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EXISTENCE THEOREMS IN MULTIDIMENSIONAL PROBLEMS
OF OPTIMIZATION WITH DISTRIBUTED AND BOUNDARY CONTROLS*

Lamberto Cesari and David E. Cowles

1. INTRODUCTION

In the present paper, we consider multidimensional nonlinear problems of
optimization of the Lagrange type involving a cost functional expressed by
means of integrais on a fixed domain G in Euclidian space EV, v 21, and on
its boundary, 9dG, and also involving state equations—usually partial differ-
ential equations—in G and on oG, and controls both in G (distributed con-
trols), and on dG (boundary controls), while our state variable x is an ele-
ment of a Banach space S. The state equations, both in G and on 3G, are
written in abstract functional analysis form, and hence may represent partial
differential equations or more general functional relations. The state equa-
tions, both in G and on dG, may be written in the éq-called "strong" form, or
in the ”weak"fform, as usual in partial differential quations theory. This
paper extends to‘the present situation the method and ideas of previous
papers by Cesari [3abc], and particularly of [3e].

Let G be a fixed bounded open set in EV, v > l; and let T be a given
closed subset of oG on which we have a hyperarea measure p. Let S be a
Banach space of elements x, and letd???{, J;?{ be operator on S, not neces-

sarily linear, with values in the following spaces:

*Work done in the frame of US-AFOSR Research Project 69-1662 at The Univer-
sity of Michigan.



where r,s,r' and s' are given positive integers.
95, g

For every t = (tl,...,tv) in the closure of G, let A(t) be a nonempty

closed subset of the y-space E°. Iet A be the set of all (t,y) such that t
1
€ cl(G) and y = (y ,...,ys) € A(t). For every (t,y) ¢ A, let U(t,y) be a
m 1 m .
nonempty subset of the u-space E', u = (u,.e.,u ). We define analogous sets

on a closed subset I' of oG as follows. For every t e P; let B(t) be a non-

(o] ' (o) o l Q ' .
empty closed subset of the y-space ES , ¥ = (¥ ,...,ys ). Let B be the set

of all (t,§) with t ¢ I' and § e B(t). For every (t,§) e B, let V(t,§) be a
1
nonempty subset of the v'-space E , v = (vl,...,vm ).

We consider the problem of finding an element x of S, a measurable con-

1

trol vector u(t) = (u ,...,um), t € G, and a u-measurable control vector v(t)

l m ! .
= (v ,. v ), te I', so as to minimize the cost functional:

Ilx,u,v] = [ £ (8,0)(t), u(t))at + [ g (t,(Kx)(t), v(t))du
G r

(1.1)

subject to the state equations:
Cx)(8) = £(5,0p)(t), ult)) a.e. in G, (1.2)
QJX)(t) = g(t,(xk)(t), V(t)) p-a.e. in T, <l°5)

and the constraints:
77k)(t) e A(t), u(t) e U(t,x)(t)) a.e. in G, (1.4)

Kx)(t) e B(t), v(t) e V(t,Kx)(t)) pu-a.e. in I. (1.5)



Here, u'(t) is said to be a distributed control, and v'(t) a boundary
control. State equation (1.2) usually represents a system of partial differ-
ential equations, and (1.3) usually represents boundary data, or boundary
controls, but’may well represent a system of partial differential equations
and related constraints and controls on the boundary oG of G. State equa-
tions (1.2) and (1.3) are said to be written in the strong form. We shall
consider in g 6 also the prpbiem of minimizing the cost functional (1.1) when
(1.2) and (1.3) are written in the corresponding weak férm as is usual in the
theory of partial differential equations. The corresponding results are

framed in the present general theory with no extra effort.

2. PRELIMINARIES

In order to state our lower closure and existence thebrems, we will use
VC. B. Morrey's definition of a regular transformation of class K from his
paper [8a].

Let X and Y be subsets of a Euclidiah space En. A transformation x =
x(y) of X onto Y is said to be of class K provided it is one to one and con-
tinuous, and the functions x = x(y) and y = y(x) satisfy uniform Lipschitz
conditions on each compact subset of X and Y, respegtively. In addition, the
transformation is said to be regular if.the functions x(y) and y(x) satisfy
uniform Lipéchitz conditions on the whole of X and Y, respectively.

By a region, we mean an opeﬁ connected set. If G is a region in Ev, oG
denotes its boundary and clG its closure.

In stating our theorems, we will use properties of set valued functions.



We now give the definitions of two well known properties of set valued func-
tions. We shall use the notations of g 1. Also, given a point (to,yo) e A

and a number & > O we denote by N (to,yo) the set of all points (t,y) € A at

o)
a distance < & from (to,yo).
r+l
For every (t,y) € A let Q(t,y) be a subset of the z-space E , 2 =

(zo,...,zr). We say that the sets Q(t,y) have Kuratowski's upper semiconﬁi-

nuity property [6], or property (U), at the point (to,yo) € A provided

t ) =
Q( O’yo) EQO cl Q(to)yoye):

where

Q(to_,yo,€) = U Q(t)y)'
(t)y) € Ne(to)yo)

We say that the sets Q(t,y) have Cesari's upper semicontinuity property [ja],

or property (Q), at (to,yo) € A, provided
Q(to;yo) = EQO cl co Q(to’yo’e)'

We say that the sets Q(t,y) have prbperty (U), or (Q), in A if they have this
property at every point (to,yo) ¢ A. Sets having property (U) are closed,
and sets having property (Q) are closed and convex. It was found useful to
introduce intermediate properties Q(p), 0 < p < r+l, of variable sets (D. E.
Cowles [La]).
Let p be dny integer, 0 <p<rtl. We say that the.sets Q(t,y) have

property Q(p) at the point (to,yo) € A providéd for'évery z = (zZ,zi,...,
r+l Er+l

z_ ) € ;o



I'+llzi i

’ o] r .
Q(t ,yo)f1[z =(z ,...,2 ) € E =z, 1 = Pyeee,r)

1A

o r+l i i .
= (1. 0 cl co(Q(tO,yO,e) N{zebl 7| |z -zol B, i = p,ee.,r}).

For p = r+l we understand that the sets in braces in the first and second
members of this relation coincide with Er' Also note that if the sets Q(t,y)

have property Q(p) at the point (to,yo) ¢ A, then for every z_ = (ZZ’Zi""’

+ 4
ZZ l) ¢ E 1 the set

Aty )N (ze AR P

1 ., }
=2 1= cee,y I’
0} o’ 0> ?

is closed and convex as intersection of sets having the same property. Thus,

for any two points

o} p-1 o) r '
Zl = (gl,. ’Zl 5 zo,...,zo) € Q(to,yo)_,
_ 0 p-1 o) r
Z2 "" (Z2,000,Z2 b} Zo,con’zo) € Q(to,yo) ’

the points « z, € (l-a)z2 also belong to Q(to,yo), 0<a<1l. Sets posses-

sing this (partiai) convexity property will be said to be p-convex.

(2.i) For any integer p, 0 < p < r, property Q(p+l) implies property Q(p)-
Also, property Q(r+1l) holds if and only if property (Q) holds, and property

Q(0) holds if and only if property (U) holds.

For a proof of this statement see (D. E. Cowles [k4a]).

- - - r+l
For every point (t,y) € A, let Q(t,y) be a subset of E ~, r 2 0. We

say that the sets Q(t,y) have the "upper set property" on A provided (t,y) e



o 1 r o 1 r r+l -0
= oo t z = oo - E with >
o (ZO)ZO, ’ZO) e Q(t,¥), ZO (ZO’ZO) JZO) € 1 ZO 2 Z

o .
im-
9]

=4
N
|

plies Eo e Q(t,y).

(2.i1) If the sets Q(t,y) have the upper set property on A and also the

property (U), then the same sets have property Q(1) on A.
For the proof of this statement see (D. E. Cowles [ka]).

3. A LQWER CLOSURE THEOREM

Let G be a bdunded measurable subset of Ev, v > 1, whose Dboundary will
be denoted by oG.

Let Pj, j=1,...,N, be subsets of oG, each of which is the image under
a regular transformation tj of class K of a bounded interval Rj of Evnl. Let

’ N
I' be a closed subset of Uj= Pj, and let p be a measure defined on UN; r..

1 J=1 J

For each j = 1,...,N, we assume that if e is a subset of Pj, measurable with
respect to u, then E = tgl(e) is measurable with respect to Lebesgue (v-1)-
dimensional measure | | on Rj. Also, we assume that the converse is true, so
that measurable sets oﬁ Fj and R3 correspond under tj, J=1,ee.,N.

Finally, we assume that there is a constant K > 1 such that if e = tj(E) is

u-measurable, then

el < ule) < x|E| (5.1)

independently of j = 1,...,N, and e. Since p induces a measure on each set

Ré via the transformation tj, j=1,...,N, we may define Jj(T), T € Ré, as

the function in L

l(Ré) which satisfy the relations



p(t.(E)) = [ J.(t)dr (3.2)
J E J

for every measurable subset E of Ré, ji=1,...,N

For every t-eclG, let A(t) be a nonempty closed subset of the y-space

S 1 s
)l

E, y=(y,eee,y Let A be the set of all points (t,y) with t ¢ clG and

y € A(t). For every (t,y) ¢ A let U(t,y) be a nonempty subset of the u-space

E5, u= (u,...,u Let M be the set of all (t,y,u) e E' x E x E' such

m 1 m
)'
that (t,y) € A and u e U(t,y).

For every'tg r, let B(t) be a nonempty closed subset of the y-space ES )

Q l o] ! . [o] . O :
¥ = (¥ ,...,ys ). Let B be the set of all (t,¥) with teI and §eB(t). 'For

!

every‘(t,ﬁ) € B, let V(t,§) be a nonempty closed subset of the v-space B 5

Cy !

. ° 1 :

v = (v5,..., 7" ). Let M be the set of all (t,§,v) ¢ ' x E° x E' with
(t,§) € Band v e V(t,¥).

Let £(t,y,u) = (fo,f) = (fo,fl,...,fr) be a continuous (r+l)-vector

function on M, and for every (t,y) e A let Q(t,y) denote the set

o 1

0 r r+l
(z,2) = (2 ,2 ,.00,2 ) € E 7|

o0
ct
o
<
S—

1
‘N

i

z > fo(tJY;u): z = f(t:y;u): u € U(t;Y)}-

Let g(t,¥,v) = (go,g) = (go,g ,...,gr') be a continuous (r'+l)-vector

1
function on ﬁ, and for every (t,§) € B, let E(t,ﬁ) denote the set

oy ~ o} o 1 r' r'¥l
R(t,¥) = (z=1(z,2)=(2,2 00052 ) ek I

o o o L
z > go(t:YJV); Z = g(tJY}V)) Ve V(t)ﬁ)}'



We consider here the functional
Ily,¥,u,v] = f fo(t)Y(t);u(t))dt + f go(t;ﬁ(t),v(t))du~ (5°3)
G r
In the lower closure theorem below we shall deal with sequences of functions

all defined on G and I':

1 r 1 r
Z(t) = (27,.0.,2 ); Zk(t) = (Zk)' ’Zk)’
1 S 1 s
Y(t) = (y ooy )) yk(t> = (yk)' ';yk))
1 m
uk(t) = (uk,...,uk), teG k=1,2,.u.,
[¢] Ol Or' [} Ol I"
Z(t) = (Z ) ’Z ): Zk<t) = (Zk;" ’ﬁk ))
o oL 08" o 1 o8
§(t) = (F,..,8 ) yk(t) = (Foeeeo¥y )
v ) = (e v™) tel, k=1,2.... ‘(3.1)
k 7 4 k) J k J ‘) )& .

(3.1) Theorem (a lower closure theorem). Let G be bounded and measurable,

A, B, M, M closed, fo(t,y,u), f(t,y,u) = (fl,...,fr) continuous on M,

. o
go(t,ﬁ,v), g(t,¥,v) = (gl,...,gr,) continuous on M, and assume that for some

integers p, p', 0 < p<r, 0<p' <r', the sets Q(t,y) have property Q(p+l)

on A and the sets E(t,&) have property Q(p'+l) on B. Let us assume that

~ there are functions ¥(t) >0, t € G, V- e L (G) and ¥(t) >0, tel, Vel (T),

1 1

such that fo(t,y,u) > -y(t) for all (t,y,u) e M, and go(t,ﬁ,v) > -¥(t) for

o

i i j
all (t,7,v) € M. Let us assume that the functions z (t), Zk(t)’ yJ(t),

. . .
yi(t), i=1,.0.,r, j =1,...,s, are in Ll(G), that the functions u (t) are

k

measurable on G, £ = 1,...,m, that fo(t,yk(t),uk(t)) e-Ll(G), and that



i
k

y (t) € A<t); uk(t) €:U(t;yk(t))) z (t)

k

= fi(t,yk(t),uk(t)) a.e. on G, k =1,2,.... (3.5)

Let us assume that the functions & (t), il(t), ﬁJ(t), 7
1
Iyeeesr'y j=1,.00,s', are in Ll(P), that the functions vk(t) are measurable

in T, g =1,...,m', that go(t,§ (t),v. (t)) € L.(I'), and that

k k 1
7, (6) € B(t), v, (8) € V(5,5 (), £.(%)
= gi(t,ﬁk(t),vk(t)) w-a.e. on T, k = 1,2,.... (3.6)

Finally, let us assume that as k -~ « we have

z;(t) > zl(t) weakly in Ll(G), i=1,00.,p0,
2 (t) » 2 (t) stronglyiilLl(G), i= ptl,...,r,

yi(t) > y9(t) strongly in 1,(6), 3 = 1,08,
oi ‘ oi . . :
zk(t) > 27(t) weakly in Ll(P), i=1,.0.,p",

%l(t) > %l(t) strongly in L

l(F); i=p'"*,...,r",

od 0J Y . . '
yk(t) > yJ(t) strongly in Ll(F), j=1,04.,8",

Then, y(t) e A(t) a.e. on G, §(t) e B(t) p-a.e. on I', and there are measur-

able functions u(t) = (u ,...,um), t € G, and p-measurable functions v(t) =

1

(v ,...,vm'), t € I', such that fo(t,y(t),u(t)) e L.(@), go(t,ﬁ(t),v(t)) €

1

Ll(F), and such that



+
~—

m

(e
—~
—

ct
~—
~—
-

N
—
ct
~
1

fi(t,y(t),u(t)), i=1,...,r, a.e. on G,

<
Py
ct
SN—r
m
<
S—”
d—
.
o
—
ct
S
~—
o
No
l_-l
—
ct
N—
1]

gi(t (t),v(t)), i = 1,...,r", pu-a.e. on I,

Iy,¥,u,v] < 3«0-

For the proof of this lower closure theorem see (L. Cesari [3e], D. E.

Cowles [4b]).

Remark. In applications, it often occurs that the sets U and V are
fixed and compact, or alternatively U(t,y), V(t,7) are compact, equibounded,
and have properfy (U) in A and B, respectively. Having assumed fo, f, go,'g
continuous, then the sets a(t,y), E(t,ﬁ) certainly are compact and have prop-

erty (U) in A and'B, respectively. If convex, then they also have property

(@) (see [3a]). If p-convex, they have property Q(p) (see [ka]).

L. AN EXISTENCE THEOREM FOR OPTIMIZATION PROBLEMS WITH STATE EQUATIONS
IN THE STRONG FORM

In this séction we should mainly use the same notations of é 3. For the

sake of simplicity we shall denote by T the family of all measurable m-vector

1

functions u(t) = (u ,...,um), t ¢ @, and by T the family of all p-measurable

. l '
m'-vector functions v(t) = (v ,...,vm ), t e I.

Let S be a Banach space of elements x with norm Hx“, and let £ 7, J, X

T
be operators, not necessarlly linear, as described in g 1l, or Aﬂ S-*( l(G)) ’

m: s~ (Ll(G))s, J: s~ (Ll(l“))r', K s~ (Ll(l")) We shall discuss

here the problem of optimization (1.1-5) of g 1.

10



A triple is said to be admissible (for the problem (1.1-5)) provided
XxeS,uefT, vel, fo(t)(ﬁzx)(t))u(t)) € Ll(G)’ go(t,(K\X)(‘t%V(t)) € Ll(r>)
and relations (1.2-5) hold.

A class () of admissible triples is said to be closed if the following

k’vk) €, k=1,2,000, %

occurs: if (xk,u + x weakly in S as k + o, £i§k»m

k

I[ vk] < a < tw, and there are admissible triples (x,u,v) such that

XU

I[x,u,v] < a, then there is also some triple (x,a;;) € 0, with I[x,a,;] < a.
For a class O of admissible triples we denote by [x}Q the subset of S

defined by {x}Q = (X ¢ Sl(x,u,v) € 0 for some ue T, Ve f]. Note that for

1
x € 8, then z(t) = (z ,...,zr) = (%) (t) € (Ll(G))r and we shall denote by

2 (t) = Oﬁx)l(t), t € G, the {0 component Qfaék. Analogously, y(t) =

(e eny) = (") (t) € (Ll(G))S and we set yO(t) = (”Z)c).j(t), teG j=
1,...,8; 2(t) = (2;}.'.,£r') = (Ix)(t) € (Ll(P))r' and we set zi(t) =
FOME), 6 e T L= Leeyr's 3(8) = 3 s85) = (N(8) € (1, (T)° and

we set $9(t) = (Kx)J(%), t € I, §=1,...,s".

(%.1) Existence Theorem. Let G be bounded and measurable, A, B, M, M

closed, fo(t,y,u), f(t,y,u) = (f f ) continuous on M, go(t,ﬁ,v),

1’77y

- g(t,¥,v) = (gl,Qa.,gr,) continuous on M, and assume that, for given integers

p, p', 0<p<r, 0<p' <r', the sets Q(t,y) have property Q(p+l) on A, and

~

the sets R(t,§) have property Q(p'+l) on B. Let us assume that there are

functions ¥(t) >0, t € G, ¥ € L (@), and ¥(t) >0, t € I, ¥ e L. (), such

1 1

that fo(t,y,u) > -y(t) for all (t,y,u) e M, and go(t,ﬁ,v) > -y(t) for all

(t,§,v) € M. Let us assume that, for every sequence x,x , k = 1,2,..., of

k)

11



elements of S with Xk + x weakly in S it occurs that there is some subse-

quence [kp] such that

K, )t > (fx)T weakly in L (6), 1 =1,00050,
p .

: i i o .

kak )" > (Kx)” strongly in Ll(G), i=ptl,...,r,
p.

( k )Y > )Y strongly in Ll(G), j=1,e..,8,
P

(Jkk-)l > (Jx)* weakly in Ll(P), i=1,.00,p",
P

Qka )l > (Jk)l strongly in Ll(P), i=p"tl,...,r',
; ,

(Kkk ) - (lﬂ‘x)J strongly in Ll(F), j=1,..0,8", (4.1)

p
as p > o. Let 0 be a nonempty closed class of admissible triples (x,u,v)

such that the set [x]Q is weakly sequentially relatively compact. Then,the

functional (1.1), or I[x,u,v], has an absolute minimum in Q.

In view of statements (2.1i) and (2.ii), note that, for p = r we actually
require above that the sets Q(t,y) have property (Q), and for p = O we actu-

ally require that the sets @(t,y) have property (U). Analogously, for p' =

0

r' we actually require that the sets ﬁ(t,ﬁ) have property (Q), for p'
we require that the sets ?(t,ﬁ) have property (U). In general, for 0 < p<r,
0 < p'<r', properties Q(p+l) and Q(p'+l) represent intermediate require-
ments.

Proof. Lét»i be the infimum of I[x,u,v] in the class (. Then i is

finite, and we consider a minimizing sequence for I in 0, that is, a sequence

12



,v.), k=1,2,..., of admissible triples, all in 0, with I[x

(x o057, AN

k’ 'k
i as k » . Since the set (x}Q is weakly sequentially relatively compéct,
there is some elemept‘x € S and some subsequence. of [xk] which is weakly con-
vergent to x. For‘the sake of simplicity we denote such a sequence by {k],
and thus xk - x weakly in S. As a consequence, there is a subsequence [kp]

for which convergence relations (L4.1) hold. We shall denote this subsequence

again by [k]. By using the notations

2, () = Ex)), i (e) = O )t), 2(8) = Ra(s),
Y(t) = (77()()(17); t €G;‘
2.(6) = Wx)(), §.06) = (U )(), £() = @x)(¢),

§) = W), ter
we see that relations (1.2-5) imply
7, (8) € A1), u (8) € Uty (8)), 2(%)

= fi(?;yk(t),uk(t)) a.ej in G, 1 = 1,...,r,

5, (t) € B(t), v, (8) € V(t,§,(£)), 2,(t)

= g (t,¥ (t),vk(t)) p-a.e. in I, i = 1,...,r', k = 1,2,....

i i i i :
In addition, zi . weakly in Ll(G), i=1,.05p, 2 > 2z strongly in Ll(G),

. i . . RS S S v i
i= p+l,...,r,_yk > y° strongly in Ll(G), J=1,00.,s, g, > & weakly in

Oi Oi . . Oj Oj
Ll(F), i=1,000,0" 2 > & strongly in Ll(F), i=p'+tl,...,r'", Ve Y

15



strongly in L (T'), j = 1,...,s'. Finally, the sets E(t,y) satisfy property

1
Q(p*l) on A, and the sets E(t,ﬁ) satisfy property Q(p'+l) on B. We can now
apply lower closure theorem (3.1). Then, y(t) = (Mx)(t) € A(t) a.e. on G,

§(t) = (fx)(t) e B(t) u-a.e. on I, and there are elements u ¢ T and v ¢ T

such that

a(t) € U(t,y(t)), 2 (t)

= fi(t,y(t),u(t)), i=1,...,r, a.e. in G,

= gi(t}y(t))v(t)), i = l,-oa,r') u-a.e. on l—‘,

£ (6,3(),u(8)) € 1 (), g (6,§(6),v(8)) ¢ L (D),

1

I[x,u,v] < i, : (4.2)

that is, the triple (x,u,v) is admissible. Since 0 is a closed class of
admissible triples, there is in O some admissible triples (x,a,;) with
I[x,a,;] < i, and relations (4.2) hold also for u,v feplaced by E,;. Since
i is the infimum éf Iin 0, ﬁe have I[x,a,;] > i, and finally I[x,a,;] = i,
Remark 1. Theorem (L.i) holds even if we replace the cost functional
(1.1) by another analogous one with an added term J[x], provided we know that
J[x] is lower sehicontinuous functional on S with respect to Weak convergence

on S. That is, we need only require on J that xk + x weakly in S implies

dim Jlx ) > Jlx].

1L



Remark 2. In each of the theorems (3.i), (L.i), (Lk.ii) we could have
assumed that G and I' are each made up of a finite number of components on

each of which there is a distinct system of state equations.

Remark 3. Of particular interest is the case where the element x of an
admissible triple (x,u,v) uniquely determines the controls u and v. That is,
(x,u,v), (X,E,;) admissible implies u = U a.e. on G, and v = v p-a.e. on I.
In this situation, lower closure theorem (3.1i) reduces to a lower semiconti-
nuity theorem, and corresponding particular existence theorems could have

been obtained by standard lower semicontinuity argument. This holds, for

instance, for free problems of the calculus of variations and other problems.

Remark L. As mentioned in the remark at the end of g.j, if U and V are
fixed compactisets (or U(t,y), V(t,¥) are compact, equibounded, and have
property (U)), then the sets E(t,y), ﬁ(t,ﬁ) certainly héve property (U) and,
if convex, have property (Q) (see [3a]). Also, an analogous statement holds

for the intermediate properties Q(p) in the sense that, if p-convex, than

they have property Q(p) (see [k4a]).

Example 1. The following‘example, mentioned by Fichera [5], illustrates
existence theorem (4.i). 1In this example the particular situation depicted
in Remark 3 occurs, and therefore our lower closure theorem (3.1) reduces to
a lower semicontinuity theorem (which includes Fichera's lower semicontinuity
theorem). Let‘Gvbe a bounded open‘subset of B of class K, v > 1 (see g 2).

Let u be the hyperarea measure defined on the boundary T = oG of G. Let
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Wé(G) be a Sobolev space on G for real p, 1 < p < + o, and integer £, 1 < I

< t o, and usual norm

2/p\1/2
o= x 7 J10%(t) | Pat ) ,
b=, <I(M(G , )

b

whereDaxdenotes the generalized partial derivative of x in G of order =
. ) ) z

(Qi"°"05)’ and |a = Oi+"'+0$' Let ¥ be the linear subset of WP(G)

made up of all functions x which are continuous on G U oG, together with

their partial derivatives of all orders. For t e dG let (Kx)(t) denote the

vector

1

)5

()(X)(t) = (7X,7VX,. ) :7vxm-

where yf denotes the boundary values of f andej, 0 < j < h-1, denotes the
vector of all partial derivatives DO§ of order |a] = j. Let s' denote the
total number of components of the vector (Kx)(t). For given real valued
functions aa(t), t e G, With lal = 1, 8, € Lw(aG), leg (Jx) (t) denote the
real valued function
Jx)(t) = X a (t) y D7x(t), t € 3.
lof=n ©
Fin@lly, let S be the completion of XO with respect to the norm

1/2

=l = (1®

+ [9x)
w(c)

H Lp( 3G)

From Sobolev space theory we know that Kx is defined on S. From the

fact that S is the completion of Xo with respect to the norm above we con-

16



clude that Jx also is defined on S.
We are concerned with the problem of the minimum in S of the functional

Ilx] = [ g (t,0x)(t),(Fx)(5))an, (4.3)
oG

where gé is a given continuous function on the closed sét M= G x E° x E'.
This problem is immediately reducible to the form (1.1-5) by taking £x =

0, Mx = 0, £ =0, by taking B(t) = E°  for every t ¢ I' = 3G, and V(t,¥) = E'
!
for every (t,¥) ¢ B = oG x E° . Thus, there are no constraints on the con-
trol variable v, or v € V= E'. We have now the problem of minimum of the
type (1.1-5) with functional
I[x,v] = J go(t;(xk)(t);v(t))du

r

and state equations (on the boundary)
Jx)(t) = w(t), a.e. on I'= dG.

In the present situation, and using the notations of Eg 3 and 4, we have

r=s=m=0, s' as above, r' = m' = 1. The sets R are the sets

o 2 [o] o] l
{(Z;V) e B |Z > go(t,y,v), veET),

and thus they are convex if and only if go(t,ﬁ,v) is convex in v for every
o s' v
(t,¥) e B= G x E .

Finally, if we assume that there is some real-valued continuous function

17



®(t), 0 < ¢ <+ o, with

g (£,5,v) > o(|v]) for all (¢,§,v) e M,

L)/t > +was { >+, | (k1)

then we know from (Cesari [3b]) that the sets ﬁ(t,ﬁ) satisfy property (Q) on
B. Note that, if p = Min (¢), O < ¢ < +w, then relation go(t,ﬁ,v) > -@(t)
holds for all (t,ﬁ,ﬁ) € ﬁ‘with ¥ = -|u|, a constant.

If p > 1, then for any squgnce of elements Xx, Xy s k=1,2,..., of S
with X, T X wea%ly in § as k + o, certainly there is a subsequence [kp] such
that Jxk > dx weakly in Lp(bG) and Kkk + Xx strongly in (LP(G))Sl as k > o,

D Y
We may take y(t) = Kx) (t), v (8) = O{xk)(t), teq, and z(t) = v(t) =
Jx)(t), zk(t) ='yk(t) = ijk)(t), t e d, k = 1,2,.;.. By lower closure
theorem (B.i) withp=1r =0, p' =‘r' = 1, we derive now the following lower

semicontinuity theorem concerning the integral I[x]:

o . . o s'
(a) If go(t,y,v) is continuous on M = 3¢ x E° x E' and convex

in v for every (t,§) € B = oG x ES, if there is a function
®(t), 0 <t <+ w, such that (L.4) holds, then the func-
tional I[x] is lower semicontinuous in S; precisely, x,

X, € S,.Xk + x weakly in S as k +km, ;imk+w I[xk] < 2 < +oo

implies I[x] < a

Growth condition (k4.L4) can be disregarded if we know that the sets

~
=~

R(t,¥) satisfy property (Q) on B, and that go(t,ﬁ,v) > ~¥(t) for all

18



(t,¥,v) % M and some ¥ > 0, @ ¢ bl(aG)- Also, note that‘under the assumed
hypotheses go(t,(KX)(t),(J(x))(t)) is certainly p-measufable on oG and Eﬁ-@(t)
with V e Ll(G); Thus, the functional I[x], or (4.3), is always defined in S,
either finite, or + oo.

Let 0 be the class of all x ¢ S with |||x]|| < N and I[x] finite. If i
denotes the infig@m of I[x] in QN, then, by force of 8, > —@, i is finite,
and in the search of the minimum of I[x] in Q, we can restrict ourselves to
the subclass,QN‘of all X € QN with I{x] < itl. Any such class Q& is obvi-

ously weakly compact in the topology of S, and weakly closed in the same

topology. From (4.i) we may now derive the following existence statement:

(b) Under the conditions of (a) with 1 < p < + w, the functional -

I[x] has an absolute minimum in any nonempty class ON.

Example 2. Tet G be a connected bounded open subset of the {n-plane Eg.
If G is of class K, then the usual arc length measure s is defined on I' = &G.
We are concerned with the minimum of the functional
Ilx,u,v] = ff r (C;H;X;XC;X ,u)dC dn
; G 0 n :

+ [ g (L,m,7x,9%x,,7% )V)dS; - (h5)
3 ° SO S ,

with state equations
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XCC + x"l"l = f(C,'r],x,xC,x”,u) a.e. in G,

a(é,.ﬂ)yx Folln)yx, * c(C,n)7xn

g(g,n,yx,yxg,yxn,v) s-a.e. on oG - | (4.6)
and constraints

u(C{n) € U(C,n,x,xg,xn) a.e. in G,

v(¢,m) € V(C,n,7x,7x§,7xn) s-a.e. on dG. (4.7)

Here yf denotes the boundary values of f. This problem is immediately

written in the form (1.1-5) by taking

ﬁx = XCC + Xnn) 7RX = (x)xc:xn))

Q¢
>
I

ayx + bVXC + c7xn: xk = (7X’7XC,7XH)’

r=1r'=1,s =g = 3. We take for S the Sobolev space S = W§(G), p>1,

and we assume that the given functions a, b, c are of class Lm(aG). Note

that (Jx)(t,n) could be the normal derivative of x at (¢,m) € &G if only

a =0, and b, c.the direction cosines of the normél to oG at (¢,n)(s-a.e. on

dG). Also, we take A(¢,q) = E3, B(¢,n) = BB, hence A = (clG) x EB, B = (dG)
5

x E7.

For the sake of simplicity we assume m = m' = 1, so that, if y =

1 23 3 (ﬁl 02 o3 5

1
(V,y,5)eE,y=(F,7,7) ¢k

, then U(¢,n,y) denotes a subset of E

for every (¢,n,y) € A and V(¢,n,¥) a subset of B for every (¢,n,¥) € B.
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o 1 o
Finally, if M, M are the corresponding sets, Mc(clG) x o x E, Mc(aG)
5

1 .
x B x E, then fb’ f are real valued continuous functions on M, and go, g

are real valued continuous functions on ﬁ. We consider here the sets
~ o 2 o]
Q(C;W;Y) = {(ZJZ> €k 'Z > fO(C;ﬂ;Y;U);

z = f(C:ﬂ;Y;u): u e U(C;H;Y))

Q

1l

R(C;ﬂ)?) {(EJZ) € ECIE > go(C;ﬂ;§;V);

Z = g(é;ﬂ)&;v): Vo€ V(C}ﬂ:&)}

for every ({,n,y) ¢ A and for every (£,n,¥) € B, respectively.
Note that, if X, > X weakly in § = WE(G), then there is certainly a sub-

sequence [kp] such that ﬁxkp > &x weakly in Lp(G),'M;kp'+?mx strongly in
(Lp(G))5, Jxk + Jx strongly in Ll(aG), Kkk +Kx strongly in Ll(aG). An

1Y 1Y
admissible triple is now a triple (x,u,v) with x e Wi(G), u measurable on G,

v s-measurable on oG, satisfying (4.6), (4.7), and such that fO(C,n,x,xc,xn,u)
€ L1<G) and gO(C;ﬂ;VX;VXC:VXn;V) € Ll<aG)-
We can now derive from (L.i) with op=r, p' = 0 the following existence

statement:

(c) Let G be connected bounded open and of class K in E2, let
M, ﬁ'be closed, let fo, f be real valued and continuous on
M, and go, g real valued and continuous on ﬁ, and assume

that the sets E(C,n,y) satisfy property (Q) on A = (clG) x
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B and the sets R({,n,¥) satisty property (U) on B = (3a)

3

x B°. Let us assume that there are functions ¥({,n) >0,

Ve Ll(G) and V(t,n) >0, Ve Ll(aG) such that fO(C;ﬂ;Y>U)
> =¥(t,n) and g _(C,n,,v) > -§(¢,n) for all ({,m,y,u) € M

and (&,n,¥,v) € &, respectively. Let O be any nonempty class

of admissible triples (x,u,v) for which the set (x}Q is norm
bounded in wi(G), p > 1; that is, there is a constant N such that
(x,u,v) € 0 implies HXHP + “XC“P + Hanp < N. Then, the cost

functional (4.5) has an absolute minimum in 0.

Remark E.. Many examples of optimization problems with distributed and
boundary controls and state equations in the strong form are of the same gen-
eral form of example 2 above. The equations (Kx)(t) = f(t,@ﬂx)(t),u(t)), t
€ G, is a partial differential equation (or a system), and the equation
Jx) () = g(t,(Kk)(t),v(t)), t € oG, represents a certain set of constraints
on the boundary values of the state variables. The conditions of theorems
(4.i) are usualiy satisfied with p = r and p' = 0, that is, we require prop-
erty (Q) on the sets z and property (U) on the sets R. One more example is
“in ([Lka], no. 5, example 1).

In applications it often occurs that U and V are fixed compact sets (or
alternatively U(t,y), V(t,f) are compact equibounded variable sets satisfying
property (U)). In either situation, the sets a(t,y), E(t,ﬁ) certainly have
property (U) and, if convex, have property (Q). (Analogously, if p-convex,

then they have property Q(p) [4a].) A number of problems with U, V fixed
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compact sets have been considered in [3h], and existence theorem (4.i) may

easily be applied.

Example 3. In this example we wish to illustrate the use of the inter-
mediate properties Q(p). Let us consider the problem of the minimum of the

cost functional

I[x,u ,u_,v] = ff(x2-+x2-+x2-Fu2-+u2(l-u )E)dgdn + f(yx-l)gds,
1772 . ¢ Tn 1 22 g

with differential equations

X, tx = u a.e. in G,

¢ T 1’ t 0’

yxc = cos V, 7xn = sin v, s-a.e. on I = oG,

where G = [(C,n)|§2 + n2 < 1], T is the boundary of G, where yx, 7xC, 7xn

denote the boundary values of x, x_, xn, and the control functions ul, u2, v

¢

) e U= Eg, veV=E. Wewant to minimize I in a

have their values (u 1

1°%

class 0 of systems (x,u,u_,v) with u

1Y% s u2 measurable in G, v measurable on

1

2 . . .
I', x any element of the Sobolev class W_(G) satisfying all relations above,

2
“le |

satisfying an inequality ||x ; 5 S M, and for which I is

I, + M=, |l
g2 En 2
finite. Here the constant M is assumed to be sufficiently large so that Q is
not empty. We may well consider only those elements of Q@ for which I < N for
some constant N. Here we have fo > 0, go > 0, and we can take ¥ = 0, @ = Q.
Also weha.veﬁx=(x +X x +x x = (x,x,,X Jx= X 'yx) X =

’ et Tan’ )M - Oxpore ), X

vy, r =2, 8 =3, r"'"=2,s8"=1,m=2, m' =1. Then, for any sequence [xk]

of elements x ¢ {x]Q, certainly there is a subsequence, say still [k] for the
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D
N . - . . . ~ “ Y [ B
sake ol s‘melelt,y, wilh x| »xX oweakly in 8 o= W’((.) Lor gome x ¢ 5, and
‘ .

[

Lx ) ﬁx) weakly in L (G), Qka)a > (ﬁx)a strongly in Le(G),WZxk > Mx
strongly in (Lg(G))3,(jxk > Jx strongly in (LE(P))E, ka > Xx strongly in

L (T). We consider here the sets

2
a(yl,ye,y5) = [(zo,zl,zg)l 2" > yf +y§ +y52 +ui +u§(1-92)2,
2= o 2 = U (ul,ug) € Eg]
E(y) = [(zo,zl,z2)|zO > (y-l)g, 2L = cos v, 22 = sin V, V€ El].

The sets Q C E5 have property Q(2), the sets RC E5 have property Q(1l) and
all have property (U), or Q(0). They are not convex, and do not have, there-
fore, property (@), or Q(3). Nevertheless, existence theorem (L4.i) applies
with p = 2, p' = 0, and the problem under consideration has an absolute mini-
mum in Q.
5. ANOTHER EXISTENCE THEOREM FOR OPTIMIZATION PROBLEM WITH STATE

EQUATIONS IN THE STRONG FORM

We now consider the case where the operators f, 77[, J, )([ themselves
dependv on x € S and on suitable components of the controls, instead of de-
pending on x alone as in g h..‘ Thus, the theorem we shall prove here is, for
practical purposes, more general than theorem (L4.i). Nevertheless, we shall
prove it as a corollary of theorem (L4.i).

We shall consider here additional spaces of distributed and boundary

controls,@and. w1th elements@ @and@ ' respectively, both@and

.belng given Banach spaces.

2k



, + m
It may occur that (u) and () are vector functions @) (t) = (0" l,...,um),

. m'+1 m' ~
t e G, and V) (t) = (v yeessV ), t €T, and in this case the control u =

(u, @ ) is an m-vector function on G, and v = (v, ) is an m'-vector func-

tion on I'. In any case, we write our controls as u = (u, (W) and v =

(V;®)'

- We are concerned here with the problem of the minimum of a functional

I[X;u;@ ;V;®] =/ fo(t)(m(x)@ ))(t),u(t))at
v G

+f go(t,(K(X,@ ))(t))V(t))du (5.1)
r
subject to the st.ate equations
(X(x)@))(t) = f(t:(,”((x)@)(t);u(t)) a.e. in G, (5.2)

e @)(8) = g, K{lx, @) (4),v(t))  p-aee. in I, (5.3)

and the constraints
(7'((}()@ ))(t) e A(t), u(t) e U(ty(n((x) @))(t)) a.e. in G, (5.4)
(Kx; @ ))(t) € B(t), v(t) e V(t,({(x,®))(t)) p-a.e. in T,
(5.5)
As in g 1, G is a fixed bounded open set in Ev, v>1, and T a given
closed subset of OG on which we have a hyperarea measure p. Let S,@,
be Banach spaces of elements x, (W) ,®, and let £, 77[, <7, K be operators on

S x @, S x , not necessarily linear, with values in the following

spaces:

25



Losx @ @), & osx @ - @,
meosx (@ 06 R sx @ - )

where r, s, r', s' are given positive integers.

Let A(t), A, U(t,y), M and B(t), B, V(t,¥), M be the sets defined in

1 1

gg 1 and 3, Mc (clG) x E° x Em, McTxE x& , Ult,y) < Em, V(t,y) <

!

m o
£ 5 let fo(t,y,u), f(t,y,u) = (fl,...,fr) be defined on M, and go(t,y,v),

o . ° ~ +1
g(t,y,v) = (gl,...,gr,) be defined on M. Let Q(t,y) E' " be the sets de-

fined in g 3 for every (t,y) € A, and let E(t,ﬁ) cE L be the analogous
sets also defined in g 3 for every (t,¥) € B.

As in % i, we denote by T the set of all measurable m-vector functions
u(t) = (u,...,u"), t e G, and by T the set of all measurable m'-vector func-
tions v(t) :'(vl,...,vm'), t e I.

A triple (x,a,;), or system (x,u, @ ,v,( ) ), is said to be admissible
(for the problem (5.1-5)) provided x € S, u e T, v € '_cf', W « @, @ e ,
£ MG, @) (8),u(t)) e Ly (6), g (6, (K(x, @ ))(£),v(t)) € L (I), and rela-
tions (5.2-5) hold.

A class 0 of admissible systems is said to be closed if the following
occurs: if (Xk’uk’<::>’vk’<::>) € 0, k=1,2,..., X, 7 X weakly in S, (::>
> (W weakly in @, @ - (v weakly in as k » o, lﬂ)k—)oo I[xk,uk,®,

Vi (Ve ] <a <+ o, and there are admissible systems (x,u, @ ,v, ) ) such

that I[x,u, @ ,v,(® ] < a, then there are also systems (X,E,(:),;,(:)) €0

with I[X,E,<E>,5,<:>] < a.
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For a class 0 of admissible systems (x,u, @ ,v, @ ) we denote by {x}o,

() ]O, [(§)}O the sets detined asg [x}O in E L.

(5.1) Existence Theorem. Let G be bounded and measurable, A, B, M, &

]

closed, fo(t,y,u), f(t,y,u) = (fl,...,fr) continuous on M, go(t,y,v),
g(t,y,v) = (gl,...,gr,) continuous on M, and assume that for given integers
p; p', 0<p<r, 0O<p'<r', the sets a(t,y) have property Q(p+l) on A,
and the sets E(t,ﬁ) have property Q(p'+l) on B. Let us assume that there
are functions y(t) >0, t € G, y « Ll(G), and ;(t) >0, tel, & € Ll(F),
such that fo(t,y,u) > -y(t) for all (t,y,u) e M, and go(t,ﬁ,v) > -y(t) for
all (t,¥,v) € M. Let us assume that for every sequence x, (0 ,C),xk,<::>,
@, k =1,2,..., of elements, X,x €8,  , @ € @, @,@ € ,
with X, 7 X weakly in S, @ > (W weakly in @, @ +~ (¥) weakly in ,

it occurs that there is some subsequence [kp] such that

R x, ,))i > (Bx,@))" weakly in L(0), 1 = 1,...,p,
b

Rix, ,®>>i
b

(WKXk :<::;>))j > Mm(x, @ ))j strongly in Ll(G), J=1,...,s,

(J(x, ,>>i
b

(d0x, ,>>i
b

(Rix, ,))j > (Kix, @))? strongly in L (1),
b

as p > ». Let O be a nonempty closed class of admissible systems (x,u,(),

¥
|
ko]
T
[l
-
Lo
-

U?(x,(:)))i strongly in Ll(G), i=

v
=
2
A
©
p—
N—r
H

weakly in Ll(F), i=1,...,p",

1]

¥
[
0
©)
e

strongly in L_(T), 1 = p'+l,...,r",

1

Il

'
1,...,s8",
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v, (¥ ) such that {X}O, {C)}O,.{C)]Q are weakly sequentially relatively
compact. Then, the functional (5.1), or I[x,u, @ ,v,( ) ], has an absolute

minimum in Q.

Proof. Apply existence theorem (L.i) with S replaced by S x @ X

and x replaced by (x, u , v ).

Example (a problem of evolution in strong form). Let G be a subset of

. vtl 1
the tT-space E , T = (7

,eee,T'), 0f the form G = (0,T) x G', where G' is an
open bounded connected subset of E’ of class K. Thus, v+l replaces v, and I' =
dG is made up of three parts Fl = (o} x G', F2 = (o0,T) x 3G', F5 = (T} x G'.

On Pl and Is we have the Lebesgue v-dimensional measure, or | 'v (and we
shall use the symbol dT in integration). In F2 we have the product measure
o= 1 ll x p of the one-dimensional measure on [0,T] and of the hyperarea p
on the boundary oG' of G' (and we shall use the symbol dt du in integration).
Givena function x in G, we shail denote by yx the boundary values of x 6n r
= oG, and specifically we shall denote by 7ix the boundary values of x on Pi,
i=1,2,5. We ghall denote by T, %i the families of all measurable functions
on G, Pi, i=12,3, respectively.

We shall denote by S;(G), 1<p<+w, {>1, the space of all real
valued functions x(t,7), (t,T) € G, such that dx/dt and all D:‘x, A= (0 yeee,

ik

a ), 0< |al <1, exist as generalized derivatives, and are all in LP(G)- We
g < <

shall make Sé(G) a Banach space by means of the norm
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I

Y
S
D

(flax/atlpdtdfbe/l)+ Y Ginaﬂpdm)yp 1/2.
G o<loj<t \¢ 7

These spaces Sé(G) have been studied by J. P. Aubin [1], who has proved for these

(G)

spaces weak compactness properties similar to those for the Sobolev spaces.

xonl , I', respec-

5 1”3

Fach element x ¢ SE(G) possesses boundary values 7lx, ¥
tively, and all 7, Dk, 0 < |of < £-1, on r.

We are concerned with the minimum of a functional
I[X;U)@:Vg:@ﬂ’}] = ffo(t)TJ(WlX)(t;T);u(t)T>)dth
G

+ [ go(t,T,(Kk)(t,T),v2(t,T))dtdu
FE
e (1 (R)(T,1), vy (1))ar

r
3

with state equations (in the strong form)
J‘:(X, @ )(t,T) = f(t,T,(?{X)(t,T),u(t,T)) - a.e. on G,
J(X;@)(t;’r) = g(t)T)(){'x)(t}T))vz(t}T>) o-a.€. on P2)

and constraints
(Mx)(t,7) € A(t,T), ult,T) € U(t,T,(Mx)(t,7)) a.e. on G,

(Kk)(t;T) e B (t,1), ve(t,T) € Vg(t,T,(Kk)(t,T))‘ g-a.e. on F2,

2

fx)(1,7) « B(1), v

5(T) € Vs(T,(Kk)(T,T)) ‘a.e. on I'_,

3
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and no boundary conditions on Fl (in other words, the initial values @ (1)
= x(o0,T) are free and @ (1), T ¢ Fl, is itself a control, therefore.
2e'I.’e,VBETB, and (W e@,v2€

b
, where @ and are weakly closed subsets of LP(G) and LP(F2), re-

spectively, and both are norm bounded (in the norms of LP(G) and Lp(P2)>'

1
We take now x € S =8 (G), ue T, v

Above M, X, £, J are operators, not necessarily linear, say 77( S - (LP(G))S,
. s' T r!
. s+ (L (D Lo sx (@~ 1 ( J:SX->LF . Ve
o8- )® @ - (@) . (1 (r,))
assume that X, 7 X weakly in S, @ + (@ weakly in LP(G), @ > @

weakly in Lp(FE) implies that szk + Mx strongly in (LP(G))S, ){xk > Xx

strongly in (LP(F))S, f(xk,®) ->£(x, @ ) weakly in -(Lp(l“2))r', J(Xk’

@) > J(x,@) weakly in Lp(Pg)r’. Theorem (5.1) now applies easily.
For instance, we can take r = r' =1, m=n' =1, @ =0, p =0, [ =

2, and
Lo = a/a - T P/t
Jis (7)) = Py ey (6) 7y(a/a) + (@)1 (e,

).

Here @c L (1‘2), and the coefficients ai are given elements of Loo(l“2
[ee]

6. AN EXISTENCE THEOREM FOR OPTIMIZATION PROBLEMS WITH STATE EQUATIONS
IN THE WEAK FORM

We shall now consider the case, mentioned in 5'1, where the state equa-
tions (1.2), (1.3) are written in the weak form as is customary in partial

differential equations theory.

We shall use the general notations of the previous sections. Let W.de-
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r
note a normed space of test functions w = (wl,wg), where LA (Lq(G)) )W, €

1 _l -
(Lq(l“))r , and P +ql=l, with 1 <p <+ o, 1 <g <+ o, and the usual

r

conventions hold. We shall assume that the norms leHq of w, in (Lq(G)) and

llwg“q of v, in (Lq(l“))r are related to the norm HWHW of W = (Wl’wg) in W by

a relation of the form
(6.1)

where K is a constant. We shall denote by W* the dual space of W. We shall
deal here with only three operators, 7, K as in E 5, and F replacing both &

and J:

Meosx (D~ @) K osx @ @),

1
F: Sx@x—>w*.

o
For every x € S, u ¢ T, @ € @, veT, (W e , we consider now the

operator h, or h(x,u, @ ,v, ), h: W~ E', defined by

hw = ff(t)(W((X)@))(t);u(t))wl(t)dt
G

ot f g(t,(){(x, @ ))(t),v(t))we(t)du,
: r

r'
where fwl and g_w2 denote inner products in B and E , respectively.

Instead of state equations (5.2), (5.3) we shall now consider the unique

state equation in the weak form

F = n, or (6.2)
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Jw = nhw for all w e W, or (6.3)

Fo, @, @) pw) = 206,00, @ ))(8),u(e))w (t)ds
G :

+ [ g (6, (RGx, @) () w(t) Ju, (8) d
r :

for all (w

l’w2) e W. (6.4)

Note that relation (6.1) implies

r r'
(LP(G)). X (Lp(r)) < W,

and, as mentioned, J% S x @ X > W*. In most applications, however, we

shall have

FiosxT x o (Lp(G))r x (Lp(r))r' C W,

and the actual determination of W* will be irrelevant.

We understand here that the present unique state .equa,tion (6.3) is the
weak form of state equations (5.2), (5.3). In other words, in any particular
situation s‘vand. W must be so chosen so that any solution of the equations |
(5.2), (5.3) (strong form) is necessarily a solutf;oﬁ of (6.3).
| Thus, we are interested here in the problem of the minimum of the fﬁnc-

tional
I[X)u)@JVJ®] = ffo(t:(m(x)@))(t))u(t))dt
G ,

+ f go(t,(){(x, @ ))(t))v(t))dk‘: (6'5)
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with state equation (in the weak form)
Jw = mw  for all w e W, (6.6)

and constraints
(M(X)@))(t) e A(t), u(t) e U(t;(,”((x:@))(t)) a.e. in G, (6'7)

(){(XJ@))(JG) € B(t); V(t) € V(t)(){(x,’@))(t)). p-a.e. in T,
(6.8)

In the preéent situation we shall require suitable growth conditions,

or condition (H):

(H) For p = 1 we assume that, given € > 0, there are functions

6 >0, ¢ ¢ L (G), and 86 >0, 0 ¢ L (D), such that

€

- I f(t)'-Y)u)l < ¢€(t) + Efo(t)y,vu):

for all (t,y,u) € M,

|g(t:3°’:v)| < ¢8(t) + sgo(t,f/,v)

for all (t,¥,v) € M.
If p > 1 we assume that there are functions ¢O >0, ¢O €
L (G), and %O >0, 50 e L,(T), and constents & > 0, b >0,

such that

D

‘ |f(t;3’:u)| < ¢O(t) + ?fo(t)Y:u)

for all (t,y,u) € M,
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(65,07 <0 (1) + g (4,§,v)

Q

for all (t,¥,v) € M.

This condition, for p = 1, has been systematically used by Cesari [3be]
as a suitable extension of previous more restrictive growth hypotheses used

by Tonelli and MecShane.

~ o~

A triple (x,u,v), or system (x,u, @ ,v,® ), is now said to be admissi-
ble provided x e S, u e T, @ ¢ @, vel, @ e , relations (6.6),
(6.7), (6.8) nold, fo(tJM(X)@»(t)Ju(t)) € Ll(G)’ go(t)(){(xy®>)(t);v(t))

€ Ll(F). Also, we require that f(t,(ngx,() ))(t),u(t)) € (Lp(G))r and that

g(t, (K(x, @ ))(t),v(t)) e (Lp(l"))r . In the existence theorem below, how-
ever, this last requirement will be a consequence of property (H). We shall

now consider nonempty closed classes Q of admissible systems (x,u, @ ,v, @) ),

)
where the definition of closedness is analogous to the ones in Sg 4 and 5.

(6.1) Existence Theorem. Let G be bounded and measurable, A, B, M, M

closed, fo(t,y,u), f(t,y,u) = (f ,...,fr) continuous on M, go(t,ﬁ,v),

1
g(t,y,v) = (g ,;..,gr,) continuous on M, and assume that the sets a(t,y)
have property (Q) on A, and the sets E(t,&) have property (Q) on B. Let us
assume that there are functions y(t) >0, t € G, y ¢ Ll(G), and ¥(t) >0, t

€ Ll(F), such that fo(t,y,u) > -y(t) for all (t,y,u) € M, and go(t,

<o

e I'y

ﬁ:v)

v

-y(t) for all (t,f,v) € M. Let us assume that relation (6.1) holds,

and that growth condition (H ) is satisfied. Let us assume that, for every

sequence x, @, VW, X, (::), (::), k=1,2,..., of elements x, x €8,
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, @ € @, ®, @ € withxk->xweakly ins, @ + (@ weakly
in @, @ > @ weakly in , it occurs that there is some subsequence

[kp] such that

) > X,@) strongly in (Ll(G))S,
){(Xk ‘; XKX’ (¥ ) strongly in (Ll(l“))s',
&(Xk ',,)w > F(x, @, @ )w for every w e W, (6.9)
p

as p » o. Let 0 be a nonempty closed class of admissible systems (x,u, @ ,
v, (¥) ) such that x} @ } (@ }Q are weakly sequentially relatively com-
pact. Then the functional (6.1), or I[x,u, (@ ,v, (¥ ], has an absolute mini-

mum in Q.

The hypothesis concerning d above can be reworded by saying that

j(xkp, ,@) + 3(x, @, ® ) in the weak star topology on W.

Proof. As usual let i be the infimum of I[x,u, @ ,v,(®) ] in the class

9. Since f_ > -y, g > -y and Q is nonempty, i is finite. Let

(xk’uk’®’vk’®)’ k =1,2,..., be a sequence with I[Xk’uk’®’v ’C’””]

» 1 as k » o, and .we may well assume that

, S | .
< I[xk,uk,®,vk,®} < itk < it k=1,2,....

Since we hax_}e assumed that the sets [x}Q, (@ }Q, (@ ]Q are weakly

-

sequentially relatively compact, there is a subsequence, 'say still [k] for

the sake of simplicity such that x_ + x weakly in S, @ » (@ weakly in

k
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@; @ - @ weakly in as k » 0. We may even assume that the subse-

quence has been so chosen that limit relations (6.9) hold. Let

N
—
+
~—
1

f(tJM(ka®)(t):uk(t))) t e G,

No
—
C*.
~

1

g(t,){(xk,®)(t),\fk(t)), tel, k=1,2,....

By growth condition (H ) and I[xk,uk,<::>,vk,<:i>] < i+l for all k, we

see that, if p > 1, the functions zk(t) and 2 (t), k = 1,2,..., are equi-

k

1

bounded in the norms of (LP(G))r and (LP(F))r , respectively. If p = 1 it
follows from an argument of Cesari [3be] that the same functions zk(t) and
ﬁk(t) are equiabsolutely integrable in G and I, respectively. In any case,

there exists a subsequence, say still [k] for the sake of simplicity, and

1
elements z(t), t € G, z ¢ (Lp(G))r, and 8(t), t e I, £ ¢ (Lp(r))1~ , such that

'

z, > 2 weakly in (Lp(G))r and %k » % weakly in (Lp(F))r . In other words,

r

(60 (5)) (8) 1 (6)) > 2(6) weakdy dn (L (G))",

(5 Ko (7)) (8,7, () > 2(6) weakly i (1(0)7 (6.10)
as k » o, while

1];_3;: I[Xk)uk)®)vk’®] = i, . (6.11)

(Mir () D (8] € ACE), v (8) € Ve, (Mxs (@)D (1)) eeee in G,

(Rl (7)) (8] € B(8), w(8) € V(6. (Klx,(%)))(8)) w-e.e. inT.

(6.12)
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If w= (wl,wg) is any element of W then, by relation (6.1) we know that

1

L (Lq(G))r and v, € (Lq(I‘))r , hence

é zk(t)wl(t)dt > é z(t)wl(t)dt, ? %k(t)wg(t)dp > £ ﬁ(t)wz(t)dp

as k » «. Finally, by the definition of the operator h, we have
h(xk,uk,®},vk;@)w > é z(t)w, (t)at + £ 2(t)w,(t)au (6.13)

,Ww_) € W. By hypothesis we have also

as k ~» for every w = (w
=, for y ( A

3‘(xk,®,®)w - Hx, @, @ v (6.14)

as k >~ », again for every w ¢ W. Here each system (xk,uk,(::>,vk,<::>),
k =1,2,..., is admissible, hence the first members of (6.13) and (6.1k4) are

equal for every w ¢ W. From (6.13) and (6.14), by comparison we obtain

e, @, @ = [ z(t)w (t)at + [ &(t)w,(t)an (6.15)
G r

for every w € W.

Now relations (6.10), (6.11), (6.12) show that we can apply lower

closure theorem (3.i) with S replaced by S x @ x and with p = r, o -
r'. Here the sets a(t,y) have property (Q) on A, hence property Q(r+l) by .
force of (1.i). Analogously, the sets E(t,?) have property (Q) on B, hence
property Q(r'+l). We conclude that (M(x, (@ ))(t) e A(t) a.e. in G, that

(KKX,() ))(t) € B(t) p-a.e. in I', and that there are elements u € T, v e T

such that
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go(t)( (X)®))(t);v(t)) € Ll(r>)

Ilx,u, @,v,®] < i. (6.16)

Relations (6.15) and (6.16) show, by comparison, that

Fx,@,®)w = h(x,u, @,v,®)w for all w e W.

Thus, the system (x,u, @ ,v,(¥) ) is admissible, and since Q is ciosed, the
same system belongs to Q, and I[x,u, @,V,@] > 1. Thus, I =1, and exis-

‘tence theorem (6.i) is thereby proved.

Remark. Remarks 1, 2, and 3 of g L4 apply to the present theorem (6.1)

as well.

Example. Let G be an open bounded connected subset of Ev, v>1, of

class K. We are concerned with the minimum of a functional

I[x,u] = ffo(t;(mx)(t))u(t))dt; (6'17)
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with no boundary conditions, with state equations which we want to be a weak

form of

VLB @NE = (e, () (8),0(0), (€.18)
and with constraints

(M) (£) € A(t), ul t) e U(t, (Mk)(t)). (6.19)

Here x and u arelfunctione on G. Thus, g8, = 0, we have no boundary condition
on x, we can take g = 0, J= 0, X= 0, and need make no references to I', B,
v, ﬁ. In this problem x and u are functions on G.

We shall think of W as simply being C:(G) and write elements w = (wl,o)

(t), t € G, with w_ « C:(G). As a weak form of (6.18) we

e Was simply w

1 1

take now:
i i
-J LY (x/367) (aw /ot )at = (f} L) (4),u(5)) w (t)at (6.20)

for all w, € Cj(G). It is easy to verify that any (strong) solution x, u of

(6.18), say x € Wi(G), ue T, is certainly a solution of (6.20).

H

1 _
We take x € Wl(G), p=1, ueT, (that is, u measurable in G). We can

take in W = C:(G) any topology which is stronger than the topology on C:(G)

induced by the Wi(G) norm. For instance:
e a v i
.l = el (£)] + 20 x| ow /67,

where each Max is taken in G. Then HWlH “w H “W“ o @nd thus (6.1)

G) =
holds with K = 1, and W< L (G).
00
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Let 7z 8 » (L (@))® be any operaﬁor such that x, x

l kGS;kzl,g;---,

and x, > x weakly in S implies W&k +—Wp strongly in (Ll(G))S. Let A(t), A,
U(t,y), M be defined as usual and closed, with r = 1, m = 1, let fo(t,y,u),

f(t,y,u) be real valued continuous functions on M, and let a(t,Y) be the sets
~ . ] 2 o
Q(t)y) = {(Z)Z) €k IZ > fo<t)y)u); Z

f(t;y,wu)) u € U(t,Y))-

n

We assume that the sets E(t,y) have property (Q) in A. We shall assume that
there is some function y >0, vy ¢ Ll(G) such that fo(t,y,u) > -y(t) for all
t € G. We shall also assume that growth condition (H ) holds for fQ and f

with p = 1. Here d: S - W* is defined by

Foow, =TI (338 (e /o at
G

1
Now, if x, x, € § = Wi(G), k=1,2,..., and x_~ x weakly in § = Wi(G),
then axk/bti > ax/ati as k + o weakly in Ll(G), i=1,...,v, hence (ﬁxk)wl -
Qfx)wl for every w, e Lm(G) and then certainly for every w, e W= C:(G).

Thus , the hypothesis required ond in (6.i) is satisfied.

A pair (x,u) is here admissible provided x e wi(G), u is measurable in
G, (mx)(t) € A(t) and u(t) U(t,(m()(t)) a.e. in G, fo(t)(m)(t):u(t)) €

Ll(G), and relation (6.20) holds for every Wy e W= CO(G).
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Note that hypothesis (H ) (for p = 1) certainly assures that also
,(M)(6),u(8)) € 1, ().
We shall take for Q a nonempty closed class of admissible pairs (x,u).
Theorem (6.1) now guarantees that the functional (6.17) with state equation

(6.20) (in weak form) and constraints (6.19) has an absolute minimum in Q.

7. APPLICATIONS TO PROBLEMS OF OPTIMIZATION WITH AN EVOLUTION EQUATION
IN WEAK FORM

In this section we apply theorem (6.i) to problems of optimization witn:

an evolution equation in the weak form.

Example 1. We are using in this and following examples the notations of

the example in g 5. We are concerned with the problem of the minimum of the

functional

I[x,u, Vl @;V ] = O('t';,T,(WlX)(t,T),U(t,T).)dta‘i‘

7, () ( ) (1),v5(1))ar (6.21)

with no boundary conditions on Pl and~P5; with a state equation (concerning

F2 and G) which will be a suitable weak form of the system of equations

dx/dt - Z‘i’=l a2x/(ari)2 = f(t,T, mx) (t,7),u(t,T)) in G, (6.22)
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xx/dn + @(t,T)yex(t,T) = 0 in . (6.23)
and constraints

Me)(t,T) € Alt,T), ult,T) € U(t,7,(Mk)(t,7)) a.e. in G, (6.24)

Kx) (1) € B(1), v, (1) € v(t,({x) (1)) a.e. in I (6.25)
1 1 1
Here x, u: G~ E, <::>: F2 ~E, VB: F5 -+ E, denote real valued
functions, x state variable, u, <::>, v3 controls. In other words, we are

interested in thé determination of a function x(t,7) in G (in particular, of
its initial values, say (::)(T) = x(o0,T) on Fl); and of controls u(t,T) in
G, @(t,r) in FE, VB(T) in FB, such that the functional (6.21) has its
minimum value, under constraints (6.24), (6.25), and a suitable weak form of
state equations (6.22), (6.23).

We take for W the space of all pairs w = (w,yw), where w ¢ c®(c1G). As

a weak form of (6.22-23) we take the equation

[ I (/o) (dw/artJatar + f (a/am)a(s,T)atar
G G

+/ (t,7)y x(t,7)y o(t,7)dtdu
@
= [ £(t,T, Mx)(t,7),u(t,T)o(t,T)dtdr  for all w ¢ C (G) (6.26)
G.

Hereé}w, or<3(x,<::>)w, that is, the operator 33 is defined by the first
member of (6.26).
It is easy to verify that any strong solution x, u, (::) of (6.22-23),

say with x € Si, ueTt, (::) € Lw(FQ), is certainly a solution of (6.26) for
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all w ¢ C (G).

We shall take here x ¢ S = Wi(G), =1, ueT, @ ‘ w1th‘

a weakly closed subset of Loo(l“g), which is bounded in the norm of L ( 2 (in

other words, the elements @ € ‘ cL (l‘g) are equibounded in FE)' We
- :

take in W any topology which is stronger than the topology on C (G) x C(T)

induced by the topologies of Wi(G) and Loo(l"), say
v i
M, = B, = daxla(s,0)] + 2 vx] o

where all Max are taken in clG. Then, (6.1) holds with q = w0, K = 2, and
1

WcWw(g) xL (D).
[o0] .00

Let M: s ~» (Ll(G))S and X: § » (Ll(ri))s' be operators such that x, x,

es=w(g), k=1,2,..., and x, » x weakly in § impliesmk + Mk strongly in

S ) s'
(Ll(G)) , )(\xk > Xx strongly in (Ll(%)) .
' 1
Note that x > x weakly in § = Wl(G) implies that x, » x strongly in

L, (G), 3, /36 > d/3t, 3 /3T » /3 weakly in L (G), 1 = 1,...,v, and

7X + yx strongly in Ll(F). If @, @, k=1,2,..., are elements of

= Loo(Pg)’ with @ > @ weakly in LOO(FE), then V2K(72Xk) > v2(72x)

weakly in LOO(I‘Q). Finally, from the definition of 3‘(x,@), we conclude
‘ that Jt(xk,@)w > 3(x,@)w as k > o for every w = (w,yw) € W, as
requested.

For any (t,T) e G let A(t,T) < E° be a given set, let A, U(t,T,y), M be
defined as ﬁsﬁal, A and M closed, let fo(t,'r,u), f(t,T,y,u) be real valued

continuous functions on M. Let S(t,'r,y) be the sets
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2

Q(t)T:y) = [(EJZ) 4 > fo(t)T:Y)u)) Z

f(t)T)y)u)) u € U(t)T;y)})

and let us assume that these sets have property (Q) on A. Also, in harmony
with (6.1), we assume that there is a function y(t,7) >0, y € Ll(G) with
fo(t,T,y,u) > -y(t,t) for all (t,T,y,u) € M, and that for every g > 0 there
is some function ¢8(t,T) >0, v € Ll(G), such that |£(t,T,y,u)| < ¢€(t,r) +
Efo(t,T,y,u) for all (t,T,y,u) € M.

For any (T,T) € PB, that is, T € clG', let B(T) c Es' be a given set,
let B, V(T,¥), M be defined as usual, B and M closed, let gO(T,ﬁ,VB) be real
valued and continuous on M. We assume that there is a real valued function
WB(T) >0, WB € Ll(G') with gO(T,ﬁ,v5) > -wB(T) for all (T,ﬁ,vB) e M. Here
g = 0, hence the corresponding sets ﬁ are half straight lines, and certainly
are convex and satisfy property (Q) and the corresponding part of conditions

(H ) is also satisfied. On Pl and F2 we have both g = O, go = 0, and no

further discussion is needed.

A system (x,u,(::>,v5) is here admissible provided x c:Wi(G), u is mea-
surable in G, v, measurable in I, e? <L (r), f (t,7,Mx)(t,7),u(t,T))
3 3 2 o' 2 o]
L(6), ¢ Hx (1)) « Ll(Fi), and relations (6.24), (6.25), (6.26)

hold. Because of hypothesis'(H ), £(t,7,x)(t,7),u(t,7)) also is in L (G).

L
We shall take for ( a nonempty closed class of admissible systems. Theorem
(6.1) now guarantees that the functional (6.21) with state equation (6.26)

(in weak form) and constraints (6.24), (6.25) has an absolute minimum in Q.

Example 2. The same as example 1 where now we are concerned with the 7
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minimum of the functional (6.21), with constraints (6.24), (6.26), state

equation which will be a suitable weak form of (6.22) in G, and no boundary

1 1
FB. Here x, u: G- E, v,: I - E, denote real

5 3

valued functions, x state variable, u, V3 controls. In other words, we are

conditions on Pl, FE’
concerned with the determination of a function x(t,7) in G (in particular, of
its initial values, say (::)(T) = x(0,T) on o), and lateral values (::)(t,r)
= x(t,T) on Fg)’ and of controls u(t,T) in G and VB(T) on F3, such that the
functional (6.21) has its minimum value under constraints (6.2L), (6.25) and
suitable weak form of (6.22).

Here we take for W the space of all pairs w = (w,0) where w ¢ C:(G). As
a weak form of (6.22) we take

P (aart) (awyart)atar + f (3g/3t)alt,T)atar
. G

(@)

= J f(t;T)(m¥)<t;T))u(t:T))w(t)T)dth
G .
for all w ¢ C:(G). The discussion of this example is similar to example 1.

Examples similar to the ones above have been considered by J. L. Lions

[T7ab].
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