vollr < (2¢) 7, N >lLe” by (3.11) and (3.21). By induction
we prove that &, < (2c)-1 for all n, and hence

Iy, vl < (2e) 7k,

-1 ) -1
HYn+1'YoHr = Hyu+1 Yv”r < 2c) Ny, <c < b.
Vzl V=

A
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Thus, all relations (3.13) are proved for n+l and, therefore, for every
n. Also,

n+p-1
-1 -u
Hyn+p'yn“r = j?: lyyyy_illy <e N,
v=n

and, therefore,

\lf = lim Yn

n-—>oo

is an element of Y, and VeSp. We have

N-yolle < ¢ WL, (3.26)
2s+(1-k )N
leCy )l < 22T RN ey 2
2s+(1-k)N _-u (3.27)
SelNp g + Ny

On the other hand, for every n,

leWlls = £+ (¥v-ya))lo
= £(a*(¥=yn) - Tn - An(¥-yn) + T + An(¥-yn)lo
< Mt (v T -8, (V=y ) o + 10l lAn (W-y)llo
< NGt (v-yn) -n-An (V-y)llrea + Ifnllzea + 1A (-yn)llr-y
< nolv-yallz + Ifalr-a + boll¥-yallz

R PG R . T

Hence, [[f(¥)|lo = 0, or fl¥(x)] = O for every xeX, and finally f(¥) = O.
Theorem (i) is thereby proved.

3. CONTINUITY OF v

The continuity of the function V¥ of Moser's theorem can be assured
under a very simple set of additional hypotheses:
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(K2a) The functions yo(x), D%yo(x), s = 0,1,...,r, or X = E, are uniformly
continuous in the topologies of X and E, that is, given § > O, there is 0 > O
such that x, x'eX, p(x,x') < o imply

HDSyo( ) D yo HE < g; s = O,l,...,I‘. (5.28)

(K2b) For every yeSbf]Yy+K, the functions L(y)f(y)(x), DSL(y)f(y)(x),
s =0,1,...,r-0, or X > E are uniformly continuous, that is, given € > O and
ye€SpXYp4n, there is o' >0 (which may depend on y) such that X,x"'eX,
o(x,x') < o' imply

S S

ID"L(y)£(y)(x)-D"LUy) e (y)(x )y, s = 0,.y...,r0 (3.29)
The same hypotheses when the uniform continuity is required only on

every compact subset C of X, will be denoted by (XK2a)., (K2b).. Also, we

shall add to the properties (Koa, (Kob) of the smoothing process Ty the
following one: n

(Koc) If w(p), 0 <p <o, is a real-valued continuous monotone function
with w(o) = 0, and

D y(x)-D y(x")|| < owlp(x,x')], x,x'eX, 0 < s < -V,

then

HDSTNy( )-D° T(x" )y < v [p(x,x')], x,x'eX, 0<s <r. (3.30)

(ii) Under hypotheses (Klabc) and (K2abc), the functions V¥(x), D%¥(x),
s =0,1,...,r, are uniformly continuous on X. If (K2ab) is replaced by
(K2ab)c, then ¥(x), DS¥(x), s = 0,1,...,r, are uniformly continuous on each
compact subset C of X.

Let us prove first that the functions yi(x), D%yi(x), s = 0,1,...,r,
are uniformly continuous function of x in X. Indeed by (K2b) there is a
function w(p) as in (K2c) such that x,x'eX, s = 0,1,...,r-Q-B, imply

10" Lyo ) £(35) (%) -D°L{yo ) £(yo) (x ) Ig < wlolx,x")],

Then given & > 0, let o be a number as in (K2a), and ¢' a number such that
o(c') <E&. Then for x,x'eX, o(x,x') < ¢" = min[o,0'], we have, for Ly = f(ys),
fo = f(yo), and s = 0,1,...,r,
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1}

ID7ya(x)Dya(x)lly = D7y, Dy (407 Ty (L2 ) () -DoTy (L2 ) (')l

< ID%yo(x)-DPyolx")llE + [[D5T, [(Lofo)x-(Lofo)x' 1[E
< &+ w0 ulo(x,x)]

o)
< e+ P o) < é[l+hNg+B+6]

This proves the uniform continuity of yi(x), DSyi(x), xeX, s = 0,1,...,r, in
X. By induction, we can prove that, for each n, the functions yn(x), Dsyn(x),
xeX, s = 0,1,...,r, are uniformly continuous on X (uniformly in X, not
uniformly with respect to n). Since

Vo= Vo t Z(yV'*'l_yV)’
v=0

where ”yv+l'var < €y, €, numbers independent of n with Zev < to, we conclude

that the functions V¥(x), DS¥(x), xeX, s = 0,1,...,r, are uniformly continuous
N

on X.

4. CONTINUOUS DEPENDENCE OF ¥ ON PARAMETERS

Let us assume now that f depends also on a parameter z varying in a
topological space Zg. To simplify we may assume that Z, is a subset of a
metric space with distance function A. We assume that all hypotheses of
No. 1, in particular (Klabc) holds for every zeZO and uniformly, that is,
with the same constants r,&,...,c,Ny. We may assume that yo(z) be either
a constant, or vary with z in Z,. Then the element VeSy determined uni-
vocally by the method of successive approximations described above is a con-
tinuous function of z. To prove this we need only the simple assumption of
uniform continuity:

(K3) Given & > O there is a ¢ > O such that z, z'€Zy, ¥,y €Sy,
lz-2"ll7 < o, lly-y'll, < o imply

”L(y,Z)f(Y;Z)-L(Y';Z')f(y';z')”rqj_g <g,

“yo(z)'yo'(z)”r L.

The same hypothesis when z,z' are restricted to belong to the same com-
pact subset C of @, (C arbitrary), will be denoted by (K2)..

(iii) Under hypotheses (Klabc) and (K3), the element ¥ determined by the
process of successive approximations (3.12) is a uniformly continuous function
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of z in Zy (in the topologies of Yr and Z). Under hypotheses (Klabc) and
(KQ)C, ¥ is a uniformly continuous function of z on every compact subset C
of Z.

The proof is the same as above.
Under hypotheses (Klabc), and (K2abc) uniformly in z, and (K3%a) uni-

formly in x, we could now assume that the functions V(x,z), DS¥(x,z), s = O,
l,...,r, or Xx2y ~ E, are uniformly continuous on XxZg.
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SECTION 4. FURTHER RESULTS ON EQUATION f(y,y) = O

1. HYPOTHESES

Let the spaces Y , u = 1,2,..., be the same normed linear spaces and Y,
a linear space, Y,CY,+1CY,CY,, as in No. 1 of Section 3. Let Ty, Ry be
the same smoothing and error operators as in No. 1 of Section %, with con-
stants h > 0, and integer & > O.

Let r,0,B,7 > O be integers as in.No. 1 of Section 3, o+ <r, 7y < r,
and assume that Y, be a Banach space. Let r',&' > O be new integers with
O<Lr-r <00'. ThenO<Lr-a<r'A', r' <r, and Y1 DY,.. Also, if yeY,,
then yeY,.:, and

Iylly > llylle (4.1)

Let f(y,z) denote a (not necessarily linear) functional defined for all
y of a subset Y' of Y, and all z of a subset Z' of Y,r with Y'CZ', and values
in Yp.g, or f: Y'xZ' > Y._g. We shall also assume £:(Y'M Yy.yp)x(Z2'N Y,.yqp)
> Yy4p-q for all £ > 0. Actually, we need this last statement only for all
0 <’ <7, wvhere 7y is the integer which is defined below. Thus f involves
the "loss" of @ derivatives on y.

Let us denote by y, a given element of Y', hence VoeY'CZ'. Let Sb the
usual set Sy = [err”[y-yOHr <bl], b >0, for which we shall assume SpCY'C Yr-
We shall consider a subset 2 of Yy, with Sy 2. and ZC:Z(::Y}. We shall denote
by r,a,8,7,%,4,N,h,hy,c,Ny constants as in No. 1 of Section 3, and we assume

(Llabc). The same as (Klabe) for every zer\W}+x.

N (Leabe). The same as (K2abe) for every zer]W£+k and uniformly in
W
i\’

(L3). The same as (K3) for every zer]wr.

Theorem C. Under hypotheses (Llabc)(I2abc)(L3), there is at least one
function VeS, such that f(V,¥) = 0.

Proof of Theorem C. For every zezflwr,+x there is a unique element
Vg =Tz which is the fixed point of the map Ty, on Vg = Tzl,, Vz€S, as in
Section 3. The map'T: Zf)wrz+x + 5y so defined is continuous in the topol-
ogies of Yy and Y. Thus, we can extend € to all of 2, in the topology of
Y, and Y., into a map‘C: 2. > S which is continuous in these topologies.
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Since XC:Z, we have alsoC: S » S, and relation (K}) assures that C: S =+ 8

is a continuous map also when we use the topology of Y for both S as a domain
and range. The hypotheses (L) are worded so that the functions Y, of the
range of C are uniformly continuous in X together with all their partial de-
rivatives Dy, O < s < N. In other words, the functions Vy with their partial
derivatives D°¥_, 0 < s < N, admit of a unique "modulus of continuity" u(p)

in X. Moreover X is a bounded open subset of Ej, hence X is compact, and by
Ref. 12, the functions ¥,: X -+ E and their partial derivatives DSV,

0< s <N, admit of a continuous extension in X with the same modulus of con-
tinuity p, and we shall use for them the same notation V,, DS¥,. Finally, we
define the class 2”7 of functions y: X » E, with yeS, having the same modulus
of continuity p. Then W/i: Zu’+-Zyj and 2/ is a complete class in the topol-
ogy of Y by the same Ascoii Theorem mentioned in No. 2 of Section 2 since X
now is compact. The existence of ¥ follows now from Tychonoff's Theorem of
No. 2 of Section 2 (as well as Schauder's Theorem).
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SECTION 5. SIMPIE APPLICATIONS TO THE EQUATION f(x,y(x),y) = O

1. FIRST APPLICATION

In the situation considered in Section 2, when N = 0, and f(y,z) de-
pends only on the evaluation y(x) of y at x with yeY, and on the function
zeX, it is convenient to deduce from (A) and (B) statements which are much
easier to apply, though they are more restrictive.

Let X be a compact matrix space with distance function p, let E, E  be
a Buclidean space, and Y = Z the space of all continuous (bounded) functions

y: X>E,ory = (y1,+-+,¥n), with norm

Il = vy = meglv(oly

Iet yo = (ylo,..-,yno) be a point of Epn, S the sphere of center yo and
radius b > 0, L the set of all functions yeY with values y(x)eS. Let f(x,y,z),
or f: XxSx), > Ep be a given functional. In this situation, the Fréchet dif-
ferential of f with respect to y is an nxn matrix A(x,y,z) depending on x and
z, so that, if we replace y by any given function yeY, we obtain a matrix
A(x,y(x),z), depending on x and z only. Instead of the operators A, L of Sec-
tions 1 and 2 we may take matrices Ay,, Axy. We shall denote by Vo also the
constant function yo(x) = yo, xeX.

Note that, with these conventions, the subset of functions yeY denoted
in Section 2 by S, coincides with L.

(H1) There are constants M >0, y >0, 3> 0, with M, < 1,¥ < 1-M,
such that

l£(x,y1,2)-£(x,¥2,2)-Ag,(y1-v2)llE < 7lly1-vallg (5.1)

I£(x,50,2)lg < b&IM, Azl <M, (5.2)

for all xeX, zez, V1,y2€5.

Hypothesis (5.2) can be further replaced by the hypotheses

% 2 O:% 2 0;9@ +9€2 S%S l"M'y;
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“f(X)yO(X))yo)“E < le/M) (5.3)
”f(x)yO(X):Z)'f(X;B’O(X))YO)HE Sb%/M' (51*)

for all xeX, ze),. Then (5.3) states a bound for the admissible error to which
the "approximate" solution yo(x) = yo satisfies the equation f(x,y(x),y) = O,
and (5.4) states a bound for the admissible deviation of f(x,ys(x),z) from
£(%,¥5(x),¥o) when z describes L.

(HQ)' ”f(XJY:Z)”E < P, xeX, yeS, zel..

(H3)' Given & > O there is o > O such that x3,x2€X, yeSp, 21,2262,
p(x1,x2)e0, |lz1-z2lly < o imply

”f<xl:3’)zl)"f(x2)Y;ZZ)HE <E, (5.5)
-1 -1
18z, Aozl < & (5.6)

As a corollary of Theorem A we have

Theorem D. Under hypotheses (H123)' there is at least one continuous
function ¥: X » E, such that

W(X)GS, f<X)Y(X)JY) = 0, xeX. (57)

Also, we shall need the hypothesis

(H4)' There is a number #', 0 < #< 1, such that xeX, yeS, z1,z2€),
imply

”f(x)Y)Zl)"f(x)y)Z2)“E < ((l"M‘y) ‘Jg/M)”Zl'Z2”Y (58)

Then, as a corollary of Theorem B, we have

Theorem E. Under hypotheses (H1234)' there is one and only one con-
tinuous function ¥: X - E, such that (5.7) holds.

Remark 1. Under hypotheses (H123)' of Theorem D, if we know that for

some Xq€X we have f(x0,¥0,2z) = O for all zez, then, among the functions V¥
satisfying (5.7) there is at least one ¥ with V(xg) = yo.
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2. SECOND APPLICATION

As an application of Theorem D we consider a functional f = (f1,+++,fn),
or f(t,y;z(&), 0 < & < t) with values in E,, depending on the real variable t,
0 <t < ti1, the real vector yeE, in some set YoCEp, and the values in E, taken
by a function z: [0,t1] » Ep of some family Y, in the interval 0 <& < t.
As a corollary of Theorem D we shall prove under conditions the existence of
at least one function

¥(t), 0 <t < a, a >0 sufficiently small so that

£(t,¥(t); w(E), 0<E&<t) = 0, teI = [0,a]. (5.9)

For the sake of simplicity we write f£(t,y,z), and then (5.9) takes the form
£(,¥(t),¥) = 0.

Iet p = (p1,...5kn) be a point of Ep, and Y, the sphere in E, of center u
and radius by for some bo 2 0. Iet Z, be the family of all continuous func-
tions z(E), 0 < & < a, with values in Yo and some ag, O < ag < ti. Suppose
f: IxY,xZ, > E,. We shall assume that, for © = O, f does not depend on z,
and we may write f(O,y,-). As in the implicit function theorem we shall
assume f(O,p,-) = 0. We shall take for the continuous functions z: I »+Ej,
the norm ||z|| = max|z(&)| for EeI.

Corollary 1. If f: IxYyxZy + E, is bounded and continuous in IxY,xZg,
and possesses first order partial derivatives aij(t,y,z) = afi/ayj, i,j =1,...,n,
which also are bounded and continuous on IxYoxZg, if £(O,p,-)=0, and det Ay=0,
with Ay = [aij(O,p,-)], then there is some a > 0, b > 0, and a continuous
function ¥(t), 0 < t < a, such that V(o) = p, |[V(t)-u| < Db, and £(t,¥(t),¥)=0
for al1 0 <t < a.

Proof. Obviously, aij(O,y,-) does not depend on the third argument.
Let us take for y, the constant function yo(t) = yo, O <t < a. We have

fi(tJY2;Z)"fi(t:Yl: Z)'Aoi(Y2".Vl)
1
= Jo Zilaij(t,yatr(y2-y1),2)-215(0,u, <) I(y23-y13)ar,
where Ayi is the ith rate of Ay, and y1 = (y11,.+-,¥1n), v2 = (y21,+.-,¥2n) -
Let M = ]A"L|| be the spectral norm of AL, and take 7 = 1/2 M, so that M,
= 1/2. Then, take b and a, 0 <b < by, 0 < a < agy, sufficiently small so

that

Iaij(t:Y1+T(y2-yl),z)-aij(o,p,.)] < 1/2 n2
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for all O <t <a, all yi,ye w1th|y ul <b, 1=1,2, and all z with
]Z ] <b, 0<t<a. Then, by Schwarz inequality,

-1 .
I£1(t,y2,2)-T5(t,¥1,2)Aoi(y = y1)| < (20) ~|ye-yil, i = 1,...,n,

If(t,Y2;Z)‘f(t:yl;z)'Ao(ye'yl)| < 2-l|y2-y1|o

Finally, we may restrict a further, if needed, so that

|£(t,p,2)-£(0,u,+)] <b/2M, 0 < t < a.

Then |£(t,p,2)| <b/2M = (1-My)b/M. All conditions of Theorem D are satisfied
for the restricted interval X = I = [0,a]. »

We shall need the previous statement in Ref. 1. Concerning the unique-
ness of the function ¥ we deduce, from Theorem B, the

Corollary 2. Under the hypotheses of the previous corollary, if there
are numbers a', b', 0 <a' <a, 0 <b' <b, such that 0 <t < a, ly-u <b',
lz1(t)-u] <b', |z2(t)-p| <v' for 0 <t < a', imply

If(t)YJZl)'f(t)Y)ZE)I _<_ (l/QM) max IZl(g)'Zg(W)l, (5°10)
O<t<t

the function ¥(t), O <t < a', of the previous corollary is unique.

3. A PARTICULAR CASE

As a particular case of the previous corollaries we may consider functions
f,g: IxEpxEn -+ Epn, and the functional equation in ¥: I - Ep,

#(6,4(1), o elt,r¥(r))ar) = o. (5.11)

Here we assume that £(t,u,v) = (f1,...,fn),e(t,u,v) = (g1,...,8y) are
continuous in a set 0 <t < ag, lu-uol < boy Iv-uo] < b, that ]g] <N in
this set and the partial derivatives Ofj/dyj exist and are continuous,and that
det Ag # 0, Ay = fu(o,up,0) # 0. If M = [[agtll, £(o,u0,0) =0, and 27, 7 are
chosen so that M, <1, O< ¥=1- My, then in a set 0<t<a, |u-uo| <b,
IV‘Vbl < b, and a, b sufficiently small the relations
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If(t)ul)v)'f<t)uZ)V)'Ao(ul‘UZ)l < 7[‘11'112[)
£(t,u0,v)|| < &o/M,
t
|£(t,v0, [os(t,7,2(1))ar)| < b,
are satisfied for |u1—uo|, lug—uol, Iv—uo| < b, and all continuous functions

z(7), 0 < 7 < a, with values |z(7)-ug| <Db. Then the existence of at least
one solution to (5.11) follows from corollary 1.

L. A KNOWN PARTICULAR CASE
For f = u-uo-v (5.11) reduces to the equation
t
¥(t) = up + Jo &lt,T,¥(r))ar. (5.12)
Then we can take A = I, M =1, y =0, & =1, and a solution inthe small
certainly exists.
The differential system with initial condition

dy/at = G(t,y), y(o) = wo

reduces to the equation

W) = up * [0 olr,u(r))ar

of the type (5.12). The usual example dy/dt = yl/g, ugy = 0, for which the
solution is not unique, shows that the conditions of Theorems A and D do

not assure uniqueness. The existence analysis of the problems of the present
number in terms of fixed point theorems is Schauder's.

5. ANOTHER PARTICULAR CASE

Instead of (5.11), we may consider the integral equation

£(x,¥(x), [, al(x,&,¥(£))ag) = 0 (5.13)

where x = (X1,...,%)€eBy, V(x)eEy, £(o,u,,0) = 0, and V is the variable
sphere
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Vo= [geBpllle] < Ix]]

Analogous results hold for the integral equation (5.15) where V = V(x,h)
is the variable sphere

V = V(x,h) = [EeEy| |&-x| < n]
and h > 0 is a fixed number sufficiently small.

6. ANOTHER APPLICATION

As an application of Theorem D, let us consider the integral equation
ta
£(t,¥(t), [t e(t,m,¥(r))ar) = O (5.14)
where I = [ty <t < ti1] is a fixed interval of the real axis, f(t,u,v)
= (f1,...,fn), &(t,u,v) = (g1,...,8,) are continuous functions f,g: Ix
EpxE, * Ey, and an "approximate" solution zg(t), teI, is known, with values
in the sphere S = [ueEy| |u-ug| < b] for some b > 0. We shall assume that f
and g are continuous in the set H = IxSxS, and f has continuous first order
partial derivatives. If f,; 1s the nxn matrix of these derivatives, assume
that set fy # O in H. Iet Ay = f,(t,2z,(t),v), and assume that
If(t:ul:v)'f(t)uz;v)'AO(ul‘uE)l < 7lul'u2| ’
-1
Ig(t,T,u)l <N, ”fu (t)uyv)” <N,
t1
If(tyzo(t):fto 8(t;T:Zo(T>)dT! Sb‘ggl/M:
lf(t;zo(t):v)‘f(t)zo(t))fto g(t:T;Zo(T))dT) <b 2/M
for all t,tel, u,veS, where y,¥1,H2 >0, My <1, W+ < 1-M,. Then,
by Theorem D, there is at least one solution ¥ for equation (5.14).

As particular cases of (5.1&), we may consider the Uryshon equation

¥(t) = n(t) + ft; g(t,,¥(r))ar,

and the Harmerstein equation

t1
¥(t) = h(t) + [y, elt,T)k(¥(r))dr.
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7. GENERALIZATION

Instead of (5.14) we may consider the equation

f(X)W(X)JIGO g(x,&,\l!(g))dg) = 0, XeGO)

where x = (xl,...,xn)eGOC Em, f,8: GoxEpxEy > Ep, where Gg is a compact
subset of Ep. The conditions for existence are analogous.
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