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LAGRANGE PROBLEMS OF OPTIMAL CONTROL AND CONVEX
SETS NOT CONTAINING ANY STRAIGHT LINE®

Lamberto Cesari

1. Introduction

In a previous paper [1] we proved that the usual sets a(x) of Lagrange
problems of optimal control if bounded below have property (Q) if, and only
if, they satisfy conditions similar to those of 'weak seminormality" for free
problems of the calculus of variations (see (L.iii) below).

In the present paper we prove that the same sets of a(x) if bounded below
have property (Q) and contain no straight line if, and oply if, they satiéfy
conditions similar to those for "seminormality" for free problems (see (L.vii)
below).

These results will be used in successive papers in proving theorems of
lower closure and existence theorems for optimal solutions.

In Section 2 we study real-valued functions F(u), u e QC Em’ which are
convex on a given fixed convex subset Q of Emo Under suitable conventions we
prove that these functions grow "more than linearly" as |u| + o with u e Q if,
and only if, their graph does not contain any straight line. This -statement,
which had been proved by Tonelli and Turner for Q = Em (see [1] for references)
requires a partially new proof in the present situation where Q is any convex

subset of Em’ and F is only convex in Q, and hence may not be even continuous

*This research was partially supported by AFOSR Research Project No. 69-1662
at the University of Michigan.



on the boundary of Q. The proof is based on a series of lemmas. The boundary
points may actually pregent exceptional behavior as éxamples show.

In Section * we study real-valued functions fo(x,u), ue Q(z) c Em’ which
are convex in u on the convex subset Q(x) of Em’ and where Q(x) may depend on x.
No continuity requirement is made on fo’ but only a suitable property of lower
semicontinuity is assumed. Finally, in Section 4, we apply the results to the
typical sets ﬁ(x) of Lagrange problems, by consistent use of the related real-
valued functions T(z;x), z € Q(x) < Em’ which has been introduced in [1], and

for which we proved there the properties which we require for fo in the present

paper.

2. Real-Valued Convex Functions on a Convex Set

Given a real-valued function F(u) on a subset Q of Em’ we shall often use
the expression "limit of F(u) as |u| » o with u € Q." This expression is clear
in itself when Q is unbounded. Whenever Q is bounded, the limit above is taken

to be + ». In the present section we shall prove the following

(2.1) Theorem. If F(u), u e Q, is a real-valued convex function on the convex

subset Q of En’ then the following properties are equivalent:

1. There is a linear function w(u) =r +b + u, u ¢ E r real,

.,bn) real, with F(u) > w(u) for all u € Q, and F(u)-
w(u) » +o as |u] » +w, u e Q.

2. For no two points u, € Q, ul € En’ ul % 0, it occurs that ug +

Xul € Q for all A real, and



F(uo) = 2'1[F(uo + }\.ul) + F(uo - xul)] for all A > o. (1)

For Q = En the funétion F is necessarily continuous, and then this theorem
reduces to a well known statement proved by Tonelli for smooth functions and by
Turner under sole hypotheses of continuity and convexity (see [1] for references).
Note that if Q is bounded, or Q is unbounded but contains no straight line, then
2. is trivial, but 1. is not. In this situation statement (2.i) yields the

following corollary which is interesting and far from trivial.

Corollary. If F(u), u € Q, is a real-valued convex function on a convex

subset Q of Em which contains no straight line, then 1. holds.
We shall prove first a series of lemmas, and then theorem (2.1).

(2.ii) If a convex set Q C En does not contain any straight line, then clQ does

not contain any straight line either.

giggg. First, let us assume that Q has at least an interior point, and,
if possible, that clQ contains a straight line. It is not restrictive to assume
that this straight line is the ul-axis.

If n = 1, then Q is contained on the same ul-axis, and we may well assume
that o is the interior point. If kl, A_ are the infimum and supremum respec-

2

tively, of the real numbers u, with u, € Q, then - » < xl <o< hl < tw, and

1

at least one of the two numbers xl, xg is finite. If, say, Al is finite, hence

) are

-0 < )\.l <o< >\.l < + o, then the points of the half straight line (=0, }\.l

not in Q, are not points of accumulation of points of Q and therefore are not

in clQ, a contradiction.



If n > 1, it is not restrictive to assume that some point p = (0,a,0,...,0)
with a > o is interior to Q, and then all points in the direction of the ue-axis
of a neighborhood of p, say all points u = (ul,...,un) with a < b, <8 +8,
b = g = ... =0, are interior to Q. For any e, o<:a<:2-16(a + 6)-1, and ¢ real, ¢ # o,

the point (u, = £ E, U, T e0s = un = 0) is in clQ; hence, there are points

1 2

-1
= = + = PR = i i ‘oo
M (ul €k N, uy =N, U nn) which belong to @ with n,,...,1_

as small in absolute value as we want. But then the points

| -1 -1 L
N = (u =-(1-e) “eny, u, = (1-€) “(a +2 "d-en,), uy = -(1-¢) €Ny 3= 350 00m

. . -1 -
are all in Q, since o < (l-g) ~(a+2 16) < a + 95, and provided we take M with
|ql|,...,|nnt sufficiently small. Now the point eM + (1-g)N is the point
(6,8 + 2-16, 0,...,0) and belongs to Q. This proves that all points of the

. . -1 X .
straight line [ul € El’ u, = at2 "9, u5 == uo s o] are in Q, a contradic-

tion. We have proved (2.ii) in the case Q has an interior point.

If Q has no interior points, then let R denote the linear manifold of
minimum dimension r, o < r < n, containing Q. If r = o then Q reduces to a
single point and so does clQ. If r > 1, then Rint Q is not empty. It is not
restrictive to assume that R is the linear (ul,...,ur)-subspace of En’ so that
Q has interior points with respect to R = Er’ and Q € ¢clQ € R. We are now in
the same conditions above with n replaced by r. Statement (2.ii) is thereby

proved. This statement will be used only in Section L.

Let Y denote the set of all vectors v ¢ En with the property that

Inf (u'v) > - » for all u € Q.



Obviously o ¢ ¥, and if v ¢ Y and k > o, then kv also belongs to Y. Finally,
if ViV, € Y and @ real, o < a <1, then av, * (l-a)v2 ¢ Y. Thus, Y is a con-

vex cone of vertex the origin.

(2.1ii) If a convex set Q C En does not contain any straight line, then the

corresponding cone Y has interior points.

Proof. First, let us assume that Q has at least an interior point.
It is not restrictive to suppose that the origin is an interior point of Q. Then
there is some sphere ¢ of center the origin completely contained in §. Suppose,
if' possible that Y has no interior points. Then Y must be contained in an
n-1

(n-1)-dimensional subspace En .» and it is not restrictive to assume that E
-l

is the (ul...u l)-space. Let Ah be the linear set of all real numbers € such

that (0,...,0,t) € Q. Then /\.n is a convex linear set, and €= o is an interior
point of Ah. If kn and ké denote the infimum and the supremum of all numbers

£ ¢ Ah’ then -o« < xn <o< Xn < f «, but at least one of the numbers kn, XA
must be finite (otherwise the entire un-axis would belong to Q). We may well
assume that say, kn is finite, hence - < hn <oKL xé < *e  Then the half

straight line 1; of all points (o0,...,0,E) with E< xq is outside Q, and
! I

there must be a plane n separating !~ from Q in Eﬁ

i Y + + + U - = 0
% % Yo TN, ’
with z(u) > o for all u € Q, z(u) < o for all u e I . We must have a # 0

since, otherwise we wculd have o € n, and n would separate some pairs of points

of ¢ which certainly are both in Q. Also, if Qh f 0, then we must have Gn >0

U



since £ contains points (0,...,0,&) with ¢ < Xn as large in absolute value as

we want. Th 7 can be written in the f =An + ... F
n us, can ni orm un n Blul Bn-l un-l’

+ + ...+ .
and unvz Kn Blul Bn-lun-l for all u € Q. In other words,

v, = (-Bl,...,-sn_l,l) ¢ Y. A contradiction, since YCE _, that is, Y is made

). We have proved (2.iii) when Q has interior

up only of vectors (u,,...,u

10000

points.

If Q has no interior points, then let R denote the linear manifold of mini-
mum dimension r, o < r < n, containing Q. If r =o then Q 1s reduced to a
single point, and obviously Y = En. If r > 1, then Rint Q 1s not empty. It

is not restrictive to assume that R is the linear (u ...,ur)-subspace Er of En’

1

so that Q has now interior points with respect to R = Er. The set YO of all

vectors v = (V. ,...,V_,0,...,0) With Infye (y*v) > - w, now has interior points

1 2 Q
in Er’ and obviously Y = YO X En r has interior points in En. Statement (2.iii)
is thereby proved.

When dealing with properties of convex sets which are invariant with re-

spect to affine transformations in En’ we shall freely change systems of co-

ordinates.

(2.iv) If a convex set Q C En does not coptain a line, then there is a system

of coordinates Viseee, v in En such that Q € K = [vlvi >0, i=1,...,n].

Proof. Since Y has interior points, then Y contains a system of n inde-

pendent unit vectors ei = (eil,...,e, ), with Infue

. = N\ > -
in (u ei) i %

Q

= 1l,...,n. Then the elati ., =€ +t...te, u =N, 1=1,...
i=1, sn n ‘n relations v, ilul intn i ’ )h,

define a new system of coordinates vl,...,vn in En, and vi > o for all

o,V ) € Q.

v = (vl,.. ;



Remark. Note that (2.ii), of which we had given a direct proof, is now a

corollary of (2.iv).

(2.v) If F(u), u € Q, is a real-valued convex function on a convex subset Q
of En which contains no straight line, then there is a linear function

w(u) =7 +b - u, ue E, T, b = (bl,...,Bn) real, such that F(u) > w(u) for all

ueQ and f(u) -w(u) > + o as |u| > +w with u e Q.

An equivalent form of this statement is obtained by extending F to all of
E by taking F = + « in En-Q, and then the contention of (2.v) becomes
F(u)-w(u) > o for all u e En’ and F(u)-w(u) > +« as |u| » + o with u € En.
Statement (2.v) is trivial whenever Q is bounded. Note that (2.v) is precisely

the corollary to (2.i) stated at the beginning.

Proof of (2.v). First, let us choose in En a system of coordinates vl,...,vn

such that Q € K = [v|vi >0, 1= l,...,n]. Let R denote the linear manifold of
minimum dimensions r, o < r <n, containing Q. If r = o then Q reduces to a
single point v, and we take w(v) = r = F(v), b = (0,...,0). If 1 <r <n,

hen Rint@ is not empty, and if v € RintQ, then F possesses a supporting plane
z(v) =F(v) +b* (v-v), b= (bl,...,bn),such that F(v) > z(v) for all v ¢ Q.
Finally, let € > o arbitrary, and let w(v) = z(v) - z—:(vl oot vh), or

w(v) = (F(v) - b*v) + (b-g)*v, where b-¢ stands for the real vector (bl-e,...,

bn-s). Then
F(v) - w(v) = F(v) - z(v) + e(vl toout v ) >e(v, tooatv ),

where v € @, and hence v, >0, i = 1,...,n. To prove that F(v) - w(v) » + o«



as v > tw, v € Q, we have only to take an arbitrary N > o, and note that, for
-1 . . -1 .
|v| > ¢ nN, v € Q, certainly one of the coordinates vi must be > & "N, while

the others are > o. Hence F(v)-w(v) >N for |v| > et nN, v € Q.

(2.vi) If Q is a convex subset of En possessing interior points, and u ¢ int Q,

u € En, u # 0, and u + AL € Q for all real A, then v + \u € Q for all v ¢ int Q

and all real M\.

Proof. For every £ real, and €, o < g < 1, sufficiently small, the points
-1 -1 X
M=u+¢g 6u and N = (1-g) ~(v-gu) certainly belong to Q. Hence eM + (1-g)N

€ Q, that is, the point
, -1 -1 -
eM + (1-g)N = g(u + € Eu) + (1-g)(1-e) (v-gu) = v + tu

belongs to Q. In other words, the entire straight line v + xa, A real, belongs

to Q. Since v ¢ int Q, all points of this straight line are interior points of

Q.

(2.vii) It Q is a convex subset of E , and u « RintqQ, uekb , and u + AL € Q
n’ n

for all real A, then v + A € RintQ for all v ¢ RintQ and all real A.

The proof is the same as above by considering the linear manifold R of minimum

dimension r containing @, o < r < n.

(2.viii) If Q is an arbitrary convex subset of En which may contain straight
lines, then there are integers s > o0, 0 >0, s + 0 < n, and a decomposition

E =8 xE x B such that Q € & x E , and there is a convex subset Q
n S o n-s-o s o o}

of Es, open in ES and not containing any straight line, such that



Q xE cQceclq xE (2)
6} 6] ¢} (o}
Note that QO may be reduced to a single point, and in that case we take s = o.

Proof. As usual, let R be the linear manifold of minimum dimension contain-
ing @y o <r <n. If r = o0, then Q is reduced to a single point, and we take
s =0, 0=0, Q= QO. Let us assume now that r > 1, so that RintQ f ¢. It is
not restrictive to assume that R is‘the (ur..”ur)-space Er° Let Z be the set
of all vectors u such that u + AU € RintQ for all real A, where u ¢ Rint Q. By
(2.vii) we know that Z does not depend on the particular point u e Rint Q. Thus,

Z is a linear space Z = E of Er of some dimension 0, 0 < 0 <r. Now let E
g - - s

be the complementary space of E0 in Er’ so that Er = Eg xE, s>0,8 tag=r.
; o -

The intersection Q N ES is a convex set, and we take QO int(Q N Es), so that

Q CQNE ©clQ, RintQ =Q x E, and (2) follows.
¢} S o (0] o]

Proof of (2.i). (a) Let us prove that 1 implies 2. It is enough to prove

that property 1 and the negation of 2 together lead to a contradiction. Thus,
we assume that 1 holds, and that there exist points uo € Q, ul € En’ ul # 0, as
in property 2. Then, all points uo + xul, N real, are points of Q; hence,

u € RintQ. By (5.iv) of [1], F possesses a supporting plene z(u) = r + b-u,
1€ En’ at us thus r and b = (bl,...,bn) are real, F(u) > z(u) for all u € Q,

) = = + .o R 1 ) g + N\ + (g + N = o
and F(JO) z(uo) r+b 1 Besides F(uo Kal) >r +b (10 Xal), b(uo Au) >

1
r+ b(-xuj) for all A > o. The proof proceeds now exactly as the proof of

1 Z
(5.x) in [1], and will not be repeated.

(b) Let us prove that 2 implies 1. First, let us assume that o e RintQ,

and that F(u) > o for all u € Q with F(o) =o. Let E =E x E x E be
- n S [0} Nn=s=ag



the decomposition of En according to (2.viii) so that QO xE cQcC leO xE,
o o
where QO is a convex subset of Es not containing any straight line and open in

ES. Let us choose (vl...vh)-coordinates in En so that ES is the (v_..

.V =sSpace;
1 S) space;

Eo is the (v_,_...v . )-space, and F is the (v

0.V )=gpace in E , with
s+1 s+o -S-0 s+o+l n) P n’

s >0, o >0. Also, according to (2.iv), let us choose (vl.,.vs)-coordinates

in ES so that QO C K= [(vl,...,vs)lvi >0, 1i=1,...,8]. Let él,.,.,en be the

unit vectors of the v-space B defined by éi = (eis, s =1,.0.,0), i =1,...,n,

withe, =1, e, =o for s # i.
ii is

Let T be the set of all real vectors b = (bl,.,a,bn) for which there is

some real number r such that F(v) >r +Dbv for all v € Q. Let us prove that

T is a convex set. Indeed, if bl, b. e T and rl, rg are the corresponding

2
numbers, then, for o < a <1, we have
) - ]

F(v) - [ar

+ (l=-oc)r2 - <ab1 + (1-a) b

1 2

y v)]:>so

a[F(v) - (rl+bl'v)] + (1-q) [F(V)~(r2 + b2 >

for all v € Q. Hence, ob, * (1-cx) b2 e T. Moreover, T contains the origin

since F(u) > o for all u € Q.

Let us prove that T is not contained in any (n-1)-dimensional subspace of

En. If it were, there would be a unit vector e = gl e:L t ... t Cnen such that
e *b=oforallbeT. Note that for b = éi, i=s+g+1,...,n, and
v = vlél ool F vnén ; V € Q, we have vs+o+l = ... = vn = o0, and
F(v) - brv>o0 - éi . (vlél + .. F Vs+oés+0) = 0;
hence, b = éi €T, and 0 = bre = éi . (Clél + Cnén) = &



We have proved that Ci =90 foralli=gs+o+1,...,n.

ve +t...tve,ve Q,we have v_ > o,..
171 nn’ 1=

it

For b = -e,, i=1,.0.,8, and v
i

VS > o, and

F(z) - b'v>o0 +e, (vlel oot vnen) = v, 20
hence b = -e, € T, and 0 = bre = -e, (glel oot gnen) = -gi. We have proved
that Ci =o for all 1 = 1,...,s. Thus,

e + + L
r+l r+l

¢ =t

€ )
rtg rto

or e ¢ EO. Then, \e belongs to Q for all A real, and F(\e) + F(-Ae) > o for
some N # o by force of 2. Hence, either F(\e) > o,or F(-Ae) # o, or both.
It is not restrictive to assume F(Ae) > o. Since Ae € RintQ, then F has a
supporting plane z(v) = F(he) + b*(v-Ae) at the point Ae, by force of (5.iii)
of [1]. Then F(v) > z(v) for all v, so b ¢ t, e'b = 0, and z(ye) = F(he) *+
+b*(y -he) = F(\e) for all y real. Thus, in the directions ¥ e, the function
z(u) is constant and positive. But z(o) < F(o) = o, a contradiction. We have
proved that T is n-dimensional.

We know that a convex set in En contained in no (n-1)-dimensional manifold
has an interior point. Therefore, let b be an interior point of T, and let
€ > 0 be so chosen that |b-b| < e implies b ¢ T. Let r be a constant such
that F(v) >w(v) = r +b'v for all v e Q . Suppose that lim inf [F(v) - w(v)] #
+«, where lim inf is taken as |v| » +« with v € Q. Then, there is a constant

a > o and a sequence [vk] such that |vk| >+ w, v, € Q, F(vk)-w(vk) < a for all

k. Without loss of generality we can assume that Vk/lvkl converges to a unit

11



vector v as k > w. Then, b+eve T, and there is a constant rl such that

z(v) = Iy + (b +ev)v < F(v) for all v. Thus,

H
H
1
H

r+e lvkl v ‘(vk/|vk|) >+

as k »», a contradiction.A We have proved that F(v)-w(v) » +o as |v] » +w
with v € Q.

We have proved that 2 implies 1 for the case where o € Rint Q, F(u) > o and
F(o) = o. In general, let R be as usual the linear manifold of minimum dimen-
sion r containing Q, o <r < n. If r = o, then Q is reduced to a single point
u_, we can take w(u) = F(uo), and 1. holds trivially in force of the chosen con-
ventions. If r > 1, then Rint Q % o and we can take a point uo € Rint Q. Then
F(u) has a supporting plane at u_ by force of (5.1ii) of [1], say z(u) =
F(uo) + bl'(u-uo). Let G(u) = F(u)=z(u). Then G(u) > o for all u e Q and
G(uo) = 0. Finally, we can transfer u to the origin by a translation in En°

We can now apply to G the results proved above, and translate them in terms of

'F. Theorem (2.1) is thereby proved.

3. Properties of Seminormality of Convex Functions

Let A be a closed subset of the x-space E , and for every x ¢ Q let Q(x)
be a convex subset of the u-space E . Let M be the set of all (x,u) with x € A,

u e Q(x), and let fo(x,u) be a real-valued function on M.

12



(%.1) If for some x ¢ A and u e Q(x) there are numbers r, b = (b ...,bm) real,

l)

y > o such that

fo(i,u) > 1 +b'u + v|u-u| for all u e Q(x),

then for no ul € E, ul % 0, it may occur that
m

u+ My e a(x) , | (3)

fo<>z,a) = e'l[fo(?c,ﬁ + xul) + fo(i,i - ml)] (L)

for all A real.

Proof. Suppose that there isuy € E , u # o such that both (3) and (L)

1

hold for all N\ real. Then

- - -1 - - - -
f (x,u) = 2 [fo(x,u + kul) + fo(x,u - Xul)]

o7t ([r +Db*(a +A\u

v

ARSI RNt NCERTRIERIENED

]

r+bu+ 2v|K| Iul[.

This is impossible since A can be arbitrarily large. Statement (%3.1) is thereby

proved.

Again, let A bea closed subset of the x-space En, and for every x € A let
Q(x) be a convex subset of the u-space Em. Let M be the set of all (x,u) with
x € A, ue Q(x), and let fo(x,u) be a real-valued function defined on M. We
shall assume that, for every x ¢ A, fo(x,u) is convex in u in the convex set

a(x).

13



For every x ¢ A and & > o let Na(i) be the set of all x ¢ A with |x-x| < 3.

s (0]
For every x e A let Q(x) be the set of all (z ,u) e & __ with z° > £ (x,u),

mtl
u e Q(x). Then z(x) is a convex subset of Em+l whose projection on the u-space
E_is .
s Q(x)

For every x ¢ A and & > o let

aEp) = U a)eE
xel_ (x) '
o}
Ax;8) = U Qx)cE .
xeNé(i) mrl

These sets may not be convex, but the sets
co Q(x;8), co Q(x;8)

certainly are convex subsets of Em and Em+l respectively, and the projection of

~

co Q(x;8) on the u-space Em is co Q(x;8).

Let

o(x,u,d) = Inf [zol(zo,u) € co E(i;&)] , ue coQ(x;d)

(3.1i) Theorem. Suppose that for a given X ¢ A and u € Rint Q(x) it occurs

that for no u € Em, u # o, we have u + kul e Q(x) and fo(i,a) =

2 [fo(g,a + Xul) + fo(i,a-kul)] for all A real. Suppose that for any system

of numbers r, b = (bl,...,bm) real such that fo(i,u) >r +b'u for all u e Q(x),

any compact subset K of E , and € > o, there is some 60 = BO(E,K) > o0 such that
m

ueKnNco Q(i;&o) implies @(x,u,d) >r + bru-g. Then,there are numbers

r, b= (b ,...,Bm) real and v > 0, ® > o such that fo(i,a) <r +bwu+e, and

1

1k



£ (x,u) > r+b - u+v|u-u| for all x ¢ A, |x-£0| <8, and all u € Q(x).

Proof. Let v(u) = rl + bl' u, u € Ep, be the supporting plane of fo(i,u)
at u = u. This supporting plane exists since u ¢ Q(x) and by force of (5.iii)
of [1]. Let w(u) =r +b + u, ue Ep, be the linear function satisfying the
requirements of (2.i), part 1, for fo(i,u) thought of as a convex function
of u alone on the convex set Q(x). Then, for o <a <1 and all u e Q(x) we

have
£ (x,u) = [aw(u) + (1-a)v(u)] =
= a[fo(i,u) - w(u)] + (1-) [fo(i,u) - v(u)] >0 .
Let o , o <o <1, be so small that ao|w<a)-v<a>1< e/h, and let
2(u) = aw(u) + (1o )v(a) - /b
Then
£ (x,u)-z(u) = Qb[fo(i,u)-w(u)] + (Lo )£ (x,u)-v(u)] + /b > e/b;
lim [f (x,u)-z(u)] = + as |u] » +« with u e Q(x); (6)

fo(x,u)-z(&) = v(u)-z(u) = ob[v(ﬁ)-w(ﬁ)] +e/h < gfe. (7)

From (6) we conclude that, for some m > o we have
fo(i,u) - z(u) > 2¢ for all u € Q(x) with |u-u| = m.

By force of the hypotheses in (*.ii) we conclude that there is some & > o such

that
15



o(x,u,d)-z(u) >¢€/8 for all u e Q(x;8), |u-u| <m, (8)

(x,u,8)-z(u) > 9¢/8 for all u e Q(x;8), |u-u| =m (9)
If v = ¢/8m, then (8) implies
o(x,u,8)-z(u)-v|u-u| > (e/8)-v|u-u| > (g/8)-(g/8) = o

for all u e Q(x;8), |u-a| <m. For |u-u| >m, let o = m/[u-u| so o <a <1, and

let us take u_ a(u-u) + u, or u = om (1-a)u. Then u € co Q(x;%), luo-ﬁ| =

(m/|u-u|)]u-u| = m, and, by the convexity of @, also
@(i,uo,S)—z(uo) < al®(x,u,8)-z(u)] + (l-a)[@o(i,a,S)-z(a)].
From here we deduce that
@(i,uo,8)—z(uo) > 0(x,u,8)-z(u) +

+(l/Ot) {[@(X,HO,S)-Z(‘JO)] - [@(}-(,1_1,6)-2(1.-1)]}

e/8a .

> (1/0) ((9/8)-€)

Since qv|u-u| = /8 we have
®(x,u,8)-z(u) - vlu-u| > (¢/8x) - (¢/8a) = o.

We have proved that &(x,u,d) > z(u) + v[u-a| for all u e Q(x;0). This implies
that fo(x,u) > z(u) + v|u-u| for all x € A, |x-x| < B, ue Q(x). Statement

(%.ii) is thereby proved.

L. The Sets Q(x) and Their Seminormality Properties

Let A be a given closed subset of the x-space En and for every x ¢ A let

U(x) be a given subset of the u-space Em. Let M be the set of all (x,u) with

16



x € A, u ¢ U(x), that we shall suppose closed. Let fo(x,u), f(x,u) = (f],...,fn)

~

be real-valued functions defined on M. For every x e¢ A let Q(x), Q(x) be the sets

2
e
!

(z € B|z = f(x,u) for some u e U(x)] < E

0 o
>f = f £ C ] .
[(z7,2)]|2 > O(x,u), z (x,u) for some u ¢ U(x)] En+l

20
]
]

~
=~

Then, the projection of Q(x) on the z-space En is Q(x).

We say that the sets Q(x) satisfy property (Q) at x ¢ A provided

z(i) = 06 cl co 6(2;6) = ﬂb clco U _ Q(x) .
xeNB(x)

We say that the sets a(x) satisfy property (Q) in A if they have the above
mentioned property at every X € A. Sets satisfying property (Q) are necessarily
convex and closed.

For any fixed x ¢ A let us consider the following scalar function defined

on Q(x):

T(z;x) = Inf [fo(i,u) z = f(x,u), u e U(x)]

Inf [2°](2°,2) € Q(%)], z € Q(%) .

Then,for X ¢ A, we have = < T(z3x) < R « for all z ¢ Q(x). We consider T(z;x)
as a function of z in Q(x).

Note that the convexity‘of z(x) c En+l implies the convexity of Q(x) < En’
but Q(x) may be not closed even if Q(x) is closed. As usual we denote by
R = R(x) the linear manifold of minimum dimension r containing Q(x), so that

Rint Q(x) < Q(x) < R(x) € En.



We say that condition (o) holds at a point X € A provided

(@) I£(z°,2z) € N, cl co E(Q,B), then z ¢ Q(x).

)

We shéwed in ([1], no. L4) that (o) is a necessary condition for property (Q).

We say that condition (X) holds at a point x e A provided (X) for every
z ¢ Q(x) there is at least one u e U(x) witﬁ z = f(x,u) such that the following
holds: given € > o there are numbefs ®>oandr, b = (bl,...,bn) real such that

- (X) fo(x,u) >r o+ Zﬁ bjfj(x,u) for all x € N_(x) and u € U(x),

)

(x") fo(i,a) <zt + Zﬁ bjfj(i,ﬁ) + €.

(4.i) If conditions (@) and (X) hold at the point x e A, then E(i) is closad

and convex, and the sets Q(x) satisfy property (Q) at the point x.
This statement was proved in ([1], (k4.i)).

(4.ii) If Q(x) is convex, then either T(z;X) = -« for all z e Rint Q(k), or
T(z;x) > - for all z ¢ Q(x). In the latter case, T(z;x) is finite everywhere
and a convex function on the convex set Q(x), T(z;x) is bounded below on every
bounded subset of Q(x), and T(z;X) is continuous in the convex set Rint Q(x) open
with respect to R(x). Finally, if a(x) is convex and closed, and T(z;x) > -«

for all z € Q(X), then T(z;x) is (continuous on Rint Q(x) and) lower semicon-

tinuous at every point z e Q(X) - Rint Q(x).

This statement was proved in ([1], (8.1)).

18



(4.iii) Theorem. If T(z;x) > -« in Q(x), then the sets E(x) have property (Q)

at X if and only if properties () and (X) hold at the point x.

This statement was proved in ([1], (9.i)).

~

(4.iv) If Q(x) is convex, and T(z;x) > -« in Q(x), then the set a(i) contains

!

a straight line if, and only if, there are z e Q(x) and z) € En’ z, # o, such

that z_ + Mz, € Q(x) and

1

T(zo;i) =2 [T(zo + le; x) + T(zO - Kzl;i)] (10)

for all \ real.

Proof. Note that for any z e Q(X) the points (z°,z) with z° > T(z;X) belong

to Rint Q(x). Note that a(i) contains a straight line if and only if its closure

~
X -

cl Q(x) contains a straight line by force of (2.ii). Finally, the graph of
T(z3%), z € Q(kx), certainly belongs to cl Q(x). Thus, if (10) holds for some
z 5 2 and all A real, then certainly cl a(i) and Q(x) contain straight lines.
Conversely, if a(i) contains a straight line [/, then [ cannot be vertical, and
o o - o
thus £ = [z + kzl, z + le, A\ real] for some zl € En, 21# 0, zl real. Then
(o) -

z~ > T(z;x), and for every € > o the point (T(z;x) + €,z) belongs to Rint Q(x),

hence the straight line [T(z;x) + € + XZz, z + le, A real] belongs certainly

X -

to Q(x), hence to cl a(i), and finally
T(z;%x) + € + Kzi > (2 + Mz 5%)

for all \ real. Since € > o is arbitrary, we have also
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T(z3%) + Aze > T(z + Az 3X) ,
1- 1
and by exchanging A with -\ also

- - o) - -
T(z;x) - Azl > Tz - XZl;x) .

By addition then
- - -1 - - -
T(z;x) >2 "[T(z + hzl;x) + T(z - le;x)] ,

where T is convex in its first argument, and hence the opposite relation is also

true. We conclude that

T(z;x) = 2'1[T(£ + le;i) + T(z - le;i)]

for all A real. Statement (L.iv) is thereby proved.

Note that for x e A, the set Q(x) convex, and T(z;x) > -« in Q(X), then
certainly the set Q(X) is also convex, the real valued function T(z;x) is convex
on the convex set Q(x), and hence T(z;Xx) possesses a supporting plant m:

o} - -
z =1 tb'z, z ¢ En’ at every point z e Rint Q(x), by force of statement

(5.iii) of [1]. That is,

T(z;x) >r + bz for all z € Q(x),

T(z;x) = r +b'z,

and n is actually the supporting plane of the convex set ﬁ(i) at the point

o - 0 - -
(Z )Z): z = T(ZBX)-

At points z e Q(x)- Rint Q(x) (if any) the situation may be different.

Indeed, T(z;x) may be not continuous at z, not even lower semicontinuous, T
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may have no supporting plane at i, in the sense that the convex set S(i) may

O - - .
= T(z;x). Actual examples of these

have vertical supporting plane at (zo,i), z
occurrences have been given in ([1], Section 8). BEven if Q(x) is closed, and
hence T(z,x) is lower semicontinuous at the points z e Q(X) - Rint Q(x), yet the

- O—
supporting plane of Q(x) at (z ,z) may be vertical. Nevertheless, the following

statement holds:

(b.v) If x e A, if T(z;x) > -« in Q(x), if the sets a(x) have property (Q) at
x, then for every z e Q(x) and € > o there are numbers r, b = (b ,.,.,bn) real

1

and & > o such that

T(z;x) >r +Db'z for all z e Q(x),

T(z;x) < + Dbz + €.

For z ¢ Rint Q(x) this statement is only a corollary of (L.ii) and of (5.iii)
of [1], as mentioned above. For z ¢ Q(x) - Rint Q(x) statement (4.iv) has been

actually proved in ([1], proof of (9.i)).

(h.vi) If x € A, if T(z;x) > - -in Q(x), if the sets E(x) have property (Q)

at x, if r, b = (b ...,bn) are real numbers such that T(z;x) >r + bz for

l)
all z ¢ Q(i),then given any compact subset K of En and numbers € > o there is

some other number & _ = 6O(€,K) > o such that T(z;x,8) > r +b+z - & for all

Z € co Q(x;@o).

Proof. If the statement were not true, then there would be some € > o and

>0, z_ e KN co Q(x;d ),

a sequence of numbers Bk and points z K

with 6k >0, 0

k k
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such that T(zk;i,ﬁk) <r+ b'zk - €. Hence there would be alsoc real numbers

o
with
Z, Wi

(ZE,ZK) € co 3(§58k) ) (11)

o
r+b'z -e<z <T+baz - g/2, k=1,2,... (12)

Since the points z, belong to the compact set K, [zk] is bounded, and, by force

k

Y.

of (12), [zi] also is bounded. Thus, there is a subsequence, say still [k], such
that (z;,zk) converges as k - « to some (zo,z). Now, for every & > o and k suf-

ficiently large so that 8 < ©,we deduce from (11) that (22,2 ) € co Q(x;5) and

Kk’ %k
o) -
hence (z ,z) e cl co Q(x;8). Since this holds for every & > o we have also

(zo,z) e N el co Q(x;8) = a(i) by force of property (Q) at x. On the other

>0
0 -
hand, from (12) we deduce z° <r *b'z - €/2, a contradiction,since z~ > T(z;x) >

r + b'z. Statement (k.v) is thereby proved.

(4.vii) Theorem. If T(z;%) > - w in Q(X), if the set (k) contains no straight
line, then the sets a(x) have property (Q) at x if, and only if, the following
properties hold: (o) If (zo,z) € ﬂb cl co 5(5;6), then z e Q(x); (X*) for
every z ¢ Q(xX) there is at least one point u e U(x) with z = f(x,u) such that

given € > o, there are numbers 8 >0, v >0, and r, b = (bl""’bn) real with

(x'™) fo(x,u) >r o+ Zjbjfj(x,u) + v| £(x,u)| for all x e Ng(i) and u e U(x),

(x") fo(i,a) <r+ zjbjfj<§,a) + €.
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Proof. Let us prove the sufficiency part. First conditions (o) and (X*)
hold, hence condition (X) holds, and by force of (L.iii) the sets E(x) have
property (Q) at x. On the other hand, the set E({c) contains no straight line
by force of (%.i). Let us prove the necessity part. First, the sets E(x)
have property (Q) at x; hence conditions () and (X) hold by force of (L.iii).
Also, the real-valued function T(z;x) is convex over the convex set Q(i), and
statement (%.ii) holds. In addition,\the set z(i) contains no straight line
by hypothesis, and hence the real function T(z;i) has the property that for

no z_ e Q(x), z

o 1€ En’ z, # o, it occurs that z +'le € Q(x) for all A real

- -1 - -
and T(zo;x) =2 [T(zo + hzl;x) + T(zo-kzl;x)] for all A real. Finally, by

force of (4.ii), there are numbers r, b =

(El,...,bn) real and v > 0, 8 > o,

such that T(z;x) >71 + bz + v|z-z| for all x ¢ A, |x-x| <8, z € Q(x).
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